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Available online 3 February 2014 to find a solution of reasonable quality, some amount of communication is required. We
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Keywords: approximation quality achievable, while for well-supported equilibria, no value of € <1 is
Two player achievable. When the players do not communicate at all, e-Nash equilibria can be obtained
Mixed strategy for € = %; we also provide a corresponding lower bound of slightly more than % on the
Approximate equilibria smallest constant € achievable.
Efficient algorithms © 2014 Elsevier Inc. All rights reserved.

1. Introduction

Algorithmic game theory is concerned not just with properties of a solution concept, but also how that solution can be
obtained. It is considered desirable that the outcome of a game should be “easy to compute”, which is typically formalized
as polynomial-time computability, in the algorithms community. In that respect the PPAD-completeness results of Daskalakis
et al. (2009a) and Chen and Deng (2006) are interpreted as a “complexity-theoretic critique” of Nash equilibrium. Following
those results, a line of work addressed the problem of computing €-Nash equilibrium, where € > 0 is a parameter that
bounds a player’s incentive to deviate, in a solution. Thus, €-Nash equilibrium imposes a weaker constraint on how players
are assumed to behave, and an exact Nash equilibrium is obtained for ¢ = 0. The main open problem is to find out what
values of € admit a polynomial-time algorithm. Below we summarize some of the progress in this direction.

Beyond the existence of a fast algorithm, it is also desirable that a solution should be obtained by a process that is simple
and decentralized, since that is likely to be a better model for how players in a game may eventually reach a solution. In
that respect, most of the known efficient algorithms for computing €-Nash equilibria are not entirely satisfying. They take
as input the payoff matrices and output the approximate Nash equilibrium. If we try to translate such an algorithm into
real life, it would correspond to a process where the players pass their payoffs to a central authority, which returns to them
some mixed strategies that have the “low incentive to deviate” guarantee. In this paper we aim to model a setting where
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players perform individual computations and exchange some limited information. We revisit the question of what values of
€ are achievable, subject to this restriction to more “realistic” algorithms.

There are various ways in which one can try to model the notion of a decentralized algorithm; here we consider a
general approach that has previously been studied in Conitzer and Sandholm (2004) and Hart and Mansour (2010) in the
context of computing exact Nash equilibria. The players begin with knowledge of their own payoffs but not the payoffs
of the other players; this is often called an uncoupled setting (see Section 1.2.4 for an overview). An algorithm involves
communication in addition to computation; to find a game-theoretic solution, a player usually has to know something
about the other players’ matrices, but hopefully not all of that information. We study the computation of €-Nash equilibria
in this setting, and the general topic is the trade-off between the amount of communication that takes place, and the value
of € that can be obtained. In uncoupled settings, there are natural dynamic processes that converge to correlated equilibria,
but the results are less positive for exact and approximate Nash equilibria. This paper aims to contribute to the general
goal of evaluating the merits of approximate Nash equilibrium as a solution concept, as opposed to (for example) exact or
approximate correlated equilibrium.

1.1. Definitions

We consider 2-player games, with a row player and a column player, who both have n pure strategies. The game (R, C) is
defined by two n x n payoff matrices, R for the row player, and C for the column player. The pure strategies for the row
player are his rows and the pure strategies of the column player are her columns. If the row player plays row i and the
column player plays column j, the payoff for the row player is R;;, and Cj; for the column player. For the row player a mixed
strategy is a probability distribution x over the rows, and a mixed strategy for the column player is a probability distribution
y over the columns, where x and y are column vectors and (X, y) is a mixed strategy profile. The payoffs resulting from these
mixed strategies X and y are X' Ry for the row player and x'Cy for the column player.

A Nash equilibrium is a pair of mixed strategies (x*,y*) where neither player can get a higher payoff by playing another
strategy assuming the other player does not change his strategy. Because of the linearity of a mixed strategy, the largest
gain can be achieved by defecting to a pure strategy. Let e; be the vector with a 1 at the i-th position and a 0 at every
other position. Thus a Nash equilibrium (x*, y*) satisfies

Vi=1...n e Ry*< (x*)TRy* and (x*)TCei < (x*)TCy*.

We assume that the payoffs of R and C are between 0 and 1, which can be achieved by affine transformations. An
e-approximate Nash equilibrium (or, €-Nash equilibrium) is a strategy pair (x*,y*) such that each player can gain at most €
by unilaterally deviating to a different strategy. Thus, it is (x*,y*) satisfying

Vi=1...n e Ry*< (x*)TRy* +e€ and (x*)TCei < (x*)TCy* +e.

We say that the regret of a player is the difference between his payoff and the payoff of his best response.

The support of a mixed strategy X, denoted Supp(x), is the set of pure strategies that are played with non-zero probability
by x. An approximate well-supported Nash equilibrium strengthens the requirements of an approximate Nash equilibrium. For a
mixed strategy y of the column player, a pure strategy i € [n] is an €-best response for the row player if, for all pure strategies
i’ € [n] we have: eiTRy > e} Ry — €. We define e-best responses for the column player analogously. A mixed strategy profile
(x,y) is an e-well-supported Nash equilibrium (¢-WSNE) if every pure strategy in Supp(X) is an e€-best response against y,
and every pure strategy in Supp(y) is an €-best response against X.

The communication model: Each player q € {r, c} has an algorithm A; whose initial input data is g’s n x n payoff matrix.
Communication proceeds in a number of rounds, where in each round, each player may send a single bit of information to
the other player. During each round, each player may also carry out a polynomial (in n) amount of computation. (A natural
variant of the model would omit the restriction to polynomial computation. Indeed, our lower bounds on communication
requirement do not depend on computational limits.) At the end, each player g outputs a mixed strategy x;. We aim to
design (pairs of) algorithms (A, Ac) that output e-Nash strategy profiles (X, X.), and are economical with the number of
rounds of communication. This is similar to the mixed Nash equilibrium procedure of Hart and Mansour (2010), here applied
to approximate rather than exact equilibria.

