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Abstract


A tool-kit is presented which integrates a number of computational methods used in the identification of horizontally transferred genes in bacteria. The tool-kit provides an automatic comparison of results derived from the parallel application of methods to nucleotide sequence data. It provides the basis with which to distinguish between the underlying computational and statistical models, allowing the overlap (and disparity) between results to be highlighted. The tool-kit is Web-based, and therefore provides a new remote service for use in the wider research community.

Introduction

Horizontal gene transfer (HGT) plays an important role in environmental adaptation, in pathogenicity, in virulence and in the association of bacterial species within the environment [1,4,6]. The study of HGT has generated considerable research interest as it is thought to provide insights into how genetic information can be transferred between microbes [2,3]. This in turn will provide the basis for solving the problem of mapping the evolutionary landscape of bacteria [3,5]. Consequently, a number of techniques have been developed for the computational and statistical analysis of DNA, each attempting to highlight and provide an understanding of HGT [7,9,10,11,12]. These methods have provided insights into the understanding of genome evolution and each set of results are recognised as being unique and valuable in their own right. The appropriate application of these methods requires knowledge of their strengths and weaknesses as well as an insight into the nature of HGT and how it might occur [8]. This provides the motivation for this research – the development of a tool-kit that will serve as a computational framework for the detection of HGT and which will provide a basis for inferring appropriate computational and statistical models in the analysis of genomic data. The resulting tool-kit provides an automatic comparison of results derived from the parallel application of methods to nucleotide sequence data; the overlap (and disparity) between results are highlighted and thus provide a means for exposing differences between each computational technique. Additional analysis provides the basis with which to distinguish between the underlying computational and statistical models, allowing differences to be highlighted and new techniques to be developed.

Identifying HGT

There are a number of well documented techniques for the identification of HGT. Those techniques which are integrated into the tool-kit are described below:
Genome signatures

Genomic signatures consist of a graph of (*, which constitutes a difference between the frequency of base words (or oligonucleotides) for a fixed size sub-sequence and the frequency of the word throughout the sequence as a whole [9,10].

Extended oligonucleotide analysis

When the sub-sequence size and oligonucleotide length is varied in a genomic signature, several unique areas of interest are highlighted. For example, in the comparative results of H. pylori, in which the sub-sequences vary between 1,000 and 50,000 and the oligonucleotides vary between 2 and 6, results show that between 177 and 222 (* values are greater than 3 standard deviations above the mean. The results share 20 common reading frames (20% of the length-2 oligonucleotide signature and 25.3% of the length-6 oligonucleotide signature). However, many regions (including those which are known to be subject to HGT) were unique to one type of signature [12]. Such findings have been verified in the analysis of N. meningitides whose HGT regions have been compared against an unrelated second sequenced strain [13].
ORF analysis

The biological structure of a genome is somewhat lost by the fixed size sub-sequence employed in the statistical difference in genome signature analysis. Using the weighted cusum (cumulative sum) approach of Bissel [10], it is possible extend the genomic signature so that fixed size sub-sequences are now variable in length, thus enabling the technique to capture the underlying importance of open reading frames (ORFs), or potential genes.

Bissell’s weighted variance estimate

(A2  = 1/(n-1) { ((Xi2/wi) – (((Xi)2/(wi) } : variance estimate to unit size
where n denotes the number of ORFs in the genome, Xi is the number of oligonucleotides in ORF i, and wi is the total number of nucleotides in ORF i, is then scaled according to the ORF size using the standard error [12]

    ( =(((A2*ORF size)

Hidden Markov Models

Hidden Markov Models (HMMs) have been successfully applied to a number of areas of biology [14,15,16] and are analogous in a number of respects with the model of a genetic sequence. Sequences are structured as states, exhibiting transition probabilities between states and also incorporating emission probabilities. Our implementation models HMM parameters, including [17]:

akl = P((i = l | (i-1 = k)

where akl is the transition probability from state k to l and (i represents ith state in the state sequence ( ;
ek (b) = P(xi = b | (i = k)
where ek (b) is the emission probability for symbol b when in state k. These parameters are determined through a number of training sets [18] and growth in the training sets increases the confidence in the parameters settings.
Analysis of Methods

