
Bounds for the Convergence Rate of Randomized Local
Search in a Multiplayer Load-balancing Game

Paul W. Goldberg ∗

Department of Computer Science
University of Warwick, UK

ABSTRACT
This paper studies a load balancing game introduced by
Koutsoupias and Papadimitriou, that is intended to model
a set of users who share several internet-based resources.
Some of the recent work on this topic has considered the
problem of constructing Nash equilibria, which are choices of
actions where each user has optimal utility given the actions
of the other users. A related (harder) problem is to find se-
quences of utility-improving moves that lead to a Nash equi-
librium, starting from some given assignment of resources to
users.

We consider the special case where all resources are the
same as each other. It is known already that there exist
efficient algorithms for finding Nash equilibria; our contri-
bution here is to show furthermore that Nash equilibria for
this type of game are reached rapidly by Randomized Local
Search, a simple generic method for local optimization. Our
motivation for studying Randomized Local Search is that
(as we show) it can be realised by a simple distributed net-
work of users that act selfishly, have no central control and
only interact via the effect they have on the cost functions
of resources.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of algorithms
and problem complexity

General Terms
Algorithms, Theory

Keywords
Agent-based computing, Nash equilibrium

∗email: pwg@dcs.warwick.ac.uk, phone: +44-
24-76523088, fax: +44-24-76573024, home page:
http://www.dcs.warwick.ac.uk/∼pwg/, Department
of Computer Science, University of Warwick, Coventry,
CV4 7AL, United Kingdom.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’04, July 25–28, 2004, St. Johns, Newfoundland, Canada.
Copyright 2004 ACM 1-58113-802-4/04/0007 ...$5.00.

1. INTRODUCTION
Suppose we have a set of resources and a set of agents,

and each agent has a task with a given positive weight. If
each agent selects a single resource, then we assume each
agent experiences a cost that is proportional to the sum
of the weights of tasks of agents sharing that resource. If
agents are able to change their selection, then a particular
set of selections is in a sense stable provided that there is
no possible change of resource by any agent that will lead to
that agent’s cost decreasing. In game-theoretic terms, this
is a pure Nash equilibrium.

Recent work has considered the problem of finding Nash
equilibria in this particular situation (see Section 1.3 for
a summary). Specific problems include finding any Nash
equilibrium for a given set of tasks and resources, and find-
ing a short sequence of moves from a given set of resource
selections to a Nash equilibrium. Given a starting set of se-
lections, one would like to find a sequence of moves each of
which is “self-improving” in the sense that when an agent
moves from one resource to another, its cost should go down.
It is known from [9, 7] that the process of repeatedly making
self-improving moves must terminate at a Nash equilibrium,
but little is know about how long this sequence must be.

In this paper we consider an algorithm that can be realised
as a distributed scheme in which agents, at random points
in time, make self-improving moves independently of each
other. We consider the following simple algorithm. Initially
each agent is assigned a resource, and then at each step, an
agent and a resource are selected uniformly at random, and
the agent moves to that resource if its resulting cost is lower.
We call this randomized local search since it is essentially
the same as the “randomized local search” studied in other
contexts (see Section 1.3).

We continue by giving some definitions and notation that
are used subsequently, then give a summary of our results,
followed by more details on background and related work.
Section 1.4 shows how Randomized Local Search can be re-
alised by a simple distributed scheme with no central control
— we argue that it is important that an algorithm should
have that property, in view of studies of “coordination ra-
tio” for this particular situation (for example [3, 4, 5, 8, 9,
10, 12, 13, 15]), which is typically discussed as being a price
that is paid for not having central control over the agents.
The convergence rate bounds are presented in Section 2.

1.1 Problem Statement and Definitions
For positive integer z let [z] denote the set {1, 2, . . . , z}.

An instance of the game consists of a set R of m resources,

where resource `, ` ∈ [m], has an associated capacity c`. In
the case of uniform resources studied here, c` = 1 for all
`. There is also a set T of n tasks (each task belonging
to a unique agent), where for each j ∈ [n], task j has an
associated weight wj . Each task has m actions available to
it. The cost experienced by task j selecting resource ` is the
sum of weights of tasks that select `, divided by `’s capacity
c`.

An assignment A is any single set of choices of resources
made by tasks; formally A ∈ [m]n. (An assignment is some-
times called a “pure profile” in the literature.)

Let M(j, A) denote the resource that task j selects in
assignment A.

Let L(`,A) =
�

j∈[n]{wj : M(j, A) = `}, i.e. the sum of

weights of tasks that use resource `.
Let C(`, A) = c−1

` L(`, A) be the cost to any task that uses
resource ` in A. (For uniform resources, C(`,A) = L(`, A).)

A move is the operation of transferring a task from a re-
source to a new resource that reduces the cost for that task.
Following [8] we say that a task is unsatisfied if there exists
a move it can make that results in a reduction of its cost. An
attempt is the operation of selecting a task j uniformly at
random and a resource ` uniformly at random, and transfer-
ring j to ` provided that the operation is a (self-improving)
move. If the operation would not reduce the cost to j, we
leave the assignment unchanged. An attempt is successful if
it does actually result in a move.

Given these definitions, Randomized Local Search (RLS)
consists quite simply of a sequence of attempts, and the gen-
eral question is, what is the expected number of attempts re-
quired for convergence to Nash equilibrium (where all tasks
are satisfied).

1.2 Summary of Results
It is shown in [9, 7] that any sequence of selfish moves

must converge, for the game under consideration. It is also
known from [8] how to construct a sequence of selfish moves
from a given assignment to a Nash equilibrium, in the case
of uniform resources under consideration here. The follow-
ing results address the question of whether sequences of
selfish moves that are essentially chosen at random, do in
fact also converge quickly to Nash equilibrium. We show in
Section 1.4 that randomly-selected move sequences can be
found in a distributed fashion, without any central control
over agents. Let wmax denote the ratio of largest to smallest
task weights. Our convergence rate bounds (Section 2) are
the following:

1. (Section 2.1) We give an upper bound on the expected
number of attempts for convergence by RLS that is
polynomial in n, m and wmax.

This result shows that RLS does not get forced to
make long sequences of moves of very small “value”; al-
though such moves are occasionally necessary, we show
that there exist enough opportunities to make moves
that are (in a sense defined below) useful.

2. (Section 2.2) For integer task weights in the range
{1, . . . , wmax}, for wmax ≤ n, we give a convergence
rate of O(m2nwmax).

The linearity in n is significant since the second part of
Theorem 1.1 then says that in the distributed setting,
the convergence rate would be independent of n; the

Θ(n) speedup being a consequence of having n agents
all working independently, in that model.

