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Abstract

Suppose that a set of � tasks are to be shared as equally
as possible amongst a set of 	 resources. A game-theoretic
mechanism to find a suitable allocation is to associate each
task with a “selfish agent”, and require each agent to select
a resource, with the cost of a resource being the number
of agents to select it. Agents would then be expected to
migrate from overloaded to underloaded resources, until the
allocation becomes balanced.

Recent work has studied the question of how this can
take place within a distributed setting in which agents mi-
grate selfishly without any centralized control. In this paper
we discuss a natural protocol for the agents which combines
the following desirable features: It can be implemented in
a strongly distributed setting, uses no central control, and
has good convergence properties. For ��
�	 , the system
becomes approximately balanced (an 
 -Nash equilibrium) in
expected time ������������������� . We show using a martingale
technique that the process converges to a perfectly balanced
allocation in expected time ������������������� 	"!#� . We also give
a lower bound of $%�'&)(+*-,.�������������0/1	32+� for the convergence
time.

1 Introduction

Suppose that a consumer learns the price she would be
charged by some domestic power supplier other than the one
she is currently using. It is plausible that if the alternative
price is lower than the price she is currently paying, then
there is some possibility that she will switch to the new
power supplier. Furthermore, she is more likely to switch
if the ratio of current price to new price is large. If there
is only a small saving, then it becomes unattractive to make
the switch, since an influx of new business (oneself and other
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consumers) may drive up the price of the new power supplier
and make it no longer competitive.

We study a simple mathematical model of the above
natural rule, in the context of a load balancing (or task
allocation) scenario that has received a lot of recent attention.
We assume the presence of many individual users, who may
assign their tasks to chosen resources. The users are selfish
in the sense that they attempt to optimize their own situation,
i.e., try to assign their tasks to minimally loaded resources,
without trying to optimize the global situation. In general,
a Nash equilibrium among a set of selfish users is a state
in which no user has the incentive to change her current
decision. In our setting, this corresponds to no user having an
incentive to reallocate their task to some other resource. An

 -Nash equilibria is a standard notion of approximate Nash
equilibrium, and is a state where no user can change her cost
by a multiplicative factor of less than ;=<�
 by changing
action. Here we do not focus on the quality of equilibria,
but rather on the (perhaps more algorithmic) question of
convergence time to such a state.

We assume a strongly distributed and concurrent setting,
i.e., there is no centralized control mechanism whatsoever,
and all users may choose to reallocate their tasks at the
same time. Thus, we do not (and cannot) use the traditional
Elementary Step System, where the assumption is that at
most one user may reallocate her task at any given stage [8,
5].

Throughout we let � denote the number of tasks (in the
above discussion, customers) and 	 the number of resources
(power suppliers). As hinted in the above discussion, we
assume that typically �>
 	 . In a single time step (or
round) each task does the following. Let ? be the resource
currently being used by the task. Select @ uniformly at
random from ,A;�/CB.BCBD/:	32 and find the load of resource @ . LetE�F

and
EHG

be the loads of resources ? and @ respectively.
If
EHGJIKE)F

, migrate from ? to @ with a probability of
;=< EHGMLME)F ; the transition from round N to round N%�O;
is given in Figure 1. Notice that if we had unconditional
migrations, i.e., without an additional coin flip (move only
with probability ;P< EPG ��N1� L+E)F ��N1� ), then this may lead to
an unstable system; consider for example the case �RQTS
with initially most tasks assigned to one of the resources: the
overload would oscillate between the two resources, with a
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load ratio tending towards 2:1.

For each task � do in parallel
Let ?�� be the current resource of task �
Choose resource @�� uniformly at random
Let
E F�� �'N1� be the current load of resource ?

Let
EHG � �'N1� be the current load of resource @

If
E)F � �'N1��� EHG � �'N1� then
Move task � from resource ? � to @ � with
probability ; < EPG � ��N1� LME)F � ��N1�

Figure 1: The protocol with “neutral moves” allowed.

It can easily be seen that, if all tasks use the above
policy, then the expected load of every resource at the next
step is � L 	 . This provides a compelling motivation for the
policy, which is that as a result, no task has an incentive
to deviate unilaterally from this policy. In the terminology
of [6] this is a Nash rerouting policy. Although the above
rule is very natural and has the nice property as described
above, we show that it may take a long time to converge to
an perfectly balanced allocation of tasks to resources. Define
a neutral move to be a task migration from a resource with
load � at time N to a resource with load � < ; at time N
(so, if no other task migrates, then the cost to the migrating
task is unchanged.) We consider a modification in which
neutral moves are specifically disallowed (see Figure 2).
That seemingly-minor change is necessary to ensure fast
convergence from an almost balanced state to a perfectly-
balanced state. To summarize, here are the most important
features of the modified protocol:

	 We do not need any global information whatsoever
(apart from the number of available resources); in
particular, a task does not need to know the total number
of tasks in the system. Also, it is strongly distributed
and concurrent. If additional tasks were to enter the
system, it would rapidly converge once again, with no
outside intervention.	 A migrating task needs to query the load of only one
other resource (thus, doing a constant amount of work
in each round).	 When a task finds a resource with a significantly smaller
load (that is, a load that is smaller by at least two), the
migration policy is exactly the same as that used by the
Nash rerouting policy of Figure 1, so the incentive is to
use that probability.	 When a task finds a resource with a load that is smaller
by exactly one unit, the migration policy is sufficiently
close to the Nash rerouting policy that the difference in
expected load is at most one, and there is little incentive
to deviate.

	 The protocol is simple (as well as provably efficient)
enough to convince users to actually stick to it.

1.1 Related WorkThe papers [5, 8, 6] are most closely
related to this work. Even-Dar et al. [5] introduce the
idea of using a potential function to measure closeness to
a balanced allocation, and use it to show convergence for
sequences of randomly-selected “best response” moves in
a more general setting in which tasks may have variable
weights and resources may have variable capacities. (A “best
response” move is one where a task migrates to a resource
with smallest cost. In order to ensure that a move is best
response, it is necessary to do them consecutively rather than
concurrently.) Goldberg [8] considered a protocol in which
tasks select alternative resources at random and migrate if the
alternative load is lower. The protocol may be implemented
in a weakly distributed sense, requiring that migration events
take place one at a time, and costs are updated immediately.

