
PAC-Learnability of Probabilistic Deterministic

Finite State Automata in Terms of Variation
Distance�

Nick Palmer and Paul W. Goldberg

Dept. of Computer Science, University of Warwick,
Coventry CV4 7AL, U.K.

{npalmer, pwg}@dcs.warwick.ac.uk
http://www.dcs.warwick.ac.uk/research/acrg

Abstract. We consider the problem of PAC-learning distributions
over strings, represented by probabilistic deterministic finite automata
(PDFAs). PDFAs are a probabilistic model for the generation of strings of
symbols, that have been used in the context of speech and handwriting
recognition, and bioinformatics. Recent work on learning PDFAs from
random examples has used the KL-divergence as the error measure; here
we use the variation distance. We build on recent work by Clark and
Thollard, and show that the use of the variation distance allows simpli-
fications to be made to the algorithms, and also a strengthening of the
results; in particular that using the variation distance, we obtain poly-
nomial sample size bounds that are independent of the expected length
of strings.

1 Introduction

A probabilistic deterministic finite automaton (PDFA) is a deterministic finite
automaton that has, for each state, a probability distribution over the transitions
going out from that state. Thus, a PDFA defines a probability distribution over
the set of strings over its alphabet. The topic of PAC-learning of PDFAs was
introduced by Ron et al. [10], where they show how to PAC-learn acyclic PDFAs,
and apply the algorithm to speech and handwriting recognition. Recently Clark
and Thollard [3] presented an algorithm that PAC-learns general PDFAs, using
the Kullback-Leibler divergence (see Cover and Thomas [4]) as the error measure
(the distance between the true distribution defined by the target PDFA, and the
hypothesis returned by the algorithm). The algorithm is polynomial in three
parameters: the number of states, the “distinguishability” of states, and the
expected length of strings generated from any state of the target PDFA.

� This work was supported by EPSRC Grant GR/R86188/01. This work was sup-
ported in part by the IST Programme of the European Community, under the PAS-
CAL Network of Excellence, IST-2002-506778. This publication only reflects the
authors’ views.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 157–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

158 N. Palmer and P.W. Goldberg

In this paper we study the same problem, using variation distance instead
of Kullback-Leibler divergence. The general message of this paper is that this
modification allows some strengthening and simplifications of the resulting al-
gorithms. The main one is that – as conjectured in [3] – a polynomial bound on
the sample-size requirement is obtained that does not depend on the length of
strings generated by the automaton. We also have no need for a distinguished
“final symbol” that must terminate all data strings, or a “ground state” in the
automaton constructed by the algorithm.

The variation distance between probability distributions D and D′ is the
L1 distance; for a discrete domain X , it is L1(D, D′) =

∑
x∈X |D(x) − D′(x)|.

KL divergence is in a strong sense a more “sensitive” measure than variation
distance; this was pointed out in Kearns et al. [8], which introduced the general
topic of PAC-learning probability distributions. In Cryan et al. [5] a smoothing
technique is given for distributions over the boolean domain — an algorithm
that PAC learns distributions using the variation distance can be converted to
an algorithm that PAC learns using the KL-divergence. (Abe et al. [1] give a
similar result in the context of learning p-concepts.) Over the domain Σ∗ (strings
of unrestricted length over alphabet Σ) that technique does not apply, which is
why we might expect stronger results as a result of switching to the variation
distance.

In the context of pattern classification, the variation distance is useful in
the following sense. Suppose that we seek to classify labelled data by fitting
distributions to each label class, and using the Bayes classifier on the hypoth-
esis distributions. (See [6] for a discussion of the motivation for this general
approach.) We show in [9] that PAC learnability using the variation distance
implies agnostic PAC classification. The corresponding result for KL-divergence
is that the expected negative log-likelihood cost is close to optimum.

Our approach follows [3], in that we divide the algorithm into two parts.
The first (Algorithm 1 of Figure 1) finds a DFA that represents the determinis-
tic structure of the hypothesis, and the second (Algorithm 2 of Figure 2) finds
estimates of the transition probabilities. Algorithm 1 constructs (with high prob-
ability) a DFA whose states and transitions are a subset of those of the target.
Algorithm 2 learns the transition probabilities by following the paths of random
strings through the DFA constructed by Algorithm 1. We take advantage of the
fact that commonly-used transitions can be estimated more precisely.

2 Terms and Definitions

A probabilistic deterministic finite state automaton (PDFA) stochastically gen-
erates strings of symbols. The automaton has a finite set of states - one of which
is denoted as the initial state. The automaton generates a string by making
transitions between states (starting at the initial state), each occurring with a
constant probability specifically associated with that transition, and a symbol is
output as a function of the transition. The automaton halts when the final state
is reached.