Notice that given ©@(n?) rounds of communication, we can apply any centralized algorithm .4 by getting (say) the row
player to pass additive approximations of all his payoffs to the column player, who applies A and passes to the row player
the mixed strategy obtained by .4 for the row player. (The quality of the e-Nash equilibrium is proportional to the quality of
the additive approximations used.) For this reason we focus on algorithms with many fewer rounds, and we obtain results
for logarithmic or polylogarithmic (in n) rounds.

We also consider a restriction to one-way communication, where one player may send but not receive information.
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1.2. Related work

We start by reviewing some algorithms that we adapt to the communication-bounded setting. Then we review the back-
ground work on communication complexity, and related work in computing Nash equilibria, including learning of equilibria
in uncoupled settings.

1.2.1. Algorithms for approximate equilibria

In recent years a number of algorithms (Kontogiannis et al., 2006; Daskalakis et al., 2009b, 2007; Bosse et al., 2007;
Tsaknakis and Spirakis, 2007) have been developed that compute (in polynomial time) €-Nash equilibria for various values
of €. Of these, Tsaknakis and Spirakis (2007) obtain the best (smallest) value of €, of approximately 0.3393; for the special
case of symmetric games, €-values approaching % can be obtained (Kontogiannis and Spirakis, 2011). The more demanding
criterion of well-supported €-Nash equilibrium, disallows a player from allocating positive probability to any pure strategy
whose payoff is more than € worse than the best response. Progress on polynomial-time algorithms for this solution con-
cept has been more limited; at this time the lowest € that can be guaranteed by a polynomial-time algorithm is only
slightly less than % (Fearnley et al., 2012), obtained via a modification of a %-approximation algorithm of Kontogiannis and

Spirakis (2010). Prior to that, Daskalakis et al. (2009b) gave a %—approximation algorithm, that is contingent on a graph-
theoretic conjecture. In this context, our 0.732-approximation algorithm substantially improves on the result of Daskalakis
et al. (2009b), both in terms of approximation quality and a more demanding model (communication-bounded algorithms).
However, we do not know how to obtain the better approximation quality of Kontogiannis and Spirakis (2010) and Fearnley
et al. (2012) in the communication-bounded setting. Next we discuss two of the earlier algorithms in the literature whose
ideas we use here.

DMP-algorithm: The DMP-algorithm (Daskalakis et al., 2009b) works as follows to achieve a %-approximate Nash equilib-
rium. The algorithm picks an arbitrary row for the row player, say row i. Let j € argmaxy Cjj. Let k € argmaxy Ryj. S0 j
is a pure-strategy best response for the column player to row i and k is a best response strategy for the row player to
column j. The strategy pair (x*,y*) will now be x* = %ei + %ek and y* = e;. With this strategy pair the row player plays a
best response with probability % to a pure strategy of the column player and the column player has a pure strategy that is

with probability % a best response.

The DMP-algorithm is well-adapted to the limited-communication setting. Suppose the row player uses i =1 as his
initial choice of row. The column player needs to tell the row player her value of j, a communication of O (logn) bits. No
further communication is needed. Notice moreover that the communication is all one-way; the row player does not need
to tell the column player anything.

Subsequent algorithms for computing €-Nash equilibria cannot so easily be adapted to a limited-communication setting,
but we can use some of the ideas they develop, to obtain values of € below % in this setting.

An algorithm of Bosse et al. (2007): The algorithm presented in Bosse et al. (2007) can be seen as a modification of the
DMP-algorithm and achieves a 0.38197-approximate Nash equilibrium. Instead of a player allocating some probability to
some arbitrary pure strategy, the algorithm starts with the row player allocating some probability to the row-player strategy
x belonging to the Nash equilibrium of the zero-sum game (R — C,C — R). In solving the zero-sum game efficiently we
apply the connection of zero-sum games with linear programming (Neumann, 1928; Dantzig, 1963; Karmarkar, 1984). If
the (mixed) strategy profile (x,y) that constitutes a Nash equilibrium of (R — C,C — R) gives a 0.38197-approximate Nash
equilibrium for (R, C), this solution is used. Otherwise, the column player plays a best response e; to x and the row player
plays a mixture of X and ey, where e, is a best response to the strategy e; of the column player. (Bosse et al., 2007, goes
on to improve the worst-case performance to a 0.36395-approximate Nash equilibrium.)

Notice that this algorithm cannot be adapted in a straightforward way to our communication-bounded setup, since it
requires a computation using knowledge of both matrices. The starting-point of our algorithms of Section 4 is the players
separately solving (R, —R) and (—C, C).

1.2.2. Communication complexity

The “classical” setting of communication complexity is based on the model introduced by Yao (1979). We will follow
the representation in Kushilevitz (1997). We have two agents,' one holding an input x € {0, 1}" and the other holding an
input y € {0, 1}". The objective is to compute f(X,y) € {0, 1}, a joint function of their inputs. The computation of f(x,y) is
done via a communication protocol P. During the execution of the protocol, the agents send messages to each other. While
the protocol has not terminated, the protocol specifies what message the sender should send next, based on the input of
the protocol and the communication so far. If the protocol terminates, it will output the value f(x,y). A communication
protocol P computes f if for every input pair (x,y) € {0, 1}" x {0, 1}", it terminates with the value f(x,y) as output.

The communication complexity of a communication protocol P for computing f(x,y) is the number of bits sent during
the execution of P, which we denote by CC(P, f,X,y). The communication complexity of a protocol P for a function f is

1 We use agents instead of players to avoid confusion, the communication does not have to be between the players of the game.
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defined as the worst case communication complexity over all possible inputs for (x,y) € {0, 1}" x {0, 1}", which we denote
by CC(P, f):

CC(P, f)= max CC(P, f,x,y).
P, f) e oy (P, f,x,y)

The communication complexity of a function f is the minimum over all possible protocols:

CC(f)=minCC(P. f).

1.2.3. Existing results on communication complexity of Nash equilibria

There are a few results concerning the communication complexity of Nash equilibria. Conitzer and Sandholm (2004)
show a lower bound on the communication complexity for 2-player games of finding a pure Nash equilibrium of £2(n?),
where n is the number of pure strategies for each player. They also show a simple algorithm that finds a pure Nash equilib-
rium (if it exists) in O (n?). They do not extend their analysis to mixed Nash equilibria; their focus is on searching for a pure
Nash equilibrium (if one exists), in contrast with the existence of a mixed Nash equilibrium, which is guaranteed (Nash,
1951). For unrestricted bimatrix games, it can be seen that the communication complexity of finding an exact equilibrium
is £2(n%).2 That observation leads to the question addressed here, of whether approximate equilibria have lower communi-
cation complexity.

