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Abstract. Game theory studies situations in which strategic players can
modify the state of a given system, due to the absence of a central author-
ity. Solution concepts, such as Nash equilibrium, are defined to predict
the outcome of such situations. In the spirit of the field, we study the
computation of solution concepts by means of decentralized dynamics.
These are algorithms in which players move in turns to improve their
own utility and the hope is that the system reaches an “equilibrium”
quickly.

We study these dynamics for the class of opinion games, recently in-
troduced by [1]. These are games, important in economics and sociology,
that model the formation of an opinion in a social network. We study
best-response dynamics and show that the convergence to Nash equilib-
ria is polynomial in the number of players. We also study a noisy version
of best-response dynamics, called logit dynamics, and prove a host of re-
sults about its convergence rate as the noise in the system varies. To get
these results, we use a variety of techniques developed to bound the mix-
ing time of Markov chains, including coupling, spectral characterizations
and bottleneck ratio.

1 Introduction

Social networks are widespread in physical and digital worlds. The following
scenario therefore becomes of interest. Consider a group of individuals, connected
in a social network, who are members of a committee, and suppose that each
individual has her own opinion on the matter at hand. How can this group of
people reach consensus? This is a central question in economic theory, especially
for processes in which people repeatedly average their own opinions. This line
of work, see e.g. [2-5], is based on a model defined by DeGroot [6]. In this
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model, each person 7 holds an opinion given by a real number x;, which might
for example represent a position on a political spectrum. There is an undirected
graph G = (V, E) representing a social network, and node i is influenced by the
opinions of her neighbors in G. In each time step, node i updates her opinion to
be an average of her current opinion with the current opinions of her neighbors.
A variation of this model of interest to our study is due to Friedkin and Johnsen
[7]. In [7] it is additionally assumed that each node ¢ maintains a persistent
internal belief b;, which remains constant even as node ¢ updates her overall
opinion z; through averaging. (See Sect. 2 for the formal framework.)

However, as recently observed by Bindel et al. [1], consensus is hard to reach,
the case of political opinions being a prominent example. The authors of [1]
justify the absence of consensus by interpreting repeated averaging as a decen-
tralized dynamics for selfish players. Consensus is not reached as players will
not compromise further when this diminishes their wtility. Therefore, these dy-
namics will converge to an equilibrium in which players might disagree; Bindel
et al. study the cost of disagreement by bounding the price of anarchy in this
setting.

In this paper, we continue the study of [1] and ask the question of how quickly
equilibria are reached by decentralized dynamics in opinion games. We focus on
the setting in which players have only a finite number of strategies available.
This is motivated by the fact that in many cases although players have personal
beliefs which may assume a continuum of values, they only have a limited number
of strategies available. For example, in political elections, people have only a
limited number of parties they can vote for and usually vote for the party which
is closer to their own opinions. Motivated by several electoral systems around
the world, we concentrate in this study on the case in which players only have
two strategies available. This setting already encodes a number of interesting
technical challenges as outlined below.

1.1 Our Contribution

For the finite version of the opinion games considered in [1], we firstly note that
this is a potential game [8, 9] thus implying that these games admit pure Nash
equilibria. The set of pure Nash equilibria is then characterized. We also notice
the interesting fact that while the games in [1] have a price of anarchy of 9/8,
our games have unbounded price of anarchy, thus implying that for finite games
disagreeing has far deeper consequences on the social cost. These basic facts turn
out to be useful in the study of decentralized dynamics for finite opinion games.

Given that the potential function is polynomial in the number of players,
by proving that the potential decreases by a constant at each step of the best-
response dynamics, we can prove that this dynamics quickly converges to pure
Nash equilibria. This result is proved by “reducing” an opinion game to a version
of it in which the internal beliefs can only take certain values. The reduced
version is equivalent to the original one, as long as best-response dynamics is
concerned. Note that the convergence rate for the version of the game considered
in [1] is unknown.
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In real life, however, there is some noise in the decision process of players.
Arguably, people are not fully rational. On the other hand, even if they were,
they might not exactly know what strategy represents the best response to a
given strategy profile due to the incapacity to correctly determine their utility
functions. To model this, we study logit dynamics [10] for opinion games. Logit
dynamics features a rationality level 8 > 0 (equivalently, a noise level 1/8) and
each player is assumed to play a strategy with a probability which is proportional
to the corresponding utility to the player and . So the higher 3 is, the less noise
there is and the more the dynamics is similar to best-response dynamics. Logit
dynamics for potential games defines a Markov chain that has a nice structure.
As in [11, 12] we exploit this structure to prove bounds on the convergence
rate of logit dynamics to the so-called logit equilibrium. The logit equilibrium
corresponds to the stationary distribution of the Markov chain. Intuitively, a
logit equilibrium is a probability distribution over strategy profiles of the game;
the distribution is concentrated around pure Nash equilibrium profiles.! It is
observed in [12] how this notion enjoys a number of desiderata one would like
solution concepts to have.