3. (Section 2.3) We give a Ω(n2) lower bound on the ex-
pected number of attempts when task weights are un-
restricted.

This lower bound (as a function of n) is in contrast to
the upper bound above; the construction uses a wmax

that is exponential in n.

4. (Section 2.4) The expected number of attempts made
by RLS may be much lower than the maximal length
of a sequence of self-improving moves, even allowing
for unsuccessful attempts.

Furthermore, we show this using a class of instances
where all tasks have the same weight. RLS is seen to
be very economical with basic operations of the form
“evaluate the cost for task j of using resource `”. Es-
sentially, we verify that useful progress is being made
by randomly-chosen (typically suboptimal) moves.

Note that the motivation for these results is that RLS
may take place without central control over the agents; it
is already known how to find Nash equilibria via a fairly
simple algorithm. In particular Lemma 1 of Feldmann et
al. [8] shows that given any initial assignment A, we may
convert A to a Nash assignment using the following sequence
of selfish steps. Let wj be the weight of agent j, and assume
that w1 ≥ w2 ≥ . . . ≥ wn. Transfer w1 to its optimal
resource, then w2, and so on through wn (i.e. in descending
order of task weight). In particular, they show that for
uniform resources, a selfish move by an agent that selects
its best resource, cannot cause another agent with higher
weight to become unsatisfied. Here of course we do not have
the guarantee that a big task will not become unsatisfied;
instead most of our proofs use a potential function that is a
special case of the potential function introduced recently by
Even-dar et al. [7].

1.3 Related Work
Randomized Local Search has been studied in its capac-

ity as a generic optimization method [19, 14, 18, 11]. Given
a class of solutions that can be described by binary strings
of length n, together with a function f : {0, 1}n → R to
be optimized, the approach is to maintain an n-digit binary
string, and repeatedly flip randomly-chosen bits, accepting
the change whenever f is higher for the modified string. (In
the context of minimum spanning tree [14] and maximum
matching [11] a variant is used where 2 bits may be flipped
simultaneously.) In our setting, an assignment is an element
of [m]n and we proceed by repeatedly replacing a random
entry of this vector by a random element of [m], and ac-
cept the new assignment if its potential is lower. RLS is
a variant of the more extensively studied (1+1) Evolution-
ary Algorithm of [6], and for f we are using the potential
function from [7].

The load-balancing game studied here was introduced by
Koutsoupias and Papadimitriou [12]. It is shown in Fotakis
et al. [9] how to find pure Nash equilibria in polynomial
time. The term “Nashification” was introduced in Feldmann
et al. [8] to describe the problem of finding a sequence of
moves from a given assignment to a Nash assignment. For
resources that may have variable capacities, they show how

to find in polynomial-time, a sequence of moves that leads
to a Nash equilibrium, where no move increases the social
cost but moves are not necessarily self-improving. For uni-
form resources, [8] also gives an exponential lower bound
on the number of self-improving moves that can be taken
if “bad” choices are made. Even-dar et al. [7] show (for
uniform resources) that the number of moves made by an
algorithm that always moves the lowest-weight task, may
be exponential. Our upper bounds on convergence rate are
saying that for polynomial wmax, a randomly-selected move
sequence should avoid this worst-case behaviour. (Techni-
cally, we have not ruled out the possibility that no long move
sequences exist for polynomial wmax; we just show that for
a suitable polynomial number of moves, there must exist an
opportunity for the potential to go down by an appreciable
amount, in a single move.)

Gairing et al. [10] consider the problem of finding and ap-
proximating the best and worst Nash equilibria, and also
the computational complexity of finding bounded-length se-
quences of moves that lead to a pure Nash equilibrium (and
show that it is hard to find a minimum length path). Even-
dar et al. [7] also study the problem of finding sequences
of self-improving moves that lead to a Nash equilibrium.
The algorithms they consider include “Random”, in which
at each step a random task is selected, and moves to the
lowest-cost resource (the best response strategy). They ob-
tain a bound of O(n2) on the time taken for it to converge,
for uniform resources.

We finish this section by noting some earlier related work
in load balancing: consider the tasks as balls and the re-
sources as bins, and if tasks as well as resources are uniform,
then the objective is to distribute them evenly. Various sim-
ple randomized algorithms have been studied in this context.
Azar et al. [1] studies a process where each ball is selected
in turn, along with a bin selected from a sample of d bins,
and the ball is placed in the bin that has lowest contents
amongst the sample of d. Vöcking [17] studies a variant
where the sample of d is not necessarily uniform (and selec-
tion of elements of that sample may depend on each other.)
The process we study (in the special case of uniform tasks
and resources) corresponds to repeatedly selecting a ball at
random, selecting a bin at random (use d = 1), and mov-
ing the ball to the bin if the load is less. We also mention
work-stealing [2] as a related topic, in that load is being
transferred from resources to less highly loaded resources,
although in a different manner from [2], where resources
pass load between themselves, whereas here it is units of
load that seek out less loaded resources.

1.4 A Distributed Version of Randomized
Local Search

The model is as follows. Each agent (independently of the
others) makes a sequence of attempts using its own copy
of Algorithm 1. If we assume a continuous time model,
the process generates a sequence of events in which a single
agent updates its strategy (i.e. choice of resource), and in
the process changes the costs that may be experienced by
other agents. We assume that the costs are updated without
any delay. We use a continuous time model for simplicity,
with agents operating asynchronously.
Comments: Using Algorithm 1, all agents behave the same;
the weight wj of agent j does not affect its behaviour, and
they only interact via the effects they have on the costs of

Algorithm 1: used by agent j, for 1 ≤ j ≤ n

1. From initial assignment A, let ` = M(j, A), the re-
source assigned to j in A.

2. Repeatedly do the following:
(a) Generate a delay δ from an exponential distri-

bution P (δ) = exp(−δ); wait δ time units

(b) Select resource `′ uniformly at random

(c) evaluate the cost of using `′ instead of `; if it is
lower, replace ` by `′.

Figure 1: Local algorithm, used by each agent

resources. If agent j selected the best `′ rather than a ran-
dom `′ (the standard “best response” move), that would be
a Θ(m) operation, and we wish to avoid the issue of a re-
source’s cost being changed (by a different agent) in between
being tested and being selected.

Algorithm 2: Randomized Local Search

1. Let A be an initial assignment.

2. Repeatedly do the following:
(a) Select a task j uniformly at random

(b) Select a resource ` uniformly at random

(c) Assign ` to j if the potential (from [7]) of the
resulting assignment is lower as a result.

Figure 2: Randomized Local Search

We show that Algorithm 1 is a distributed variant of Al-
gorithm 2, in a strong sense.

