
Computing Rational Radical Sums in Uniform TC0

Paul Hunter1, Patricia Bouyer2, Nicolas Markey2, Joël Ouaknine1,
and James Worrell1

1 Oxford University Computing Laboratory, UK
{paul.hunter,joel.ouaknine,james.worrell}@comlab.ox.ac.uk

2 Lab. Spécification et Vérification, CNRS & ENS Cachan, France
{bouyer,markey}@lsv.ens-cachan.fr

Abstract
A fundamental problem in numerical computation and computational geometry is to determine
the sign of arithmetic expressions in radicals. Here we consider the simpler problem of deciding
whether

∑m
i=1 CiA

Xi
i is zero for given rational numbers Ai, Ci, Xi. It has been known for

almost twenty years that this can be decided in polynomial time [2]. In this paper we improve
this result by showing membership in uniform TC0. This requires several significant departures
from Blömer’s polynomial-time algorithm as the latter crucially relies on primitives, such as gcd
computation and binary search, that are not known to be in TC0.

Keywords and phrases Sum of square roots, Threshold circuits, Complexity

1 Introduction

The SqrtSum problem is as follows: given integers a1, . . . , an, b1, . . . , bm, is it the case
that

∑n
i=1
√
ai −

∑m
i=1
√
bi > 0? This problem naturally arises in computational geometry

whenever one needs to compare the length of two paths, as in the Euclidean Travelling
Salesman Problem [8, 14] for example.

SqrtSum can be solved in polynomial time on a unit-cost RAM, i.e., counting only the
number of algebraic operations [18]: one simply uses numerical methods to compute each
root to a sufficient degree of accuracy. However the problem is not known to be in P when
one accounts for the bit complexity of arithmetic operations. Hence certain ostensibly simple
problems in computational geometry, such as computing minimal spanning trees, are not
known to be in P. Moreover since SqrtSum is not even known to be in NP it is also not
known whether the Euclidean Travelling Salesman problem is in NP.

The difficulty in solving SqrtSum hinges on the fact that the best root separation bounds
to hand require that one compute a super-polynomial number of bits of the expression∑n
i=1
√
ai−

∑m
i=1
√
bi to determine its sign. The question of determining optimal separation

bounds was posed at least as far back as [13]. More recent work on the problem includes [15,
16, 3, 5]; also [12] presents a conjecture that would imply P-membership of SqrtSum.

SqrtSum has found applications in numerical decision problems outside the area of
computational geometry. For instance, it has recently been used as a complexity lower bound
for several problems related to recursive probabilistic systems. Etessami and Yannakakis [7]
show that SqrtSum is reducible in polynomial time to the problem of determining whether
a stochastic context-free grammar produces a terminal string with probability greater than
a given threshold. This latter problem is in turn equivalent to the reachability problem
for a certain subclass of probabilistic pushdown automata [7]. In another paper Etessami
and Yannakakis [6] consider a range of algorithmic problems in game theory and economics,
several of which are shown to be as hard as SqrtSum. For example, SqrtSum can be
reduced to various decision problems concerning Nash Equilibria and the value of Shapley
stochastic games.

© Bouyer, Hunter, Markey, Ouaknine, Worrell;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Computing Rational Radical Sums in Uniform TC0

Since the decision problem for the existential fragment of the first-order theory of real-
closed fields is known to be in Pspace [4], it is straightforward that SqrtSum is also in
Pspace. A more general problem than SqrtSum is the problem PosSLP of determin-
ing whether an arithmetic circuit over the basis {+,−, ∗} evaluates to a positive integer.
PosSLP was shown to lie in the 4th level of the counting hierarchy [1]. To the best of our
knowledge this result also yields the best upper bound for SqrtSum.

The subject of this paper involves upper bounds for the easier problem SqrtSumEQ:
given integers a1, . . . , an, b1, . . . bm, does

∑n
i=1
√
ai−

∑m
i=1
√
bi = 0? This problem is also of

key importance in numerical analysis and exact geometric computation, as discussed in [20].
SqrtSumEQ is apparently more tractable than SqrtSum; a polynomial-time decision pro-
cedure has been given by Blömer [2]. In fact [2] gives a polynomial-time algorithm for a
more general problem in which one considers arbitrary integer roots rather than just square
roots, and with arbitrary rational coefficients in front of the radicals (i.e., not just 1 or −1
as in SqrtSumEQ).