Also related to this paper, Hart and Mansour (2010) study the communication complexity of uncoupled equilibrium
procedures (discussed in more detail below in Section 1.2.4) in the context of multiplayer, binary action games. The emphasis
is on lower bounds on the communication requirement. Analogously to the £2(n%) communication needed for pure or mixed
Nash equilibrium that we noted above, they obtain a lower bound of £2(2%) (where s is the number of players) on the
communication needed to find an exact mixed equilibrium, or determine the existence of a pure one. (Note that in their
setting, each player has a payoff matrix of size 2%, so that essentially all the payoffs may need to be communicated.) On the
other hand, they obtain a polynomial upper bound on the communication required to find a correlated equilibrium, discussed
further below. Their methods do not seem to be applicable in an obvious way to approximate equilibria. For example, the
lower bound for computing a mixed equilibrium involves a game whose solution requires probabilities having exponentially
large descriptions, which would not be needed in the context of approximate equilibria.

1.2.4. Uncoupled learning of equilibria

An extensive literature studies uncoupled procedures for finding game-theoretic solutions. The terminology “uncoupled”
is introduced in Hart and Mas-Colell (2003); it refers to settings where each player knows his own (but not the others’)
utility function. Then, there is a sequence of rounds (a.k.a. time steps, or periods), in which each player plays a strategy, and
receives the payoff resulting from the entire strategy profile. Our setting of communication complexity is related to this,
in that each player can use his choice of action (in a round) to transmit information. The main difference is that here, we
do not assume a “rational” choice of action where a player tries to maintain his payoff over time by predicting the choices
of his opponents. In our set-up, players communicate some information over a (hopefully short) sequence of rounds, and
afterwards promise to use certain mixed strategies. Our interest is in both upper and lower bounds on the required length of
the sequence. As noted in Conitzer and Sandholm (2004), lower-bound type results generally ignore strategic considerations,
which perhaps helps to justify our own inattention to rationality in this paper.

In the context of uncoupled search for Nash equilibrium, Hart and Mas-Colell (2003) show that when players do not
remember the history of play, it may be impossible to reach Nash equilibrium. Note that the obstacle is informational rather
than due to rationality of the players. A subsequent paper of Hart and Mas-Colell (2006) analyzes how much of the history
of play needs to be recalled by the players. In the case of mixed (approximate) Nash equilibria, the approach is to test
many probability distributions in a search for one that constitutes an approximate equilibrium; a large number of rounds is
required to achieve this. Foster and Young (2006) show how this can be achieved in a “radically uncoupled” setup, where a
player does not directly observe the opponents’ behavior, but observes it indirectly via the payoffs he obtains. Again, a very
large number of rounds are required to find an approximate equilibrium. Daskalakis et al. (2010) study negative results,
namely failure to converge to Nash equilibrium, for standard multiplicative weights update algorithms, in the context of
bimatrix games. Their results consider three variants of uncoupled dynamics.

There are more natural learning algorithms that converge (in various senses) to the weaker solution concept of correlated
equilibrium (e.g. Foster and Vohra, 1997; Hart and Mas-Colell, 2000). When we relax our objective from approximate Nash
equilibrium to approximate correlated equilibrium, then learning can take place with a sublinear number of rounds, from
a straightforward application of no-regret learning algorithms. The idea is applied in Theorem 30 of Hart and Mansour
(2010). In particular, we equip each player> with a no-regret algorithm, and suppose that at each round it duly selects (and

2 Consider a game where there is a unique, fully-mixed Nash equilibrium. If the payoffs are perturbed slightly, the resulting equilibrium, for (say) the
row player, will be affected in a non-trivial way by all the perturbations of the column player’s payoffs. This immediately results in the requirement of
£2(n%) communication.

3 Indeed, there may be any number of players, not just 2.
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outputs) a pure strategy, which requires log(n) bits to output. Indeed, Theorem 17 of Hart and Mansour (2010) shows how
exact correlated equilibrium may be found in a polynomial number of rounds.

Foster and Young (2006) point out as motivation for uncoupled learning rules, that uncoupledness prevents a learning
rule from behaving like a centralized algorithm and just constituting a theory of equilibrium selection. In this paper we
similarly avoid the possibility of implementing a centralized algorithm, though restricting to a sublinear number of rounds
of communication, so that it is impossible for one player to reveal all (or even a large fraction) of his payoffs to the other
player.

1.3. Overview of our results

For general n x n games we show the following bounds on the obtainable quality of an approximate Nash equilibrium
if we fix the amount of communication allowed. We start by considering a version where no communication is allowed.
Theorem 1 gives a simple way to find a %—Nash equilibrium, in this setting. Theorem 2 identifies a corresponding lower

bound of slightly more than % For one-way communication we exhibit (Theorem 3) a lower bound of % —o(ﬁ). The DMP-

algorithm can be implemented as an algorithm with one-way communication and gives a %—approximate Nash equilibrium.
Therefore the constant % in the lower bound of Theorem 3 is tight, in this context. In Section 4.1 we show how to compute
a 0.438-Nash equilibrium using polylogarithmic communication. In Section 5 we discuss the significance of the results, along
with open problems.