Theorem 1.1. Given any initial assignment A, if Nash
assignment A′ is found with probability p(A′) by Algorithm 1
then p(A′) is also the probability that Algorithm 2 finds A′.

If τ1 is the expected number of steps taken for Algorithm 2
to find a Nash equilibrium, the expected time taken by Algo-
rithm 1 is τ1/n.

Proof. The significance of the exponential distribution
is that it is “forgetful” in the sense that if P (τ) = exp(−τ)
then for any positive τ0:

P (τ | τ ≥ τ0) = exp(τ − τ0) for τ ≥ τ0

Consequently, at any point in time for n agents all using
Algorithm 1, the next agent to make an attempted move
will be selected uniformly at random, regardless of previous
events.

For assignments A1, A2, let p1(A1, A2) be the probability
that using Algorithm 1 on assignment A1, the next usage of
step (2c) by an agent replaces A1 by A2. Let p2(A1, A2) be
the probability that using Algorithm 2 on assignment A1,
the next usage of step (2c) replaces A1 by A2.

Given any assignment A1, the first agent using Algorithm 1
is selected uniformly at random, and itself selects a new re-
source uniformly at random, so for any A1, A2,

p1(A1, A2) = p2(A1, A2)

For assignment A let Di(A) (resp. D′

i(A)) be the proba-
bility distribution over assignments after i attempted moves
by Algorithm 1 (resp. i steps of Algorithm 2). We have
Di+1(A) =

�
A′ Di(A

′)p1(A
′, A), and D′

i+1(A) =�
A′ D′

i(A
′)p2(A

′, A). By induction, Di(A) = D′

i(A).
Regarding the second part of the statement of the theo-

rem: the expected value of exponential random variable δ is
1. Hence, during a time interval of length τ , the expected
number of attempted moves made by an agent using Algo-
rithm 1 is τ , and the expected number of attempted moves
made by n agents is nτ . This gives the ratio of n between
its expected time and the expected number of steps of Al-
gorithm 2.

2. CONVERGENCE RATE BOUNDS
In this section we prove the bounds from Section 1.2 for

the convergence rate of RLS.

Definition 2.1. [7] Let A be an assignment. Define the
real-valued function P as:

P (A) =
�

`∈[m]

1

c`
(L(`,A))2 +

�

j∈[n]

w2
j

cM(j,A)

Lemma 1 of [7] shows that if a task with weight w moves
from resource ` to `′, then, letting A and A′ denote the old
and new assignments, we have that the potential P decreases
by 2w(C(`, A)−C(`′, A′)). This is of course a positive quan-
tity for any self-improving move.

In the case of uniform resources, we simplify this function
by putting c` = 1, and remove its right-hand term which
is now constant. We also subtract off its minimum possi-
ble value (for any assignment) so that the function has a
minimal value of 0:

Definition 2.2. Let A be an assignment for a problem
instance with uniform resources.

P (A) =
�

`∈[m]

(L(`, A))2 − P ∗

where P ∗ is the smallest value (for any assignment) that can
be taken by

�
`∈[m](L(`, A))2.

P has a minimal possible value of zero, although for a
Nash assignment P may still be positive.

2.1 An Upper bound for Convergence Time in
Terms of Task Weight Range

We will say that an assignment A admits a move of value
v if there exists some task that for assignment A can be
moved so that the potential goes down by ≥ v (but we do
not require that the next move actually reduces the potential
by ≥ v).

Proposition 2.3. There is no sequence(A1, A2, . . . , Am2n)
of m2n assignments such that:

1. For i = 1, . . . , m2n − 1, Ai+1 is obtained from Ai via
a single move

2. For i = 1, . . . , m2n, Ai does not admit a move of value
≥ 1

4

3. P (A1)− P (Am2n) ≤ 1
4

This result assures us that after a polynomial-length se-
quence of moves, if the potential has not gone down by 1/4
in total, there must instead have occurred an opportunity
for the potential to go down by 1/4 in a single move. This is
useful for RLS, which can with high probability (as shown in
the next theorem), be expected to take such an opportunity
if it arises often enough.

Proof. Suppose that the above properties hold, and we
prove that any sequence that satisfies them must have length
< m2n.

Define a set of labels R1, R2, . . . , Rm; initally in assign-
ment A1, give resource ` the label R`, for ` = 1, . . . , m. Let
label(`,A) denote the label of resource ` in assignment A (so
for ` = 1, . . . , m, label(`, A1) = R`). Now, suppose the i-th
move (from Ai to Ai+1) consists of task t moving from re-
source α to resource β. When a move is made, we exchange
the labels associated with α and β. Hence, label(β, Ai+1) =
label(α, Ai) and label(α, Ai+1) = label(β, Ai). For each
` = 1, 2, . . . , m and i = 1, . . . , m2n, let L(R`, Ai) denote
the load of the resource having label R` in assignment Ai.
Let res(R`, Ai) denote the resource having label R` in as-
signment Ai.

Suppose that the i-th move transfers task j from
res(Rs, Ai) to res(Rt, Ai) (where s and t are resources).

Before the move, we have

L(Rs, Ai)− L(Rt, Ai) > wj ≥ 1 (1)

Note that because we exchange the labels of the resources
that j moves between, the label of j’s resource is Rs before
and after the move. The loss of potential is given by

P (Ai)− P (Ai+1) = 2wj · (L(Rs, Ai)− L(Rs, Ai+1))

≥ 2(L(Rs, Ai)− L(Rs, Ai+1)) (2)

Since resource capacities are uniform,
L(Rs, Ai) − L(Rs, Ai+1) = L(Rt, Ai+1) − L(Rt, Ai), hence
similarly the loss of potential is lower bounded by

P (Ai)− P (Ai+1) = 2wj · (L(Rt, Ai+1)− L(Rt, Ai))

≥ 2(L(Rt, Ai+1)− L(Rt, Ai)) (3)

By Equations 2 and 3, if |L(R`, Ai+1)−L(R`, Ai)| = ε for
any label R`, then the loss of potential satisfies

P (Ai)− P (Ai+1) ≥ 2ε (4)

From 4 and Property 3, we have

for ` = 1 . . . , m, 1 ≤ i′, i′′ ≤ m2n,

|L(R`, Ai′)− L(R`, Ai′′)| ≤
1

8
(5)

since any label R` that violated the above would have been
involved in a sequence of steps between i′ and i′′ that re-
duced the potential by ≥ 1

4
.

