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Abstract. We consider the extension of the last-in-first-out graph search-
ing game of Giannopoulou and Thilikos to digraphs. We show that all
common variations of the game require the same number of searchers,
and the minimal number of searchers required is one more than the
cycle-rank of the digraph. We also obtain a tight duality theorem, giving
a precise min-max characterization of obstructions for cycle-rank.

1 Introduction

Graph searching games are increasingly becoming a popular way to characterize,
and even define, practical graph parameters. There are many advantages to a
characterization by graph searching games: it provides a useful intuition which
can assist in constructing more general or more specific parameters; it gives
insights into relations with other, similarly characterized parameters; and it is
particularly useful from an algorithmic perspective as many parameters associ-
ated with such games are both structurally robust and efficiently computable.

One of the most common graph searching games is the node-search game.
In this game several searchers and one fugitive occupy vertices of the graph and
make simultaneous moves. The (omniscient) fugitive moves along searcher-free
paths of arbitrary length whereas the searchers’ movements are not constrained
by the topology of the graph. The goal of the game is to minimize the number of
searchers required to capture the fugitive by cornering him in some part of the
graph and placing a searcher on the same vertex. This game has been extensively
studied [5] and several important graph parameters such as treewidth [18], path-
width [12], and tree-depth [15] can be characterized by natural variants of this
game. One variation frequently used, indeed the one which separates treewidth
and pathwidth, is whether the location of the fugitive is known or unknown to
the searchers. Another common variation is whether the searchers use a mono-
tone or a non-monotone searching strategy. Monotone search strategies lead
to algorithmically useful decompositions, whereas non-monotone strategies are
more robust under graph operations and hence reflect structural properties, so
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showing that monotone strategies require no more searchers than non-monotone
strategies is an important and common question in the area. Whilst node-search
games on undirected graphs tend to enjoy monotonicity [4, 18, 14], on digraphs
the situation is much less clear [2, 1, 13].

Node-search games naturally extend to digraphs, however, in the transla-
tion another variation arises depending on how one views the constraints on
the movement of the fugitive. One interpretation is that in the undirected case
the fugitive moves along paths, so the natural translation would be to have the
fugitive move along directed paths. Another view is that the fugitive moves to
some other vertex in the same connected component, and here the natural trans-
lation would be to have the fugitive move within the same strongly connected
component. Both interpretations have been studied in the literature, the former
giving characterizations of parameters such as DAG-width [3, 16] and directed
pathwidth [2] and the latter giving a characterization of directed treewidth [11].

In [9], Giannopoulou and Thilikos define a variant of the node-search game
in which only the most recently placed searchers may be removed; that is, the
searchers must move in a last-in-first-out (LIFO) manner. They show that the
visibility of the fugitive is not relevant to the minimum number of searchers
required, the game is monotone, and that it characterizes tree-depth. In this
paper we consider the extension of this game to digraphs.

We generalize the results of Giannopoulou and Thilikos by showing that the
minimum number of searchers required to capture a fugitive on a digraph with
a LIFO-search is independent of:

– Whether the fugitive is invisible or visible,
– Whether the searchers use a monotone or non-monotone search, and
– Whether the fugitive is restricted to moving in searcher-free strongly con-

nected sets or along searcher-free directed paths.

This result is somewhat surprising: in the standard node-search game these op-
tions give rise to quite different parameters [2, 3, 13].

We show that on digraphs the LIFO-search game also characterizes a pre-
existing measure, cycle-rank – a generalization of tree-depth to digraphs (though
as the definition of cycle-rank predates tree-depth by several decades, it is per-
haps more correct to say that tree-depth is an analogue of cycle-rank on undi-
rected graphs). The cycle-rank of a digraph is an important parameter relating
digraph complexity to other areas such as regular language complexity and asym-
metric matrix factorization. It was defined by Eggan [6], where it was shown to
be a critical parameter for determining the star-height of regular languages, and
interest in it as an important digraph parameter, especially from an algorithmic
perspective, has recently been rekindled by the success of tree-depth [7, 10, 8].