PAC-Learnability of Probabilistic Deterministic Finite State Automata 159

Definition 1. A PDFA A is a sextuple (Q, Σ, q0, qf , τ, γ), where

• Q is a finite set of states,
• Σ is a finite set of symbols (the alphabet),
• q0 ∈ Q is the initial state,
• qf /∈ Q is the final state,
• τ : Q × Σ → Q ∪ {qf} is the (partial) transition function,
• γ : Q×Σ → [0, 1] is the function giving the probability of a symbol occurring

from any state.

Where appropriate, we extend the use of τ and γ to strings:

τ(q, σ1σ2...σk) = τ(τ(q, σ1), σ2...σk)
γ(q, σ1σ2...σk) = γ(q, σ1).γ(τ(q, σ1), σ2...σk)

We use the pair (q, σ) to denote the transition from state q ∈ Q labeled with
character σ ∈ Σ. Note that γ(q, σ) = 0 when τ(q, σ) is undefined. It should also
be noted that the output probabilities from each state sum to one:

∀q ∈ Q :
∑

σ∈Σ

γ(q, σ) = 1.

We assume that the final state can be reached from any state of the au-
tomaton, that is, ∀q ∈ Q, ∃s ∈ Σ∗ : τ(q, s) = qf ∧ γ(q, s) > 0. It follows that
the PDFA A defines a probability distribution over all strings in Σ∗. Let DA(s)
denote the probability that A generates s ∈ Σ∗, so we have

DA(s) = γ(q0, s) for s such that τA(q0, s) = qf .

We define DA(q) to be the probability that a random string generated by A
uses state q ∈ Q. Thus DA(q) is the probability that s ∼ DA (i.e. s sampled
from distribution DA) has a prefix p with τ(q0, p) = q. In a similar way, DA(q, σ)
is the probability that a random string generated by A uses transition (q, σ) —
the probability that a random string s ∼ DA has a prefix pσ with τ(q0, p) = q.

Suppose D and D′ are probability distributions over Σ∗. The variation (L1)
distance between D and D′ is L1(D, D′) =

∑
s∈Σ∗ |D(s) − D′(s)|. A class C

of probability distributions is PAC-learnable by algorithm A with respect to
the variation distance if the following holds. Given parameters ε > 0, δ > 0,
and access to samples from DA ∈ C, using runtime and sample size polynomial
in ε−1 and δ−1, A should, with probability 1 − δ, output a distribution DH

with L1(DA, DH) < ε. If C is described in terms of additional parameters that
represent the complexity of DA, then we require A to be polynomial in these
parameters as well as ε−1 and δ−1.

3 Constructing the PDFA

The algorithm is shown in Figure 1. We have the following parameters (in addi-
tion to the PAC parameters ε and δ):

160 N. Palmer and P.W. Goldberg

• |Σ|: the alphabet size,
• n: an upper bound on the number of states of the target automaton,
• µ: a lower bound on distinguishability, defined below.

In the context of learning using the KL-divergence, a simple class of PDFAs
(see [3]) can be constructed to show that the parameters above are insufficient
for PAC learnability in terms of just those parameters. In [3], parameter L is
also used, denoting the expected length of strings.

We construct a digraph G = 〈V, E〉 with labelled edges (V is a set of vertices
and E ⊆ V ×Σ×V is a set of edges). Each edge is labelled with a letter σ ∈ Σ.
Note that due to the deterministic nature of the automaton, there can be at
most one vertex vq such that (vp, σ, vq) ∈ E for any vp ∈ V and σ ∈ Σ.

From the target automaton A we generate a hypothesis automaton H using a
variation on the method described by Clark and Thollard [3] utilising candidate
nodes, where the L∞ norm between the suffix distributions of states is used to
distinguish between them (as studied also in [7, 10]). We define a Candidate
Node in the same way as [3]. Suppose G is a graph whose vertices correspond to
a subset of the states of A. Initially G will have a single vertex corresponding to
the initial state; G is then constructed in a greedy incremental fashion.

Definition 2. A candidate node in hypothesis graph G is a pair (u, σ) (also
denoted q̂u,σ), where u is a node in the graph and σ ∈ Σ where τG(u, σ) is
undefined. It will have an associated multiset Su,σ.

The L∞-norm is a measure of distance between a pair of distributions, defined
as follows.

Definition 3. L∞(D, D′) = maxs∈Σ∗ |D(s) − D′(s)|.
Let Dq(s) denote the distribution over strings generated using state q as the

initial state, so that

Dq(s) = γ(q, s) for s such that τ(q, s) = qf .