Most recently, Even-Dar and Mansour allow concurrent,
independent rerouting decisions where tasks are allowed to
migrate from overloaded to underloaded resources. Their
rerouting process terminates in expected ���'������������� �
������	 � rounds when the system reaches a Nash equilibrium.
This faster convergence (in terms of the number 	 of re-
sources) is attained using a certain amount of global knowl-
edge. A task is required to know whether its link is over-
loaded (having above average load) and tasks on underloaded
links do not migrate at all. Our rerouting policy does not re-
quire that agents know anything other that their current link
load, and the load of a randomly-chosen alternative. Even-
Dar and Mansour also present a general framework that can
be used to show a logarithmic convergence rate for a wide
class of rerouting strategies. Our protocol does not fall into
that class, since we do not require migrations to occur only
from overloaded links. Furthermore, our reassignment strat-
egy has a non-logarithmic lower bound on the convergence
time.

Our rerouting strategy is also related to reallocation
processes for balls into bins games. The goal of a balls into
bins game is to allocate � balls as evenly as possible into 	
bins. It is well-known that a fairly even distribution can be
achieved if every ball is allowed to randomly choose 
 bins
and then the ball is allocated to the least loaded among the
chosen bin (see [13] for an overview). Czumaj, Riley, and
Scheideler [3] consider such an allocation where each ball
initially chooses two bins. They show that, in a polynomial
number of steps, the reallocation process ends up in a state
with maximum load at most � � L 	
� � ; . In [16] Sanders,
Egner, and Korst show that a maximum load of � � L 	
� � ;
is optimal if every ball is restricted to two random choices.

Leaving aside the distributed framework, our scenario
becomes a special case of one introduced by Koutsoupias
and Papadimitriou [10]. They consider 	 parallel links
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(resources) and a set � of � tasks. (In [10] and subsequent
papers, usually � denotes the number of resources and 	 the
number of tasks. Here we are using � and 	 as they are
used the balls-into-bins literature.) Each link � F comes with
delay 
 F , and each task with a weight � F . (In this paper, all
weights and delays are the same.) An assignment is a vector� QT� ��� /.BCBCBC/ ��� � which assigns the ? -th task to resource� F

. In the language of game theory, an assignment associates
each task with a pure strategy. The load of resource � in
assignment

�
is defined to be � � � / � � Q 
	��
 F
����� ���
� � � F .

The load of task ? in assignment
�

is � � � F / � � . �
is said to

be a Nash assignment if, for every task ? and every resource � ,
we have � � � F / � ����� � � / ��� � , where the assignment

���
is derived from

�
by re-assigning task ? to resource � , and

making no other change. Koutsoupias and Papadimitriou
worked in the more general setting of mixed strategies.
In a mixed strategy, instead of choosing a resource

� F
,

task ? chooses a vector ��� F�� � /.BCB.BC/�� F
� � � in which � F
� G denotes
the probability with which task ? will use resource @ . A
collection of mixed strategies (one strategy for each task) is
a Nash equilibrium if no task can reduce its expected cost
by modifying its own probability vector. Much research
has been done since then (for example [12, 4, 7, 15, 2]) in
different contexts and with different goals.

1.2 Overview of our resultsSection 3 deals with upper
bounds on convergence time. The main result, Theorem 3.1,
is that the protocol of Figure 2 converges to a Nash equilib-
rium within expected time ���'������������� � 	 ! � .

The proof of Theorem 3.1 shows that the system be-
comes approximately balanced very rapidly. Specifically,
Corollary 3.4 shows that if 	�� � � �"!

, then for all 
 , either
version of the distributed protocol (with or without neutral
moves allowed) attains 
 -Nash equilibrium (where all load
ratios are within # ;�< 
#/.; � 
%$ ) in expected ���'������������� �
rounds. The rest of Section 3 analyses the protocol of Fig-
ure 2. It is shown that within an additional ���'	 ! � rounds the
system becomes optimally balanced.

In Section 4, we provide two lower bound results. The
first one, Theorem 4.1, shows that the first protocol (of
Figure 1, including moves that do not necessarily yield
a strict improvement for an individual task but allow for
simply “neutral” moves as well, results in exponential (in
	 ) expected convergence time. Finally, in Theorem 4.2 we
provide a general lower bound (regardless of which of the
two protocols is being used) on the expected convergence
time of $%�'������������� � . This lower bound matches the upper
bound as a function of � .

2 Notation

There are � tasks and 	 resources. An assignment of tasks
to resources is represented as a vector ��& � /CBCB.BC/%&(' � in which& F denotes the number of tasks that are assigned to resource

? . In the remainder of this paper, # 	�$ denotes ,�;�/CBCB.B�/1	32 .
The assignment is a Nash equilibrium if for all ?*)�# 	�$ and
@+),# 	�$ , - & F <�& G -.� ; . We study a distributed process
for constructing a Nash equilibrium. The states of the
process,

E �0/��D/ E �1;#��/.BCB.B , are assignments. The transition
from state

E ��N1� Q � E � �'N1��/CB.BCB./ E ' ��N1�:� to state
E ��N � ;#�

is given by the greedy distributed protocol in Figure 2.

For each task � do in parallel
Let ?�� be the current resource of task �
Choose resource @ � uniformly at random
Let
E)F � ��N1� be the current load of resource ?

Let
EHG � �'N1� be the current load of resource @

If
E)F � �'N1��� E G � ��N1� then
Move task � from resource ? � to @ � with
probability ; < EHG � �'N1� L+E�F � ��N1�

Figure 2: The modified protocol, with “neutral moves”
disallowed.

Note that if
E �'N1� is a Nash equilibrium, then

E �'N �
;#� Q E �'N1� so the assignment stops changing. Here is a
formal description of the transition from a state

E �'N1� Q1& .
Independently, for every ?2)+# 	�$ , let �03 F�� � ��&-��/.BCB.B./"3 F�� ' �
& �1�
be a random variable drawn from a multinomial distribution
with the constraint 
 'G%� � 3 F�� G �
& � Q4& F . ( 3 F G represents
the number of migrations from ? to @ in a round.) The
corresponding probabilities �5� F
� � �
& ��/CB.BCB./�� F�� ' �
& �1� are given
by

� F�� G �
&-��Q
678 79

�';: ; <=<?>< �A@ if & F �B& G � ; ,/ if ?�CQ @ but & F �B& G � ; ,
; < 
 GED�"F � F�� G �
& � if ? Q @�B

Then
E)F ��N � ;#��QF
 '� � � 3G� � F �
& � .