We prove a host of results on the convergence rate of logit dynamics that
give a pretty much complete picture as 8 varies. We give an upper bound in
terms of the cutwidth of the graph modeling the social network. The bound
is exponential in 8 and the cutwidth of the graph, thus yielding an exponential
guarantee for some topology of the social network. We complement this result by
proving a polynomial upper bound when [ takes a small value, namely, for 8 at
most the inverse of the maximum degree of nodes of the graph. We complete the
preceding upper bound in terms of the cutwidth with lower bounds. Firstly, we
prove that in order to get an (essentially) matching lower bound it is necessary
to evaluate the size of a certain subset of strategy profiles. For large enough
[ relative to this subset then we can prove that the upper bound is tight for
any social network (specifically, we roughly need g bigger than nlogn over the
cutwidth of the graph). For smaller values of §, we are unable to prove a lower
bound which holds for every graph. However, we prove that the lower bound
holds in this case at both ends of the spectrum of possible social networks.
In details, we look at two cases of graphs encoding social networks: cliques,
which model monolithic, highly interconnected societies, and complete bipartite
graphs, which model more sparse “antitransitive” societies. For these graphs,
we firstly evaluate the cutwidth and then relate the latter to the size of the
aforementioned set of states. This allows to prove a lower bound exponential in
B and the cutwidth of the graph for (almost) any value of 3. As far as we know,
no previous result was known about the cutwidth of a complete bipartite graph;
this might be of independent interest. The result on cliques is instead obtained
by generalizing arguments in [13].

To prove the convergence rate of logit dynamics to logit equilibrium we adopt
a variety of techniques developed to bound the mixing time of Markov chains.

! Tt is worth noting that the focus of best-response dynamics and logit dynamics is on
two different solution concepts.



Decentralized Dynamics for Finite Opinion Games 147

To prove the upper bounds we use some spectral properties of the transition ma-
trix of the Markov chain defined by the logit dynamics, and coupling of Markov
chains. To prove the lower bounds, we instead relay on the concept of bottleneck
ratio and the relation between the latter and mixing time. (The interested reader
might refer to [13] for a discussion of these concepts.)

Due to the lack of space some of the proofs are omitted or sketched.

1.2 Related Work

In addition to the papers mentioned above, our paper is related to the work
on logit dynamics. This dynamics is introduced by Blume [10] and it is mainly
adopted in the analysis of graphical coordination games [14-16], in which players
are placed on vertices of a graph embedding social relations and each player
wants to coordinate with neighbors: we highlight that an unique game is played
on every edge, whereas, for opinion games, we need different games in order to
encode beliefs (see below). Asadpour and Saberi [17] adopt the logit dynamics
for analyzing a class of congestion games. However, none of these works evaluates
the time the logit dynamics takes in order to reach the stationary distribution:
this line of research is conducted in [11, 12].

A number of papers study the efficient computation of (approximate) pure
Nash equilibria for 2-strategy games, such as, party affiliation games [18, 19]
and cut games [20]. Similarly to these works, we focus on a class of 2-strategy
games and study efficient computation of pure Nash equilibria; additionally we
also study the convergence rate to logit equilibria.

Another related work is [21] by Dyer and Mohanaraj. They study graphical
games, called pairwise-interaction games, and prove among other results, quick
convergence of best-response dynamics for these games. However, our games do
not fall in their class. The difference is that, in their case, there is a unique
game being played on the edges of the graph; as noted above, we instead need a
different game to encode the internal beliefs of the players.

2 The Game

Let G = (V, E) be an undirected connected graph? with |V| = n. Every vertex of
the graph represents a player. Each player 7 has an internal belief b; € [0, 1] and
only two strategies or opinions are available, namely 0 and 1. Motivated by the
model in [1], we define the utility of player i in a strategy profile x € {0,1}" as

ui(x) = — | (zi —b)* + Z (xi —))°

J: (Li)EE

2 A number of papers, including [1], assume that the graph is weighted to model neigh-
bors’ different levels of influence. Here we focus on the case in which all neighbors
exert the same kind of “political” weight.



