Complexity and Infinite Games
on Finite Graphs

Paul William Hunter

University of Cambridge
Computer Laboratory
Hughes Hall

July 2007

This dissertation is submitted for the degree of Doctor afd3bphy

Declaration

This dissertation is the result of my own work and includethimg which is the outcome of work done in collab-
oration except where specifically indicated in the text.

This dissertation does not exceed the regulation lengé 600 words, including tables and footnotes.

Complexity and Infinite Games on Finite Graphs

Paul William Hunter

Summary

This dissertation investigates the interplay between denity, infinite games, and finite graphs. We present a
general framework for considering two-player games ondigitaphs which may have an infinite number of moves
and we consider the computational complexity of importafgted problems. Such games are becoming increasingly
important in the field of theoretical computer science,ipalarly as a tool for formal verification of non-terminagin
systems. The framework introduced enables us to simultestyoonsider problems on many types of games easily,
and this is demonstrated by establishing previously unknoemplexity bounds on several types of games.

We also present a general framework which uses infinite gamdsfine notions of structural complexity for
directed graphs. Many important graph parameters, frorh bograph theoretic and algorithmic perspective, can
be defined in this system. By considering natural genetéiza of these games to directed graphs, we obtain a
novel feature of digraph complexity: directed connedfivitVe show that directed connectivity is an algorithmically
important measure of complexity by showing that when it isitéd, many intractable problems can be efficiently
solved. Whether it is structurally an important measureidy be seen, however this dissertation makes a preliminary
investigation in this direction.

We conclude that infinite games on finite graphs play an ingpdntole in the area of complexity in theoretical
computer science.

Acknowledgements

A body of work this large can rarely be completed without thsistance and support of many others. Any effort
to try and acknowledge all of them would undoubtedly resutbme or two being left out, so | am only able to thank
those that feature most prominently in my mind at the moment.

The three people | am most indebted to fit nicely into the aaieg of my past, my present, and my future. Starting
with my future (it always pays to look forwards), | am partaly grateful to Stephan Kreutzer. Working with you for
a year in Berlin was a fantastic experience and | am lookingdiod to spending the next few years in the same city
again. Thank you for all your support and guidance.

To Sarah, with your constant encouragement (some wouldaggyimg), | am forever indebted. Without your care
and support I might never have finished. And | would certairdybe where or who | am today without you.

Finally, the submission of this thesis ends my formal asgmn with the person to whom I, and this dissertation,
owe the most gratitude: my supervisor Anuj Dawar. Thank yangiving me the opportunity to work with you and
for setting me on the path to my future. You have been an ia8pir as a supervisor, | can only hope that when it is
my turn to supervise PhD students | can live up to the exanqlewpave set me.

Contents

Collaborations

2.1

2.2

2.3

2.4

3.1
3.2
3.3

4.1

4.2
4.3

Introduction
Notation and Conventions

1.1.1 SetsandSeqUENCES o i i i e e e e
1.1.2 Graphs e e
1.1.3 Complexity

Infinite games

Preliminaries

2.1.1 Arenas
2.1.2 GameS e e e e
2.1.3 Strategies e e
2.1.4 SIMUlations e e
Winning condition presentations L e e e e
2.2.1 Examples e e e
2.2.2 Translations
2.2.3 Extendibility
Complexity results

2.3.1 BsPACEcOMpIleteness e e
2.3.2 Complexity of union-closed games
Infinite tree automata

Strategy Improvement for Parity Games

The strategy improvement algorithm
A combinatorial perspective e e
Improving the known complexity bounds

Complexity measures for digraphs

Tree-width L e
4.1.1 Structural importance of tree-width
4.1.2 Algorithmic importance of tree-width Lo
4.1.3 Extending tree-width to other structures
Directed tree-width e
Beyond directed tree-width