In this paper we consider a further generalisation of SqrtSumEQ, where we allow any
rational exponent (less than 1) rather than exponents of the form 1

N for N a positive integer.
In particular, we are interested in the following problem:

RadicalSumEQ
Instance: Rational numbers Ci, Ai, Xi for 1 ≤ i ≤ m with Ai > 0 and

0 ≤ Xi ≤ 1
Problem: Does

∑m

i=1 CiA
Xi
i = 0?

Our main result is that RadicalSumEQ has very low complexity within P, and can be
solved with fixed-depth circuits consisting of AND, OR, and threshold gates of unbounded
fan-in:

I Theorem 1. RadicalSumEQ ∈ uniform TC0.

The notion of uniformity referred to above is DLogtime-uniformity, which is the stron-
gest uniformity requirement that is generally applicable.

Our TC0 procedure adapts Blömer’s polynomial-time algorithm for comparing radical
expressions [2] and exploits the fact that division and iterated multiplication are in uniform
TC0; see [9, 10]. However we depart from [2] in several critical respects. Firstly [2] only
considers the case of exponents of the form 1

N . Whilst AM
N can be rewritten as (AM ) 1

N , the
rational AM cannot in general be explicitly computed in polynomial time and it is not clear
how to apply Blömer’s algorithm without doing so. Secondly at various points Blömer’s
algorithm requires the computation of the greatest common divisor of two numbers (specif-
ically, denominators in the exponents) and binary search (to find integer d-th roots), two
techniques not known to be in TC0: indeed it is an open problem whether gcd computation
is even in NC1 [11].

One of the consequences of our work is that, unless TC0 = P, SqrtSumEQ has strictly
lower complexity than EqSLP, the problem of determining whether an arithmetic circuit
over the basis {+,−, ∗} evaluates to zero or not. Indeed, the latter is easily seen to be
P-hard, by reduction from the circuit value problem. In contrast, it is still open whether
SqrtSum has the same complexity as PosSLP or not.

The paper is organised as follows. In Section 2 we recall the definitions and notation we
use throughout the paper. In Section 3 we present two procedures necessary for our main
algorithm. The first of these procedures is a restatement of a known result but presented in
a form suitable for our needs. The second shows how to compute the ratio of two radicals



Hunter, Bouyer, Markey, Ouaknine, Worrell 3

in uniform TC0, a result which we believe to be of independent interest. In Section 4
we present our main algorithm for deciding RadicalSumEQ, and in Section 5 we discuss
further extensions of the problem.

2 Preliminaries

Throughout this paper we assume familiarity with standard notions of circuit complexity;
an excellent reference on the subject is [19].

Recall that a circuit family {Cn} is DLogtime-uniform if there is a deterministic Turing
machine that, given n and the name of a gate g, can determine g’s label and neighbours in
time O(logn).

In the sequel we always use n to represent the input size. In particular, we assume
integers provided as part of the input to have absolute value bounded above by 2n, and for
there to be at most n terms in the sum (that is, m ≤ n). This means the actual input size
is O(n2), however this does not affect the overall result as the class TC0 is closed under
polynomial changes in input size. As is customary in this area of circuit complexity, we call
nO(1)-bit numbers large and denote them with uppercase letters, and we say (logn)O(1)-bit
numbers are small and use lowercase letters to represent them.

We assume rational numbers are represented as ratios of two (not necessarily co-prime)
integers. Whilst we do not require the rational numbers to be in reduced form, we use the
fact that the size required to represent a rational number is bounded below by the size of
its reduced form. For A ∈ Q, we define ||A|| := |M ·N | where M

N = A and gcd(M,N) = 1.
The height of A is defined as ht(A) := 1 + log ||A||. It is clear that ||A|| = min |M ·N | where
the minimum is taken over all representations of A as M

N , thus the height of A provides a
lower bound on the number of bits required to represent A.

The following properties of ||·|| will prove useful:

I Lemma 2. For A,B ∈ Q and X,Y ∈ R:
1. If AX ∈ Q then

∣∣∣∣AX ∣∣∣∣ = ||A|||X|, in particular
∣∣∣∣ 1
A

∣∣∣∣ = ||A||.
2. If AX ·BY ∈ Q then

∣∣∣∣AX ·BY ∣∣∣∣ ≤ ||A|||X| · ||B|||Y |.
Proof. For the first result, consider first X ≥ 0. Let A = M

N where gcd(M,N) = 1. Clearly,∣∣∣∣AX ∣∣∣∣ = |MX · NX | = |M · N |X = ||A||X . To extend the result to X < 0 we observe from
the symmetry of the definition of ||·|| that ||A|| =

∣∣∣∣A−1
∣∣∣∣. Hence

∣∣∣∣AX ∣∣∣∣ =
∣∣∣∣(A−1)|X|

∣∣∣∣ =∣∣∣∣A−1
∣∣∣∣|X| = ||A|||X|.