For any assignment & Q ��& � /CBCB.BC/%&(' � , let & Q�' 
 'FH� � & F . Similar to [5, 8, 6] we define potential functionI �
&-��Q 
 'FJ� � �
& F < & �LK . Note that
I �
& ��Q 
 'FH� � & KF < 	 & K .

3 Upper bound on convergence time

Our main result is the following

THEOREM 3.1. Let � be the number of rounds taken by the
protocol of Figure 2 to reach a Nash equilibrium for the first
time. Then MN# �O$3Q ����������������� � 	"!#� .

The proof of this theorem proceeds as follows. First
(Lemma 3.1) we give an upper bound on MN# I � E ��N1�1�P$ which
implies (Corollary 3.3) that there is a Q Q ����������������� �
such that, with high probability,

I � E �
Q �:� Q ����	 � . We
also show (Observation 3.4 and Corollary 3.5) that

I � E ��N1�:�
is a super-martingale and (Lemma 3.5) that it has enough
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variance. Using these facts, we obtain the upper bound on
the convergence time.

Definition: Let � F ��&-�%QJ, @ - & G=I & F < ; 2 . � F �
& � is the
set of resources that are significantly smaller than resource ?
in state & . Similarly, let � F ��&-� Q ,�@;- & G � & F � ; 2 and let

 F ��&-��Q �' 
 G ��� < ��� <?> � � � �
& F < & G � .
OBSERVATION 3.1. MN# E F ��N � ;M�O- E ��N1��Q�& $ Q &H� 
 F �
& � .
Proof.��� 	�

�����������
	��������������! "# $&% ��� ' # ( 
 �)�*�+���, "# $�% � #)-.# ( 
 �)�/�� "#1032 ��465�7 � # �8:9 ��; �/
� #=< �>� 
@?A ��; "B 03C �D4E5�7 �8:9 ��; � B�/
 <@FGIH
which can be simplified into the required form. J
OBSERVATION 3.2. 
 'FH� � �
MN# E F ��N � ;#�O- E �'N1��Q &G$ �%K Q
	 & K � 
 'FH� � 
 F ��&-� K .

Proof. Using Observation 3.1,'K
FH� � � M # E F ��N � ;#�O- E ��N1��Q�& $��LK
Q

'K
FH� � � &P� 
 F ��&-�1� K

Q 	 & K � S & 'K
FH� � 
 F �
&-� � 'K

FJ� � 
 F ��&-� K /
and the second term is zero since 
 F �
& � Q M # E F �'N � ;#� -E �'N1��Q &G$ < & . J
OBSERVATION 3.3. L+(NMA# E F �'N � ;#� - E �'N1� Q & $ ��' 
 � �POG�RQ <TS ��& � < & F � � �' 
 G �.U ��Q <TS �
& F < & G � .
Proof.L+(PM.� E F ��N � ;#�O- E �'N1��Q & �
Q

'K� � � L+(PM.��3G� � F �
& �1� Q 'K � � � & � � � � F ��&-�D�1; < � � � F �
& �1�
Q K� �PO � Q <TS &G� ;	WV ; < & F& �.X �1; < �G� � F �
& �1� � & F � F�� F �
&-�ZY

YW[\ K
G �.U ��Q <TS ;	 V ; < & G& F X^]_ B

Using ; < � � � F ��&-��� ; and � F
� F �
&-�*� ; and simplifying, we
get the result. J

Definition: For any assignment & , let ` F ��&-� Q - , @ -& G Q & F < ; 2 - and a F �
& � Q4- ,�@ -�& G Q & F � ; 2 - . Letb � �
& � Q 
 'FJ� � 
 G �/c '3d ��� < ��� < > � e � - & F <=& G - and b K ��&-� Q
 'FJ� � �+` F ��&-��<fa F �
&-�:� K . Let b �
& ��Q b � ��&-� L 	=� b K ��&-� L 	 K .

OBSERVATION 3.4. MN# I � E ��N�� ;#�1�O- E ��N1��Q�& $ � b �
&-� .
Proof.

M # I � E �'N�� ;#�:�O- E �'N1��Q &G$ � 	 & K
Q

'K
FH� � MN# E F ��N"� ;#� K - E ��N1� Q�& $

Q
'K
FH� � � MN# E)F �'N � ;M� - E ��N1� Q�& $�� K �
�

'K
FH� � LM(PM.� E�F ��N � ;#�O- E ��N1��Q & ��B

Using Observations 3.2 and 3.3, this is at most 	 & K �
 'FJ� � 
 F �
& � K � b � �
& � L 	 . But


 F ��&-��Q ;	 K
G ��� < � � < > � � � �
& F < & G ��Q ;	 �+` F �
&-��< � F �
& �1��/

so the result follows. J
LEMMA 3.1.

MN# I � E ��N�� ;#�:�O- E ��N1��Q & $ � 	 � S 	 � � K I �
&-� � � K B
Proof. In the proof of Observation 3.4, we established thatMN# I � E �'N � ;M�1� - E �'N1�)Q & $2� 
 'FJ� � 
 F �
& � K � b � ��&-� L 	 .
Upper-bounding b � �
&-� and using 
 F �
&-�O� ; , we have

MN# I � E ��N�� ;M�1�O- E ��N1��Q &G$ � 	)� ;	 'K
FH� � 'K
G%� � - & F < & G - /

and since - & F < & G - �=- & F < & -:� - & G < & - , this is at most 	 �
S 
 'FJ� � - & F < & - . By Cauchy-Schwarz, � 
 F - & F < & -=g ;M�LK��
 F - & F < & - K 
 F ; so

M # I � E ��N�� ;M�1�O- E ��N1��Q�& $ � 	)� S �'	 'K
FJ� � - & F < & - K �

�%� K BJ
COROLLARY 3.1.