148 D. Ferraioli, P.W. Goldberg, and C. Ventre

We call such a game an n-player opinion game on a graph G. Let D;(x) = {j :
(i,§) € E ANx; # x;} be the set of neighbors of ¢ that have an opinion different
from 4. Then u;(x) = —(z; — b;)? — |D;(x)] .

Let D(x) = {(u,v) € E: z, # x,} be the set of discording edges in the
strategy profile x, that is the set of all edges in G whose endpoints have different
opinions. Then it is not hard to check that the function &(x) = Y, (z; — b;)* +
|D(x)| is an exact potential function for the opinion game described above.
Interestingly, the potential function looks very similar to (but not the same as)
the social cost SC(x) = — Y1 ui(x) = >, (@ — b;)? + 2|D(x)|.

Let B; be the integer closer to the internal belief of the player i: that is,
B, =0if b <1/2, B, = 1if b; > 1/2. Moreover, let N?(x) = |{j: (i,j) €
E and z; = s}| be the number of neighbors of ¢ that play strategy s in the
strategy profile x.

It is not hard to verify that in Nash equilibria each player ¢ selects B; if and
only if at least half his neighborhood has selected this opinion. The only special
cases occur when players have beliefs in {0,1/2,1}: if b; = 1/2 player i will
be additionally indifferent when exactly half (assuming that A; is even) of his
neighbors are playing the same strategy and the other half are playing the other
strategy; if b; = 0 or b; = 1 player 7 will also be indifferent when 4; is odd and
only | A;/2| neighbors are playing B;. Roughly speaking, in a Nash equilibrium
players tend to form large coalitions, by preferring to play what the majority
plays to their own beliefs.

It is easy to check that this game has infinite Price of Anarchy. Consider the
opinion game on a clique where each player has internal belief 0: the profile
where each player has opinion 0 has social cost 0. The profile where each player
has opinion 1 is a Nash equilibrium and its social cost is n > 0. This is in sharp
contrast with the bound 9/8 proved in [1].

3 Best-Response Dynamics

Given two games we say they are best-response equivalent if each player has
identical best responses to every combination of opponents’ strategies. For the
opinion games the following observation is straightforward.

Observation 1. Let G be an opinion game where the player ¢ has belief b; €
(0,1/2): then G is best-response equivalent to the same game where the belief
of i is set to b; = 1/4. Similarly, if the player 7 has opinion b; € (1/2,1) the
game is best-response equivalent to the same game where the belief of 7 is set to
b; = 3/4.

The following theorem shows that, for this class of games, the best-response
dynamics quickly converges to a Nash equilibrium.

Theorem 2. The best-response dynamics for an n-player opinion game G con-
verges to a Nash equilibrium after a polynomial number of steps.
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Proof (Sketch). From Observation 1 we know that each opinion game is best-
response equivalent to an opinion game where each player i has b; € S =
{0,4.%,2,1}. So, for a given opinion game G we construct a game G’ with
beliefs restricted to belong to S by “rounding” the beliefs of the original game
and show that best-response dynamics converges quickly on G’. We begin by ob-
serving that for every profile x, we have 0 < #(x) < n? + n. Thus, the theorem
follows by showing that at each time step the cost of a player decreases by at

least a constant value. 0

4 Logit Dynamics for Opinion Games

Let G be an opinion game as from the above; moreover, let S = {0, 1}" denote the
set of all strategy profiles. For two vectors x,y € S, we denote with H(x,y) =
[{i: z; # yi}| the Hamming distance between x and y. The Hamming graph of
the game G is defined as H = (S, E), where two profiles x = (z1,...,2,),y =
(y1,...,yn) € S are adjacent in H if and only if H(x,y) = 1.

The logit dynamics for G runs as follows: at every time step (i) Select one
player i € [n] uniformly at random; (ii) Update the strategy of player ¢ according
to the Boltzmann distribution with parameter 5 over the set S; = {0,1} of her
strategies. That is, a strategy s; € S; will be selected with probability

oi(8i | x—i) = _1 ePui(x—i:5i) (1)

1\21 —1 Zi(X,i) )

where x_; € {0,1}"! is the profile of strategies played at the current time

step by players different from i, Z;(x—;) = 3, <. ePui(x=i21) ig the normalizing

factor, and 8 > 0. As mentioned above, from (1), it is easy to see that for 5 =10

player ¢ selects her strategy uniformly at random, for 8 > 0 the probability

is biased toward strategies promising higher payoffs, and for £ that goes to oo

player i chooses her best response strategy (if more than one best response is
available, she chooses one of them uniformly at random).