It is well known that tree-depth can also be characterized by a node-search
game where a visible fugitive plays against searchers that are only placed and
never moved [8]. In that paper, Ganian et al. considered one extension of this
game to digraphs. Here we consider the other natural extension, where the visible
fugitive moves in strongly connected sets, and show that it also characterizes
cycle-rank.



Our final result uses these graph searching characterizations to define a dual
parameter that characterizes structural obstructions for cycle-rank. We consider
two obstructions, motivated by the shelters of [9] and the havens of [11], that
define simplified strategies for the fugitive. The game characterization then im-
plies that these structural features are necessarily present when the cycle-rank
of a graph is large. By showing that such strategies are also sufficient for the
fugitive, we obtain a rare instance of an exact min-max theorem relating digraph
parameters.

The results of this paper can be summarized with the following characteri-
zations of cycle-rank.

Main Theorem. Let G be a digraph, and k a positive integer. The following
are equivalent:

(i) G has cycle-rank ≤ k − 1,
(ii) On G, k searchers can capture a fugitive with a LIFO-search strategy,
(iii) On G, k searchers can capture a visible fugitive restricted to moving in

strongly connected sets with a searcher-stationary search strategy,
(iv) G has no LIFO-haven of order > k, and
(v) G has no strong shelter of thickness > k.

The paper is organised as follows. In Section 2 we recall the definitions and
notation that we use throughout the paper. In Section 3 we define the LIFO-
search and searcher-stationary games and show that they characterize cycle-
rank. In Section 4 we prove the min-max theorem for cycle-rank, and in Section 5
we conclude with a discussion on further research and open problems.

2 Preliminaries

All (di)graphs in this paper are finite, simple, directed and without self-loops,
although the results readily extend to multigraphs with self-loops. For simplic-
ity, we also assume that all digraphs contain at least one vertex unless explicitly
mentioned. We use standard notation and terminology, in particular V (G) and
E(G) denote the sets of vertices and edges respectively of a digraph G and be-
tween digraphs, ⊆ denotes the subgraph relation. We will often interchange an
induced subgraph with the set of vertices which defines it, in particular strongly
connected sets of vertices are sets of vertices that induce a strongly connected
subgraph, and we will often view strongly connected components as sets of ver-
tices. Given a digraph G and a set of vertices X ⊆ V (G), we use G\X to denote
the subgraph of G induced by V (G) \ X. An initial component of a digraph G
is a strongly connected component C with no edges from G \ C to C. H ⊆ G is
successor-closed if there are no edges in G from H to G \ H.

Given a finite set V , we use V ∗ to denote the set of finite words over V , and
V <k to denote the set of words over V of length < k. We use ǫ to denote the
empty word and · or juxtaposition to denote concatenation. For X,Y ∈ V ∗ we
write X � Y if X is a prefix of Y , that is if there exists a word Z ∈ V ∗ such that



Y = X ·Z. For X = a1a2 · · · an ∈ V ∗, we use |X| to denote the length of X, and
{|X|} to denote the set {a1, a2, . . . , an}. Given two sets A and B we use A∆B to
denote their symmetric difference, that is A∆B = (A∪B)\ (A∩B). Given a set
S ⊆ P(V ) of subsets of V , a ⊆-chain is a subset {X1, . . . ,Xn} ⊆ S such that
X1 ⊆ X2 ⊆ · · · ⊆ Xn. If there is no Y ∈ S such that Y ⊂ X1, Xi ⊂ Y ⊂ Xi+1

for some i, or Xn ⊂ Y , then {X1, . . . ,Xn} is a maximal ⊆-chain.
The cycle-rank of a digraph G, cr(G), is defined as follows:

– If G is acyclic then cr(G) = 0.
– If G is strongly connected then cr(G) = 1 + minv∈V (G) cr(G \ {v}).
– Otherwise cr(G) = maxH cr(H) where the maximum is taken over all strongly

connected components H of G.

