
Regression with Input-dependent Noise:
A Gaussian Process Treatment

Paul W. Goldberg
Department of Computer Science

University of Warwick
Coventry, CV 4 7 AL, UK
pvgGdcs.varvick.ac.uk

Christopher K.I. Williams
Neural Computing Research Group

Aston University
Birmingham B4 7ET, UK

c.k.i.villiamsGaston.ac.uk

Christopher M. Bishop
Microsoft Research
St. George House
1 Guildhall Street

Cambridge, CB2 3NH, UK
cmbishopOmicrosoft.com

Abstract

Gaussian processes provide natural non-parametric prior distribu­
tions over regression functions. In this paper we consider regression
problems where there is noise on the output, and the variance of
the noise depends on the inputs. If we assume that the noise is
a smooth function of the inputs, then it is natural to model the
noise variance using a second Gaussian process, in addition to the
Gaussian process governing the noise-free output value. We show
that prior uncertainty about the parameters controlling both pro­
cesses can be handled and that the posterior distribution of the
noise rate can be sampled from using Markov chain Monte Carlo
methods. Our results on a synthetic data set give a posterior noise
variance that well-approximates the true variance.

1 Background and Motivation

A very natural approach to regression problems is to place a prior on the kinds of
function that we expect, and then after observing the data to obtain a posterior.
The prior can be obtained by placing prior distributions on the weights in a neural

494 P. W Goldberg, C. K. L Williams and C. M. Bishop

network, although we would argue that it is perhaps more natural to place priors di­
rectly over functions. One tractable way of doing this is to create a Gaussian process
prior. This has the advantage that predictions can be made from the posterior using
only matrix multiplication for fixed hyperparameters and a global noise level. In
contrast, for neural networks (with fixed hyperparameters and a global noise level)
it is necessary to use approximations or Markov chain Monte Carlo (MCMC) meth­
ods. Rasmussen (1996) has demonstrated that predictions obtained with Gaussian
processes are as good as or better than other state-of-the art predictors.

In much of the work on regression problems in the statistical and neural networks
literatures, it is assumed that there is a global noise level, independent of the input
vector x. The book by Bishop (1995) and the papers by Bishop (1994), MacKay
(1995) and Bishop and Qazaz (1997) have examined the case of input-dependent
noise for parametric models such as neural networks. (Such models are said to
heteroscedastic in the statistics literature.) In this paper we develop the treatment
of an input-dependent noise model for Gaussian process regression, where the noise
is assumed to be Gaussian but its variance depends on x. As the noise level is non­
negative we place a Gaussian process prior on the log noise level. Thus there are
two Gaussian processes involved in making predictions: the usual Gaussian process
for predicting the function values (the y-process), and another one (the z-process)
for predicting the log noise level. Below we present a Markov chain Monte Carlo
method for carrying out inference with this model and demonstrate its performance
on a test problem.

1.1 Gaussian processes

A stochastic process is a collection of random variables {Y(x)lx E X} indexed by
a set X. Often X will be a space such as 'R,d for some dimension d, although it
could be more general. The stochastic process is specified by giving the probability
distribution for every finite subset of variables Y(Xl), ... , Y(Xk) in a consistent
manner. A Gaussian process is a stochastic process which can be fully specified
by its mean function J.L(x) = E[Y(x)] and its covariance function Cp(x,x') =
E[(Y(x)-J.L(x»)(Y(x')-J.L(x'»]; any finite set of points will have a joint multivariate
Gaussian distribution. Below we consider Gaussian processes which have J.L(x) == O.
This assumes that any known offset or trend in the data has been. removed. A
non-zero I' (x) is easily incorporated into the framework at the expense of extra
notational complexity.

A covariance junction is used to define a Gaussian process; it is a parametrised
function from pairs of x-values to their covariance. The form of the covariance
function that we shall use for the prior over functions is given by

Cy(x(i),xU» =vyexp (-~ tWYl(x~i) _x~j»2) + Jy 8(i,j) (1)
1=1

where vy specifies the overall y-scale and W;:/2 is the length-scale associated with
the lth coordinate. Jy is a "jitter" term (as discussed by Neal, 1997), which is
added to prevent ill-conditioning of the covariance matrix of the outputs. Jy is a
typically given a small value, e.g. 10-6 .