The above dynamics defines a Markov chain {X;}ien with the set of strategy
profiles as state space, and where the probability P(x,y) of a transition from
profile x = (z1,...,2,) to profile y = (y1,...,yn) is zero if H(x,y) > 2 and it
is %Ui(yi | x_;) if the two profiles differ exactly at player i. More formally, we
can define the logit dynamics as follows.

Definition 3 (Logit dynamics [10]). Let G be an opinion game as from the
above and let B > 0. The logit dynamics for G is the Markov chain Mg =
({Xi}ten, S, P) where S = {0,1}" and

oi(yi | x-i), ify_i =x_; and y; # w;
P(x,y) = o S oy | x2i), ify = x; (2)
0, otherwise;

where o;(y; | x—;) is defined in (1).
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The Markov chain defined by (2) is ergodic. Hence, from every initial profile x
the distribution P!(x,-) of chain X; starting at x will eventually converge to a
stationary distribution 7 as t tends to infinity.> As in [12], we call the stationary
distribution 7 of the Markov chain defined by the logit dynamics on a game G,
the logit equilibrium of G. In general, a Markov chain with transition matrix P
and state space S is said to be reversible with respect to the distribution 7 if, for
all x,y € S, it holds that 7(x)P(x,y) = n(y)P(y, x). If the chain is reversible
with respect to m, then 7 is its stationary distribution. For the class of potential
games the stationary distribution is the well-known Gibbs measure.

Theorem 4 ([10]). If G = ([n],S,U) is a potential game with potential func-
tion @, then the Markov chain given by (2) is reversible with respect to the Gibbs
measure T(x) = %6_345("), where Z = 3 s e PP s the normalizing con-
stant.

Mizing Time of Markov Chains. The most prominent measures of the rate of
convergence of a Markov chain to its stationary distribution is the mizing time.
For a Markov chain with transition matrix P and state space S, let us set
d(t) = maxyes ||P'(x,-) — 7|lpy, where the total variation distance || — vy
between two probability distributions g and v on the same state space S is
defined as ||u — v||py = maxacs|u(A) — v(A)]. For 0 < € < 1/2, the mixing
time is defined as tmix(e) = min{t € N: d(t) < e}. It is usual to set ¢ = 1/4
or ¢ = 1/2e. If not explicitly specified, when we write tpix we mean tmix(1/4).
Observe that tmix(e) < [logy €™ tmix-

Bottleneck Ratio. An important concept to establish our lower bounds is rep-
resented by the bottleneck ratio. Consider an ergodic Markov chain with finite
state space S, transition matrix P, and stationary distribution 7. The probabil-
ity distribution Q(x,y) = 7(x)P(x,y) is of particular interest and is sometimes
called the edge stationary distribution. Note that if the chain is reversible then
Q(x,y) = Q(y,x). For any L C S, we let Q(L,S\ L) = erL’yGS\LQ()g y).
The bottleneck ratio of L C S, L non-empty, is B(L) = %.
The following theorem relates bottleneck ratio and mixing time.

Theorem 5 (Bottleneck ratio [13]). Let M = {X;: t € N} be an irreducible
and aperiodic Markov chain with finite state space S, transition matriz P, and
stationary distribution w. Then the mizing time is tmix > maxy. ~(r)<1/2 #(L),

4.1 Upper Bounds

For Every 3. Consider the bijective function o: V' — {1,...,|V|}: it represents
an ordering of vertices of G. Let £ be the set of all orderings of vertices of
G and set V7 = {v € V:0o(v) < i}. Then, the cutwidth of G is CW(G) =
mingec max; << v [E(V;7, V\ V7).

% The notation P(x,-), standard in Markov chains literature [13], denotes the prob-
ability distribution over states of S after the chain has taken t steps starting
from x.
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Theorem 6. Let G be an n-player opinion game on a graph G = (V, E). The
mizing time of the logit dynamics for G is tmix < (14 ) - poly (n) - e#E(CW(E)

The proof is a generalization of a similar proof given by Berger et al. [22] based
on spectral arguments.