By Equations 1 and 5,

for all i′ ≥ i, L(Rj , Ai′)− L(Rk, Ai′) ≥
3

4
(6)

We claim that furthermore L(Rs, Ai′)−L(Rt, Ai′) is mono-
tonically non-increasing for moves i′ subsequent to move i,
i.e.

for all i′ > i,

L(Rs, Ai′)− L(Rt, Ai′) ≤ L(Rs, Ai′−1)− L(Rt, Ai′−1) (7)

Suppose otherwise. This could only happen if in some Ai′

a task j′ moves to res(Rj , Ai′) from some other resource
res(R′, Ai′), in which case Ai′ admits a move of value >
3
4

consisting of j′ moving from res(R′, Ai′) to res(Rk, Ai′)
contradicting Property 2, or alternatively if in some Ai′ a
task j′ transfers from res(Rk, Ai′) to resource res(R′, Ai′),
in which case,

L(Rk, Ai′)− L(R′, Ai′) > wj′ ≥ 1

and by the upper bound established on the cumulative fluc-
tuation of the loads (Equation 5),

for all i′′, L(Rk, Ai′′)− L(R′, Ai′′) ≥
3

4

So putting i′′ = i, in Ai, the assignment where j transfers
from res(Rs, Ai) to res(Rt, Ai), we see that Ai admits a
move of value > 3

4
, namely the transfer of j from res(Rs, Ai)

to res(R′, Ai). This again contradicts Property 2, so we have
established Equation 7.

Observe that for all assignments A in the sequence, a move
of task j from res(Rs, A) to res(Rt, A) causes the statement
“L(Rs, A) − L(Rt, A) > wj” to change from true to false,
and from Equation 7, the statement remains false. There
are < nm2 statements of the form “L(Rs, A) − L(Rt, A) >
wj”, and when they have been exhausted, there are no fur-
ther moves possible that satisfy the conditions of Proposi-
tion 2.3.

Theorem 2.4. Suppose that there are m resources, each
with capacity 1, and n tasks each with weight in the range
[1, wmax]. Then the expected number of attempts required for
Nash convergence is O(w2

maxm4n5 log(mn)).

Proof. Define a move search to be a sequence of at-
tempts that has one of the following two properties:

1. The sequence has length < 4mn log(mn), and the last
attempt is a move, and no previous attempts are moves

2. The sequence has length 4mn log(mn) and no attempts
are moves

We say that a move search is successful provided that one
of the following properties hold:

1. The last element of the move search is a move

2. The assignment is unchanged throughout the sequence,
but it is a Nash assignment

It can be verified that for any assignment A, a random
move search that begins with A has probability < 1/n4m4

of not being successful. (If A is Nash, the move search must
be successful, and if A is not Nash, the move search has
probability ≥ 1

mn
of succeeding at each attempt. It is suffi-

cient for the length s to satisfy (1− 1
mn

)s < 1/m4n4, which
is satisfied if s ≥ 4mn log(mn).)

Define a move sequence search to be a sequence of ≤ m2n
move searches, where the (i+1)-st move search starts at the
final assignment of the i-th move search, and which has one
of the following two properties:

1. The sequence contains < m2n move searches, and ends
at the first assignment that admits a move of value ≥ 1

4

2. The sequence contains m2n move searches.

We say that a move sequence search is successful provided
that all move searches in the sequence are successful. It
can be seen that for any starting assignment, the proba-
bility that a move sequence search is not successful is <
m2n/m4n4 = 1/m2n3. Clearly a move sequence search has
length ≤ 4m3n2 log(mn).

For assignment A1, we prove that with probability > 1
nm

a sequence of 4m3n2 log(mn) attempts starting from A1 has
one of the following properties

1. The final assignment is a Nash equilibrium

2. the potential decreases by ≥ 1
4

Given an upper bound on the initial potential, this al-
lows us to upper-bound the expected time taken for Nash
convergence, given that the potential is always positive.

We proceed as follows. Conduct a move sequence search
starting from A1. With probability ≥ 1 − 1

m2n3 the move
search sequence is successful. Given that it is successful,
the potential has gone down by ≥ 1

4
, or we have reached

an assignment that admits a move of value ≥ 1
4
, or else, by

Proposition 2.3, the only alternative is that a Nash equilib-
rium has been reached. The first case gives us a 1

mn
proba-

bility of reducing the potential by 1
4
, on the next attempt.

The expected loss of potential is ≥ 1
4mn

.

Initially the potential is ≤ (nwmax)
2 (the maximum pos-

sible value being attained when n tasks all of weight wmax

share the same resource).
After mn · N move sequence searches, we have that with

probability ≥ 1
2
, either the potential has fallen by 1

4
N ,

or else a Nash equilibrium has been found. Putting N =
4(nwmax)

2, we get a bound of mn·4(nwmax)
2·4m3n2 log(mn)

= O(m4n5w2
max log(mn)) on the expected number of at-

tempts.

2.2 An Upper Bound for Integer Weights
We give a better upper bound on the convergence rate,

that applies to the special case where task weights belong
to the set {1, 2, . . . , wmax}, where wmax is an integer. We use
the potential function of Definition 2.2. When weights are
integers, we have a convenient lower bound of 2 on the drop
in potential resulting from any move, which is the main rea-
son why we obtain a stronger result than the corresponding
one from the previous section.

Observation 2.5. Suppose that task weights are in the
range [1, wmax]. If a move transfers a task from a resource
with load L to a resource with new load L′, then the loss of
potential is at least L− L′.

Proof. The weight w of the task must be < L − L′,
and the potential goes down by 2w(L − L′ − w), which is
≥ L− L′.

Lemma 2.6. Given n agents with weights in the range
{1, 2, . . . , wmax} and m identical resources, if assignment A
satisfies P (A) ≥ 2mwmax, then the probability that an at-
tempt on A succeeds is ≥ (mwmax)

−1.

Proof. There must exist resources `, `′ with L(`, A) −
L(`′, A) ≥ 2wmax, since if all resources had loads within
wmax of each other, this would imply P (A) < 2mwmax.

Let ` be a resource with maximal load, `′ a resource with
minimal load.

L(`, A) − L(`′, A) > 2wmax and all the tasks on ` are
unsatisfied. Consider two cases. Case (1): ≥ m/2 resources
have load > L(`, A)− wmax and Case (2): < m/2 resources
have load > L(`, A)− wmax.

In Case (1), there must be ≥ m/2 resources all of whose
tasks are unsatisfied; at least 1/2 the total task load is on
those resources (if we pick the m/2 most overloaded re-
sources), hence at least a fraction 1/2wmax of the n tasks
are unsatisfied, i.e. ≥ n/2wmax tasks. Hence an attempt
has probability ≥ 1/2wmax of selecting an unsatisfied task,
and probability ≥ 1/m of selecting a resource to which that
task may move, hence probability ≥ 1/2mwmax of success.