As in [10, 3], we say that a pair of nodes (q1, q2) are distinguishable if
L∞(Dq1 , Dq2) = maxs∈Σ∗ |Dq1(s) − Dq2(s)| ≥ µ. We define as follows the L̂∞-
norm (an empirical version of the L∞-norm) with respect to multisets of strings
Sq1 and Sq2 , where Sq1 and Sq2 have been respectively sampled from Dq1 and
Dq2 .

Definition 4. For nodes q1 and q2, with associated multisets Sq1 and Sq2 ,

L̂∞ (Dq1 , Dq2) = max
s∈Σ∗

(∣
∣
∣
∣
|s ∈ Sq1 |
|Sq1 |

− |s ∈ Sq2 |
|Sq2 |

∣
∣
∣
∣

)

where Dq is the empirical distribution over the strings in the multiset Sq asso-
ciated with q, and where |s ∈ Sq| is the number of occurrences of string s in
multiset S.

PAC-Learnability of Probabilistic Deterministic Finite State Automata 161

Algorithm 1 Construct Automaton.

Hypothesis Graph G = 〈V, E〉 = 〈{q0}, ∅〉
m0 = n|Σ|

µ2δ′

N = max
(

8n2|Σ|2
ε2

ln
(

2n2|Σ|2
δ′

)
, 4m0n|Σ|

ε

)

complete = false

repeat

% create candidate node for each undefined transition from each vertex in G
for each vertex v ∈ V

for each symbol σ ∈ Σ, where τG(v, σ) is undefined

create a candidate node q̂v,σ with associated multiset Sv,σ = ∅
generate a sample S of N strings iid from DA

for each string s ∈ S, where s = rσ′t and q̂τG(q0,r),σ′ is a candidate node

Sτ(q0,r),σ′ ← Sτ(q0,r),σ′ ∪ {t}
identify candidate node q̂u,σ′′ with the largest multiset, Su,σ′′

if (|Su,σ′′ | ≥ m0)
replace multiset Su,σ′′ with m0 suffixes chosen iid from Su,σ′′

if
(
∃v ∈ V : L̂∞

(
Dq̂u,σ′′ , Dv

)
≤ µ

2

)
% candidate “looks like” existing node

add edge (u, σ′′, v) to E
else

add node q̂u,σ′′ to V , with multiset Su,σ′′

add edge (u, σ′′, q̂u,σ′′) to E
else

complete = true

delete all candidate nodes q /∈ V
until(complete)

return G

Fig. 1. Constructing the underlying graph

The algorithm uses two quantities, m0 and N . m0 is the number of suffixes
required in the multiset of a candidate node for the node to be added as a state
(or as a transition) to the hypothesis. It will be shown that m0 is a sufficiently
large number to allow us to establish that the distribution over suffixes in the
multiset that begin at state q is likely to approximate the true distribution Dq

over suffixes at that state. N is the number of strings generated iid during each
iteration of the algorithm. Polynomial expressions for m0 and N are given in
Algorithm 1.

We show that the probability of Algorithm 1 failing to adequately learn the
structure of the automaton is upper bounded by δ′. In Section 5 we show that
the transition probabilities are learnt by Algorithm 2 with a failure probability of
at most δ′′. Overall, the probability of the algorithms failing to learn the target
PDFA within a variation distance of ε is at most δ, for δ = δ′ + δ′′.

162 N. Palmer and P.W. Goldberg

Algorithm 1 differs from [3] as follows. We do not introduce a ground node -
a node to catch any undefined transitions in the hypothesis graph so as to give a
probability greater than zero to the generation of any string. Instead, any state q,
for which DA(q) < ε

2n|Σ| can be discarded - no corresponding node is formed in
our hypothesis graph. There is only a small probability that a string is generated
such that our hypothesis automaton rejects it (there is no corresponding path
through the graph), which means that the contribution to the overall variation
distance is very small.

4 Analysis of PDFA Construction Algorithm

Theorem 1. Given that for each pair (q1, q2) of distinct states in A, L∞(Dq1 ,
Dq2) > µ, the corresponding1 states (q̂1, q̂2) in hypothesis automaton H are dis-
tinguished (L̂∞(Dq̂1 , Dq̂2) > µ

2) with probability at least 1 − δ′
2 , if m0 ≥ n|Σ|

µ2δ′ .