For Small 3. The following theorem shows that for small values of g the mixing
time is polynomial. We remark that there are network topologies for which this
theorem gives a bound higher than that guaranteed by Theorem 6 on the values
of B for which the mixing time is polynomial.

Theorem 7. Let G be an n-player opinion game on a connected graph G, with
n > 2. Let Amax be the mazimum degree in the graph. If 8 < 1/Amax, then the
mizing time of the logit dynamics for G is O(nlogn).

Proof (Sketch). Consider two profiles x and y that differ only in the strategy
played by player j and consider the coupling described in [11] for two chains X
and Y starting respectively from Xy = x and Yy = y. We show the expected
distance between X; and Y; after one step of the coupling is less then EACON
The bound on the mixing time follows from the well-known path coupling tech-
nique [23]. O

4.2 Lower Bounds

Recall that ‘H is the Hamming graph on the set of profiles of an opinion games
on a graph G. The following observation easily follows from the definition of
cutwidth.

Observation 8. For every path on H between the profile 0 = (0,...,0) and the
profile 1 = (1,...,1) there exists a profile for which there are at least CW(G)
discording edges.

From now on, let us write CW as a shorthand for CW(G), when the reference
to the graph is clear from the context. For sake of compactness, we set b(x) =
>-i(zi — b;)%. We denote as b* the minimum of b(x) over all profiles with CW
discording edges.

Let Ro (R1) be the set of profiles x for which a path from 0 (resp., 1) to
x exists on H such that every profile along the path has potential value less
than b* + CW. To establish the lower bound we use the technical result given by
Theorem 5 which requires to compute the bottleneck ratio of a subset of profiles
that is weighted at most a half by the stationary distribution. Accordingly, we
set R = Rg if m(Ro) < 1/2 and R = Ry if m(R1) < 1/2. (If both sets have
stationary distribution less than one half, the best lower bound is achieved by
setting R to R if and only if #(0) < ¢(1).) W.lo.g., in the remaining of this
section we assume R = Rpg.
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For Large 3. Let OR be the set of profiles in R that have at least a neighbor
y in the Hamming graph # such that y ¢ R. Moreover let £(OR) the set of
edges (x,y) in H such that x € R and y ¢ R: note that |E(OR)| < n|OR|. The
following lemma bounds the bottleneck ratio of R.

Lemma 9. For the set of profiles R defined above, we have B(R) < n - |0R)| -
e~ B(CW+b* —b(0))

o~ Bb(0)

Proof. Since 0 € R, it holds 7(R) > m(0) = “——. Moreover, by (1) we have

e BP0 Puily)

QRR) = >
A B (x) Bui(y)
(x,y)€E(OR): ¢ Te
y=(x—i,¥i)
B o~ BP(x) o~ BP(y) o (ui (x)+B(x))
= Z 7 e BP0 eBui()T8(x) 1 o~ AB(Y) B (i () +8(x))
(x,y)€E(OR):
y=(x—i,yi)
1 Z e~ BP(x) o—BP(y) 1 Z e—BoY)
-7 —BP(x) 1 ¢ B2(y) 7 B@(x)—3(y))
72 xyycetom © te 2 xyyeecory LT €
1 e—B(B*+CW)
2 — B (y) e
<z Z e PP < |E(OR)| ~Z

(x,y)€€(OR)

The second equality follows from the definition of potential function which im-
plies &(y) — @(x) = —u;(y) + ui(x) for x and y as above; last inequality holds
because if by contradiction ®(y) < b* + CW then, by definition of R, it would
be y € R, a contradiction. ]

From Lemma 9 and Theorem 5 we obtain a lower bound to the mixing time of
the opinion games that holds for every value of 3, every social network G and
every vector (by,...,b,) of internal beliefs. However, it is not clear how close
this bound is to the one given in Theorem 6. Nevertheless, by taking b; = 1/2
for each player i and 8 high enough, we can state the following theorem.