3 Searching games for cycle-rank

We begin by formally defining the LIFO-search game, and its variants, for di-
graphs. Each variation of the LIFO-search game gives rise to a digraph parameter
corresponding to the minimum number of searchers required to capture the fugi-
tive under the given restrictions. The main result of this section is that for any
digraph all these parameters are equal. Furthermore, we show they are all equal
to one more than the cycle-rank of the digraph.

3.1 LIFO-search for digraphs

In summary, for the graph searching game in which we are interested the fugi-
tive can run along searcher-free directed paths of any length, the searchers can
move to any vertex in the graph, and the fugitive moves whilst the searchers
are relocating. The only restriction we place on the searchers is that only the
most recently placed searchers may be removed. If a searcher is placed on the
fugitive then he is captured and the searchers win, otherwise the fugitive wins.
The goal is to determine the minimum number of searchers required to capture
the fugitive. For simplicity we assume that each searcher move consists of ei-
ther placing or removing one searcher and observe that this does not affect the
minimum number of searchers required to capture the fugitive. The variants we
are primarily interested in are whether the searchers use a monotone or a non-
monotone strategy, whether the fugitive is visible or invisible, and whether or
not the fugitive must stay within the same strongly connected component when
he is moving. As our fundamental definitions are dependent on these latter two
options, we define four game variants: i, isc, v, vsc, corresponding to the vis-
ibility of the fugitive and whether he is constrained to moving within strongly
connected components, and parameterize our definitions by these variants.

Let us fix a digraph G. A position in a LIFO-search on G is a pair (X,R)
where X ∈ V (G)∗ and R is a (possibly empty) induced subgraph of G \ {|X|}.
Intuitively X represents the position and ordered placement of the searchers and
R represents the part of G that the fugitive can reach (in the visible case) or



the set of vertices where he might possibly be located (in the invisible case). We
say a position (X,R) is an i-position if R is successor-closed; an isc-position if
it is a union of strongly connected components of G \ {|X|}; a v-position if R is
successor-closed and has a unique initial component; and a vsc-position if R is
a strongly connected component of G \ {|X|}.

To reflect how the game transitions to a new position during a round of the
game we say, for gv ∈ {i, isc, v, vsc}, a gv-position (X ′, R′) is a gv-successor
of (X,R) if either X � X ′ or X ′ � X, with |{|X|}∆{|X ′|}| = 1, and

– (for gv ∈ {i, v}) For every v′ ∈ V (R′) there is a v ∈ V (R) and a directed
path in G \ ({|X|} ∩ {|X ′|}) from v to v′, or

– (for gv ∈ {isc, vsc}) For every v′ ∈ V (R′) there is a v ∈ V (R) such that
v and v′ are contained in the same strongly connected component of G \
({|X|} ∩ {|X ′|}).

Ideally we would like to assume games start from (ǫ,G), however in the visible
variants of the game this might not be a legitimate position. Thus, for gv ∈
{v, vsc}, if (ǫ,G) is not a gv-position we include it as a special case, and set
as its gv-successors all gv-positions of the form (ǫ, R). We observe that in all
variants, the successor relation is monotone in the sense that if (X,R) and (X,S)
are positions with S ⊆ R and (X ′, S′) is a successor of (X,S), then there is a
successor (X ′, R′) of (X,R) with S′ ⊆ R′.

For gv ∈ {i, isc, v, vsc}, a (gv-LIFO-)search in a digraph G from gv-
position (X,R) is a (finite or infinite) sequence of gv-positions (X,R) = (X0, R0),
(X1, R1), . . . where for all i ≥ 0, (Xi+1, Ri+1) is a gv-successor of (Xi, Ri). A
LIFO-search is complete if either Rn = ∅ for some n, or it is infinite. We observe
that if Rn = ∅, then Rn′ = ∅ for all n′ ≥ n.