In Case (2), there are ≥ n/mwmax unsatisfied tasks on
resource `. An attempt has probability ≥ 1/mwmax of se-
lecting one of these tasks, and probability ≥ 1/2 of select-
ing a resource to which they may move, hence probability
≥ 1/2mwmax of success.

The statement of the theorem limits the maximum weight
to be at most n, the number of tasks. A contrasting lower
bound is given in the next section for the case when the
maximum weight is unrestricted.

Theorem 2.7. Let A be an assignment for n tasks whose
weights lie in the range {1, 2, . . . wmax}, where wmax ≤ n,
and m resources all with capacity 1. Then the expected num-
ber of attempts for Nash convergence, starting from A, is
O(m2nwmax).

Proof. Suppose that S = (A1, A2, A3, . . . , AN) is a se-
quence of assignments where A1 = A and Ai is generated
from Ai−1 by a random attempt, and N is chosen such that
AN is the first occurrence in S of a Nash assignment. We are
interested in the quantity E(N) = E(|S|). We break S down
into the concatenation of three subsequences, S = S1S2S3.
S1, S2 and S3 are defined as follows. S1 is assignments Ai

such that 2nm < P (Ai), S2 is assignments Ai satisfying
2mwmax < P (Ai) ≤ 2nm, and S3 is assignments Ai satisfy-
ing P (Ai) ≤ 2mwmax. We obtain bounds on the expected
lengths of these subsequences that add up to a bound on the
expected length of S.

Bounding the expected length of S1

Observe that for all Ai, P (Ai) ≤ wmaxn2.
Since P (Ai) > 2nm, for some resources `, `′, L(`, Ai) −

L(`′, Ai) > 2n.
Since we assume that wmax ≤ n, then when any task of

weight w transfers from ` to `′, the loss of potential is ≥ wn.
The total task load on ` is ≥ n/m. Letting n` be the number
of tasks on `, the average weight of tasks on ` is ≥ n/mn`.
Hence the expected loss of potential due to a random task
on ` moving to `′ is ≥ n2/mn`. To lower bound the expected
loss of potential, consider moves of tasks from ` to `′. The
expected loss of potential in an attempt is

E(P (Ai)− P (Ai+1)) ≥
�
n`

n �
�

n2

mn` � ·
1

m
=

n

m2

The expected number of attempts to reduce the potential to
2nm from its initial value of ≤ wmaxn2 is ≤ wmaxn

2/(n/m2) =
wmaxnm2.

Bounding the expected length of S2

We have 2mwmax < P (Ai) ≤ 2nm.
By Lemma 2.6, the probability that an attempt succeeds

is ≥ 1/mwmax. Any move (successful attempt) lowers the
potential by ≥ 2, so the expected loss of potential in an
attempts is ≥ 2/mwmax. Hence the expected number of
attempts during S2 is ≤ 2nm/(2/mwmax) = nm2wmax.

Bounding the expected length of S3

We have 0 < P (Ai) ≤ 2mwmax.
The probability that an attempt succeeds is ≥ 1/nm for

any non-Nash assignment. Any move lowers the potential
by ≥ 2, so the expected loss of potential due to an attempt is
≥ 2/nm. Hence the expected number of attempts during S3

before a Nash assignment is reached is ≤ 2mwmax/(2/nm) =
nm2wmax.

We have obtained bounds of O(nm2wmax) on the expected
lengths of each of S1, S2 and S3, hence an upper bound of
O(nm2wmax) on the length of S.

2.3 Lower Bound for Unrestricted Task Weights
We can show that without any restriction on the ratio

wmax/wmin, the time taken for Nash convergence may be
superlinear in n, hence dependent on n in the distributed
model. (The following construction uses the same problem
instance as Theorem 10 of [7], in the context of a different
algorithm.)

Theorem 2.8. There exists an instance with two identi-
cal resources and n tasks for which the expected number of
attempts for Nash convergence is Θ(n2).

The general idea of the proof is to have two equal-weight
tasks whose weights are larger than the the total of all other
tasks, so that they need to move to different resources before
the other tasks can accomplish anything useful by moving.
Then the two second-largest tasks have weights larger than
the total of the remaining ones, so the same thing applies to
them, and so on.

Proof. Let R1 and R2 be two resources each with ca-
pacity 1.

Assume n is an even number (it will be seen that if n is
odd the construction can be easily modified). Let the task
set {T1, T

′

1, T2, T
′

2, . . . , Tn/2, T
′

n/2} be defined as follows. Ti

and T ′

i both have weight 3n/2−i.
For this problem instance, we claim that any Nash equi-

librium must have Ti and T ′

i on different resources, for i =
1, . . . , n/2. If T1 and T ′

1 are on the same resource, say R1,
then either of them would want to move to R2, since the
total weight of all other tasks is less than the weights of T1

and T ′

1. When T1 and T ′

1 are placed on distinct resources, a
similar argument applies to T2 and T ′

2, and so on.
Let A be the assignment that places all tasks on R1. We

show that the expected number of moves starting from A is
Θ(n2).

Let S denote a sequence of assignments generated by a
sequence of attempts starting at A. We may write S as
the concatenation of substrings S = S1S2 . . .Sn/2 defined as
follows.

Let S1 be the prefix of S that contains all assignments up
to and including the first one where T1 and T ′

1 are assigned
distinct resources. For i = 2, . . . , n

2
, let Si be the substring of

S (possibly empty) that contains all assignments subsequent

to S1 . . .Si−1 up to and including the first one where Ti and
T ′

i are assigned different resources. Noting that

E(|S|) =

n/2�

i=1

E(|Si|) (8)

we obtain upper and lower bounds on the values E(|Si|).
An attempt has a probability 2/n of selecting T1 or T ′

1,
and a probability 1

2
of attempting to move that task to R2,

which would cause the resulting assignment to be the final
one in S1. Hence

E(|S1|) = n.

Next we lower bound E(|Si|) for i ≥ 2. Si is empty if Ti

and T ′

i are already assigned distinct resources at the end of
S1 . . .Si−1. To obtain a linear (in n) lower bound on E(|Si|),
we first lower bound the probability that at the end of Si−1,
tasks Ti and T ′

i are assigned to the same resource. Consider
2 cases:

1. |S1 . . .Si−1| < n/2. In this case there is a probability
> 1

8
that no attempts have involved Ti or T ′

i , hence
they are still assigned to R1.

2. |S1 . . .Si−1| ≥ n/2. In this case there is a probability
> 1

4
that at least one attempt has involved Ti and T ′

i .