M # I � E ��N�� ;#�1�P$ � 	)� S+	 �%� K � MN# I � E ��N1�1�P$ � �%� K B
Proof. Using Lemma 3.1, M # I � E �'N � ;#�:� $ � 	 �
S+	

�%� K MN# I �
& � �%� K $ . Now use Jensen’s inequality. J
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LEMMA 3.2. Either there is a N � I N s.t. MN# I � E �'N � �1�P$ �
;���	 or MN# I � E �'N1�1�P$ ��� � � K ��� 	 � � K ��� I � E �0/��:�LK ��� .
Proof. The proof is by induction on N . The base case is
N Q�/ . For the inductive step, note that ; < S

���
Q 
 � 	 � � S � 	 .

Suppose that for all N � I N , MN# I � E ��N � �:� $ � ;
� 	 (otherwise
we are finished). Then by Corollary 3.1,

M # I � E �'N1�1�P$� 	 � S+	
�%� K � M # I � E �'N < ;M�1� $�� � � K� ��	 � � K � MN# I � E �'N < ;#�:� $�� �%� K B

Applying the inductive hypothesis,

MN# I � E ��N1�1�P$� � 	 �%� K ��� K Q � � K ��
�������� S 	 � � K ��
�������� I � E �0/��1� K ��
�������� � � � K BJ
COROLLARY 3.2. There is a Q � � ������� I � E ��/A�1� � such thatMN# I � E �
Q �:� $ � ;
� 	 .

Proof. Take N�Q � ������� I � E �0/��:� � . Either there is a Q I N
with MN# I � E ��Q �1�L$ � ;�� 	 or, by the lemma,

MN# I � E ��N1�:� $ ����	 I � E �0/��1�LK ��� � ;�� 	 B J
COROLLARY 3.3. There is a Q � � ������� I � E ��/A�1� � such that� M#� I � E �
Q �1� ����S / 	 � � ; L�� / .

Proof. Use Markov’s inequality. J
COROLLARY 3.4. For all 
 � / , provided that 	 I
�

�%�"!
, the expected time to reach 
 -Nash equilibrium is

������������������� .
Proof. (sketch) For the asymptotic bound we can assume
without loss of generality that � ������/ L 
�� K . We show
that for any starting assignment

E ��/A� , there exists Q �
����������� �'� K � such that

� M.� E �
Q �����H
.<! (��#" � �
!%$
!%& . This

implies the statement of the result.
Suppose assignment & is not 
 -Nash. If

E �'N1��Q & there
exist resources ? / @ with

E F �'N1� < E G ��N1� � 
:� L 	 . If
E �'NA�0;#�

is obtained from
E �'N1� by transferring 
 � L S+	 tasks from ?

to @ , then it can be shown that
I � E ��N1�:��< I � E ��N3� ;#�:�('

�'
 � L S+	 � K . It follows that
I � E �'N1�1�)' �'
 � L S+	 � K .

From Corollary 3.3,
� M.� I � E �
Q �:� I � S /�	 � �

!%$
!%& , forQ=Q �����������-� I ��/A�1��Q ����������������� � .

An assignment
E �
Q � with

I � E ��Q �1�;�*��S /�	 must be

 -Nash if �'
 � L S 	 � K �+� S /�	 . Note that � � 	

!
and

� �T����/ L 
�� K . Hence, from 
 K ����/ L 
�� K 	 ! � � B���S / B 	 ! , we
can deduce 
 K � K � � B���S / B 	 ! , hence � 
:� L S 	 � K ��� S�/ 	 . J

Corollary 3.3 tells us that
I � E �
Q �:� is likely to be ����	 � .

We want to show that
I � E ��N1�:� quickly gets even smaller (all

the way to a Nash equilibrium) and to this end, we show
that

I � E �'N1�1� is a super-martingale. By Observation 3.4, it
suffices to show b ��&-� � I �
& � , and we proceed with this.
In the following, we shall consider the cases - & F < & - for all
? )B# 	�$ (Lemma 3.3) and , ? ) # 	�$.- - & F < & -�' S B�/ (Lemma
3.4) separately.

LEMMA 3.3. Suppose that assignment & Q��
& � /CB.BCBC/%& ' �
satisfies - & F < & - I S B / for all ? ) # 	�$ . Then b �
& � � I ��&-� .
Proof. For all ?;) # 	�$ and @ ) # 	�$ we have - & F <�& G -��- & F < & -"� - & G < & - I / . Let 0 Q &1��2 F & F so every& F ) ,
0 /CB.BCBD/%0 � � 2 . Let 	 F Q - , @ - & G Q30 � ? 2 - . Then

	 K I �
& ��Q 	 K 'K
FJ� � & KF < 	 4 'K

FJ� � & F�5 K
Q 	 K [\ !KG%� & 	 G ��0 �0@ � K ]_ <0	 [\ !KG%� & 	 G ��0 � @ � ]_ K

B

Also, 	 K b ��&-��Q 	 b � �
&-� � b K ��&-� , whereb � ��&-��Q 	 & � S+	 K �6� 	 ! � � 	 ! � � 	 � � S 	 ! �7��	 ! � �� 	 K � S+	 & � S+	 ! �"� 	 ! ��� 	 & � S 	 � � �� 	 ! �
� 	 & �6� 	 � � S+	 K �

andb K �
& ��Q 	 & 	 K � � 	 � �'	 & < 	 K � K � 	 K �'	 � < 	 ! � K �� 	 ! ��	 K <0	 ! � K � 	 ! 	 K! B
Plugging in these expressions and simplifying, we get

	 K I �
& � <0	 K b �
&-��Q� 	 & 	 � 	 K �7��	 K& 	 ! � � 	 & 	 � 	 ! � � 	 & 	 K 	 ! �� � 	 � 	 K 	 ! �7��	 & 	 K! �6� 	 K& 	 ! � ;MS+	 & 	 � 	 ! ��8� 	 K � 	 ! �6� 	 & 	 K 	 ! � � 	 � 	 K 	 ! � ;#S+	 & 	 ! 	 ! �� � 	 � 	 ! 	 ! � � 	 K 	 ! 	 ! �7��	 & 	 K! �6� 	 � 	 K! /
which is clearly non-negative since all coefficients are posi-
tive. J
LEMMA 3.4. Suppose that assignment & Q��
& � /CB.BCBC/%&(' �
satisfies - & ' < & -!' S B / and, for all ? ) # 	�$ , - & F < & -��- & ' < & - . Let � QO��� � /.BCB.BD/ �O' � � � be the assignment with� F Q & F for ? ) # 	H<0; $ . Then

I �
&-�-< b �
&-�9' I �
� �-< b �
� � ,
i.e., the potential drop for & is at least as big as that for � .