For the prediction problem we are given n data points 1) = ((Xl,t1),(X2,t2),

Input-dependent Noise: A Gaussian Process Treatment 495

... , (xn, tn»), where ti is the observed output value at Xi. The t's are assumed
to have been generated from the true y-values by adding independent Gaussian
noise whose variance is x-dependent. Let the noise variance at the n data points
be r = (r(xl),r(x2), ... ,r(xn)). Given the assumption of a Gaussian process prior
over functions, it is a standard result (e.g. Whittle, 1963) that the predictive distri­
bution P(t*lx*) corresponding to a new input x* is t* "'" N(t(X*),0'2(X*)), where

i(x*) - k~(x*)(Ky + KN)-lt (2)

0'2(X*) Cy(x*, x*) + r(x*) - k~(x*)(Ky + KN)-lky(x*) (3)

where the noise-free covariance matrix K y satisfies [K Y] ij = Cy (x i, X j), and
ky(x*) = (Cy(x*,xd, ... ,Cy(x*,xn»T, KN = diag(r) and t = (tb ... ,tn)T,
and V0'2(X*) gives the "error bars" or confidence interval of the prediction.

In this paper we do not specify a functional form for the noise level r(x) but we do
place a prior over it. An independent Gaussian process (the z-process) is defined to
be the log of the noise level. Its values at the training data points are denoted by
z = (zl, . .. ,zn),sothatr = (exp(zl), ... ,exp(zn». The priorforz has a covariance
function CZ(X(i), xU» similar to that given in equation 1, although the parameters
vz and the WZI'S can be chosen to be different to those for the y-process. We also
add the jitter term Jz t5(i,j) to the covariance function for Z, where Jz is given the
value 10-2 • This value is larger than usual, for technical reasons discussed later.

We use a zero-mean process for z which carries a prior assumption that the average
noise rate is approximately 1 (being e to the power of components of z). This is
suitable for the experiment described in section 3. In general it is easy to add an
offset to the z-process to shift the prior noise rate.

2 An input-dependent noise process

We discuss, in turn, sampling the noise rates and making predictions with fixed val­
ues of the parameters that control both processes, and sampling from the posterior
on these parameters.

2.1 Sampling the Noise Rates

The predictive distribution for t*, the output at a point x*, is P(t*lt) =
f P(t*lt,r(z»P(zlt)dz. Given a z vector, the prediction P(t*lt,r(z» is Gaus­
sian with mean and variance given by equations 2 and 3, but P(zlt) is difficult to
handle analytically, so we use a Monte Carlo approximation to the integral. Given
a representative sample {Zb ... ' Zk} of log noise rate vectors we can approximate
the integral by the sum i Ej P(t*lt,r(zj».

We wish to sample from the distribution P(zlt). As this is quite difficult, we sample
instead from P(y, zit); a sample for P(zlt) can then be obtained by ignoring the
y values. This is a similar approach to that taken by Neal (1997) in the case of
Gaussian processes used for classification or robust regression with t-distributed
noise. We find that

P(y, zit) oc P(tly, r(z»P(y)P(z). (4)

We use Gibbs sampling to sample from P(y, zit) by alternately sampling from
P(zly, t) and P(ylz, t). Intuitively were are alternating the "fitting" of the curve (or

496 P. W. Goldberg, C. K. 1. Williams and C. M Bishop

y-process) with "fitting" the noise level (z-process) . These two steps are discussed
in turn .

• Sampling from P(ylt, z)

For y we have that
P(ylt, z) ex P(tly, r(z»P(y) (5)

where

n 1 ((ti - Yi)2)
P(tly, r(z» = TI (21l'Ti)l/2 exp - 2Ti . (6)

Equation (6) can also be written as P(tly,r(z» '" N(t,KN) ' Thus P(ylt,z) is
a multivariate Gaussian with mean (Kyl + Ki/)-l K;/t and covariance matrix
(Kyl + KN1)-1 which can be sampled by standard methods .

• Sampling from P(zlt,y)

For fixed y and t we obtain

P(zly, t) ex P(tly, z)P(z). (7)

The form of equation 6 means that it is not easy to sample z as a vector. Instead
we can sample its components separately, which is a standard Gibbs sampling al­
gorithm. Let Zi denote the ith component of z and let Z-i denote the remaining
components. Then

(8)

P(Zilz-i) is the distribution of Zi conditioned on the values of Z-i' The com­
putation of P(zilz-i) is very similar to that described by equations (2) and (3),
except that Cy (" .) is replaced by C z (" .) and there is no noise so that T (.) will be
identically zero.