In that case, there is a probability ≥ 1
4

that the final
attempt involving Ti and T ′

i led to them occupying
the same resource. Consider that final attempt: at
the point it is made there are 3 possibilities:

(a) Ti and T ′

i occupy the less loaded resource. In that
case the attempt will leave them together.

(b) Ti and T ′

i occupy the more loaded resource. In
that case, with probability 1

2
the task that made

the attempt stays on that resource.

(c) Ti and T ′

i occupy distinct resources. In that case
there is a probability 1

4
that the task on the more

loaded resource is chosen, and it attempts to move
to the other resource.

We have a lower bound of 1
16

on the probability that
Ti and T ′

i are on the same resource.

Subject to the condition that Si is non-empty, its expected
length is n (similarly to S1 we are waiting for an attempt
that involves Ti or T ′

i , which must then select the other
resource). Since Si is non-empty with probability ≥ n/16,

for i = 2, . . . , n/2, E(|Si|) ≥
n

16
. (9)

By Equations 8 and 9

E(|S|) ≥

n/2�

j=1

E(|Sj |) = Ω(n2).

For the upper bound, note that E(|Si|) ≤ n, hence E(|S|) ≥
n2.

A variant of the above construction with three resources
each of unit capacity, has the feature that an adversary could
find an exponentially long sequence of moves. Under ran-
domized local search the expected number of attempts is
still O(n2).

2.4 A Class of Problem Instances where RLS
Improves on the Worst-case Move Sequence

We define a class of problem instances {Im : m ∈ N} that
have the property that

1. The longest sequence of self-improving moves before
reaching Nash equilibrium is Θ(m3)

2. The expected number of attempts made by Random-
ized Local Search is o(m3)

Note that the expected number of attempts includes unsuc-
cessful attempts, i.e. attempts where the resource selected
by the task has too high a load for the task to benefit from
moving to the selected resource.

In the following definition and proof, we will assume that
m is a power of 2.

Definition 2.9. Im consists of m resources each with
unit capacity and m2 tasks each of unit weight. Let A(m)
denote an assignment for Im in which resources 1, . . . , m/2
are each assigned 2m tasks and the remaining resources are
assigned no tasks.

Observation 2.10. There is a unique Nash assignment
for Im, namely the assignment of m tasks to each of the m
resources.

Proposition 2.11. There exists a sequence of Θ(m3) self-
improving moves from A(m) to the Nash assignment.

Proof. Note that in the special case of uniform tasks and
resources, L(`,A) is just the number of tasks on resource `
in A.

Begin with the following sequence of moves. For ` =
1, . . . , m

4
, move m

2
+ ` tasks from resource m

4
+ ` to resource

3m
4

+ 1− `. The resulting assignment A′(m) has loads:

L(`, A′(m)) = 2m ` = 1, . . . , m/4.
L(`, A′(m)) = 3

2
m− ` ` = m

4
+ 1, . . . , m/2.

L(`, A′(m)) = 3
2
m− ` + 1 ` = m

2
+ 1, . . . , 3m/4.

L(`, A′(m)) = 0 ` = 3m
4

+ 1, . . . , m.

Observe that for each resource ` ∈ {1, . . . , m
4
}, a total

of m
4

tasks on ` may each make a sequence of m
2
− 1 self-

improving moves along resources m
4

+1, . . . , m
2

, m
2

+2, . . . , 3m
4

,

then a further move into resource 3m
4

+ `.
We have not reached the Nash assignment yet, but note

that the number of moves above is already greater than
(m/4)2 · (m/2) = Ω(m3).

We use the potential function of Definition 2.2, P (A) =� m
`=1 L(`, A)2 −m3. P is zero at the Nash assignment and

positive otherwise. Note that for the assignment A(m) de-
fined above, P (A(m)) = m3.

Definition 2.12. Given an assignment A for Im and a
resource `, the surplus of `, denoted s(`, A), is the quantity
max{0, L(`, A)−m}, and the deficit of `, denoted d(`, A), is
the quantity max{0, m− L(`, A)}.

We show that P (A) is given by

P (A) =
�

`

s(`,A)2 +
�

`

d(`,A)2 (10)

Equation (10) can be derived as follows.

P (A) =
�

`:s(`,A)>0

(m + s(`,A))2 +
�

`:d(`,A)>0

(m− d(`,A))2

+
�

`:s(`,A)=d(`,A)=0

m2 −m3

=
�

`:s(`,A)>0

m2 +
�

`:s(`,A)>0

(s(`,A))2

+
�

`:s(`,A)>0

2ms(`,A) +
�

`:d(`,A)>0

m2

+
�

`:d(`,A)>0

(d(`, A))2 −
�

`:d(`,A)>0

2md(`,A)

+
�

`:s(`,A)=d(`,A)=0

m2 −m3

Since the sum of the surpluses equals the sum of the deficits,
the 3rd and 6th terms cancel. Note that the 1st, 4th and
7th terms total

�
` m2 = m3, which cancels with the last

term. We are left with Equation (10).
Notation: Let smax(A) denote max`=1,...,m(s(`,A)), the
maximum surplus of a resource in A. Similarly let dmax(A) =
max`=1,...,m(d(`, A)), the largest deficit of any resource.

Observation 2.13. Let (A1, A2, A3, . . .) be a sequence of
assignments where Ai+1 is obtained from Ai by an attempt.
Then smax(Ai) is a non-increasing function of i.

Theorem 2.14. Given any assignment A for Im for which
P (A) ≤ m3 and smax(A) ≤ m, the expected number of at-
tempts is o(m3).

Proof. Let A1 be an assignment for Im where P (A1) ≤
m3 and smax(A1) ≤ m.

Suppose that S = (A1, A2, A3, . . . , AN) is a sequence of
assignments generated by starting from A1 and generating
Ai from Ai−1 by a random attempt, and N is chosen such
that AN is the first occurrence in S of the unique Nash
assignment. We are interested in the quantity E(N) =
E(|S|) under the condition that A1 has potential ≤ m3 and
smax(A1) ≤ m.

Since P (Ai) is a non-increasing function of i, S may be
decomposed into S1S2S3 where S1 contains assignments Ai

for which P (Ai) > m2.05, S2 contains assignments Ai where
m2.05 ≥ P (Ai) > m and S3 contains assignments Ai where
P (Ai) ≤ m. We upper bound the expected lengths of S1,
S2 and S3.