2. Approximate Nash equilibria with no communication

The simplest way to restrict communication is to disallow it entirely.* That means that for each player q € {r, c}, we

must find a function f; from g¢'s payoff matrix to a mixed strategy, such that for all pairs of matrices (R, C), we have
that (fr(R), fc(C)) is an e-Nash equilibrium. In this section we show that the achievable value of ¢ lies somewhere be-
tween 0.501 and %. The % upper bound is achieved via a simple algorithm (differing from the %-approximation algorithm
of Kontogiannis et al., 2006, in terms of the solution it finds). Theorem 2 presents the lower bounds of 0.501.
Theorem 3 in Section 3 furnishes a lower bound of % even when one-way communication is permitted, and has a
simpler proof (the proof is similar to Case 2 in the proof of Theorem 2). This raises the question: why bother to include a
complicated proof (specific to the communication-free setting) whose result is only a small improvement (over the one-way
communication setting)? The reason is that we rule out the possibility that % is in fact the answer, and as we discuss in the
conclusions (Section 5), % seems to arise frequently as a barrier to progress in the study of algorithms for approximate Nash
equilibria, so it is informative to rule out that possibility. Our lower bound of 0.501 could be increased slightly by tweaking
the parameters of the proof, but we believe that the resulting progress would be incremental.

Theorem 1. It is possible to guarantee a %-approximate Nash equilibrium, even if there is no communication between the players.

Proof. Each player allocates probability % to his first pure strategy, and % to his best response to the other player’s first pure
strategy. In detail, let i € argmaxy Ry and let j € argmax;j Cqj. The approximate Nash equilibrium will be f;(R) = %el + %ei
and f.(C)= %01 + %e]'.

Let i’ be a best pure strategy response of the row player to f.(C). Then his incentive to deviate is

1 1 1 1 1 1
ERi’l‘FERi’j - ZRn-i-ZR]j-i-ZRn-i-ZRij
1 3

1 1 1 1 1 1 1 1
< ZRi/]+§Ri/j — _R11+ZR1j+ZRij §2R1/1+§R1/]§Z+§:4

4
where the first inequality holds because i was a best response to column 1 (so Rj; > Ryq) and the next inequalities hold
because payoffs lie in [0, 1]. The same kind of argument holds for the column player. This proves the theorem. O

The following lemma provides a construction that is used in Theorems 2 and 3.

Definition 1. Let M, be a matrix with n columns and (’,:) rows, where k = |/n] and a row consists of k 1’s and (n —k) O's.

Every row is distinct, so the (',:) rows are all the possible sequences with k 1's in a row of length n.

4 This is to some extent inspired by earlier work of the first author (Goldberg, 2006) that studied an approach to pattern classification in which the set
of observations of each class must be processed by an algorithm that proceeds independently of the corresponding algorithms that receive members of the
other classes.
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Lemma 1. Suppose we have a bimatrix game where the row player’s payoff matrix is My, (as in Definition 1). Let X be a mixed strategy
for the row player. Then, there exists a column of My, such that if the column player uses any mixed strategy y that allocates probability
p to that column, then the row player’s regret is at least p — O (1/+/n).

Proof. The rows of M, contain 1's in a fraction ’ﬁ‘ of their entries. By symmetry, so do the columns, thus every column

contains ’ﬁ‘ ~(3) I'sand (1— %) () 0's (recall k= [/n]).

X assigns a probability to each row of M,. Define an unnormalized probability distribution & over the columns as
follows. Let @(j) be the probability that a 1 will be in column j of M;, given a row sampled from x, thus @(j) is the
expected value of the entry of the j-th column, for rows sampled from x. Note that @ (j) < 1, with equality when every
row that is played with positive probability has a 1 in column j. Because every row contains k 1’s, the @ (j) values will sum
to k: Z’}zl @(j)=k.

We define column m to be one with a lowest value of @: m € argmin; &(j). m is the column that minimizes the row
player’s payoff. We choose m to be the special column in the statement of the lemma, and we suppose that the column
player allocates probability p to m.

Since the sum over all values @ (j) is k and there are n columns, this means that @ (m) < ’H‘ When column m is played

(and we assume it is played with probability p) it gives the row player a payoff of 0 with a probability of at least 1 — %

We now consider the row player’s strategy x and construct an improved response x* as follows. x* will differ from x in
the following way. For every row i we see if its m-th entry is a 1. If this is the case, we do not change anything. If instead
its m-th entry is a 0, we do the following: look at the entries where there is a 1 in row i. Of all the entries where there
is a 1, we select the one to which the column player’s distribution y gives the lowest probability, say entry a (i.e. choose
column a € argmin;. m,ri, jl=1 Y[j1)- Now we move all the probability allocated to row i by X, to the row of M, that instead
has a 0 in entry a and a 1 in entry m, and is otherwise the same as i.

The probability on entry a is defined as the smallest among all the entries where row i has a 1. We can bound the
probability that is allocated to this entry by distribution y. A probability at least p is given to column m, so a probability of
1 — p can be distributed over the remaining columns. The column containing entry a has the smallest probability among at
least k columns, so the probability given to column a is at most 1%".

The result of this construction of x* from x is that every row that is played with positive probability by x* will have a
1 in the m-th entry. There is a probability at least (1 — %) that a row sampled from x does not have a 1 in the m-th entry.
This means that the increase in payoff from replacing x with x* is at least

n n k n k k

Noting that k = |4/n] gives us the desired result. O

We use the following technical extension in the proof of Theorem 2. It is a straightforward corollary of Lemma 1.

Corollary 1. Suppose we have a bimatrix game where the row player’s payoff matrix R has My, (as in Definition 1) as a submatrix.
Suppose furthermore that all rows of R that do not intersect My pay the row player zero, and for all rows of R that intersect My, all
columns that are not columns of My, pay the row player 1.

Let x be any mixed strategy for the row player that allocates probability at least p, to rows that do not intersect My. Let 'y be a
mixed strategy for the column player, that allocates at least p. to columns that do not intersect My, but allocates probability p to some
column ¢ intersecting My,. Then, there exists a choice of column ¢ such that the row player’s regret is at least p — 0 (1//n) + p;pe.

Proof. Suppose x is modified as follows. For rows that intersect M;,, modify their probabilities according to Lemma 1. For
other rows, set their probability to 0, and transfer their probability to an arbitrary row that has payoff 1 when column ¢ is
played.

This change increases by p — 0(1/+/k), the payoffs to the row player resulting from the column player playing columns
containing Mj. Note that this gain is not conditioned on the column player playing columns intersecting Mp; it is an

absolute gain. In more detail, for rows intersecting M, a fraction 1 — ’H‘ of them (w.r.t. probability measure x) have their

payoff raised by at least p — 1%. For rows not intersecting M,, their payoffs are raised by at least p.