We sample from P(zilz-i' y, t) using rejection sampling. We first sample from
P(zilz-i), and then reject according to the term exp{ -Zi/2 - Hti - Yi)2 exp(-Zi)}
(the likelihood of local noise rate Zi), which can be rescaled to have a maximum
value of lover Zi. Note that it is not necessary to perform a separate matrix
inversion for each i when computing the P(zilz-i) terms; the required matrices
can be computed efficiently from the inverse of K z. We find that the average
rejection rate is approximately two-thirds, which makes the method we currently use
reasonably efficient. Note that it is also possible to incorporate the term exp(-Zi/2)
from the likelihood into the mean of the Gaussian P(zilz-i) to reduce the rejection
rate.

As an alternative approach, it is possible to carry out Gibbs sampling for P(zilz-i' t)
without explicitly representing y, using the fact that 10gP(tlz) = -~logIKI­
!tT K-1t + canst, where K = K y + K N . We have implemented this and found
similar results to those obtained using sampling of the y's. However, explicitly
representing the y-process is useful when adapting the parameters, as described in
section 2.3.

Input-dependent Noise: A Gaussian Process Treatment 497

2.2 Making predictions

So far we have explained how to obtain a sample from P(zlt). To make predictions
we use

P(t*lt) ~ ~ l: P(t*lt, r(zj)). (9)
j

However, P(t*lt,r(zj)) is not immediately available, as z*, the noise level at x* is
unknown. In fact

(10)

P(z*IZj, t) is simply a Gaussian distribution for z* conditioned on Zj, and is ob­
tained in a similar way to P(zilz-i). As P(t*lz*, t, r(zj)) is a Gaussian distribution
as given by equations (2) and (3), P(t*\t, r(z j)) is an infinite mixture of Gaussians
with weights P(z*IZj) . Note, however, that each ofthese components has the same
mean i(x*) as given by equation (2), but a different variance.

We approximate P(t*lt, r(zj)) by taking s = 10 samples of P(z*lzj) and thus obtain
a mixture of s Gaussians as the approximating distribution. The approximation for
P(t*lt) is then obtained by averaging these s-component mixtures over the k samples
Z1> ••• , Zk to obtain an sk-component mixture of Gaussians.

2.3 Adapting the parameters

Above we have described how to obtain a sample from the posterior distribution
P(z\t) and to use this to make predictions, based on the assumption that the
parameters Oy (Le. Vy,Jy,WYl, . .. ,WYd) and Oz (Le. vz,JZ,WZl, ... ,WZd) have
been set to the correct values. In practice we are unlikely to know what these
settings should be, and so introduce a hierarchical model, as shown in Figure l.
This graphical model shows that the joint probability distribution decomposes as
P(Oy,OZ, y, z, t) = P(Oy)P(Oz)P(yIOy)P(z\Oz)P(t\y, z).

Our goal now becomes to obtain a sample from the posterior P(Oy,Oz,y,zlt),
which can be used for making predictions as before. (Again, the y samples are
not needed for making predictions, but they will turn out to be useful for sampling
Oy .) Sampling from the joint posterior can be achieved by interleaving updates of
Oy and Oz with y and Z updates. Gibbs sampling for Oy and Oz is not feasible
as these parameters are buried deeply in the K y and K N matrices, so we use the
Metropolis algorithm for their updates. As usual, we consider moving from our
current state 0 = (Oy,Oz) to a new state 0 using a proposal distribution J(O,O). In
practice we take J to be an isotropic Gaussian centered on 0°. Denote the ratio of
P(Oy)P(Oz)P(yIOy)P(z\Oz) in states 9 and 0 by r. Then the proposed state 0 is
accepted with probability min{r, 1}.

It would also be possible to use more sophisticated MCMC algorithms such as the
Hybrid Monte Carlo algorithm which uses derivative information, as discussed in
Neal (1997).

3 Results

We have tested the method on a one-dimensional synthetic problem. 60 data points

498 P. W. Goldberg, C. K. l Williams and C. M Bishop

Figure 1: The hierarchical model including parameters.

were generated from the function y = 2 sin(271"x) on [0, 1] by adding independent
Gaussian noise. This noise has a standard deviation that increases linearly from 0.5
at x = 0 to 1.5 at x = 1. The function and the training data set are illustrated in
Figure 2(a).