We say a complete LIFO-search is winning for the searchers if Rn = ∅ for
some n, otherwise it is winning for the fugitive. A complete LIFO-search from
(ǫ,G) is monotone if Ri+1 ⊆ Ri for all i; it is searcher-stationary if Xi � Xi+1

for all i where Ri 6= ∅; and it uses at most k searchers if |Xi| ≤ k for all i.
Whilst a complete LIFO-search from (ǫ,G) describes a single run of the game,

we are more interested in the cases where one of the players (particularly the
searchers) can always force a win, no matter what the other player chooses to
do. For this, we introduce the notion of a strategy. For gv ∈ {i, isc, v, vsc}, a
(searcher) gv-strategy is a (partial1) function σ from the set of all gv-positions to
V (G)∗ such that for all (X,R), σ(X,R) is the first component of a gv-successor
of (X,R); so with the possible exception of (X,R) = (ǫ,G), either σ(X,R) � X
or X � σ(X,R). A gv-LIFO-search (X0, R0), (X1, R1), . . . is consistent with a
gv-strategy σ if Xi+1 = σ(Xi, Ri) for all i ≥ 0. A strategy σ is winning from
(X,R) if all complete LIFO-searches from (X,R) consistent with σ are winning
for the searchers. Likewise, a strategy is monotone (searcher-stationary, uses
at most k searchers) if all consistent complete LIFO-searches from (ǫ,G) are

1 A strategy need only be defined for all positions (X, R) that can be reached from
(ǫ, G) in a LIFO-search consistent with the strategy. However, as this definition is
somewhat circular, we assume strategies are total.



monotone (searcher-stationary, use at most k searchers respectively). We say k
searchers can capture a fugitive on G in the gv-game with a (monotone) LIFO-
search strategy if there is a (monotone) gv-strategy that uses at most k searchers
and is winning from (ǫ,G).

For gv ∈ {i, isc, v, vsc}, we define the (monotone) gv-LIFO-search number
of G, LIFOgv(G) (LIFOmgv(G)), as the minimum k for which there is a (mono-
tone) winning gv-strategy that uses at most k searchers. We also define the
visible, strongly connected, searcher-stationary search number of G, SSvsc(G)
as the minimum k for which there is a searcher-stationary winning vsc-strategy
that uses at most k searchers.

In Section 4 we will also consider fugitive gv-strategies: a partial function ρ
from V (G)∗×P(G)×V (G)∗ to induced subgraphs of G, defined for (X,R,X ′) if
(X,R) is a gv-position and X ′ is the first component of a gv-successor of (X,R).
A LIFO-search (X0, R0), (X1, R1), . . . is consistent with a fugitive gv-strategy ρ
if Ri+1 = ρ(Xi, Ri,Xi+1) for all i ≥ 0, and a fugitive strategy is winning if all
consistent complete LIFO-searches are winning for the fugitive. In this section,
a strategy will always refer to a searcher strategy.

3.2 Relating the digraph searching parameters

We observe that in all game variants, a strategy that is winning from (X,R)
can be used to define a strategy that is winning from (X,R′) for any R′ ⊆ R:
the searchers can play as if the fugitive is located in the larger space; and from
the monotonicity of the successor relation, the assumption that the actual set
of locations of the fugitive is a subset of the assumed set of locations remains
invariant. One consequence is that a winning strategy on G defines a winning
strategy on any subgraph of G, so the search numbers we have defined are
monotone with respect to the subgraph relation.

Proposition 1. Let G be a digraph and G′ a subgraph of G. Then:

– SSvsc(G′) ≤ SSvsc(G), and
– LIFOgv(G′) ≤ LIFOgv(G) for gv ∈ {i, isc, v, vsc, mi, misc, mv, mvsc}.