Proof. Let :�Q - &('P< & - . We will show

(1)
I �
& �3< I �
� �!'�: K , and
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(2) b ��&-�3< b �
� � � S�: � ; .
ThenI �
& �3< b ��&-�3< � I ��� � < b ��� �1�9' : K < � S�: � ;M��/
which is non-negative since : ' S B / '�;�� � S .
First, we prove (1). Let �3��0A� Q 
 ' � �FH� � �
& F < 0A�PK . Note that
the derivative of �3��0 � is

� � ��0 ��Q S ��	 < ;M� 0 < S ' � �K
FJ� � & F Q S ��	 < ;M� 0%< S ��	 < ;#� �HB

Furthermore the second derivative is � � � ��0 ��Q S ��	)< ;#�)' / .
Thus, �3��0A� is minimized at 0 Q � . Now note that

I ��&-� < I �
� ��Q : K � ' � �K
FJ� � �
& F < &-� K < ' � �K

FH� � �
& F < � � K ' : K B
Now we finish the proof by proving (2). Assume first that& ')Q &H��: . Thenb � �
& � < b � ��� �

Q S K
F��/c '3d � � < �R� <�� � e � - & F < & ' - � S 'K

FH� � - & F < & ' -
Q S

'K
FH� � �
& '�< & F ��Q S+	 : B

Let 0 G Q - , � -�& �PQ @ 2 - . Clearly 0 G Q / for @ � & ' . Let� Q �
&(' < S�: � For � ) # 	�$ we have &G�!' &3< :PQ�&(' < S�: so0 G Q�/ for @ I��
. Now b K �
& ��Q 
 <��G%�	� 0 G ��0 G�� � < 0 G�
 � � K .

The representation of � in terms of 0 G s is the same as
the representation of & except that 0 < � is reduced by one.
Therefore,b K �
&-��< b K ��� �
Q 0 <�� � � : ��0 <�� � K < 0 <�� � K < ��0 <�� � K < 0 <�� � ;#� K @ �
�P��0 < � � � < 0 < � 
 � �LKQ 0 <�� � � � < S�0 <�� � K � S�0 <�� �60 <�� � � < ;#�� 0 <�� � � � S�0 <�� �70 <�� � � ��B

But since 0 <�� � 	 <60 <�� � � , the upper bound on the right-
hand side is at most0 < � � � � S 	 < S 0 < � � � �60 < � � � ��Q S 0 < � � � �'	 < 0 < � � � L S���/
which is at most 	 K since the right-hand side is maximized
at 0 <�� � � Q 	 . To finish the proof of (2), use the definition
of b to deduce thatb �
& �3< b ��� � � b � �
&-� < b � ��� �

	 �
b K �
&-��< b K ��� �	 K B

The proof of (2) when & ')Q & < : is similar. J

Letting :0Q - & '=< & - , the idea is to show that
I ��&-� <I �
� � ' : K and b �
&-� < b �
� � � S : � ; , because thenI �
& � < b �
& � < � I ��� � < b ��� �1� ' : K < � S�: � ;M� , which

is non-negative since : ' S B�/�'�;�� � S .
COROLLARY 3.5. For any assignment & Q �
& � /.BCBCBC/ &(' � ,I �
& � < b ��&-�)' / .

Proof. The proof is by induction on 	 . The base case, 	 Q ; ,
follows from Lemma 3.3. Suppose 	 � ; . Neither

I �
&-�
nor b �
& � depends upon the order of the components in & , so
assume without loss of generality that - & F < & - � - & ' < & - for
all ? . If - & ' < & - I S B / then apply Lemma 3.3. Otherwise,
use Lemma 3.4 to find an assignment � QJ��� � /CB.BCBD/%� ' � � �
such that

I �
& � < b �
& � ' I �
� � < b �
� � . By the inductive
hypothesis,

I �
� ��< b �
� � ' / . J
Together, Observation 3.4 and Corollary 3.5 tell us thatMN# I � E �'N � ;#�:� - E ��N1� Q & $ � I �
& � . The next lemma will

be used to give a lower bound on the variance of the process.
Let � Q / B � 	 � K .
LEMMA 3.5. Suppose that

E ��N1��Q & and that & is not a
Nash equilibrium. Then� M.� I � E �'N � ;#��CQ I �
& � - E �'N1��Q & �)'
��B
Proof. Choose ` and � such that for all ?�) # 	�$ , &�� �& F �+& � . Since & is not a Nash equilibrium, &(� �+&�� � ; .
Assuming

E �'N1� QF& , consider the following experiment for
choosing

E ��N"� ;M� .
Independently, for every ? CQ � , choose

��3 F�� � ��&-��/.BCB.B./"3 F�� ' �
& �1� from the multinomial distribu-
tion described in Section 2. For every task �+),& � , let0���Q ; with probability ; < & � L & � and 0�� Q / other-
wise. Let & 
� be the number of tasks � with 0 � Q ; and
let & �� be the number of tasks � with 0 � Q / . Choose
��3 
� � � �
& ��/.BCBCB#/%3 
� � ' �
&-�:� from a multinomial distribution with

the constraint 
 'G%� � 3 
� � G �
& � Q & 
� and probabilities given
by

� 
� � G �
& ��Q
67778 7779

�' if @PQ ` ,�' : ; <=< ><�� @ if @ CQ ` and & � � & G � ; ,/ if � CQ @ but &G� �B& G � ; ,
; < 
 GED� � �G� � G �
& � if � Q @�B

Similarly, choose ��3 �� � � �
&-�D/CB.BCB#/%3 �� � ' ��&-�1� from a multinomial

distribution with the constraint 
 'G%� � 3 �� � G ��&-��Q & �� and
probabilities given by

