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Abstract 

Gaussian processes provide natural non-parametric prior distribu­
tions over regression functions. In this paper we consider regression 
problems where there is noise on the output, and the variance of 
the noise depends on the inputs. If we assume that the noise is 
a smooth function of the inputs, then it is natural to model the 
noise variance using a second Gaussian process, in addition to the 
Gaussian process governing the noise-free output value. We show 
that prior uncertainty about the parameters controlling both pro­
cesses can be handled and that the posterior distribution of the 
noise rate can be sampled from using Markov chain Monte Carlo 
methods. Our results on a synthetic data set give a posterior noise 
variance that well-approximates the true variance. 

1 Background and Motivation 

A very natural approach to regression problems is to place a prior on the kinds of 
function that we expect, and then after observing the data to obtain a posterior. 
The prior can be obtained by placing prior distributions on the weights in a neural 
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network, although we would argue that it is perhaps more natural to place priors di­
rectly over functions. One tractable way of doing this is to create a Gaussian process 
prior. This has the advantage that predictions can be made from the posterior using 
only matrix multiplication for fixed hyperparameters and a global noise level. In 
contrast, for neural networks (with fixed hyperparameters and a global noise level) 
it is necessary to use approximations or Markov chain Monte Carlo (MCMC) meth­
ods. Rasmussen (1996) has demonstrated that predictions obtained with Gaussian 
processes are as good as or better than other state-of-the art predictors. 

In much of the work on regression problems in the statistical and neural networks 
literatures, it is assumed that there is a global noise level, independent of the input 
vector x. The book by Bishop (1995) and the papers by Bishop (1994), MacKay 
(1995) and Bishop and Qazaz (1997) have examined the case of input-dependent 
noise for parametric models such as neural networks. (Such models are said to 
heteroscedastic in the statistics literature.) In this paper we develop the treatment 
of an input-dependent noise model for Gaussian process regression, where the noise 
is assumed to be Gaussian but its variance depends on x. As the noise level is non­
negative we place a Gaussian process prior on the log noise level. Thus there are 
two Gaussian processes involved in making predictions: the usual Gaussian process 
for predicting the function values (the y-process), and another one (the z-process) 
for predicting the log noise level. Below we present a Markov chain Monte Carlo 
method for carrying out inference with this model and demonstrate its performance 
on a test problem. 

1.1 Gaussian processes 

A stochastic process is a collection of random variables {Y(x)lx E X} indexed by 
a set X. Often X will be a space such as 'R,d for some dimension d, although it 
could be more general. The stochastic process is specified by giving the probability 
distribution for every finite subset of variables Y(Xl), ... , Y(Xk) in a consistent 
manner. A Gaussian process is a stochastic process which can be fully specified 
by its mean function J.L(x) = E[Y(x)] and its covariance function Cp(x,x') = 
E[(Y(x)-J.L(x»)(Y(x')-J.L(x'»]; any finite set of points will have a joint multivariate 
Gaussian distribution. Below we consider Gaussian processes which have J.L(x) == O. 
This assumes that any known offset or trend in the data has been. removed. A 
non-zero I' (x ) is easily incorporated into the framework at the expense of extra 
notational complexity. 

A covariance junction is used to define a Gaussian process; it is a parametrised 
function from pairs of x-values to their covariance. The form of the covariance 
function that we shall use for the prior over functions is given by 

Cy(x(i),xU» =vyexp (-~ tWYl(x~i) _x~j»2) + Jy 8(i,j) (1) 
1=1 

where vy specifies the overall y-scale and W;:/2 is the length-scale associated with 
the lth coordinate. Jy is a "jitter" term (as discussed by Neal, 1997), which is 
added to prevent ill-conditioning of the covariance matrix of the outputs. Jy is a 
typically given a small value, e.g. 10-6 . 

For the prediction problem we are given n data points 1) = ((Xl,t1),(X2,t2), 
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... , (xn, tn»), where ti is the observed output value at Xi. The t's are assumed 
to have been generated from the true y-values by adding independent Gaussian 
noise whose variance is x-dependent. Let the noise variance at the n data points 
be r = (r(xl),r(x2), ... ,r(xn)). Given the assumption of a Gaussian process prior 
over functions, it is a standard result (e.g. Whittle, 1963) that the predictive distri­
bution P(t*lx*) corresponding to a new input x* is t* "'" N(t(X*),0'2(X*)), where 

i(x*) - k~(x*)(Ky + KN)-lt (2) 

0'2(X*) Cy(x*, x*) + r(x*) - k~(x*)(Ky + KN )-lky(x*) (3) 

where the noise-free covariance matrix K y satisfies [K Y] ij = Cy (x i, X j ), and 
ky(x*) = (Cy(x*,xd, ... ,Cy(x*,xn»T, KN = diag(r) and t = (tb ... ,tn)T, 
and V0'2(X*) gives the "error bars" or confidence interval of the prediction. 