Proof. States q1 and q2 are distinguished if there exists a string s′ such that:
∣
∣
∣
∣
|s′ ∈ Sq1 |
|Sq1 |

− |s′ ∈ Sq2 |
|Sq2 |

∣
∣
∣
∣ ≥

µ

2

Due to the assumption that L∞(Dq1 , Dq2) > µ, a string s′′ exists such that:

|Dq1(s
′′) − Dq2(s

′′)| > µ

We give a sufficient sample size, such that the proportion of each string
occurring in the sample is within µ

4 of the expected proportion (with probability
at least 1 − δ′

2n2|Σ|2m0
). From Hoeffding’s Inequality (see for example [2]) we

obtain that, for state q and string s:

Pr

(∣
∣
∣
∣
∣

(
|s ∈ Ŝq|
|Ŝq|

)

− Dq(s)

∣
∣
∣
∣
∣
≥ µ

4

)

≤ e−2m0(µ
4)2

(1)

A value of m0 is chosen such that for sufficiently large n:

e−
m0µ2

8 ≤ δ′

2n2|Σ|2m0
(2)

It can be verified that this is satisfied if we choose m0 ≥ n2|Σ|2
µ2δ′ .

From Equation 2 it can be seen that (for some string s and some state q):

Pr

(∣
∣
∣
∣
∣

(
|s ∈ Ŝq|
|Ŝq|

)

− Dq(s)

∣
∣
∣
∣
∣
≥ µ

4

)

≤ e−2m0(µ
4)2 ≤ δ′

2n2|Σ|2m0
(3)

1 At every interation of the algorithm, a bijection Φ exists between the states of H
and candidate states, and a subset of the states of A, such that τA(u, σ) = v ⇔
τH(Φ(u), σ) = Φ(v).

PAC-Learnability of Probabilistic Deterministic Finite State Automata 163

For state q, a multiset Sq is said to be representative of the true distribution

with respect to q, if ∀s ∈ Sq :
∣
∣
∣
(|s∈Sq|

|Sq|
)
− Dq(s)

∣
∣
∣ ≤ µ

4 . If two states q1 and q2

have representative multisets, then given that L∞(Dq1 , Dq2) > µ, it must be the
case that for some string s′′:

∣
∣
∣
∣
|s′′ ∈ Sq1 |

|Sq1 |
− |s′′ ∈ Sq2 |

|Sq2 |
∣
∣
∣
∣ ≥

µ

2

Each multiset is representative (given that it contains m0 suffixes) with prob-
ability at least 1− δ′

2n2|Σ|2 , due to a union bound. There are at most n|Σ| candi-
date nodes in total and candidate nodes are re-generated (as are their multisets)
in each iteration of the algorithm (of which there are at most n|Σ|). Therefore,
the probability that a candidate node has a representative multiset at the point
when it is converted to a node in the hypothesis graph (or found to be indistinct
from another node in the graph) is at least 1 −

(
δ′

2n2|Σ|2 .n2|Σ|2
)

= 1 − δ′
2 .
�

Proposition 1. Let A′ be a PDFA whose states and transitions are a subset of
those of A. Assume q0 is a state of A′. Suppose q is a state of A′ but τ(q, σ) is
not a state of A′. Let S be a sample from DA, |S| ≥ 8n2|Σ|2

ε2 ln
(

2n2|Σ|2
δ′

)
. Let

Sq,σ(A′) be the number of elements of S of the form s1σs2 where τ(q0, s1) = q
and for all prefixes s′1 of s1, τ(q0, s

′
1) ∈ A. Then

Pr
(∣
∣
∣
∣

(
Sq,σ(A′)

|S|
)

− E

[
Sq,σ(A′)

|S|
]∣
∣
∣
∣ ≥

ε

8n|Σ|
)

≤ δ′

2n2|Σ|2 .

Proof. From Hoeffding’s Inequality it can be seen that

Pr
(∣
∣
∣
∣

(
Sq,σ(A′)

|S|
)

− E

[
Sq,σ(A′)

|S|
]∣
∣
∣
∣ ≥

ε

8n|Σ|
)

≤ e−2|S|(ε
4n|Σ|)

2

(4)

We need |S| to satisfy e
− |S|ε2

8n2|Σ|2 ≤ δ′
2n2|Σ|2 . Equivalently,

8n2|Σ|2
ε2

ln
(

2n2|Σ|2
δ′

)

≤ |S|.

So the sample size identified in the statement is indeed sufficiently large.

Theorem 2. There exists T ′ a subset of the transitions of A, and Q′ a subset
of the states of A, such that

∑
(q,σ)∈T ′ DA(q, σ) +

∑
q∈Q′ DA(q) ≤ ε

2 , and with
probability at least 1− δ′, every transition (q, σ) /∈ T ′ in target automaton A for
which DA(q, σ) ≥ ε

4n|Σ| , has a corresponding transition in hypothesis automaton
H, and every state q /∈ Q′ in target automaton A for which DA(q) ≥ ε

4n|Σ| , has
a corresponding state in hypothesis automaton H.