For the second result, we observe that for A = 0 the result holds trivially and for A = 1
the result follows from the first part of the proof. So assume A 6= 0, 1 and let c = logB

logA .
Since Ac = B, it follows from the above result that ||A|||c| = ||Ac|| = ||B||. Therefore,∣∣∣∣AX ·BY ∣∣∣∣ =

∣∣∣∣AX+cY
∣∣∣∣

= ||A|||X+cY | (from the first result)
≤ ||A|||X|+|c|·|Y | (by the triangle inequality)
= ||A|||X| · ||B|||Y | as required.

J

We will make use of some standard parallel algorithms and techniques known to be
computable in uniform TC0, notably:

Existential guessing between nO(1) choices (in particular, guessing small integers),
Universal (parallel) computation amongst nO(1) choices,



4 Computing Rational Radical Sums in Uniform TC0

Addition (and subtraction) of n n-bit numbers, and
Iterated multiplication of n n-bit numbers and integer division of two n-bit numbers [9].

For ease of reference, in each term CiA
Xi
i , Ci is the coefficient, Ai is the base, Xi is the

exponent and AXii is the radical (even though it may be rational).

3 TC0 Tools

In this section we present two TC0-procedures necessary for our algorithm. The first of
these concerns determining whether an integer root of a given rational is itself rational,
and if so, computing the root. The result follows from observations in [10] and [17] that
functions given by a convergent power series, in particular A 1

k , can be approximated using
iterated multiplication. We present it here in a form appropriate for our needs: computing
the value if it is rational or failing if it is not rational. The algorithm uses the power series
approximation to compute an approximant to sufficiently high accuracy and then tests if this
estimation is the true value of the root by exponentiation. As we are dealing with rationals,
it initially appears that some care is needed in extracting the approximant. However, as
ht(A 1

k ) ≤ ht(A), if A 1
k is rational, its binary expansion will repeat after O(ht(A)) bits. Thus

to find an approximant it suffices to compute polynomially many bits to find the period of its
binary expansion and then compute the rational using standard techniques. The situation
appears clearer in the case of the integers: after sufficiently many computed bits we truncate
our approximation and consider the integers around the value computed; but this is simply
the rational case shifted by a factor of 2O(n). Nevertheless, as the technique for extracting the
approximant in the integer case is simpler, we adopt this procedure (see Lemma 3) for root
computation and extend it to rationals (in Algorithm 2) by rationalising the denominator.

I Lemma 3. Let a be a (logn)-bit positive integer and B be an n-bit positive integer. There
exists a uniform TC0-algorithm which computes a

√
B if it is an integer or fails if it is not

an integer.

Proof. As mentioned above, the idea of the algorithm (presented in Algorithm 1) is to
compute an integer approximation (technically three approximations) to a

√
B and then check

if the a-th power of the approximant is equal to B. The steps which are not clearly in uniform
TC0 are the computation of the first n bits of a

√
B, and the evaluation of the antecedent

in the if statement. Membership of TC0 for the computation of R follows from the result
of [10] (Corollary 6.5) that polynomially many bits of X 1

k can be computed in uniform
TC0. For the antecedent, iterated multiplication can be used to compute R̂a, (R̂+ 1)a, and
(R̂− 1)a in uniform TC0. To show correctness, we observe that as a ≥ 1, ht( a

√
B) ≤ ht(B),

and so a
√
B requires at most n bits if it is an integer. Thus |R̂ − a

√
B| ≤ 1, and the only

possible integral values for a
√
B are R̂− 1, R̂, or R̂+ 1. J

Although our final algorithm does not require the computation of large roots, the extension
is trivial as a consequence of the following observation.

I Lemma 4. Let A ∈ Z, B ∈ Q, A,B > 0, B 6= 1. If A
√
B ∈ Q then A < ht(B).

Proof. Let B = M
N where gcd(M,N) = 1. As B 6= 1 there exists a prime p such that p|M

or p|N . Assume without loss of generality p|M . As A
√
B =

A√
M

A√
N

is rational we have pA|M .
As M < 2ht(B) and p ≥ 2, it follows that A < ht(B). J

Our algorithm for computing roots of rationals is presented in Algorithm 2.