There is an additional increase to the row player’s payoff due to the transfer of probability from rows not intersecting
M, to rows intersecting My, in the event that the column player plays a column not containing Mj. In this case the payoffs
increase from 0 to 1, resulting in an additional payoff to the row player of (at least) p;.p.. O

In the communication-free setting, each player q computes a function f; from his payoff matrix to a mixed strategy. We
will first introduce a “radius” measure p? that measures the variability of mixed strategies that may be selected by g, i.e.
the image of the set of all payoff matrices under f;. Essentially o9 is the radius of a smallest enclosing sphere containing
@’s available strategies, under the variation distance metric. We continue by giving a precise definition and notation.
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The variation distance between two probability distributions x and X’ over [n], is half the sum of all positive differences
between the two distributions, i.e.

n
1
d(x,x) =) =|x[i]—XTi]l.
(x.x) =3 5 [xtil =]
i=1
For n xn games, let §2] denote the set of strategies the row player may use (i.e. the image of f;) and £2] the set of strategies

the column player may use. For each player we define his “center strategy”. For the row player let ¢, be some probability
distribution such that the maximum distance between ¢}, and any strategy ® € §2] is minimized.

¢, € argmin sup d(c, ).
c weR)

The center distribution cf, of the column player is defined in a similar way. The radius p], of the row player is defined as

pp = sup d(cp, @).
we2)
The radius pS of the column player is defined similarly. This radius measure p] is a value in [0, 1] that indicates the
variability of strategies a player may use, and is low when the player always plays strategies that are close to some “central”
strategy.

Theorem 2. For bimatrix games with payoffs in the range [0, 1], if each player independently computes a mixed strategy based on his
own payoff matrix, then it is impossible to guarantee an € -approximate Nash equilibrium for € < 0.501.

Proof. The proof will be a case analysis on radius. In the proof, our analysis is with respect to an arbitrary fixed value of n,
so we drop the subscript n from the radius values p] and pj, also the center probability vectors ¢], and cf,. We will show
that for all n, the worst-case regret of a player is at least 0.501. We identify two cases:

1. A player has a high radius: p" > 0.95 or p¢ > 0.95.
2. Neither player has a high radius: p" < 0.95 and p¢ < 0.95.

Case 1: A player has high radius

Assume the column player has high radius, thus p¢ > 0.95. We use this high radius to identify a set of strategies that
are quite far apart from each other, under variation distance.

For the column player, take an arbitrary strategy s; € £2€. Because p© > 0.95, there must be some strategy s with
d(s1,s2) > 0.95, otherwise s; could be the center strategy ¢ with p¢ < 0.95.
Now consider the strategy si; = %, thus d(sq2,81) =d(s12,82) = %d(sh s2) < % For this strategy not to be a center
strategy ¢ contradicting p¢ > 0.95, there must be some strategy s3 € £2¢ with d(s12, s3) > 0.95. Because s; constitutes half
of the strategy s1, it holds that d(s1, s3) > 0.90 and similarly d(s;, s3) > 0.90. We have

d(s1,s2) > 0.95; d(s1,s3) > 0.90; d(sy, s3) > 0.90; d(s12,83) > 0.95.

The next step is to construct an n x n payoff matrix R of the row player. Only the first 3 rows of R will contain non-zero
entries. The construction of rows 1, 2, 3 will be such that for i, j € {1,2,3}, row i is a best response to s; and a poor
response to s; (j #1i).

For every column j of R determine the maximum of sq[j], s2[j] and s3[j]. If s1[j] is the largest, R1j =1 and Ryj =
R3; =0. If sp[j] is the largest, Roj =1 and Ryj = R3j =0. If s3[j] is the largest, R3j =1 and Ry; = R2j = 0. In case of a tie
in the comparison of sq[j], s2[j] and s3[j], all the entries corresponding to the tie get a 1.

Consider columns i for which Ry; =1, so that s;[i] > sq[i]. The total probability assigned by s; to these columns is
bounded by 0.05. If the probability on these columns were higher than 0.05, it would follow that d(s1, s2) < 0.95. Similarly
we can bound the probability assigned by s; to columns i such that R3; = 1. Since d(s1, s3) > 0.9 this probability is at most
0.1. From these observations, we have that at most 0.15 of the probability distribution s; is allocated to columns that could
give a payoff of 0 for row 1. Since each column of R contains at least one 1, the remaining 0.85 probability of s; will be
allocated to columns that have a 1 in the corresponding entry of row 1. The payoff for row 1 if the column player plays s;
is therefore at least 0.85. We can use a similar argument to claim that when the column player plays s;, the row player can
get a payoff of at least 0.85 by playing pure strategy row 2, and at most 0.05 for row 2, and at most 0.1 for row 3.

For row 3 we use d(s12, S3) > 0.95. Consider columns i for which R3; =0, so that either Ry; =1 or Ry; = 1. A column
i having this property, contributes > 553[1'] to the overlap between s; and siy. Indeed, if both Ry; =1 and Ry; =1, it
contributes s3[i] to the overlap. So we can deduce that with respect to columns selected using s3, Pr[row 1 pays 1] +
Pr[row 2 pays 1] < 0.1. Again, since each column of R contains at least one 1, the remaining 0.9 probability of s3 will be
allocated to columns that have a 1 in the corresponding entry of row 3. The payoff for row 3 if the column player plays s3
is therefore at least 0.9, while the payoffs to rows 1 and 2 sum to at most 0.1. To summarize:
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o If the column player plays sq, the row player gets a payoff of at least 0.85 by playing row 1. Playing row 2 would give
him a payoff of at most 0.05 and playing row 3 a payoff of at most 0.1.

o If the column player plays s;, the row player gets a payoff of at least 0.85 by playing row 2. Playing row 1 would give
him a payoff of at most 0.05 and playing row 3 a payoff of at most 0.1.

o If the column player plays s3, the row player gets a payoff of at least 0.9 by playing row 3. Playing row 2 would give
him a payoff of at most 0.1 and playing row 3 a payoff of at most 0.1. Moreover, the sum of payoffs of row 1 and row
2 is at most 0.1.