Proof. Theorem 1 shows that if a candidate node has a multiset containing
at least m0 suffixes, then there is a probability of at least 1 − δ′

2n2|Σ|2 that the

164 N. Palmer and P.W. Goldberg

multiset is representative (as defined in the proof of Theorem 1). Furthermore, it
shows that the probability of all candidate nodes having representative multisets
(if the multisets contain at least m0 suffixes) is at least 1− δ′

2 , from which we can
deduce that all candidate nodes can be correctly distinguished from any nodes2

in the hypothesis automaton.
Proposition 1 shows that with a probability of at least 1 − δ′

2n2|Σ|2 , the
proportion of strings in a sample S (generated iid over DA, and for |S| ≥
8n2|Σ|2

ε2 ln
(

2n2|Σ|2
δ′

)
) reaching candidate node q̂ is within ε

8n|Σ| of the expected
proportion DA(q̂). This holds for each of the candidate nodes (of which there
are at most n|Σ|), in each iteration of the algorithm (of which there are at most
n|Σ|), with a probability of at least 1 − δ′

2 .
If a candidate node (or a potential candidate node3) q̂, for which DA(q̂) ≥

ε
2n|Σ| , is not included in H , then from the facts above it follows that at least

εN
4n|Σ| strings in the sample are not accepted by the hypothesis graph. For each
string not accepted by H , a suffix is added to the multiset of a candidate node,
and there are at most n|Σ| such candidate nodes. From this it can be seen
that some candidate node has a multiset containing at least εN

4 suffixes. From
the definition of N , N ≥ 4m0n|Σ|

ε . Therefore, some multiset contains at least
m0n|Σ| suffixes, which must be at least as great as m0. This means that as long
as there exists some significant transition or state that has not been added to the
hypothesis, some multiset must contain at least m0 suffixes, so the associated
candidate node will be added to H , and the algorithm will not halt.

Therefore it has been shown that all candidate nodes which are significant
enough to be required in the hypothesis automaton (at least a fraction ε

2n|Σ|
of the strings generated reach the node) are present with a probability of at
least 1− δ′

2 , and that since all multisets contain m0 suffixes, the candidate nodes
and hypothesis graph nodes are all correctly distinguished from each other (or
combined as appropriate) with a probability of at least 1 − δ′

2 . We conclude
that with a probability of at least 1 − δ′, every transition (q, σ) /∈ T ′ in target
automaton A for which DA(q, σ) ≥ ε

2n|Σ| and every state q /∈ Q′ in target
automaton A for which DA(q) ≥ ε

2n|Σ| , has a corresponding transition or state
in hypothesis automaton H .
�

5 Finding Transition Probabilities

The algorithm is shown in Figure 2. We can assume that we have at this stage
found DFA H , whose graph is a subgraph of the graph of target PDFA A.
Algorithm 2 finds estimates of the probabilities γ(q, σ) for each state q in H ,
σ ∈ Σ.
2 Note that due to the deterministic nature of the automaton, distinguishability of

transitions is not an issue.
3 A potential candidate node is any state or transition in the target automaton which

has not yet been added to H , and is not currently represented by a candidate node.

PAC-Learnability of Probabilistic Deterministic Finite State Automata 165

If we generate a sample S from DA, we can trace each s ∈ S through H , and
each visit to a state qH ∈ H provides an observation of the distribution over the
transitions that leave the corresponding state qA in A. For string s = σ1σ2 . . . σ�,
let qi be the state reached by the prefix σ1 . . . σi−1. The probability of s is
DA(s) =

∏�−1
i=0 γ(qi, σi+1). Let nq,σ(s) denote the number of times that string s

uses transition (q, σ), then

DA(s) =
∏

q,σ

γ(q, σ)nq,σ(s) (5)

Let γ̂(q, σ) denote the estimated probability that is given to transition (q, σ) in
H . Provided H accepts s, the estimated probability of string s is given by

DH(s) =
∏

q,σ

γ̂(q, σ)nq,σ(s) (6)

We aim to ensure that with high probability, for s ∼ DA, if H accepts s then
the ratio DH(s)/DA(s) is close to 1. This is motivated by the following.

Observation 3. Suppose that with probability 1− 1
4ε, for s ∼ DA, DH(s)/DA(s)

∈ [1 − 1
4ε, 1 + 1

4ε]. Then L1(DA, DH) ≤ 1
2ε.

Proof.

L1(DA, DH) =
∑

s∈Σ∗
|DA(s) − DH(s)|

Let X = {s ∈ Σ∗ : DH(s)/DA(s) ∈ [1 − 1
4ε, 1 + 1

4ε]}. Then

L1(DA, DH) =
∑

s∈X

|DA(s) − DH(s)| +
∑

s∈Σ∗\X

|DA(s) − DH(s)|

The first term of the right-hand side is
∑

s∈X DA(s)(1 − DH(s)/DA(s)) ≤∑
s∈X DA(s).(1

4ε) ≤ 1
4ε.