Hunter, Bouyer, Markey, Ouaknine, Worrell 5

Algorithm 1 Computing integer roots
Input: n, a,B ∈ Z, 0 < a < n, 0 ≤ B < 2n
Returns: a

√
B or Fail if a

√
B /∈ Z.

Compute R, the first n bits of a
√
B

Let R̂ = bRc
if (R̂− 1)a = B or R̂a = B or (R̂+ 1)a = B then
return (R̂− 1), R̂, or (R̂+ 1) as appropriate

else
return Fail

end if

I Proposition 5. For A ∈ Z, B ∈ Q, A,B > 0 there exists a uniform TC0-algorithm which
computes A

√
B if it is rational or fails if it is irrational.

Algorithm 2 Computing rational roots

Input: A ∈ Z, B = M
N ∈ Q, A,B > 0

Returns: A
√
B or Fail if A

√
B /∈ Q.

if B = 1 then
return 1

else if A ≥ ht(B) then
return Fail

else
Compute C = A

√
M ·NA−1

if C /∈ Z then
return Fail

end if
return C

N

end if

The second algorithm of this section, presented in Algorithm 3, overcomes the difficulties
with Blömer’s procedure for computing the ratio of two radicals.

The core of the correctness of Algorithm 3 is presented in the following lemma; if the
ratio of two radicals is rational then one of two cases occurs, either the bases are powers of
some common base, or the exponents have low height relative to their value. It is this case
split that forms the basis of our algorithm: in the first case we can existentially guess the
powers of the common base, and in the second we can guess reduced forms for X and Y and
apply the algorithm of Blömer.

I Lemma 6. For A,B,X, Y ∈ Q>0 if A
X

BY
∈ Q then either:

There exists Q ∈ Q and α, β ∈ Z with αX − βY ∈ Z such that A = Qα and B = Qβ, or
||X|| < 4ht(A)ht(B)2(X·ht(A) + Y ·ht(B)) and
||Y || < 4ht(A)2ht(B)(X·ht(A) + Y ·ht(B)).

Proof. Suppose AX

BY
= M ∈ Q. From Lemma 2 we observe that ||M || =

∣∣∣∣∣∣AXBY ∣∣∣∣∣∣ ≤ ||A||X ||B||Y ,
so ht(M) < X·ht(A) + Y ·ht(B). Let A =

∏
paii , B =

∏
pbii and M =

∏
pmii where for all i,

pi is prime and ai, bi,mi ∈ Z. We observe that |ai| < ht(A), |bi| < ht(B) and |mi| < ht(M).
Consider the (integral) vectors a = (ai), b = (bi), and m = (mi). By equating prime powers



6 Computing Rational Radical Sums in Uniform TC0

Algorithm 3 Computing rational radical ratios
Input: A,B,X, Y ∈ Q, A,B > 0, X,Y ∈ [0, 1]
Returns: AX

BY
or Fail if A

X

BY
/∈ Q

Let n = max{ht(A),ht(B),ht(X),ht(Y )}
Existentially guess non-negative integers a, b < n

if aX − bY ∈ Z and Q = a
√
A = b

√
B ∈ Q† then

return QaX−bY

end if
Existentially guess non-negative integers x, x′, y, y′ < 8n4

if X = x
x′ and Y = y

y′ then
Let z = gcd(x′, y′), x′′ = x′

z , and y
′′ = y′

z

Let RA = x′′
√
Ax and RB = y′′

√
By

if RA ∈ Q and RB ∈ Q and R = z

√
RA
RB
∈ Q then

return R

end if
end if
return Fail

† We allow the equality to hold here if a = 0 and A = 1 or if b = 0 and B = 1, setting Q = 1 if a = b = 0
and A = B = 1.

we have

aX = m + bY · (∗)

We consider two cases.
Case 1: a and b are linearly dependent (over Q). In this case, there exist integers k and

l (not necessarily co-prime) and an integral vector q = (qi) such that ai = k · qi, bi = l · qi
and the qi have no common factor. From (∗), m = (kX − lY )q. As m is integral and the
qi have no common factor, it follows that (kX − lY ) = c ∈ Z. Setting Q =