Given the row player’s strategy, let (r,12,13) be the probabilities with which he plays rows 1, 2, 3. Assume rq < 12,713, SO
r < % and suppose the column player plays strategy s;. The best response strategy (1,0, 0) has a payoff of a € [0.85, 1].
Because row 1 clearly gives the highest payoff, the regret is minimized when this row is played with as much probability

as possible, so r| = % Because the probability on row 1 was defined as the lowest probability, the probability on the other

two rows is also % This gives a regret of at least

1 1 1 2 2
a—|-a+ -(0.05+ =(0.1) ) = -a—0.05 > - (0.85) — 0.05~ 0.517.
(3 +3( )+3( )) 3 3( )
The analysis for r, <rq,r3 where the column player plays s; is similar.

Assume r3 <r1,72 and the column player plays s3. The best response to s3 has a payoff of at least 0.9 and row 1 and 2
combined can have a payoff of at most 0.1. This gives a regret of at least

a la+1(01) —2a l>2(09) l~0567
37 3777737 3073 30 7

So regardless of the strategy of the row player, the worst-case regret of the row player is always larger than 0.501 when
the radius of the other player is at least 0.95.

Case 2: Neither player has high radius

Suppose both players have radius p", p < 0.95. Consider the following set of payoff matrices for the column player:
Cl,...,C" where C* has a payoff of 1 for every entry in the ¢-th column and a 0 elsewhere:

Vi, j: ij:1 ifj=¢; 0 otherwise.

To achieve a 0.501-approximate Nash equilibrium, when the column player has payoff matrix C¢, the column player should
assign at least 0.499 to column ¢.

The construction of the payoff matrix R of the row player will depend on the center strategy ¢ of the row player. Take
the (n — +/n) rows of R which have the highest values ¢'[i], where ¢[i] is the i-th entry of ¢". We construct matrix R for
which these rows are all zero. For the construction of the remaining /n rows of R we consider ¢, the center distribution
of the column player. We select the (n — 4/n) columns j of R having the highest values c[j]. If row i is one of the rows
with one of the 4/n smallest entries for ¢ and column j is a column with one of the (n — 4/n) highest entries for ¢, then
we set R;j = 1. The payoff entries in R that are still undefined can be seen as a (/n x /n)-sub-matrix.

We choose this submatrix to contain a submatrix My as in Definition 1, where (for k' = [v/1']) (’,:,) = /n. The extra
columns of the submatrix have all their payoffs set to 1. The entire matrix R now satisfies the conditions of Corollary 1. We
see next that any row-player strategy X also satisfies the conditions of Corollary 1 with a p, value approximately 0.05. Let

S be the set of non-zero rows; by construction ) ; s ¢'[i] < ﬁ Since d(x,¢") < 0.95, we have } ;¢ X[i] < 0.05+ ﬁ o)

Zi¢5 x[i] > 0.05 — ﬁ Similarly y has measure > 0.05 — ﬁ on columns not intersecting M.

The values of p; and p. in Corollary 1 are 0.05 — % and the value of p is 0.499 (column ¢ may be freely chosen by an

adversary), so we get a regret of at least 0.499 — O(ﬁ) + (0.05 — O(ﬁ))2 =0.5015 — O(ﬁ). O

3. One-way communication

We noted in Section 1.2.1 that € = % can be achieved with one-way communication, by a simple implementation of

the DMP-algorithm, using logarithmic communication. The following result gives a matching lower bound of % It thus also
furnishes a slightly simpler lower-bound result for the communication-free setting of the previous section, but of course the

lower bound itself is necessarily weaker.

Theorem 3. It is impossible to guarantee to find an €-Nash equilibrium, for any constant € < % with unlimited one-way communica-
tion.
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Proof. We consider games G = (R, C), where R and C are payoff matrices with dimensions (Z) x n, with k & \/n. Consider
the following set of column player payoff matrices C!, ..., C", where C¢ has a payoff of 1 for every entry in the £-th column
and a 0 elsewhere:

Vi, j: ijzl if j=¢; 0 otherwise.

The row player has matrix R = M, with My as in Definition 1.

Let x be the strategy of the row player, resulting from matrix R. Let y, be the strategy of the column player resulting from
matrices R and C¢; note that with unlimited one-way communication we can assume that the row player communicates all
of R (and indeed, Xx) to the column player.

We will show that for this class of games, one cannot do better than a (% - 0(%))-approximate Nash equilibrium.

We search for a lower bound of % — z, and we identify that a value of z of ﬁ applies.

First observe that a best response for the column player having matrix C¢ is e;, the pure strategy of column ¢. Column
£ has payoff 1 and other columns have payoff 0. So to reach a (% — z)-approximate Nash equilibrium, y, must allocate a

probability at least (% + z) to column £.
So, an arbitrary column ¢ can be required to have probability at least % — z. Lemma 1 says that the row player’s regret
is at least % —-z— O(ﬁ). Put z= ﬁ and we find that for all x, £ may be chosen such that in order for the column player

to have regret less than 1 — O(ﬁ), the row player must have regret at least  — O(ﬁ). ]

Theorem 4. It is impossible to guarantee to find an € -well-supported Nash equilibrium, for any constant € < 1, with unlimited one-way
communication.

Proof. To prove this theorem we will only have to look at 2 x 2 games. The row player has the identity matrix and the
column player has one of two different column matrices. Communication is only allowed from the row player to the column
player.

(10 1 (10 2 (0 1
R_<O 1) and C _(1 0) or C _<O 1).

In any e-well-supported Nash equilibrium for € < 1, the column player must play pure strategy column j, given payoff
matrix C/. That is necessary regardless of the information she receives from the row player.

No communication is allowed from the column player to the row player, so the row player’s strategy is determined by
matrix R. Let fr(R) be the row player’s strategy. If fr(R) allocates positive probability to row i, then we fail to have an
e-well-supported Nash equilibrium (for any € < 1) when the column player has matrix C3~, since when that happens, row
i pays the row player O while the other row pays 1. O

4. Communication-bounded algorithms

This section presents the main positive results, algorithms that compute approximate Nash equilibria that are limited to
polylogarithmic communication. Section 4.1 gives the main result for e-Nash equilibria, and Section 4.3 gives a variation of
the algorithm that computes e-well-supported Nash equilibrium for € ~ 0.732.