DA(X) ≥ 1 − 1
4ε and DH(X) ≥ DA(X) − 1

4ε, hence the second term in the
right-hand side is at most 1

4ε.
�
We have so far allowed the possibility that H may fail to accept up to a

fraction 1
4ε of strings generated by DA. Of the strings s that are accepted by

H , we want to ensure that with high probability DH(s)/DA(s) is close to 1, to
allow Observation 3 to be used.

Suppose that nq,σ(s) is large, so that s uses transition (q, σ) a large number
of times. In that case, errors in the estimate of transition probability γ(q, σ) can
have a disproportionately large influence on the ratio DH(s)/DA(s). What we
show is that with high probability for random s ∼ DA, regardless of how many
times transition (q, σ) typically gets used, the training sample contains a large
enough subset of strings that use that transition more times than s does, so that
γ(q, σ) is nevertheless known to a sufficiently high precision.

166 N. Palmer and P.W. Goldberg

We say that s ∈ Σ∗ is (q, σ)-good for some transition (q, σ), if s satisfies:

Pr
s′∼DA

(nq,σ(s′) > nq,σ(s)) ≤ ε

4n|Σ|
A (q, σ)-good string is one that is more useful than most in providing an estimate
of γ(q, σ).

Observation 4. Let m ≥ 1. Let S be a sample from DA,
|S| ≥ m

(
32n|Σ|

ε

)
ln
(

2n|Σ|
δ′′

)
. With probability 1− δ′′

2n|Σ| , for transition (q, σ) there
exist at least ε

8n|Σ| |S| (q, σ)-good strings in S.

Proof. From the definition of (q, σ)-good, the probability that a string generated
at random over DA is (q, σ)-good for transition (q, σ), is at least ε

4n|Σ| .
Applying a standard Chernoff Bound (see e.g. [2], p360), for any transition

(q, σ), given sample S, with high probability the observed number of (q, σ)-good
strings in S is at least half the expected number:

Pr
(

|{s ∈ S : s is (q, σ)−good}| <
1
2
.

ε

4n|Σ| |S|
)

≤ exp

⎛

⎝−
1
4

(
ε

4n|Σ|
)
|S|

2

⎞

⎠

(7)
We wish to bound this probability to be at most δ′′

2n|Σ| , so from Equation (7),

exp

⎛

⎝−
1
4

(
ε

4n|Σ|
)
|S|

2

⎞

⎠ ≤ δ′′

2n|Σ|

|S| ≥
(

32n|Σ|
ε

)

ln
(

2n|Σ|
δ′′

)

�
Notation. Suppose Sq,σ is as defined in Algorithm 2. Let Mq,σ be the largest
number with the property that at least a fraction ε

8n|Σ| of strings in Sq,σ use
(q, σ) at least Mq,σ times.

Observation 5. From Observation 4 (plugging in m = (2n|Σ|
δ′′)(32n|Σ|2

ε)2) it
follows that with probability 1 − δ′′

2n|Σ| (over random samples Sq,σ),

Pr
s∼DA

(nq,σ(s) > Mq,σ) ≤ ε

4n|Σ| (8)

Theorem 6. Suppose that H is a DFA that differs from A by the removal of
a set of transitions that have probability at most 1

2ε of being used by s ∼ DA.
Then Algorithm 2 assigns probabilities γ̂(q, σ) to the transitions of H such the
resulting distribution DH satisfies L1(DA, DH) < ε, with probability 1 − δ′′.

PAC-Learnability of Probabilistic Deterministic Finite State Automata 167

Algorithm 2 Finding Transition Probabilities.

Input: DFA H, a subgraph of A.

For each state q ∈ H, σ ∈ Σ:

generate sample Sq,σ from DA; |Sq,σ| = (2n|Σ|
δ′′)(32n|Σ|2

ε
)2(32n|Σ|

ε
) ln(2n|Σ|

δ′′);
repeat

for strings s ∈ Sq,σ, trace paths through H;

Let Nq,−σ be random variable: number of observations of state q
before we observe transition (q, σ) (include observations of q and

(q, σ) in rejected strings).

until(all strings in Sq,σ have been traced)

Let N̂q,−σ be the mean of the observations of Nq,−σ;

Let γ̂(q, σ) = 1/N̂q,σ.

Let nq,σ be number of observations of (q, σ);
for all q let σmin(q) = arg minσ(nq,σ).
Adjust γ̂(q, σmin(q)) such that

∑
σ γ̂(q, σ) = 1.