Another consequence is that a winning strategy in the invisible fugitive vari-
ant defines a winning strategy when the fugitive is visible; and a winning strat-
egy when the fugitive is not constrained to moving within strongly connected
components defines a winning strategy when he is. This corresponds to our intu-
ition of the fugitive being more (or less) restricted. Also, in all game variants, a
monotone winning strategy is clearly a winning strategy, and because a searcher-
stationary LIFO-search is monotone, a winning searcher-stationary strategy is a
monotone winning strategy. These observations yield several inequalities between

the search numbers defined above. For example LIFOvsc(G) ≤ LIFOmi(G) as
any winning monotone i-strategy is also a winning vsc-strategy. The full set
of these relationships is shown in a Hasse diagram in Figure 1, with the larger
measures towards the top.

The main result of this section is that all these digraph parameters are equal
to one more than cycle-rank.
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Fig. 1. Trivial relations between digraph searching parameters

Theorem 1. For any digraph G:

1 + cr(G) = LIFOmi(G) = LIFOi(G) = LIFOmisc(G) = LIFOisc(G)
= LIFOmv(G) = LIFOv(G) = LIFOmvsc(G) = LIFOvsc(G)
= SSvsc(G).

Proof. From the above observations, to prove Theorem 1 it is sufficient to prove
the following three inequalities:

(1) LIFOvsc(G) ≥ SSvsc(G),
(2) SSvsc(G) ≥ 1 + cr(G), and

(3) 1 + cr(G) ≥ LIFOmi(G).

These are established with the following series of lemmas.

Lemma 1. For any digraph G, LIFOvsc(G) ≥ SSvsc(G).

Proof. We show that if a vsc-strategy is not searcher-stationary then it is not a
winning strategy from (ǫ,G). The result then follows as this implies every win-
ning vsc-strategy is searcher-stationary. Let σ be a vsc-strategy, and suppose
(X0, R0), (X1, R1), . . . is a complete vsc-LIFO-search from (X0, R0) = (ǫ,G)
consistent with σ which is not searcher-stationary. Let j be the least index
such that Xj � Xj+1 and Rj 6= ∅. As X0 = ǫ, there exists i < j such that
Xi = Xj+1. By the minimality of j, and the assumption that we only place
or remove one searcher in each round, i = j − 1. As Xj−1 � Xj , Rj ⊆ Rj−1,
and as Xj+1 � Xj , Rj ⊆ Rj+1. As Rj 6= ∅, it follows that Rj−1 and Rj+1

are the same strongly connected component of G \ {|Xj−1|}. Thus (Xj−1, Rj−1)
is a vsc-successor of (Xj , Rj). As σ(Xj , Rj) = Xj+1 = Xj−1, it follows that
(X0, R0), (X1, R1), . . . (Xj−1, Rj−1), (Xj , Rj), (Xj−1, Rj−1), (Xj , Rj), . . . is an in-
finite, and hence complete, vsc-LIFO-search (from (ǫ,G)) consistent with σ. As
Ri 6= ∅ for all i ≥ 0, the LIFO-search is not winning for the searchers. Thus σ is
not a winning strategy.



Lemma 2. For any digraph G, SSvsc(G) ≥ 1 + cr(G).

Proof. We prove this by induction on |V (G)|.
If |V (G)| = 1, then SSvsc(G) = 1 = 1 + cr(G).
Now suppose SSvsc(G′) ≥ 1 + cr(G′) for all digraphs G′ with |V (G′)| <

|V (G)|. We first consider the case when G is not strongly connected. From
Proposition 1, SSvsc(G) ≥ maxH SSvsc(H) where the maximum is taken over
all strongly connected components H of G. As G is not strongly connected,
|V (H)| < |V (G)| for all strongly connected components H of G. Therefore, by
the induction hypothesis

SSvsc(G) ≥ max
H

SSvsc(H)

≥ max
H

(1 + cr(H))

= 1 + cr(G).