∏
pqii we have

A = Qk, B = Ql, M = Qc and kX = c+ lY .
Case 2: a and b are linearly independent (over Q). In this case, there exist i 6= j such

that the vectors (ai, aj) and (bi, bj) are linearly independent. It therefore follows that X
and Y satisfying (∗) are unique. Indeed X = bimj−bjmi

biaj−bjai and Y = aimj−ajmi
biaj−bjai . Thus

||X|| =
∣∣∣∣∣∣∣∣bimj − bjmi

biaj − bjai

∣∣∣∣∣∣∣∣
≤ ||bimj − bjmi|| · ||biaj − bjai||
= |bimj − bjmi| · |biaj − bjai|
≤ (|bimj |+ |bjmi|)(|biaj |+ |bjai|) (by the triangle inequality)
< (2ht(B)ht(M))(2ht(B)ht(A))
< 4ht(A)ht(B)2(X·ht(A) + Y ·ht(B)),

and likewise ||Y || < 4ht(A)2ht(B)(X·ht(A) + Y ·ht(B)). J

When Case 1 of Lemma 6 holds, it is clear Algorithm 3 correctly computes the ratio AX

BY
;

the bounds on X and Y ensure that QaX−bY can be evaluated with iterated multiplication.
To complete the correctness result we need to show the correctness of the algorithm when
Case 2 of the above lemma occurs. This follows directly from the following result observed
by Blömer [2]:



Hunter, Bouyer, Markey, Ouaknine, Worrell 7

I Lemma 7. For q1, q2 ∈ Q, d1, d2 ∈ N, the following are equivalent:
d1
√
q1

d2
√
q2
∈ Q

If d = gcd(d1, d2) then
ri = di

√
qdi ∈ Q for i = 1, 2, and

d

√
r1
r2
∈ Q.

It is straightforward to show that Algorithm 3 can be implemented with a uniform TC0

circuit. The non-obvious steps are in the computation of Q, RA, RB and R where we use
Algorithm 2, and the computation of z which can be calculated because x′ and y′ are small1.
Lemmas 6 and 7 establish the correctness of the algorithm, giving us the following:

I Theorem 8. Let A,B,X, Y ∈ Q, with A,B > 0, X,Y ∈ [0, 1]. There exists a uniform
TC0-algorithm which computes the ratio AX

BY
if it is rational, or fails if it is irrational.

We note that in Theorem 8 we only need the upper bound on X and Y to compute
the ratio: in the first case of Lemma 6 the bound ensures that QaX−bY is computable using
iterated multiplication, and in the second case the bound ensures that ||X|| and ||Y || are small.
If instead we were provided with the ratio M and simply asked to check if AX = MBY ,
we no longer require the bound on X and Y : in the first case aX − bY ≤ ht(M) and in
the second case we can use the bounds obtained in terms of ht(A), ht(B), and ht(M). This
gives us the following additional result:

I Theorem 9. For A,B,M,X, Y ∈ Q≥0, whether AX = MBY can be decided in uniform
TC0.

4 Deciding RadicalSumEQ in TC0

In this section we present our TC0-algorithm for deciding RadicalSumEQ. Critical to our
algorithm is the following result presented in Blömer:

I Lemma 10 (Theorem 4 of [2]). For ρi ∈ Q, di ∈ N, 1 ≤ i ≤ m, the radicals d1
√
ρ1, . . . , dm

√
ρm

are linearly independent over Q if they are pairwise linearly independent.

Clearly this result extends to arbitrary rational exponents, giving the following procedure
(also presented in [2]) for determining if S =

∑m
i=1 CiA

Xi
i = 0. Using Algorithm 3 partition

the terms of S into linearly dependent groups S1, . . . , Sm′ . For convenience let us assume
CiA

Xi
i ∈ Si for 1 ≤ i ≤ m′. Again using Algorithm 3, replace each term in each group by

the rational multiple of some common radical. For example, if CjA
Xj
j ∈ Si, replace it with

CjRijA
Xi
i where Rji = A

Xj
j

A
Xi
i

is computed with Algorithm 3. Then S can be written as

S =
m′∑
i=1

∑
j

CjRji

AXii

where j in the inner sum runs over all indices of terms in Si. From the above result,
as AX1

1 , . . . , A
Xm′
m′ are pairwise linearly independent, they form a linearly independent set.

Thus S = 0 if and only if
∑
j Cj · Rji = 0 for all i, 1 ≤ i ≤ m′, and this is easily checked.

To simplify the parallelisation of this algorithm, rather than gathering linearly dependent
terms under a common radical, we treat each radical as the common radical, repeating the
coefficient check several times. The full algorithm is specified in Algorithm 4.