N~ AR

CONTENTS v

5 Graph searching games 51
5.1 Definitions. e 51
5.1.1 Strategies e e e e 53
5.1.2 Simulations e e 56
5.2 Examples e 58
5.2.1 Copsandyvisiblerobber 58
5.2.2 Copsandinvisiblerobber 60
5.2.3 Cavesearching e e 60
5.2.4 Detectivesandrobber. 61
5.25 Copsandinertrobber. 61
5.2.6 Copsandrobbergames 62
5.3 Complexity measures e e 62
5.3.1 Example: Copsandvisiblerobber 63
5.3.2 Example: Cops andinvisiblerobber 65
5.3.3 Example: Copsandinertrobber 66
5.3.4 Example: Other resource measureS i v v i m it m e e 66
5.3.5 MONOtoNiCity 67
5.4 Robustnessresults e e 68
5.4.1 Subgraphs. e e 68
5.4.2 Connected COmpoNnents e 69
5.4.3 Lexicographicproduct e e 72
55 Complexityresults e e 74
6 DAG-width 76
6.1 Copsandvisiblerobbergame. L 77
6.1.1 MONOtONICIty e e e e e e 79
6.2 DAG-decompositionsand DAG-width 80
6.3 Algorithmic aspects of DAG-width e 87
6.3.1 Computing DAG-width and decompositions 88
6.3.2 Algorithms on graphs of bounded DAG-width 88
6.3.3 Parity Games on Graphs of Bounded DAG-Width 89
6.4 Relation to other graph connectivity measures o 0 91
6.4.1 Undirected tree-width e 91
6.4.2 Directedtree-width 92
6.4.3 Directed path-width 92
7 Kelly-width 94
7.1 Games, orderings amadDAGS e e 95
7.1.1 Inertrobbergame L 95
7.1.2 Eliminationorderings e e 96
7.1.3 Partiak-trees and partidt-DAGS 97
7.1.4 Equivalenceresults e e 98
7.2 Kelly-decompositions and Kelly-width 99
7.3 Algorithmic aspects of Kelly-width 102
7.3.1 Computing Kelly-decompositions 102
7.3.2 Algorithms on graphs of small Kelly-width 104
7.3.3 Asymmetric matrix factorization 105
7.4 Comparing Kelly-width and DAG-width o 107

CONTENTS

8 Havens, Brambles and Minors
8.1 Havensandbrambles e e e
8.2 Directed minOrs e e e e

8.2.1
8.2.2
8.2.3
8.24
8.2.5

What makes a good minorrelation? an e
Directed minorrelations e e
Preservationresults e e
Algorithmicresults e e e
Well-quasi orderresults e e e e

9 Conclusion and Future work
9.1 Summaryofresults e e
9.2 Futurework e e
9.3 Conclusion e e e

References

\Y

112
112
116
118
119
124
124
125

127
127
129
129

130

Chapter 1

Introduction

The aim of this dissertation is to investigate the interddayween infinite games, finite graphs, and complexity. In
particular, we focus on two facets: the computational caxip} of infinite games on finite graphs, and the use of
infinite games to define the structural complexity of finitafts. To present the motivation behind this investigation,
we consider the three fundamental concepts of games, gamghsomplexity.

What is a game?

Ask anyone what a game is and most people will respond wittkxample: chess, bridge, cricket, and so on. Almost
everyoneunderstandsvhat a game is, but few people can immediately give a pre@§aition. Loosely speaking,

a game involves interactions between a number of playessilply only one) with some possible outcomes, though
the outcome is not always the primary concern. The impodgarfigames in many scientific fields arises from their
usefulness as an informal description of systems with cermpiteractions; as most people understand games, a
description in terms of a game can often provide a good iotuibf the system. The prevalence of this application
motivates the formal study of games, which results in theofigmmes to provide formal definitions. Such definitions
can sometimes provide interpretations of concepts whadéitnal approaches are cumbersome or less than adequate.
For example, the semantics of Hintikka's IndependencenBlhelogic [HS96] are readily expressed using games of
imperfect information, but the traditional Tarski-stylgmoaches are unwieldy.