Now suppose G is strongly connected. Let σ be a winning searcher-stationary
vsc-strategy which uses SSvsc(G) searchers. As (ǫ,G) is a legitimate vsc-position,
if (X,R) is a vsc-successor of (ǫ,G) then |X| = 1. Thus |σ(ǫ,G)| = 1. Let
σ(ǫ,G) = v0. As σ is a searcher-stationary strategy which uses the minimal
number of searchers, it follows that SSvsc(G \ {v0}) = SSvsc(G) − 1. Thus, by
the induction hypothesis,

SSvsc(G) = SSvsc(G \ {v0}) + 1

≥ (1 + cr(G \ {v0})) + 1

≥ (1 + min
v∈V (G)

cr(G \ {v})) + 1

= 1 + cr(G).

Lemma 3. For any digraph G, 1 + cr(G) ≥ LIFOmi(G).

Proof. We also prove this by induction on |V (G)|.

If |V (G)| = 1, then 1 + cr(G) = 1 = LIFOmi(G).

Now suppose 1 + cr(G′) ≥ LIFOmi(G′) for all digraphs G′ with |V (G′)| <
|V (G)|. First we consider the case when G is not strongly connected. As |V (H)| <
|V (G)| for each strongly connected component H, by the inductive hypothesis,
there is a monotone i-strategy, σH , which captures a fugitive using at most
1 + cr(H) searchers. From the definition of cycle-rank, for each strongly con-
nected component H of G, cr(G) ≥ cr(H), thus σH uses at most 1 + cr(G)
searchers. We define a monotone i-strategy which captures a fugitive on G with
at most 1 + cr(G) searchers as follows. Intuitively, we search the strongly con-
nected components of G in topological order using the monotone strategies σH .
More precisely, let H1,H2, . . . ,Hn be an ordering of the strongly connected com-
ponents of G such that if there is an edge from Hi to Hj then i < j. We define
σ as follows.

– σ(ǫ,G) = σH1
(ǫ,H1),



– For 1 ≤ i, if {|X|} ⊆ Hi and R = R′ ∪
⋃n

j=i+1 Hj where ∅ 6= R′ ⊆ Hi,
σ(X,R) = σHi

(X,R′),
– For 1 ≤ i < n, if ∅ 6= {|X|} ⊆ Hi and R =

⋃n

j=i+1 Hj then σ(X,R) = X ′

where X ′ is the maximal proper prefix of X.

From the definition of i-successors and the ordering of the strongly connected
components if (X0, R0), . . . (Xn, Rn) is an i-LIFO-search on G where {|Xn|} ⊆ Hi

and
⋃

j>i Hj ⊆ Rn−1 ⊆
⋃

j≥i Hj , then
⋃

j>i Hj ⊆ Rn ⊆
⋃

j≥i Hj . It follows (by
induction on the length of a LIFO-search) that every LIFO-search from (ǫ,G)
consistent with σ can be divided into a sequence of LIFO-searches λ1, λ2, . . . , λn,
where λi can be viewed as a LIFO-search consistent with σHi

with
⋃

j>i Hj

added to the second component of every position. Thus if each σHi
is monotone,

winning and uses at most 1 + cr(G) searchers, then σ is also monotone, winning
and uses at most 1 + cr(G) searchers.