1 Existentially guess z and verify in parallel that it is the greatest of all common divisors of x′ and y′.



8 Computing Rational Radical Sums in Uniform TC0

Algorithm 4 Deciding RadicalSumEQ
Input: {Ai, Ci, Xi : 1 ≤ i ≤ m} ⊆ Q with Ai > 0 and Xi ∈ [0, 1]
Returns: True if and only if

∑m
i=1 CiA

Xi
i = 0

for all i, j ≤ m do
Let Rij = A

Xi
i

A
Xj
j

if Rij /∈ Q then
Let Rij = 0

end if
end for
for all j ≤ m do
if
∑m
i=1 CiRij 6= 0 then

return False
end if

end for
return True

The only step of Algorithm 4 which is not clearly in uniform TC0 is the computation
of Rij . Theorem 8 establishes its membership in TC0. The correctness of the algorithm
follows from Lemma 10 and the discussion above. Combining these together gives our main
result.

I Theorem 1. RadicalSumEQ ∈ uniform TC0.

5 Further Work

It is clear from Lemma 6 that we can extend Algorithm 3 (and hence Algorithm 4) to
exponents bounded (in value) by some polynomial in n. This raises the question of whether
we can remove the upper bound on the exponents completely. Theorem 9 shows that we
can do so in the special case where m = 2. By rewriting AX as AbXc·A{X} where {X}
denotes the fractional part of X, we can absorb the “rational part” AbXc of the radical into
the coefficient, and run our algorithm up to the point where we check if

∑m
i=1 CiRij = 0.

Thus we have reduced the problem to deciding if a given rational-valued point is a root
of a sparse, multivariate polynomial (a natural sub-instance of the unbounded version of
RadicalSumEQ). Whether or not this problem is in TC0, or even in P, is part of ongoing
work.

References

1 Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On
the complexity of numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.

2 Johannes Blömer. Computing sums of radicals in polynomial time. In Proceedings of the
32nd Annual Symposium on Foundations of Computer Science, pages 670–677. IEEE, 1991.

3 C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation bound for
real algebraic expressions. Algorithmica, 55(1):14–28, 2009.

4 John F. Canny. Some algebraic and geometric computations in PSPACE. In Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pages 460–467. ACM,
1988.



Hunter, Bouyer, Markey, Ouaknine, Worrell 9

5 Qi Cheng, Xianmeng Meng, Celi Sun, and Jiazhe Chen. Bounding the sum of square roots
via lattice reduction. Math. Comput. (to appear), 2010.

6 Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and other
fixed points (extended abstract). In Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science, pages 113–123. IEEE Computer Society, 2007.

7 Kousha Etessami and Mihalis Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations. J. ACM, 56(1):1–66, 2009.

8 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

9 William Hesse. Division is in uniform TC0. In Proceedings of the 28th International
Colloquium on Automata, Languages and Programming, volume 2076 of Lecture Notes in
Computer Science, pages 104–114. Springer, 2001.

10 William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth
threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci., 65:695–
716, 2002.

11 Yu Lin-Kriz and Victor Y. Pan. On parallel complexity of integer linear programming, gcd
and the iterated mod function. In Proceedings of the Third Annual Symposium on Discrete
Algorithms, pages 124–137. ACM/SIAM, 1992.

12 Gregorio Malajovich. An effective version of Kronecker’s theorem on simultaneous Dio-
phantine approximation. Preprint, 2001.

13 Joseph O’Rourke. Advanced problem 6369. Amer. Math. Monthly, 88(10):769, 1981.
14 Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete.

Theor. Comput. Sci., 4(3):237–244, 1977.
15 Sylvain Pion and Chee Yap. Constructive root bound method for k-ary rational input

numbers. Theor. Comput. Sci., 369(1-3):361–376, 2006.
16 Jianbo Qian and Cao An Wang. How much precision is needed to compare two sums of

square roots of integers? Inf. Process. Lett., 100(5):194–198, 2006.
17 John H. Reif and Stephen R. Tait. On threshold circuits and polynomial computation.

SIAM J. of Comput., 21:896–908, 1992.
18 Prasoon Tiwari. A problem that is easier to solve on the unit-cost algebraic RAM. J.

Complexity, 8(4):393–397, 1992.
19 Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer,

1999.
20 Chee K. Yap. Robust geometric computation. In Jacob E. Goodman and Joseph O’Rourke,

editors, Handbook of Discrete and Computational Geometry, chapter 41, pages 927–952.
Chapman & Hall/CRC, 2nd edition, 2004.


	Introduction
	Preliminaries
	TC0 Tools
	Deciding RadicalSumEQ in TC0
	Further Work