Genome signatures, and oligonucleotide and ORF analyses are regarded as convenient methods for the detection of alien genes as they only require the genetic sequence of the organism under investigation. However, there are recognised obstacles in the interpretation of the results. These stem from the fact that regions with unusual compositions are not necessarily caused by HGT, but may have occurred through selection, mutation bias, and even the direction of transcription relative to the replication origin [8]. Another drawback is that the underlying statistical model will not detect transfer events between species with similar base compositions; nor will it detect events that through time have been masked by the effects of amelioration. 

It is important therefore that when studying the results, the analysis should take into account false positives and false negatives. While this might sound straightforward, the devil is in the detail. Additional analysis must be incorporated which allows protein level study such as the identification of orthologous genes and confirmation of incongruencies in phylogeny [19,20,21]. Phylogeny, for example, can support the results by providing answers to several important evolutionary questions, including the direction and the relative frequency at which bases change [22,23]. 


There are similarities between the underlying statistical models employed by these methods and so it is not surprising to see that the results overlap. However, many of the reading frames identified are unique to one method of analysis. This disparity is even true of highly related methods – for example only two of the restriction modification genes of H. pylori appear in the results of a length-2 oligonucleotide analysis whereas seven of these genes are highlighted by a length-6 oligonucleotide analysis. This motivates the question of which of these results should form the basis for credible results. 
 A Web-based tool kit

These questions provide the rationale behind the development of a tool which manages and manipulates the data from a series of automated HGT analyses. This computational framework provides a convenient means for comparative genome studies and allows the scientist to perform an analysis of the results both quickly and effectively. The software also highlights the overlap and disparity between the results of the different methods. This exposes the differences of each computational technique and provides a basis for further analysis. 

The new framework supports genomic comparison by first running a selection of HGT techniques (with supporting services such as %G+C analysis) on the chosen input sequence. As some of these methods are computationally expensive, the computation can be run in parallel over a locally distributed GRID. The tool-kit manages this parallelisation and gathers the results of each computation. Results graphs are then rendered thereby providing the basis for high-level comparison. As many of the methods yeild a large number of results, the toolkit then slices the results at a chosen standard deviation above mean. It is at this point that the lower-level sub-sets which constitute the ‘areas of interest’ can be compared and displayed to the user. 

The resulting open reading frames also provide a good source of data for further investigation assisted with a remote data repository such as BLAST [24]. The framework provides this interconnectivity as an integrated service, as well as providing supporting spreadsheets (or text or hard copies) of the results for any subsequent analysis. The tool-kit (see Fig. 1) is Web-based and will thus provides a new remote service to the wider research community 
Conclusion

A Web-based tool kit which integrates a number of computational methods used in the identification of horizontal transferred genes in bacteria has been developed. The tool kit is unique in a number of respects: It provides an automatic comparison of results derived from the parallel application of methods to nucleotide sequence data; these results highlight the overlap and disparity between the methods of HGT analysis and thus provide a means for compensating for the differences of each computational technique.

The tool-kit has been tested with application to the bacterial sequences N. meningitidis serogroup-B strain MC58, N. meningitidis serogroup-A strain Z2491 and H. pylori strain J99. It is hoped that this analysis will provide the basis for the construction of supporting bacterial phylogenetic networks, highlighting determining features in the sequences and providing an analysis between pathogens and their closely related non-pathogenic relatives.

[image: image1.png]The tool-kit also provides a framework in which the underlying computational and statistical models of HGT analysis can be explored. This will provide a basis on which new experimental models can be built and tested against existing methods.
Fig. 1: An example screen-shot of the tool-kit displaying the results of H. Pylori J99 with a direct link to BLAST; for further results see [12,13].
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