Games in computer science

Mathematical games are playing an increasingly importetin computer science, both as informal descriptions and
formal definitions. For example, tree-width, an algorithally important graph parameter which we see frequently in
this dissertation, can be intuitively presented as a gameéhioch a number of cops attempt to capture a robber on a
graph. Examples where games can provide formal definitioclade interactive protocols and game semantics. An
important example of an application of games, which motisahe games we consider, is the following game that
arises when verifying if a system satisfies certain requamis

Starting with the simple case of checking if a formula of ysitional logic is satisfied by a truth assignment,
consider the following game played by two players, Verified &alsifier, “on” the formula. The players recursively
choose subformulas with Verifier choosing disjuncts andifiaf choosing conjuncts until a literal is reached. If the
truth value of that literal isrue then Verifier wins, otherwise Falsifier wins. The formula &isfiable if, and only
if, Verifier has a strategy to always win. This game is easilgrded to the verification of first order formulas, with
Verifier choosing elements bounded by existential quantiand Falsifier choosing elements bounded by universal
quantifiers. Verifying a first order logic formula is very tiskfor checking properties of a static system, but often in
computer science we are also interested in formally vergfyproperties ofeactive systemsystems which interact
with the environment and change over time. Requirementsuoh systems are often specified in richer logics such

CHAPTER 1. INTRODUCTION 2

as Linear Time Logic (LTL), Computation Tree Logic (CTL) dret modalu-calculus. This motivates the following
extension of the Verifier-Falsifier game for verifying if aamive system satisfies a given set of requirements. The
game is played by two players, System and Environment, ogstttie space of the reactive system. The current state
of the system changes, either as a consequence of some rfensteé&by Environment, or some response by System.
System takes the role of Verifier, trying to keep the system $tate which satisfies the requirements to be verified.
Environment endeavours to demonstrate the system doestfyyghe requirements by trying to move the system
into a state which does not satisfy the requirements.

The natural abstraction of these games is a game where twerplenove a token around a finite directed graph
for a possibly infinite number of moves with the winner detiered by some pre-defined condition. This abstrac-
tion encompasses many two-player, turn-based, zero-sumegaf perfect information, and such games are found
throughout computer science: in addition to the games &dedcwith formal verification of reactive systems, ex-
amples of games which can be specified in this manner inclienfeucht-Fraissé games and the cops and robber
game which characterizes tree-width. Unsurprisinglys¢hgames have been extensively researched, particularly in
the area of formal verification: see for example [BL69, Myl&388, Mos91, EJ91, IK02, DJW97]. Two important
guestions regarding the complexity of such games are leftsaived in the literature. These are the exact complexity
of decidingMuller gamesand the exact complexity of decidipgrity games One of the goals of this dissertation is
to address these questions with an investigation of the atatipnal complexity of deciding the winner of these types
of games.

What is a graph?

Graphs are some of the most important structures in disanatbematics. Their ubiquity can be attributed to two
observations. First, from a theoretical perspective, lggagge mathematically elegant. Even though a graph is asimpl
structure, consisting only of a set of vertices and a ratabetween pairs of vertices, graph theory is a rich and varied
subject. This is partly due the fact that, in addition to lgaielational structures, graphs can also be seen as topalogi
spaces, combinatorial objects, and many other matherhsttivatures. This leads to the second observation regardin
the importance of graphs: many concepts can be abstragtiggented by graphs, making them very useful from a
practical viewpoint. From an algorithmic point of view, nyaproblems can be abstracted to problems on graphs,
making the study of graph algorithms a particularly fruitfioe of research.

In computer science, many structures are more readily septed bydirected graphsfor example: transition sys-
tems, communications networks, or the formal verificatiamg we saw above. This means that the study of directed
graphs and algorithms for directed graphs is particulangartant to computer science. However, the increased de-
scriptive power of directed graphs comes at a cost: the osmometry makes the mathematical theory more intricate.
In this dissertation we explore both the algorithmic andhmatatical aspects of directed graphs.

What is complexity?

Just as the definition of a game is difficult to pin down, theligypaf “being complex” is best described by examples
and synonyms. From an algorithmic perspective, a problenoie complex than another problem if the latter is easier
to compute than the former. From a structural point of vieme structure is more complex than another if the first
structure contains more intricacies. These are the twoskifidomplexity relevant to this dissertaticwomputational
complexityandstructural complexity

In the theory of algorithms, the notion of computational gdexity is well defined. In model theory however,
being structurally complex is very much a subjective natidepending largely on the application one has in mind.
For example, a graph with a large number of edges could bedsresl more complex than a graph with fewer edges.
On the other hand, a graph with a small automorphism groufuldmiconsidered more complex than a graph with
a large automorphism group, as the second graph (which mliyawe more edges) contains a lot of repetition. As
we are primarily interested in algorithmic applicationghis dissertation, we focus on the structural aspects gqfigra
which influence the difficulty of solving problems. In Secti@.1.2 below, we loosely define this notion of graph
structure by describing the fundamental concepts impbintesuch a theory.