Now suppose G is strongly connected. Let v0 be the vertex which minimizes
f(v) = cr(G \ {v}). Let G′ = G \ {v0}, so cr(G) = 1 + cr(G′). By the induction
hypothesis, there exists a winning monotone i-strategy σ′ which uses at most
1 + cr(G′) searchers to capture a fugitive on G′. We define an i-strategy σ on G
which uses at most 2 + cr(G′) = 1 + cr(G) searchers as follows. Initially, place
(and keep) a searcher on v0, then play the strategy σ′ on G\{v0}. More precisely,
σ(ǫ,G) = v0 and σ(v0X,R) = v0 · σ

′(X,R). Clearly any LIFO-search consistent
with σ can be viewed as a LIFO-search consistent with σ′ prepended with the
position (ǫ,G) and where the first component of every position is prepended with
v0. Thus if σ′ is monotone, then σ is monotone, and if σ′ is winning then σ is
winning. Thus σ is a monotone winning i-strategy which uses at most 1+cr(G)
searchers.

3.3 Relation with other graph parameters

With a characterization of cycle-rank in terms of several graph searching games
we can compare it with other digraph measures defined by similar games. In par-
ticular, the directed pathwidth of a digraph, dpw(G), which can be characterized
by an invisble-fugitive graph searching game [2], and the DAG-depth, dd(G)
which can be characterized by a visible-fugitive, searcher-stationary searching
game [8]. Whilst the relationships we present here are known [10, 8], using the
game characterizations we obtain a more simple and more intuitive proof.

Corollary 1. For any digraph G, dpw(G) ≤ cr(G) ≤ dd(G) − 1.

4 Obstructions for cycle-rank

In this section we consider the dual parameter arising from considering the graph
searching games from the fugitive’s perspective. We show that it can be char-
acterized by two types of structural features, akin to the havens and brambles
used to dually characterize treewidth [18]. The first of these is the natural gen-
eralization of a shelter from [9], a structural obstruction shown to be dual to
tree-depth.



Definition 1. A strong shelter of a digraph G is a collection S of non-empty
strongly connected sets of vertices such that for any S ∈ S

⋂
{S′ : S′ ∈ MS(S)} = ∅,

where MS(S) is the ⊆-maximal elements of {S′ ∈ S : S′ ⊂ S}. The thickness of
a shelter S is the minimal length of a maximal ⊆-chain.

The second structural obstruction we consider is motivated by the definition
of a haven in [11], a structural feature dual to directed treewidth.

Definition 2. A LIFO-haven of order k is a function h from V (G)<k to induced
subgraphs of G such that:

(H1) h(X) is a non-empty strongly connected component of G \ {|X|}, and
(H2) If X � Y and |Y | < k then h(Y ) ⊆ h(X).

Whilst Adler [1] has shown that the havens of [11] do not give an exact
min-max characterization of directed treewidth and Safari [17] has shown that
directed versions of havens and brambles give rise to distinct parameters, we show
that LIFO-havens and strong shelters both give a tight min-max characterization
of cycle-rank.

Theorem 2 (Min-max theorem for cycle-rank). Let G be a digraph and k
a positive integer. The following are equivalent:

(i) G has cycle-rank < k,
(ii) G has no LIFO-haven of order > k, and
(iii) G has no strong shelter of thickness > k.

Proof. (i) ⇒ (ii). Assume that it is not the case that G has no LIFO-haven of
order > k, that is, G has a LIFO-haven h of order k + 1. We show the fugitive
has a winning strategy against k searchers, so by Theorem 1, cr(G) ≥ k. Define
a vsc-strategy ρ for the fugitive (against k searchers) by defining ρ(X,R,X ′) =
h(X ′) for all suitable triples (X,R,X ′). From (H1), (X ′, ρ(X,R,X ′)) is a valid
vsc-position. Furthermore, (H2) implies that if (X,R) is a vsc-position such
that R = h(X), then (X ′, ρ(X,R,X ′)) is a vsc-successor of (X,R), so ρ is
a vsc-strategy (defined for all LIFO-searches that use at most k searchers).
Also, if (X0, R0), (X1, R1) . . . is a complete LIFO-search consistent with ρ then
Ri = h(Xi) for all i > 0. As h(X) 6= ∅ when |X| ≤ k, it follows that all
consistent complete LIFO-searches that use at most k searchers are winning for
the fugitive. Thus ρ is a winning strategy for the fugitive, so LIFOvsc(G) > k.
By Theorem 1, cr(G) ≥ k.