Theorem 10. Let G be an n-player opinion game on a graph G. Then, there
exist a vector of internal beliefs such that for f = 2 (%) it holds tmix >
eBOCW)

Proof. If b; = 1/2 for every player ¢, from Lemma 9 and Theorem 5, since
|OR| < 2™ then tyix > ej;:v = PCW—nlog(2n) — oPO(CW) 0O

For Smaller 8. Theorem 10 gives an almost tight lower bound for high values of

[ for each network topology. It would be interesting to prove a matching bound

also for lower values of the rationality parameter: in this section we prove such

a bound for specific classes of graphs: complete bipartite graphs and cliques.
We start by considering the class of complete bipartite graphs Ky, m.
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Theorem 11. Let G be an n-player opinion game on K, . Then, there exist a

LFOEW)

vector of internal beliefs such that, for every g = {2 (%), we have tpix > “—,

To prove the theorem above, we start by evaluating the cutwidth of K, ,,: in
particular, we characterize the best ordering from which the cutwidth is obtained.
We will denote with A and B the two sides of the bipartite graph. Then it is not
hard to see that the ordering that obtains the cutwidth in K, », is the one that
selects alternatively a vertex from A and a vertex from B. Moreover, it turns
out that the cutwidth of K,, ., is [m?/2]. The following lemma gives a bound
to the size of OR for this graph.

Lemma 12. For the opinion game on the graph K, ,, with b; = 1/2 for every
player i, there exists a constant c¢; such that |OR| < ec1VeW,

Proof (Sketch). Since b; = 1/2 for every player i, we have that b(x) = n/4 for
every profile x. Therefore, by definition of R, all profiles in R (and therefore OR)
have less then CW discording edges. Indeed, for x € R we have b(x) + |D(x)| =
&(x) < b* + CW. Moreover, if a profile y has less then CW — m discording
edges, then y is not in R as a state neighbor of y has at most m — 1 additional
discording edges.

Consequently, to bound the size of R, we need to count the number of profiles
in R that have potential between b*4+CW —m and b*+CW —1 (i.e., the number
of profiles with at least CW — m and at most CW — 1 discording edges). By
using the facts about the cut-width of bipartite graphs stated above, we have
|OR| < (5¢)™ < €*™. The lemma follows since m < v/2v/CW. O

Proof (of Theorem 11). If b; = 1/2 for every player 4, from Lemmata 9 and 12,

we have B(R) < n-e® VEW [ e=BCW < . o= BCW(=c2)  where ¢y = C%VCSVW <1

= 2(1/m); we also notice that ¢z goes to 0 as

C
Jow
increases. The theorem follows from Theorem 5. 0

since by hypothesis 8 >

We remark that it is possible to prove a result similar to Theorem 11 also for
the clique K,,: the proof follows from a simple generalization of Theorem 15.3
in [13] and by observing that the cutwidth of a clique is [n?/4].

5 Conclusions and Open Problems

In this work we analyze two decentralized dynamics for binary opinion games: the
best-response dynamics and the logit dynamics. For the best-response dynamics
we show that it takes time polynomial in the number of players to reach a Nash
equilibrium, the latter being characterized by the existence of clusters in which
players have a common opinion. On the other hand, for the logit dynamics we
show polynomial convergence when the level of noise is high enough and that it
increases as [ grows.

It is important to highlight, as noted above, that the convergence time of the
two dynamics are computed with respect to two different equilibrium concepts,
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namely Nash equilibrium for the best-response dynamics and logit equilibrium
for the logit dynamics. This explains why the convergence times of these two
dynamics asymptotically diverge even though the logit dynamics becomes similar
to the best response dynamics as 8 goes to infinity.

Theorem 6 and 10 which prove bounds to the convergence of logit dynamics
can also be read in a positive fashion. Indeed, for social networks that have a
bounded cutwidth, the convergence rate of the dynamics depends only on the
value of 5. (We highlight that checking if a graph has bounded cutwidth can be
done in polynomial time [24].) In general, we have the following picture: as long
as f is less than the maximum of (roughly) 12“3\7 and % the convergence time
to the logit equilibrium is polynomial. Moreover, Theorem 10 shows that for g
lower bounded by (roughly) "ICO# the convergence time to the logit equilibrium
is super-polynomial. Then for some network topology, there is a gap in our
knowledge which is naturally interesting to close.

In [25] the concept of metastable distributions has been introduced in order to
predict the outcome of games for which the logit dynamics takes too much time
to reach the stationary distribution for some value of 8. It would be interesting to
investigate existence and structure of such distributions for our opinion games.

We also note that our proofs for logit dynamics can be extended to the case
in which the social graph is weighted. In such a setting, however, we obtain
non-matching bounds: it would be interesting to develop more sophisticated
techniques in order to get tight bounds.
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