4.1. A 0.438-approximate Nash equilibrium procedure with limited communication

This section provides a 0.438-approximate Nash equilibrium procedure where the amount of communication between
the players is polylogarithmic in n. We present the algorithm as an «-approximate Nash equilibrium procedure first and
then optimize «. At various points the algorithm uses the operation of communicating a mixed strategy (a probability
distribution over [n]) from one player to the other; the details of this operation are given in Section 4.2. The general idea is
to communicate a sample of size O(logn) from the distribution and argue that the corresponding empirical distribution is
a good enough estimate for our purposes.

First the row player finds a Nash equilibrium for the zero-sum game (R, —R) and the column player computes a Nash
equilibrium for the zero-sum game (—C, C). Since both games are zero-sum, we know that the payoff values for their Nash
equilibria will be unique. Both players compare this payoff value with . We distinguish two cases,

1. neither player can ensure himself a payoff more than «, or
2. at least one of the players can ensure a payoff more than «.

With O(1) communication, the case that holds can be identified.
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Case 1: The value of both zero-sum games is < « to each player

The row player finds a strategy pair (x;,y;) as solution to (R, —R), while the column player finds a strategy pair (X}, y;)
as solution to (—C, C). The row player communicates y; to the column player (as described in Section 4.2) and the column
player sends x? to the row player. They now play the game (R, C) using strategy pair (X}, y;). Since y; is a Nash equilibrium
strategy in the zero-sum game (R, —R) and the row player still plays with payoff matrix R, by the minimax theorem, the
row player has no strategy that can give him a payoff of o or higher. The row player has a best response with a value of at
most «, so his regret is also at most «. The strategy X} was a Nash equilibrium strategy in the zero-sum game (—C, C) and
the column player still has payoff matrix C. So we can use the same argument for the column player to claim that when
the row player plays strategy X7, the column player has regret at most «. So, we have an «a-approximate Nash equilibrium.
This concludes Case 1.

Case 2: One or both players can guarantee a payoff > «

If at least one of the players has a value of more than o for his zero-sum game, he can get a payoff of more than o
if he plays this strategy, regardless of the strategy of the other player. Assume w.l.o.g. that it is the row player who has a
payoff greater than « in his zero-sum game. He communicates this strategy x* to the column player (again, as described
in Section 4.2). The column player identifies a pure strategy best response e; to X} and communicates e; to the row player
(using logn bits).

At this point in the algorithm we have the strategy pair (x;, e;). The column player has a best response strategy, so at
this point his regret is 0. The row player’s strategy X; is paying him more than «. Let § < 1 be the value of his best response
to e;. So at this point the row player has a regret of at most g — . We next deal with the possibility that g — o > «.

At this stage the column player has regret 0 while we are only looking for regret to be bounded by «; meanwhile the
row player has a strategy that might not be good enough for an «a-approximate Nash equilibrium. To change this, we use
a method used in Chen et al. (2009, Lemma 3.2), which allows the row player to shift some of his probability to his best
response to e;. By shifting some of his probability, it could be that e; no longer is a best response strategy for the column
player. This is acceptable, as long as the column player’s regret while playing e; is at most «. Suppose the row player shifts
%oz of his probability to a best response strategy. The payoff the column player gets with e; could be %a lower because of
this move. The payoff of some other column(s) could go as much as %Ot higher because of this shift. The strategy e; had
regret 0, so by the shift of %a of the row player’s probability, the regret of the column player is at most %a + %a =q,
which constitutes an «-approximate Nash equilibrium, for the column player.

The row player is allowed to change the allocation of %oz of his probability that was allocated to strategies having the
lowest payoff. The remainder of his probability, 1— %a, had already at least an average payoff of «. The probability is shifted
to his best response with a value of 8, with « < 8 < 1. The following inequality is a sufficient condition for the row player’s
regret to be at most «:

1 1
<1—5a>a+§aﬁ>ﬂ—a, 0<a<B«l.

The solutions to this inequality are

1 a? — 4o
0<a<=(5-+17), a<B——,
<<y ) s
1
5(5—«/17)<a<1, a<p<l,
=0, B=0, a=1, =1

where it holds that if o = %(5 —4/17) then f(a) = "‘i%‘;‘" =1 and for 0 <« <1 this function is monotone increasing. This
procedure will give an «-approximate Nash equilibrium, so o should be as low as possible. Next to this it should also hold

for every B with o < 8 < 1. The lowest o such that this condition hold is when f(«) =1, thus o = %(5 —+/17) =~ 0.438.

So if the row player rearranges % -0.438 = 0.219 of his probability to his best response row, both players have a strategy
that guarantees them a 0.438-approximate Nash equilibrium.

4.2. Communicating mixed strategies

We describe how to communicate an approximation of the mixed strategies that are computed, using O(log2 n) bits. We
ultimately obtain an € of 0.438 + §, for any § > 0.

We first look at the case where one of the players, assume w.l.o.g. the row player, has a payoff higher than « in the
Nash equilibrium of his zero-sum game (R, —R). The column player plays a pure best response to the strategy of the row
player, regardless of the support of the strategy of the row player. So \{ve mainly consider the row player.

nn

The zero-sum game (R, —R) gives a strategy pair (x*,y*). Fix k= 5 and form a multiset A by sampling k times from

the set of pure strategies of the row player, independently at random according to the distribution x*. Let X' be the mixed
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strategy for the row player with a probability of % for every member of A. We want the distribution X’ to have a payoff
close to the payoff of x*. This corresponds to the following event:

o ={((¥)"Ry") — ((x")'Ry") < —5}.

As noted in Lipton et al. (2003) the expression ((x')TRy*) is essentially a sum of k independent random variables each
of expected value ((x*)TRy*), where every random variable has a value between 0 and 1. This means we can bound the
probability that ¢ does not hold, which we will call ¢. When we apply a standard tail inequality (Hoeffding, 1963) to bound
the probability of ¢, we get:

Prig] < e,

With k = 1;’—2” this gives Pr[¢] < an and Pr[¢] >1— an If X' does not give payoffs close enough to x*, we sample again.
The strategy X’ has a guaranteed payoff of 0.438 + § — § = 0.438. This strategy is communicated to the column player.