In this paper we do not specify a functional form for the noise level r(x) but we do 
place a prior over it. An independent Gaussian process (the z-process) is defined to 
be the log of the noise level. Its values at the training data points are denoted by 
z = (zl, . .. ,zn),sothatr = (exp(zl), ... ,exp(zn». The priorforz has a covariance 
function CZ(X(i), xU» similar to that given in equation 1, although the parameters 
vz and the WZI'S can be chosen to be different to those for the y-process. We also 
add the jitter term Jz t5(i,j) to the covariance function for Z, where Jz is given the 
value 10-2 • This value is larger than usual, for technical reasons discussed later. 

We use a zero-mean process for z which carries a prior assumption that the average 
noise rate is approximately 1 (being e to the power of components of z). This is 
suitable for the experiment described in section 3. In general it is easy to add an 
offset to the z-process to shift the prior noise rate. 

2 An input-dependent noise process 

We discuss, in turn, sampling the noise rates and making predictions with fixed val­
ues of the parameters that control both processes, and sampling from the posterior 
on these parameters. 

2.1 Sampling the Noise Rates 

The predictive distribution for t*, the output at a point x*, is P(t*lt) = 
f P(t*lt,r(z»P(zlt)dz. Given a z vector, the prediction P(t*lt,r(z» is Gaus­
sian with mean and variance given by equations 2 and 3, but P(zlt) is difficult to 
handle analytically, so we use a Monte Carlo approximation to the integral. Given 
a representative sample {Zb ... ' Zk} of log noise rate vectors we can approximate 
the integral by the sum i Ej P(t*lt,r(zj». 

We wish to sample from the distribution P(zlt). As this is quite difficult, we sample 
instead from P(y, zit); a sample for P(zlt) can then be obtained by ignoring the 
y values. This is a similar approach to that taken by Neal (1997) in the case of 
Gaussian processes used for classification or robust regression with t-distributed 
noise. We find that 

P(y, zit) oc P(tly, r(z»P(y)P(z). (4) 

We use Gibbs sampling to sample from P(y, zit) by alternately sampling from 
P(zly, t) and P(ylz, t). Intuitively were are alternating the "fitting" of the curve (or 
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y-process) with "fitting" the noise level (z-process) . These two steps are discussed 
in turn . 

• Sampling from P(ylt, z) 

For y we have that 
P(ylt, z) ex P(tly, r(z»P(y) (5) 

where 

n 1 ( (ti - Yi)2 ) 
P(tly, r(z» = TI (21l'Ti)l/2 exp - 2Ti . (6) 

Equation (6) can also be written as P(tly,r(z» '" N(t,KN) ' Thus P(ylt,z) is 
a multivariate Gaussian with mean (Kyl + Ki/)-l K;/t and covariance matrix 
(Kyl + KN1)-1 which can be sampled by standard methods . 

• Sampling from P(zlt,y) 

For fixed y and t we obtain 

P(zly, t) ex P(tly, z)P(z). (7) 

The form of equation 6 means that it is not easy to sample z as a vector. Instead 
we can sample its components separately, which is a standard Gibbs sampling al­
gorithm. Let Zi denote the ith component of z and let Z-i denote the remaining 
components. Then 

(8) 

P(Zilz-i) is the distribution of Zi conditioned on the values of Z-i' The com­
putation of P(zilz-i) is very similar to that described by equations (2) and (3), 
except that Cy ( " .) is replaced by C z ( " .) and there is no noise so that T (.) will be 
identically zero. 

We sample from P(zilz-i' y, t) using rejection sampling. We first sample from 
P(zilz-i), and then reject according to the term exp{ -Zi/2 - Hti - Yi)2 exp( -Zi)} 
(the likelihood of local noise rate Zi), which can be rescaled to have a maximum 
value of lover Zi. Note that it is not necessary to perform a separate matrix 
inversion for each i when computing the P(zilz-i) terms; the required matrices 
can be computed efficiently from the inverse of K z. We find that the average 
rejection rate is approximately two-thirds, which makes the method we currently use 
reasonably efficient. Note that it is also possible to incorporate the term exp( -Zi/2) 
from the likelihood into the mean of the Gaussian P(zilz-i) to reduce the rejection 
rate. 

As an alternative approach, it is possible to carry out Gibbs sampling for P(zilz-i' t) 
without explicitly representing y, using the fact that 10gP(tlz) = -~logIKI­
!tT K-1t + canst, where K = K y + K N . We have implemented this and found 
similar results to those obtained using sampling of the y's. However, explicitly 
representing the y-process is useful when adapting the parameters, as described in 
section 2.3. 
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2.2 Making predictions 

So far we have explained how to obtain a sample from P(zlt). To make predictions 
we use 

P(t*lt) ~ ~ l: P(t*lt, r(zj)). (9) 
j 

However, P(t*lt,r(zj)) is not immediately available, as z*, the noise level at x* is 
unknown. In fact 

(10) 

P(z*IZj, t) is simply a Gaussian distribution for z* conditioned on Zj, and is ob­
tained in a similar way to P(zilz-i). As P(t*lz*, t, r(zj)) is a Gaussian distribution 
as given by equations (2) and (3), P(t*\t, r(z j)) is an infinite mixture of Gaussians 
with weights P(z*IZj) . Note, however, that each ofthese components has the same 
mean i(x*) as given by equation (2), but a different variance. 