(ii) ⇒ (iii). We show that a strong shelter S of thickness k can be used to
define a haven of order k. For each X ∈ V (G)<k we define SX ∈ S inductively
as follows. For X = ǫ, let Sǫ be any ⊆-maximal element of S. Note that {S ∈
S : S ⊂ Sǫ} is a strong shelter of thickness k − 1. Now suppose X = X ′v, SX′

is defined, SX′ ∩ {|X ′|} = ∅, and SX′ = {S ∈ S : S ⊂ SX′} is a strong shelter



of thickness k − 1 − |X ′|. From the definition of a strong shelter, there exists
a ⊆-maximal element of SX′ that does not contain v, as otherwise v ∈ S for
all S ∈ MS(SX′). Let SX be that element. As SX′ ∩ {|X ′|} = ∅ and v /∈ SX , it
follows that SX ∩ {|X|} = ∅. Further, {S ∈ S : S ⊂ SX} is a strong shelter of
thickness (k − 1− |X ′|)− 1 = k − 1− |X|, satisfying the assumptions necessary
for the next stage of the induction. Now for all X ∈ V (G)<k, SX is a non-empty
strongly connected set such that SX ∩{|X|} = ∅. Thus there is a unique strongly
connected component of G \ {|X|} that contains SX . Defining h(X) to be that
component we see that h satisfies (H1). For (H2), from the definition of SX , if
X � Y and |Y | < k, then SX ⊇ SY , so h(X) ⊇ h(Y ). Therefore h is a haven of
order k.

(iii) ⇒ (i). Again, we prove the contrapositive, using a proof similar to [9].
Suppose cr(G) ≥ k. Let G′ be a strongly connected component of G which has
cycle-rank ≥ k. We prove by induction on k that G′, and hence G, has a strong
shelter of thickness k + 1. Every digraph with |V (G)| ≥ 1 has a strong shelter
of thickness 1: take S = {{v}} for some v ∈ V (G). Thus for k = 0, the result
is trivial. Now suppose for k′ < k every digraph of cycle-rank ≥ k′ contains a
strong shelter of thickness k′ + 1. For v ∈ V (G′), let G′

v = G′ \ {v}. From the
definition of cycle-rank, cr(G′

v) ≥ k−1 for all v ∈ V (G′). Thus, by the induction
hypothesis, G′

v contains a strong shelter, Sv, of thickness (k − 1) + 1. As v /∈ S
for all S ∈ Sv, it follows that S = {G′} ∪

⋃
v∈V (G′) Sv is a strong shelter. As Sv

has thickness k for all v ∈ V (G′), S has thickness k + 1.

5 Conclusions and further work

Combining Theorems 1 and 2 gives our main result:

Main Theorem. Let G be a digraph, and k a positive integer. The following
are equivalent:

(i) G has cycle-rank ≤ k − 1,
(ii) On G, k searchers can capture a fugitive with a LIFO-search strategy,
(iii) On G, k searchers can capture a visible fugitive restricted to moving in

strongly connected sets with a searcher-stationary search strategy,
(iv) G has no LIFO-haven of order > k, and
(v) G has no strong shelter of thickness > k.

This multiple characterization of cycle-rank gives a new perspective on the mea-
sure which can be useful for further investigation. For example, whilst it is known
that computing the cycle-rank is NP-complete [10], the characterization in terms
of a graph searching game with a visible fugitive automatically implies that for
any fixed k, deciding if a digraph has cycle-rank k is decidable in polynomial time.
From a parameterized complexity perspective, techniques based on separators
have shown measures such as directed treewidth are fixed-parameter tractable.
Whether the visible, strongly connected game characterizations of cycle-rank
can improve the known complexity from XP to FPT is part of ongoing research.
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