The support of this strategy is logarithmic and all probabilities are rational (multiples of %). Communication of one pure

strategy has a communication complexity of O (logn). This will give a communication complexity for X’ of O(log2 n.

The column player computes a pure strategy best response to X' and communicates this strategy in O (logn) to the row
player. The strategy of the row player might not yet lead to a 0.438-approximate Nash equilibrium, his payoff could be too
low. As we have seen before, if the row player redistributes at most 0.219 of his probability, he is guaranteed to have a
strategy that leads to a 0.438-approximate Nash equilibrium.

This change in strategy of the row player can decrease the payoff of the column player by as much as 0.219 and
increase another pure strategy by as much as 0.219. His strategy was a best response, a 0-approximate Nash equilibrium,
and the improvement to another pure strategy is maximal 0.219 4+ 0.219 = 0.438, this leads to a 0.438-approximate Nash
equilibrium.

In the alternative case, where both players have a low (< «) payoff in their zero-sum games, the technique is essentially
the same: each player samples k times from the opposing distribution, checks that it limits his own payoff to at most « + 4,
re-samples as necessary, and communicates the k-sample.

4.3. A 0.732-well-supported Nash equilibrium procedure with limited communication

We give a variant of the algorithm of the previous section, that produces an e-well-supported Nash equilibrium for
€ = /3 — 1. Like the previous algorithm, we will first search for an «-approximate Nash equilibrium and later find the
optimal value for o.

The algorithm starts in the same way as in Section 4.1 with both players computing the Nash equilibrium of zero-sum
games. The row player solves the zero-sum game (R, —R) and the column player solves (—C, C). The two cases that arise
are also the same; Case 1 proceeds as in Section 4.1 while Case 2 requires a variation to the algorithm.

Case 1: The value of both zero-sum games is < « to each player

First consider the case where both players have a Nash equilibrium with value smaller than «. The row player has a
strategy pair (X;,y;) and the column player a strategy pair (X7, y7). The row player communicates y; to the column player
and the column player sends x} to the row player. They will now play the game with the strategy pair (x,y;). If they
play according to these strategies, then no pure strategy yields a payoff of o or more, so note that the strategy profile is an
a-well-supported Nash equilibrium.

Case 2: One or both players can guarantee a payoff > o

Suppose that a player, assume w.l.o.g. the row player, has a payoff more than « in the Nash equilibrium of his zero-sum
game (R, —R). Let the row player communicate this strategy x* to the column player. The column player computes a pure
strategy best response e; to X} and communicates this strategy to the row player. Because the row player had a payoff of
at least « in the game (R, —R), he also has a payoff of at least « against e;.

At this point in the algorithm we have a strategy pair (X}, ;). The strategy of the column player is a best response to x;,
so his strategy has regret 0. We have no guarantee on the performance of the row player’s strategy, in the context of a
well-supported Nash equilibrium.

As in the previous algorithm we allow the row player to shift some of his probability to his best response to e;. Note
that if we shift %a of the probability of the row player, this ensures the column player’s payoffs vary by at most «.

Let the best response of the row player to e; have value g > «. The row player’s payoff is a random variable x that takes
values in [0, 1] with expectation E[x] > «, since X7 is the security strategy for payoff matrix R. The maximum value x can
take is B. The algorithm takes all strategies for which the row player’s payoff is less than 8 —«, and replaces any probability
allocated to them by X, to any strategy whose payoff is at least 8 — «, thus satisfying the conditions for the row player to
also have an «-well-supported Nash equilibrium.
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We upper bound the probability Pr[x < 8 — «] as follows. Subject to E[x] > o and max(x) = 8, this is maximized when
x takes values g or 8 — «. Let p =Pr[x < 8 — «]. Then

Ex]<p(f-—a)+ (1 —-p)p=—ap+B.
We have E[x] > «. Plugging that into the above,
p—a
o

o< —ap+p, ie.p<

To ensure that the amount of probability shifted is at most p, is suffices to let %a < % ie. a? + 20 —28 > 0. This is

satisfied by o = —1 + /T + 2B, so that the worst case value of g is 1, resulting in the claimed value of /3 — 1~ 0.732.
5. Conclusions

Our results raise some open problems, such as how good an approximation should be achievable in the communication-
free setting, and how well we can do in the setting of limited (two-way) communication. Our communication-bounded
algorithms are also based on algorithms that compute approximate equilibria in polynomial time, and it would be very in-
teresting if further upper bounds on the communication complexity could be obtained for algorithms whose computational
time was not known to be polynomial. Pastink (2012) considers some related topics, including the communication required
for approximate equilibria of games of fixed size. It may be that future work should address the issue of communication
protocols where the players have an incentive to report their information truthfully.

We believe that the communication-limited algorithm for 0.438-approximate Nash equilibria is significant, also the 0.501
lower bound in the communication-free setting, since in the context of searching for e-approximate Nash equilibria, € = 0.5
frequently seems to arise as a limit on what is achievable. For example, if we search for approximate equilibria of constant
support, the DMP-algorithm (Daskalakis et al., 2009b) achieves this for € = 0.5, however, Feder et al. (2007) show that for
€ < 0.5, the support size may need to be logarithmic in n. (The corresponding logarithmic upper bound on the support size
that may be needed, is due to Lipton et al., 2003.) In a similar way, while Fictitious Play is known to guarantee to find
e-approximate equilibria for € approaching 0.5 (Conitzer, 2009), it has also been established that € = 0.5 is, in the worst
case, a lower bound on the approximation quality attainable (Goldberg et al., 2013). And, as we find in Theorem 3, 0.5 is
also the best approximation that can be guaranteed when there is a restriction to one-way communication. Finally, Fearnley

et al. (2013) show that to find e€-Nash equilibria with € > % a strictly smaller fraction of the payoffs of the game need to
be checked, than is needed for certain smaller positive values of €.
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