� �� � G �
& ��Q
67778 7779

/ if @PQ ` ,�' : ; <=< ><�� @ if @ CQ ` and &G� � & G � ; ,/ if � CQ @ but &G� �B& G � ; ,
; < 
 GED� � �G� � G �
& � if � Q @�B
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For all @ , let 3G� � G �
&-��Q�3 
� � G ��&-�A� 3 � � / @-��&-� . The reader may
verify that

E �'N � ;#� is chosen from the correct distribution.
Now, consider the transition from & to

E ��N � ;M� .
Condition on the choice for �03 F
� � �
& ��/.BCBCB#/%3 F�� ' �
&-�:� for all
? CQ � . Suppose & 
� � S . Condition on the choice for
��3 �� � � �
& ��/CB.BCB#/%3 �� � ' ��&-�1� . Flip a coin for each of the first & 
 � < S
tasks with 0 ��Q ; to determine which of 3 
� � � �
& ��/.BCBCB#/%3 
� � ' �
&-�
the task contributes to. Condition on these choices. Consider
the following options:

(1) Let & �
be the resulting value of

E ��N � ;M� when we add
both of the last two tasks to 3 
� � � �
&-� .

(2) Let & K be the resulting value of
E ��N � ;M� when we add

one of the last two tasks to 3 
� � � �
&-� and the other to3 
� � � �
&-� .
(3) Let & !

be the resulting value of
E ��N � ;M� when we add

both of the last two tasks to 3 
� � � �
& � .
Note that, given the conditioning, each of these choices

occurs with probability at least 	
� K . Also,

I �
& � � , I �
& K � andI �
& ! � are not all the same. Thus,
� M#� I � E �'N"� ;M� CQ I �
& ��-E ��N1��Q & /%& 
� � S��)' 	 � K . Also,

� M#�
& 
� � S�� Q ; < V & �& �/X < � < & � V ; < & �& �/X V & �& ��X < � � � B
Since the derivative with respect to &�� is negative, this is
minimized by taking &�� as large as possible, namely &(��< S ,
so
� M.��& 
� � S��)' ; < ��� � K ' / B � , and the result follows. J

In order to finish our proof of convergence, we need the
following observation about

I �
& � .
OBSERVATION 3.5. For any assignment & ,

I ��&-� � � K . Let� Q � &�� � 	 . Then
I ��&-�1' � � ; < � L 	 � , with equality if

and only if & is a Nash equilibrium.

Proof. Suppose that in assignment & there are resources ?
and @ such that & F <F& G ' S . Let & � be the assignment
constructed from & by transferring a task from resource ? to
resource @ . ThenI �
&-� < I ��& � �

Q & KF < & �F K � & KG < & �G K
Q & KF < �
& KF < S & F � ;M� � & KG < �
& KG � S & G � ;M�
Q S & F < S & G < S Q S ��& F < & G � < S � /

Now suppose that, in some assignment & �
, resources ? and @

satisfy & �F ' & �G � / . Let & be the assignment constructed
from & �

by transferring a task from resource @ to resource ? .
Since �
& �F � ;#� < �
& �G <�;#�1' S , the above argument givesI �
& � � I ��& � � . We conclude that an assignment & with

maximum
I �
&-� must have all of the tasks in the same

resource, with
I �
& ��Q � K .

Furthermore, an assignment & with minimum
I �
& � must

have - & F < & G - � ; for all ? / @ . In this case there must be �
resources with loads of � � ; and 	)< � resources with loads
of � , where �OQ��M	 � � . SoI ��&-��Q � ��� � ; <��& � K � ��	 < � �C���%<��& � K

Q � : ; < �	 @ K � ��	�< � � : �	 @ K
Q � : ; < �	 @ B

Note that & is a Nash assignment if and only if - & F < & G - � ;
for all ? and @ . J
Combining Observation 3.5 and Corollary 3.3 we find that
there is a Q � � ��������� K � such that

� M.� I � E ��Q �1� ����S / 	 � �
; L�� / . Let 	 Q ��S /�/�	 � 
 ���'�
 < ���' . Let N � Q Q �
� ; /�	 K L � � .

LEMMA 3.6. Given any starting state
E �0/�� Q & , the

probability that
E �'N � � is a Nash equilibrium is at least � L�� .

Proof. The proof is based on a standard martingale argu-
ment, see [11]. Suppose that

I � E ��Q �1� � � S�/ 	 . Let� � Q I � E ��NA� Q �1� < � � ; < � L 	 � and let � � Q &(��2 � � � /�	H� .
Note that � & � ��S / 	 . Together, Observation 3.4 and Corol-
lary 3.5 tell us that

� �
is a supermartingale. This implies

that � � is also a supermartingale since

MN# � � 
 � -�� � Q�& I 	 $� M # � � 
 � - � � Q�& I 	 $ � � � Q�� � /
and MN# � � 
 � -�� � Q�	 $ ��	 Q�� � B
Together, Lemma 3.5 and Observation 3.5 tell us that if& � / ,

� M.� � � 
 � CQ � � - � � Q & � ' � . Thus, if/ I & I 	 ,� M#��� � 
 � CQ�� � -�� � Q &-�
Q � M#��&1��2 � � � 
 � /�	P��CQ � � - � � Q & �' � M#� � � 
 � CQ � ��� 	 CQ � � - � � Q & �
Q � M#� � � 
 � CQ � � - � � Q�&-� '
��B

Since � � 
 � <�� � is an integer, MN#���� � 
 � <�� � � K.- / I � � I	*$ ' � . Let � be the first time at which either (a) � � Q /
(i.e.,

E ��N � Q � is a Nash equilibrium), or (b) � � Q�	 . Note
that � is a stopping time. Define � � Q ��	 <�� � � K < � N , and
observe that � ��� � is a sub-martingale, where N � � denotes
the minimum of N and � . Let � be the probability that (a)
occurs. By the optional stopping theorem MN# � � $ � � & , so
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�1; < �-� 	 QFM # � � $N��� & and � ' ; < � & L 	 ' $� & . Also,
by the optional stopping theorem

� 	 K < ��MN# �O$
Q M #���	J< � � � K $ < �*MN# �O$�Q M # � � $ ' � &
Q ��	 <�� & �LK � / /

so MN# �O$ � � 	 K L � . Conditioning on (a) occurring, it follows
that MN# � - � � Q / $�� 	 K L � . Hence

� M.��� � ; / 	 K L � -� � Q+/�� � �� & . So, if we now run for ; / 	 K L � steps, then
the probability that we do not reach a Nash equilibrium is at
most

�
!#& � S Y �� & I ; L�� . J

Now we can give the proof of Theorem 3.1.