Bounding the expected length of S1

Suppose that P (Ai) = λm2, m0.05 < λ ≤ m. We will
derive the following lower bound on the expected loss of
potential due to an attempt on assignment Ai:

E(P (Ai)− P (Ai+1)) ≥
λ2

2m
(11)

We obtain a lower bound on E(P (Ai) − P (Ai+1)) as fol-
lows. Let x be the number of resources with positive surplus
and let y be the number of resources with positive deficit.
Note that the largest deficit dmax(Ai) satisfies dmax(Ai) ≤

m. By Observation 2.13 we also have smax(Ai) ≤ m. Due
to Equation (10) we deduce

x ≥ λ and y ≥ λ (12)

since otherwise the potential would be less than λm2.
Each resource with a positive surplus has probability > 1

m
of holding the task selected by an attempt. There are y
resources with positive deficit, and any task on a resource
with positive surplus may move to any resource with positive
deficit. The expected loss of potential due to an attempt is
lower bounded by xy

m2 times the average loss of potential due
to a move from a resource with positive surplus to a resource
with positive deficit. That in turn is lower bounded by

2x−1
�

`:s(`,Ai)>0

s(`, Ai) + 2y−1
�

`:d(`,A)>0

d(`, Ai)

= 2x−1
�

`

s(`, Ai) + 2y−1
�

`

d(`, Ai)

= 2(x−1 + y−1)
�

`

s(`, Ai)

where the last equality follows from�
` s(`,Ai) =

�
` d(`, Ai). Overall we have

E(P (Ai)− P (Ai+1)) ≥
xy

m2
(x−1 + y−1)

�

`

s(`,Ai)

≥
λ

m2

�

`

s(`,Ai) (13)

where the last inequality follows from (12).
Since smax ≤ m (by Observation 2.13),

�

`

s(`,Ai) ≥
1

m

�

`

s(`,Ai)
2.

Since dmax ≤ m,

�

`

s(`, Ai) =
�

`

d(`, Ai) ≥
1

m

�

`

d(`, Ai)
2.

Hence, from the above and Equation (10):

�

`

s(`, Ai) ≥
1

2m
P (Ai).

From the above and (13) we deduce

E(P (Ai)− P (Ai+1)) ≥
λ

m2

1

2m
P (Ai) =

λ

m2

1

2m
λm2 =

λ2

2m

as desired for (11).
λ goes down from m to m2.05, equivalently, P goes down

from m3 to m2.05. We divide this range of P into ≤ log m
ranges:

{[2im2, 2i+1m2] : i = log2(m
0.05), . . . , log2 m− 1}

Over range i (of length 2im2), the expected loss of poten-
tial per attempt is, by (11) at least (2i)2/2m, so the ex-
pected length of the sequence of attempts over the i-th range
is 2im2/((2i)2/2m) = 2m3/2i. This is maximised when
i = log2(m

0.05), when the expected length of the sequence
of attempts is 2m2.95. Over the whole range the expected
number of attempts is O(m2.95 log m) = o(m3).

Bounding the expected length of S2

We want to obtain a bound o(m3) on the expected number
of attempts for the potential to go down from m2.05 to m.
To do so we show that for any assignment Ai with m <
P (Ai) ≤ m2.05 that

E(P (Ai)− P (Ai+1)) > Θ(m−0.95) (14)

Let x be the number of resources ` with s(`,Ai) ≥ smax−1.
We have the upper bound on x:

x(smax(Ai)− 1)2 ≤ P (Ai)

Let R− be the set of resources with load < m+smax(Ai)−
1.

We obtain a lower bound on E(P (Ai+1) − P (Ai)) that
is useful for smax(Ai) ≥ m0.14. If smax(Ai) ≥ m0.14, con-
sider two cases: |R−| ≥ m/4 and |R−| < m/4. In the first
case, the expected loss of potential is lower bounded by the
expected loss of potential due to a task on a resource with
surplus smax(Ai) moving to a resource in R−, which is the
probability that a task on a resource with surplus smax(Ai)
is chosen, times the probability that a resource in R− is cho-
sen, times twice the average difference between m+smax and
the load of a resource in R− (whose average load is < m),
hence

≥
1

m
·
1

4
· 2m0.14 = Ω(m−0.86)

In the second case, (since total surplus equals total deficit)
we have the maximum deficit dmax(Ai) ≥ smax(Ai) (since
3
4

of resources have a surplus of smax(Ai) or smax(Ai) − 1,

and smax(Ai) ≥ m0.14.) Then the expected loss of potential
is lower bounded by the expected loss of potential due to
a resource on a task with surplus smax(Ai) or smax(Ai) − 1
moving to a resource with deficit dmax ≥ m0.14, which is

≥
3

4
·

1

m
·m0.14 = Ω(m−0.86)

Using a similar argument we may obtain the same bound
on the expected loss of potential provided that dmax ≥ m0.14.
Define R+ to be the set of tasks that have load > m +
1 − dmax(Ai), so R+ is the set of all resources from which
tasks may transfer to a resource with deficit dmax(Ai). If
|R+| ≥ m/4 we have m/4 resources which between them
have at least m2/4 tasks, any of which may move to a re-
source with deficit dmax with an average loss of potential
≥ 2dmax. The expected loss of potential is

≥
1

4
·

1

m
· 2m0.14 = Ω(m−0.86)

If |R+| < m/4 then at least a fraction 3/4 of resources have
deficit dmax or dmax − 1, so smax ≥ dmax = m0.14, and the
previous case applies.

Next we obtain a bound that is useful when smax(Ai) <
m0.14 and dmax(Ai) < m0.14.

P (Ai+1) − P (Ai) ≤ 2(smax(Ai) + dmax(Ai)). P (Ai) ≥ m
so we need at least ≥ (m/2)(smax(Ai) + dmax(Ai))

−1 moves
to reduce it to 0; each resource may acquire (respectively,
lose) ≤ dmax(Ai) (respectively, smax(Ai)) tasks, so there are
at least m/2(smax(Ai) + dmax(Ai))smax(Ai) resources with
a surplus and at least m/2(smax(Ai) + dmax(Ai))dmax(Ai)
resources with a deficit.

The probability that an attempt finds a move satisfies

Pr
�
P (Ai+1) < P (Ai) �

≥
1

4(smax(Ai) + dmax(Ai))2smax(Ai)dmax(Ai)

≥
1

16smax(Ai)3dmax(Ai)3

and when P (Ai+1) < P (Ai), then P (Ai+1) ≤ P (Ai) − 2 so
the expected loss of potential is

≥ 1/8smax(Ai)
3dmax(Ai)

3 = Ω(m6×0.14) = Ω(m−0.84).

In all cases the expected loss of potential is at least
Ω(m−0.86) which is sufficient for (14).

Bounding the expected length of S3

In this phase the potential is P (Ai) ≤ m. Each move re-
duces the potential by ≥ 2. We lower bound the probability
that a random attempt will result in a move, as a function
of the potential P .