We approximate P(t*lt, r(zj)) by taking s = 10 samples of P(z*lzj) and thus obtain 
a mixture of s Gaussians as the approximating distribution. The approximation for 
P(t*lt) is then obtained by averaging these s-component mixtures over the k samples 
Z1> ••• , Zk to obtain an sk-component mixture of Gaussians. 

2.3 Adapting the parameters 

Above we have described how to obtain a sample from the posterior distribution 
P(z\t) and to use this to make predictions, based on the assumption that the 
parameters Oy (Le. Vy,Jy,WYl, . .. ,WYd) and Oz (Le. vz,JZ,WZl, ... ,WZd) have 
been set to the correct values. In practice we are unlikely to know what these 
settings should be, and so introduce a hierarchical model, as shown in Figure l. 
This graphical model shows that the joint probability distribution decomposes as 
P(Oy,OZ, y, z, t) = P(Oy)P(Oz)P(yIOy )P(z\Oz)P(t\y, z). 

Our goal now becomes to obtain a sample from the posterior P(Oy,Oz,y,zlt), 
which can be used for making predictions as before. (Again, the y samples are 
not needed for making predictions, but they will turn out to be useful for sampling 
Oy .) Sampling from the joint posterior can be achieved by interleaving updates of 
Oy and Oz with y and Z updates. Gibbs sampling for Oy and Oz is not feasible 
as these parameters are buried deeply in the K y and K N matrices, so we use the 
Metropolis algorithm for their updates. As usual, we consider moving from our 
current state 0 = (Oy,Oz) to a new state 0 using a proposal distribution J(O,O). In 
practice we take J to be an isotropic Gaussian centered on 0°. Denote the ratio of 
P(Oy)P(Oz)P(yIOy)P(z\Oz) in states 9 and 0 by r. Then the proposed state 0 is 
accepted with probability min{r, 1}. 

It would also be possible to use more sophisticated MCMC algorithms such as the 
Hybrid Monte Carlo algorithm which uses derivative information, as discussed in 
Neal (1997). 

3 Results 

We have tested the method on a one-dimensional synthetic problem. 60 data points 
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Figure 1: The hierarchical model including parameters. 

were generated from the function y = 2 sin(271"x) on [0, 1] by adding independent 
Gaussian noise. This noise has a standard deviation that increases linearly from 0.5 
at x = 0 to 1.5 at x = 1. The function and the training data set are illustrated in 
Figure 2(a). 

As the parameters are non-negative quantities, we actually compute with their log 
values. logvy, logvz, logwy and log Wz were given N(O, 1) prior distributions. The 
jitter values were fixed at Jy = 10-6 and J z = 10-2 • The relatively large value 
for J z assists the convergence of the Gibbs sampling, since it is responsible for 
most of the variance of the conditional distribution P(Zi/Z-i}. The broadening of 
this distribution leads to samples whose likelihoods are more variable, allowing the 
likelihood term (used for rejection) to be more influential. 

In our simulations, on each iteration we made three Metropolis updates for the 
parameters, along with sampling from all of the y and Z variables. The Metropolis 
proposal distribution was an isotropic Gaussian with variance 0.01. We ran for 
3000 iterations, and discarded the first one-third of iterations as "burn-in", after 
which plots of each of the parameters seemed to have settled down. The parameters 
and Z values were stored every 100 iterations. In Figure 2(b) the average standard 
deviation of the inferred noise has been plotted, along with with two standard 
deviation error-bars. Notice how the standard deviation increases from left to right, 
in close agreement with the data generator. 

Studying the posterior distributions of the parameters, we find that the y­

length scale A y d;j (wy) -1/2 is well localized around 0.22 ± 0.1, in good agree­
ment with the wavelength of the sinusoidal generator. (For the covariance function 
in equation 1, the expected number of zero crossings per unit length is 1/7I"Ay.) 
(WZ)-1/2 is less tightly constrained, which makes sense as it corresponds to a longer 
wavelength process, and with only a short segment of data available there is still 
considerable posterior uncertainty. 

4 Conclusions 

We have introduced a natural non-parametric prior on variable noise rates, and 
given an effective method of sampling the posterior distribution, using a MCMC 
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Figure 2: (a) shows the training set (crosses); the solid line depicts the x-dependent 
mean of the output. (b) The solid curve shows the average standard deviation of 
the noise process, with two standard deviation error bars plotted as dashed lines. 
The dotted line indicates the true standard deviation of the data generator. 

method. When applied to a data set with varying noise, the posterior noise rates 
obtained are well-matched to the known structure. We are currently experimenting 
with the method on some more challenging real-world problems. 
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