Proof. Subdivide time into intervals of N � steps. The prob-
ability that the process has not reached a Nash equilibrium
before the ��@%� ;M� st interval is at most � ; L�� � � G . J
4 Lower Bounds

THEOREM 4.1. Let
E �'N1� be the process in Figure 1 with

�>Q�	 . Let
E �0/�� be the assignment given by

E �0/�� Q
�'	 /%/ /.BCB.BD/%/A� . Let � be the first time at which

E ��N1� is a Nash
equilibrium. Then

� # � $-Q��C*�� ���P� � 	 �1� .
Proof. For an assignment & , let 	 & ��&-� denote the number
of resources ? with & F Q / . Thus, 	 & � E ��/��:� Q 	 < ; .
The (unique) Nash equilibrium & assigns one task to each
resource, so 	 & �
&-� Q+/ . Let : Q	� � 	�
 . We will show that
for any assignment & with 	 & ��&-� '�: ,� M.�'	 & � E ��N1�1� I : - E �'N < ;#��Q�&-� ���D*
� �1<��P� � 	 �1�DB
This implies the result.

Suppose
E ��N < ;#� Q & with 	 & ��&-� ' : . For conve-

nience, let 	 & denote 	 & ��&-� . Let & �
denote

E ��N1� , and let 	 �&
denote 	 & �
& � � . We will use the phrase “with very high prob-
ability” to mean with probability at least ; <��C*�� �1<��P� � 	 �:� .
We will show that, with very high probability, 	 �& '�: .

During the course of the proof, we will assume, where
necessary, that 	 is sufficiently large. This is without loss of
generality given the � notation in the statement of the result.

Case 1. 	 & ����: .
Consider the protocol in Figure 1. Let �>Q>,�� -& G � Q,/ 2 . � # - � - $ Q 	 & , so by a Chernoff bound, - � -9'

��	 & L S�� � ����	 & L � � with very high probability. Suppose this
is the case. Partition � into � �

and � K with - � � - Q ��	 & L S � .
Let
� Q�� � ��� � , @ � 2 . First, suppose - � - � !�

	 & . In that
case

- ,�@ -E& �G � / 2 - � 	 < - � � -.� �� 	 &
Q 	 < � 	 & L S�� � �� 	 & � 	 < : /

so 	 �& '�: . Otherwise, let � � Q ,�� )�� K -C@ � ) � 2 .
� #H- � � - $ Q+- � K - - � -

	 & ' �� � 	 & � �� : /
so by a Chernoff bound, with very high probability, - � � - ' : ,
which implies 	 �& ' : .

Case 2. : � 	 & ����: .
Consider the protocol in Figure 1. Let � be the set of

“loners” defined by � Q ,.? - & F Q ; 2 and let � Q - ��- . The
number of resources ? with & F � ; is 	�< 	 & < � and this is
at most half as many as the number of tasks assigned to such
resources (which is 	 < � ), so � ' 	 < S+	 & . Let � QJ, � -
? � ) � and & G � Q / 2 . � #H- � - $�Q � '��' ' Q ' � K '�� S '��' , so by a
Chernoff bound, - � - ' S � �! � '��' � with very high probability.
Suppose this is the case. Let � �

and � K be disjoint subsets
of � of size �

�
! �

'��' � . Order tasks in � arbitrarily and let � Q
, ��)�� - for some � � )�� with � � I � , @ ��� Q @ � . 2 . (Note that- � - does not depend on the ordering.) Let

� Q�� � ��� � ,�@ �D2 .
Note that if - � -G� �� � ' �' then - � - ' �K & � ' �' � ' �

!%& � �' � K .
Otherwise, let � � Q�,���)!� K -C@ � ) � 2 .

� #H- � � - $ Q+- � K - - � -
	 & ' 	 &S / V �	 X K /

so, with very high probability, - � � - ' ' �
!#& � �' � K / so - � -8''��

!#& � �' � K B
Suppose then that - � - ' ' �

!%& � �' � K B Assuming that 	 is
sufficiently large - � -�' : L � ; . Let 	 & Q"� � ��� , @ � 2 and	 � Q#� � �PO&�$� ,.? � 2 . Note that every resource in 	 & ��	 �
is used in & �

for some task � ) � . Thus, - 	 & � 	 � -2�
� < - � - . Let % Q ,.? - & F Q / 2&� � <�	 & <�	 �

. Then- % - ' 	 & � � < � � < - ��- �)' 	 & � - � - '�� ; � �
!
� �#: .

Let � Q ,���-M? � C) � / @ � )'%H2 . � # �O$-Q ��	�< �.�
� (��' and

� M V � ' - % -
; /	/&X

� V 	 < �� (��� &%& X V - % -
	WX � (�� � � &%& � V S+	 & �A;A/�/	 X � (�� � � &#& /

so with very high probability, � I - % - L ; /	/ . In that case,
	 �& ' - % -�� ; < �� &%& �)'�: . J

The following theorem provides a lower bound on the
expected convergence time regardless of which of the two
protocols is being used.

THEOREM 4.2. Suppose that � is even. Let
E �'N1� be the

process in Figure 2 with 	 Q S . Let
E ��/�� be the assignment

given by
E ��/A��Q ���0/%/A� . Let � be the first time at whichE �'N1� is a Nash equilibrium. Then

� # �O$HQ $%����������������� .
The same result holds for the process in Figure 1.

8



Proof. Note that both protocols have the same behaviour
since � is even and, therefore, the situation & � Q & K � ;cannot arise. For concreteness, focus on the protocol in
Figure 2.

Let � ��&-� Q &)(+* F & F < � L S and let � � Q�� � E �'N1�1� so� & Q � L S and, for a Nash equilibrium & , � �
&-� Q / . We
will show that for any assignment & ,

� M.��� � 
 � ��� �
&-� � � � & -E ��N1��Q &-� '�; <�� � � � !�
.