As the parameters are non-negative quantities, we actually compute with their log
values. logvy, logvz, logwy and log Wz were given N(O, 1) prior distributions. The
jitter values were fixed at Jy = 10-6 and J z = 10-2 • The relatively large value
for J z assists the convergence of the Gibbs sampling, since it is responsible for
most of the variance of the conditional distribution P(Zi/Z-i}. The broadening of
this distribution leads to samples whose likelihoods are more variable, allowing the
likelihood term (used for rejection) to be more influential.

In our simulations, on each iteration we made three Metropolis updates for the
parameters, along with sampling from all of the y and Z variables. The Metropolis
proposal distribution was an isotropic Gaussian with variance 0.01. We ran for
3000 iterations, and discarded the first one-third of iterations as "burn-in", after
which plots of each of the parameters seemed to have settled down. The parameters
and Z values were stored every 100 iterations. In Figure 2(b) the average standard
deviation of the inferred noise has been plotted, along with with two standard
deviation error-bars. Notice how the standard deviation increases from left to right,
in close agreement with the data generator.

Studying the posterior distributions of the parameters, we find that the y­

length scale A y d;j (wy) -1/2 is well localized around 0.22 ± 0.1, in good agree­
ment with the wavelength of the sinusoidal generator. (For the covariance function
in equation 1, the expected number of zero crossings per unit length is 1/7I"Ay.)
(WZ)-1/2 is less tightly constrained, which makes sense as it corresponds to a longer
wavelength process, and with only a short segment of data available there is still
considerable posterior uncertainty.

4 Conclusions

We have introduced a natural non-parametric prior on variable noise rates, and
given an effective method of sampling the posterior distribution, using a MCMC

Input-dependent Noise: A Gaussian Process Treatment 499

.'
" ..

.' ..
- 2

o.

°O~~OI~~02--0~'~O~'~O~'~"--O~7~O~'~"~

(a) (b)

Figure 2: (a) shows the training set (crosses); the solid line depicts the x-dependent
mean of the output. (b) The solid curve shows the average standard deviation of
the noise process, with two standard deviation error bars plotted as dashed lines.
The dotted line indicates the true standard deviation of the data generator.

method. When applied to a data set with varying noise, the posterior noise rates
obtained are well-matched to the known structure. We are currently experimenting
with the method on some more challenging real-world problems.

Acknowledgements

This work was carried out at Aston University under EPSRC Grant Ref. GR/K 51792
Validation and Verification of Neural Network Systems.

References

[1] C.M. Bishop (1994). Mixture Density Networks. Technical report NCRG/94/001, Neu­
ral Computing Research Group, Aston University, Birmingham, UK.

[2] C.M. Bishop (1995). Neural Networks for Pattern Recognition. Oxford University Press.

[3] C.M. Bishop and C. Qazaz (1997). Regression with Input-dependent Noise: A Bayesian
Treatment. In M. C. Mozer, M. I. Jordan and T. Petsche (Eds) Advances in Neural
Information Processing Systems 9 Cambridge MA MIT Press.

[4] D. J. C. MacKay (1995). Probabilistic networks: new models and new methods. In
F. Fogelman-Soulie and P. Gallinari (Eds), Proceedings ICANN'95 International Con­
ference on Neural Networks, pp. 331-337. Paris, EC2 & Cie.

[5] R. Neal (1997). Monte Carlo Implementation of Gaussian Process Models for Bayesian
Regression and Classification. Technical Report 9702, Department of Statistics, Uni­
versity of Toronto. Available from http://vvv.cs.toronto.edurradford/.

[6] C.E. Rasmussen (1996). Evaluation of Gaussian Processes and Other Methods for Non­
linear Regression. PhD thesis, Department of Computer Science, University of Toronto.
Available from http://vwv . cs .utoronto. carcarl/ .

[7] C.K.I. Williams and C.E. Rasmussen (1996). Gaussian Processes for Regression. In
D. S. Touretzky, M. C. Mozer and M. E . Hasselmo Advances in Neural Information
Processing Systems 8 pp. 514-520, Cambridge MA MIT Press.

[8] P. Whittle (1963). Prediction and regulation by linear least-square methods. English
Universities Press.