Fig. 2. Finding Transition Probabilities

Comment. It can be seen that the sample size used by Algorithm 2 is poly-
nomial in the parameters of the problem. It is linear in 1

δ′′ ; we believe that a
more refined analysis would yield a logarithmic bound, alternatively one could
modify the algorithm to obtain a logarithmic bound. The general idea would
be to make O(log(1

δ′′)) independent empirical estimates of each Nq,−σ, and take
their median.

Proof. Recall Observation 5, that with probability 1 − δ′′
2n|Σ| ,

Pr
s∼DA

(nq,σ(s) > Mq,σ) ≤ ε

4n|Σ|
Using Observation 4, the sets Sq,σ are large enough to ensure that with

probability 1 − δ′′
2n|Σ| , there are Mq,σ(2n|Σ|

δ′′)(32n|Σ|2
ε)2 uses of transition (q, σ).

This is because at least (2n|Σ|
δ′′)(32n|Σ|2

ε)2 members of Sq,σ use (q, σ) at least
Mq,σ times.

Consequently, (again with probability 1 − δ′′
2n|Σ| over random choice of Sq,σ)

the set Sq,σ generates a sequence of independent observations of state q, which
continues until Mq,σ(2n|Σ|

δ′′)(32n|Σ|2
ε)2 of them resulted in transition (q, σ).

Let Nq,−σ denote the random variable which is the number of times q is ob-
served before transition (q, σ) is taken. Each time state q is visited, the selection
of the next transition is independent of previous history, so we obtain a sequence
of independent observations of Nq,−σ. So, with probability 1− δ′′

2n|Σ| , the number

of observations of Nq,−σ is at least Mq,σ(2n|Σ|
δ′′)(32n|Σ|2

ε)2.

168 N. Palmer and P.W. Goldberg

Recall Chebyshev’s inequality, that for random variable X with mean µ and
variance σ2, for positive k,

Pr(|X − µ| > k) ≤ σ2

k2
.

Nq,−σ has a discrete exponential distribution with mean γ(q, σ)−1 and variance
≤ γ(q, σ)−2. Hence the empirical mean N̂q,−σ is a random variable with mean
γ(q, σ)−1 and variance at most γ(q, σ)−2(Mq,σ)−1(2n|Σ|

δ′′)−1(32n|Σ|2
ε)−2. Apply-

ing Chebyshev’s inequality with N̂q,−σ for X , and
k = γ(q, σ)−1(ε

32n|Σ|2
√

Mq,σ

), we have

Pr
(
|N̂q,−σ − γ(q, σ)−1| > γ(q, σ)−1(

ε

32n|Σ|2√Mq,σ

)
)
≤ δ′′

2n|Σ| .

Since γ(q, σ) = 1/E[Nq,−σ] and γ̂(q, σ) = 1/N̂q,−σ,

Pr
(
|γ̂(q, σ) − γ(q, σ)| > 2γ(q, σ)(

ε

32n|Σ|2√Mq,σ

)
)
≤ δ′′

2n|Σ| .

The rescaling at the end of Algorithm 2 loses a factor of |Σ| from the upper
bound on |γ(q, σ) − γ̂(q, σ)|. Overall, with high probability 1 − δ′′

2n|Σ| ,

|γ̂(q, σ) − γ(q, σ)| ≤
(εγ(q, σ)

16n|Σ|√Mq,σ

)
(9)

For s ∈ Σ∗ let nq(s) denote the number of times the path of s passes through
state q. By definition of Mq,σ, with high probability 1 − ε

4n|Σ| for s ∼ DA,

Mq,σ > nq(s).γ(q, σ). (10)

For s ∼ DA we upper bound the expected log-likelihood ratio,

log
(DH(s)

DA(s)

)
=

|s|∑

i=1

γ̂(qi, σi)
γ(qi, σi)

where σi is the i-th character of s and qi is the state reached by the prefix of
length i − 1.

Suppose A generates a prefix of s and reaches state q. Let random variable
Xq be the contribution to log(DH (s)

DA(s)) when A generates the next character.

E[Xq] =
∑

σ

γ(q, σ) log
(γ̂(q, σ)

γ(q, σ)

)

=
∑

σ

γ(q, σ)[log(γ̂(q, σ)) − log(γ(q, σ))]

PAC-Learnability of Probabilistic Deterministic Finite State Automata 169

We claim that (with high probability 1 − δ′′
2n|Σ|)

log(γ̂(q, σ)) − log(γ(q, σ)) ≤ |γ̂(q, σ) − γ(q, σ)| 1
γ(q, σ)

.Aq,σ (11)

for some Aq,σ ∈ [1 − ε

8n|Σ|
√

Mq,σ

, 1 + ε

8n|Σ|
√

Mq,σ

]. The claim follows from (9)

and the inequality, for |ξ| < x, that log(x + ξ) − log(x) ≤ ξ. 1
x (1 + 2ξ

x) (plug in
γ(q, σ) for x). Consequently,

E[Xq] ≤
∑

σ

γ(q, σ)
(1

γ(q, σ)