Suppose
E �'N1� Q=& is an assignment with & � '�& K . As

we have seen in Section 2, 3 � � K �
&-� (the number of migrations
from resource ; to resource S in the round) is a binomial
random variable

	 V & � / ;S�V ; < & K& � X^X Q�	 V � S ��� � / S�� �
� � S�� � X B

In general, let � � be the number of migrations from the most-
loaded resource in

E ��N1� to the least-loaded resource and note

that the distribution of � � is 	 : � K ��� � / K
	 �� 
 K
	 � @ with mean� � . If � � Q�� � � � or � � Q�� � < � then � � 
 � Q � . Thus� M#��� � 
 � ��� � � � &� ��Q � M#�%- � � < � # � � $P- ��� �%� � &� � .
Note that the mode of a binomial distribution is one

or both of the integers closest to the expectation, and the
distribution is monotonically decreasing as you move away
from the mode.� M#�
� � Q
� � �

Q V �K � ��� �� � X V S�� �
� � S�� � X 	 � V �

� � S�� � X �� �� M#�
� � Q
� � � @ �
Q V �K � ��� �� � � @ X : S�� �

� � S�� � @ 	 �

-G : �
� � S�� � @ ��

� � G
Suppose @ � / .� M.��� � Q
� � � @A�� M.��� � Q�� � �

Q : S�� �
� � S�� � @

G : �
� � S�� � @

� G YY : � �
� � �K � � ���� � � @ � � � �K � ��� � < ��� � � @ �1� � @
Q : S�� �� @ G :

G�� � �
�K � � ; < �� � � �

@
Q : S�� �� @ G :

G�� � � � � S < S��S�� � � S � @
� : S�� �� @ G :

G�� � � � < S.@S�� � � S.@ @
Q � : S�� �� @ : �J< S.@S�� � � SC@ @��

G
B

Similarly, for @ I / ,� M.��� � Q
� � � @A�� M.��� � Q
� � �
Q : S�� �� @ G :

� GT��� � � � � � ; < ��K � � �
@

Q : �S�� � @
� GT� : � GT��� � � S�� � � S < S �� � S �

@
� : �S�� � @

� GT� : S�� � < SG- @�-
� � S(- @�- @

� GT�
Q � : �S�� � @ : S�� � < SG- @�-

� � SG- @�- @��
� GT�

Q � : S�� �� @ : � < SC@S�� � � SC@ @��
G
B

So for all @ ,� M#�
� � Q�� � � @ �� M#�
� � Q
� � �
� � : S�� �� @ : �J< SC@S�� � � S.@ @��

G
Q�� : � �� � � @ @ : �J< SC@�

@�� G B
So, for all @ with - @�-���� � � !� , where � � � !� is the positive

fourth root of � � , this is at least

: � �
� � ��� � � !� @ 	 ������ : �J< S��

� �
!�

�
@ 	 ������

' : � �
� � ��� �%� !� @ 	 ������ : S�� � < S��

� �
!�

S�� � @ 	 ������
Q : � � <��

�%�
!�

� � ��� �%� !� @ 	 ������ Q
4 � � ��� �%� !� < S�� � � !�

� � ��� �%� !� 5 	 ������
Q

4
; < S�� � � !�
� � ��� � � !� 5 	 ������ ' 4

; < S��
�%�
!�
� � 5 	 ������

Q : ; < S�� � ! � !� @ 	 ������ ' ; < S�� � ! � !� � � � !�
Q ; < S�� � �%� K� ' ;S

where the last inequality just requires � � ' ;
� .
For - @ -�� � � � !� ,

� M.�
� � Q!� � � @ � ' �K � M.��� � Q"� � � ,
hence

� M#�
� � Q
� � � � S L � ;�� S�� � � !� � .
Since

� M.�
� � Q
� � � @A�O� � M#�
� � Q�� � � , it follows that� M.�
� � ) # � � <�� �%� � &� /#� � ��� � � � &� $��� � S�� � � � &� � ;#� � MC�
� � Q�� � � I ��� � ! � K &� B
We say that the transition from � � to � � 
 � is a “fast

round” if � � 
 � �"� � � � &�
(equivalently, it is a fast round if

9



� � ) # � � <�� �%� � &� / � � ��� �%� � &� $ ). Otherwise it is a slow round.
Recall that � & Q � L S . Let

� Q �
����� � & V ����� ��� & ������ � ;MS K & �"! � X�� B

If the first @ rounds are slow then � G '
� � & � >& . If @ � � then� � & � >& ' ;MS K & �"! so the probability that the transition from � G
to � G�
 � is the first fast round is at most � : � � & � >& @ � !"� K & �
; L�� .

Also, if @ I � then these probabilities increase geomet-
rically so that the ratio of the probability that the transition to� G�
 �

is the first fast round and the probability that the transi-
tion to � G is the first fast round is

� : � � & ��
 >�� ���& @ � ! � K &
� � � � & � >& � � ! � K & Q : � � & � > � � & ��
 >�� ���& @ !"� K &

' : � � & ��
 >�� ���& @ !"� K & ' ;MS ' S /
so 
�� � �G%� & � M.� trans. from � G to � G�
 � is the ; st fast round) �
S g-; L�� Q �K . Therefore, with probability at least ; L S , all
of the first � rounds are slow. In this case, (PM:� &1��2 � ��� � �
;
����Q $%�'�����������-��� �1� , which proves the theorem. J

We also have the following observation.

OBSERVATION 4.1. Let
E ��N1� be the process in Figure 2

with � Q 	 . Let
E ��/A� be the assignment given by

E �0/�� Q
� S /%/ /C;�/CBCB.B�/C;M� . Let � be the first time at which

E �'N1� is a
Nash equilibrium. Then

� # �O$ Q $%��	 � .
The observation follows from the fact that the state does

not change until one of the two tasks assigned to the first
resource chooses the second resource.

5 Conclusions

We have analyzed a very simple, strongly distributed rerout-
ing protocol for � tasks on 	 resources. We have proved
an upper bound of ��������������� � 	"!#� on the expected con-
vergence time (convergence to a Nash equilibrium), and for
� � 	

!
an upper bound of ������������������� on approximate

convergence time. Our lower bound of $%���������������T��	 �
matches the upper bound as function of � . We have also
shown an exponential lower bound on the convergence time
for a related protocol that allows “neutral moves”.
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