Case 1: Some resource ` has load > m + 1. Assume that
` has the maximum load. The probability that a task on
` is chosen is > 1

m
. The probability that a resource with

load ≤ m is chosen is ≥ 1
2
, since otherwise the potential

would be > m (there would be > m/2 resources with load
> m, hence > m/2 tasks would have to move to obtain
Nash equilibrium, and each of those moves must reduce the
potential by ≥ 2.)

Hence the expected number of attempts until a move is
≤ 2m.

Case 2: Some resource ` has load < m−1, and no resource
has load > m + 1. The probability that a task on some
resource with load ≥ m is chosen in an attempt is ≥ 1

2
,

since in this case no resource has load > m + 1.
The probability that ` is chosen in an attempt is 1

m
. Hence

the expected number of attempts until the next move is
≤ 2m.

Case 3: All loads are either m + 1, m or m− 1.
Observe that any move will reduce by 1 the number of

resources with a load of m + 1, and similarly the number
of resources with a load of m − 1. Let k be the number of
resources with a load of m + 1. We will obtain a bound Nk

on the expected number of attempts to reduce the number
of resources with load m + 1 (and similarly m − 1) from k
to k − 1. Then the expected number of attempts overall is
upper bounded by N1 + N2 + . . . + Nm.

There are ≥ k(m + 1) unsatisfied tasks, so probability
k(m + 1)/m > k/m that an attempt chooses an unsatisfied
task. There is probability k/m that a resource with load
m−1 is chosen. Hence the attempt succeeds with probability
≥ k2/m2. Hence Nk ≤ m2/k2.

The expected number of attempts to reach the Nash as-
signment is

m�

k=2

m2

k2
= m2

m�

k=2

k2 < m2

If we are in Case 3, we have O(m2) bound on the expected
number of attempts. If we are in Cases 1 or 2, then the
expected number of attempts that occur before either the
Nash assignment is reached, or else Case 3 is reached, is also
O(m2). Overall we have the bound O(m2) on the expected
number of attempts required to reduce the potential from
m to 0.

3. CONCLUSIONS
Our interest in Randomized Local Search is due to it being

realisable by distributed agents without central control, as
described in Section 1.4. The main difference between this
algorithm and recent related work is our assumption that
an agent may migrate to any resource of lower cost that its
current choice, even if that resource is suboptimal.

In a scenario where there is a cost associated with migra-
tion, but not with checking other resources’ costs, it may
be more natural to assume the standard “best response”
behaviour, in which an agent would always migrate to the
resource with lowest cost. It is less clear how to transfer that
assumption into the distributed setting, since if the number
m of resources is large, there is a risk that while an agent
is checking the costs of resources, they are being altered by
other agents.

4. REFERENCES
[1] Y. Azar, A. Broder, A. Karlin and E. Upfal. Balanced

Allocations. Procs. of the 26th ACM STOC,
pp. 593-602, (1994)

[2] P. Berenbrink, T. Friedetzsky and L.A. Goldberg. The
Natural Work-Stealing Algorithm is Stable. to appear
in SICOMP, copyright SIAM. Preliminary version in
FOCS’01.

[3] P. Berenbrink, L.A. Goldberg, P.W. Goldberg and
R. Martin. Utilitarian Resource Assignment.
manuscript.

[4] A. Czumaj and B. Vöcking. Tight Bounds for
Worst-Case Equilibria. Procs. 13th Annual Symposium
on Discrete Algorithms, SIAM, Philadelphia, PA
(2002), pp. 413–420.

[5] A. Czumaj, P. Krysta, and B. Vöcking. Selfish Traffic
Allocation for Server Farms. Procs. 34th Annual
Symposium on Theory of Computing (STOC),
Montreal, Canada (2002), pp. 287–296.

[6] S. Droste, T. Jansen and I. Wegener. On the analysis of
the (1+1) Evolutionary Algorithm. Theoretical
Computer Science 276, pp. 51-81, 2002.

[7] E. Even-Dar, A. Kesselman and Y. Mansour.
Convergence Time to Nash Equilibria. Procs. of 30th
International Colloquium on Automata, Languages, and
Programming (ICALP), 2003.

[8] R. Feldmann, M. Gairing, T. Lücking, B. Monien and
M. Rode. Nashification and the Coordination Ratio for
a Selfish Routing Game. Procs. of 30th International
Colloquium on Automata, Languages, and
Programming (ICALP), 2003.

[9] D. Fotakis, S. Kontogiannis, E. Koutsoupias,
M. Mavronicolas and P. Spirakis. The Structure and
Complexity of Nash Equilibria for a Selfish Routing
Game. Procs. of 29th International Colloquium on
Automata, Languages, and Programming (ICALP),
Malaga, Spain (2002), pp. 123–134.

[10] M. Gairing, T. Lücking, M. Mavronicolas, B. Monien
and P. Spirakis. The Structure and Complexity of
Extreme Nash Equilibria. manuscript

[11] Oliver Giel and Ingo Wegener. Evolutionary
Algorithms and the Maximum Matching Problem.
Procs. of the 20th Annual Symposium on Theoretical
Aspects of Computer Science (STACS 2003) pp.
415-426.

[12] E. Koutsoupias and C.H. Papadimitriou. Worst-Case
Equilibria. Procs. 16th Annual Symposium on
Theoretical Aspects of Computer Science (STACS),
Trier, Germany (1999), pp. 404–413.

[13] M. Mavronicolas, and P. Spirakis. The Price of Selfish
Routing. Proc. 33rd Annual Symposium on Theory of
Computing (STOC), Crete, Greece (2001), pp. 510–519.

[14] F. Neumann and I. Wegener. Randomized Local
Search, Evolutionary Algorithms, and the Minimum
Spanning Tree Problem manuscript

[15] T. Roughgarden and É. Tardos. How Bad is Selfish
Routing? Proc. 41st Annual Symposium on
Foundations of Computer Science (FOCS), Redondo
Beach, CA (2000), pp. 93–102.

[16] T. Roughgarden. Many papers studying the cost of
selfish routing in the flow-model are available at Tim
Roughgarden’s web page
http://www.cs.cornell.edu/timr/ (which also has
information and summaries).

[17] B. Vöcking. How Asymmetry Helps Load Balancing.
Procs. 40th IEEE-FOCS (New York, 1999) pp. 131-140.

[18] I. Wegener. Towards a Theory of Randomized Search
Heuristics MFCS ’2003, LNCS 2747, 125-141, 2003.

[19] I. Wegener and C. Witt. On the Optimization of
Monotone Polynomials by Simple Randomized Search
Heuristics. Procs. of GECCO 2003, LNCS 2723,
pp. 622-633