)
Aq,σ[γ̂(q, σ) − γ(q, σ)]

=
∑

σ

Aq,σ[γ̂(q, σ) − γ(q, σ)]

=
∑

σ

[γ̂(q, σ) − γ(q, σ)] +
∑

σ

Bq,σ[γ̂(q, σ) − γ(q, σ)]

for some Bq,σ ∈ [− ε

8n|Σ|
√

Mq,σ

, ε

8n|Σ|
√

Mq,σ

]. The first term vanishes, so we have

E[Xq] ≤
∑

σ

Bq,σ[γ̂(q, σ) − γ(q, σ)]

=
ε

8n|Σ|
∑

σ

(
1

√
Mq,σ

)[γ̂(q, σ) − γ(q, σ)]

≤ ε

8n|Σ|
∑

σ

γ(q, σ)
Mq,σ

using (9). For s ∼ DA, given values nq(s), the expected contribution to log(DA(s)
DA(s))

from all nq(s) usages of state q is, using (10), at most

nq(s)
ε

8n|Σ|
∑

σ

1
nq(s)

=
εnq(s)
8n|Σ| |Σ| 1

nq(s)
=

ε

8n

The total contribution from all n states q, each being used nq(s) times is

∑

q

ε

8n
=

ε

8
. (12)

So the expected difference between the likelihood of string s using the γ̂(q, σ)
values in place of the γ(q, σ) values, is small. Using (11),

V ar[Xq] ≤
∑

σ

A2
q,σ

γ(q, σ)
[γ̂(q, σ) − γ(q, σ)]2

≤
∑

σ

A2
q,σ

γ(q, σ)
γ(q, σ)2

Mq,σ

(ε

8n|Σ|
)2

170 N. Palmer and P.W. Goldberg

≤
(ε

8n|Σ|
)2∑

σ

A2
q,σγ(q, σ)
Mq,σ

≤
(ε

8n|Σ|
)2∑

σ

2
nq(s)

Hence the variance of the total contribution to the error log(DH (s)
DA(s)) from all

nq(s) uses of state q, is at most (ε
8n|Σ|)

2. Using (12), with high probability for

s ∼ DA, all the states contribute at most 1
8ε to log(DH (s)

DA(s)).

Finally, to use Observation 3, note that DH (s)
DA(s) ∈ [1− 1

4ε, 1 + 1
4ε] follows from

log(DH (s)
DA(s)) ∈ [− 1

8ε, 1
8ε].

�

References

[1] N. Abe, J. Takeuchi and M. Warmuth. Polynomial Learnability of Stochastic
Rules with respect to the KL-divergence and Quadratic Distance. IEICE Trans.
Inf. and Syst., Vol E84-D(3) pp. 299-315 (2001).

[2] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Founda-
tions. Cambridge University Press (1999)

[3] A. Clark and F. Thollard. PAC-learnability of Probabilistic Deterministic Finite
State Automata. Journal of Machine Learning Research 5 pp. 473-497 (2004)

[4] T.M. Cover and J.A. Thomas. Elements of Information Theory Wiley Series in
Telecommunications. John Wiley & Sons (1991).

[5] M. Cryan and L. A. Goldberg and P. W. Goldberg. Evolutionary Trees can be
Learnt in Polynomial Time in the Two-State General Markov Model. SIAM Jour-
nal on Computing 31(2) pp. 375-397 (2001)

[6] P.W. Goldberg When Can Two Unsupervised Learners Achieve PAC Separation?
Procs. of COLT/EUROCOLT, LNAI 2111, pp. 303-319 (2001)

[7] C. de la Higuera and J. Oncina. Learning Probabilistic Finite Automata. tech.
rept. EURISE, Université de Saint-Etienne and Departamento de Lenguajes y
Sistemas Informaticos (2002)

[8] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire and L. Sellie. On
the Learnability of Discrete Distributions. Procs. of STOC, pp. 273-282 (1994).

[9] Nick Palmer and Paul. W. Goldberg. PAC Classification via PAC Estimates of
Label Class Distributions. Tech rept. 411, Dept. of Computer Science, University
of Warwick (2004)

[10] D. Ron, Y. Singer and N. Tishby. On the Learnability and Usage of Acyclic
Probabilistic Finite Automata. Journal of Computer and System Sciences, 56(2),
pp. 133-152 (1998).

	Introduction
	Terms and Definitions
	Constructing the PDFA
	Analysis of PDFA Construction Algorithm
	Finding Transition Probabilities

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