CHAPTER 1. INTRODUCTION 3

Having established what constitutes “structure”, we turnhie problem of defining structural complexity. The
most natural way is to define some sort of measure which gimdataition for how “complex” a structure is. In
Chapter 4, we discuss those properties that a good measstreiciural complexity should have. But how do we find
such measures in the first place? Also in Chapter 4 we prdsemtdtion of tree-width and argue that it is a good
measure of complexity for undirected graphs. As we remaakexye, tree-width has a characterization in terms of a
two-player game, so it seems that investigating similaremmould yield useful measures for structural complexity.
Indeed this has been an active area of research for the pastefas, for example: [KP86, LaP93, ST93, DKT97,
JRSTO1, FT03, FFNO5, BDHKO06, HKQ7]. This line of researcls hecently started to trend away from showing
game-theoretic characterizations of established stralatomplexity measures to defining important parameteirs fr
the definition of the game, an example of the transition frbenuse of games as an informal description to their use as
a formal definition. Despite this activity, very little reseh has considered games on directed graphs. This is gerhap
partly due to the lack, for some time, of a reasonable meaigteuctural complexity for directed graphs.

The second major goal of this dissertation is to use infingmegs to define a notion of structural complexity for
directed graphs which is algorithmically useful.

Organization of the thesis

In the remainder of this chapter we define the conventionssgehroughout. Chapters 2 and 3 are primarily concerned
with the analysis of the complexity of deciding the winnerimfinite games on finite graphs. From Chapter 4 to
Chapter 8 we investigate graph complexity measures defipedihite games.

In Chapter 2 we formally define the games we are interestafférintroduce the notion ofwinning condition type
and we establish a framework in which the expressivenessuaeainctness of different types of winning conditions
can be compared. We show that the problem of deciding theemimnMuller games is BPACEcomplete, and use
this to show the non-emptiness and model-checking problemduller tree automata are alssPACEcomplete.

In Chapter 3 we analyse an algorithm for deciding parity garttee strategy improvement algorithm of [VJ0O0a].
We present the algorithm from a combinatorial perspecsiiewing how it relates to finding a global minimum on an
acyclic unique sink oriented hypercube. We combine this waults from combinatorics to improve the bounds on
the running time of the algorithm.

In Chapter 4 we discuss the problem of finding a reasonablemof complexity for directed graphs. We present
the definition oftree-width arguably one of the most practical measures of compleaityfidirected graphs, and we
discuss the problem of extending the concept to directeghgra

Building on the games defined in Chapter 2, in Chapter 5 we elétfiegraph searching gameéNe show how we
can use graph searching games to define robust measuresmésdynfor both undirected and directed graphs. This
framework is general enough to include many examples franfitierature, including tree-width.

In Chapters 6 and 7 we introduce two new measures of complexitirected graphdDAG-widthandKelly-width
Both arise from the work in Chapter 5, and both are genettaiizs of tree-width to directed graphs. While DAG-
width is arguably the more natural generalization of therdigdin of tree-width, Kelly-width is equivalent to natural
generalizations of other graph parameters equivalene®width on undirected graphs, which we also introduce in
Chapter 7. We show each measure is useful algorithmicalprowiding an algorithm for deciding parity games which
runs in polynomial time on the class of directed graphs oflaleal complexity. We compare both measures with other
parameters defined in the literature such as tree-widtbctdid tree-width and directed path-width and show thatthes
measures are markedly different to those already definedlliin Chapter 7 we compare Kelly-width and DAG-
width. We show that the two measures are closely relatedybualso show that there are graphs on which the two
measures differ.

In Chapter 8 we present some preliminary work towards a gsphbture theory for directed graphs based on DAG-
width and Kelly-width. We define generalizations of havend drambles which seem to be appropriate structural
features present in graphs of high complexity and absentaplg of low complexity. We also consider the problem
of generalizing the minor relation to directed graphs.

We conclude the dissertation in Chapter 9 by summarizingabelts presented. We discuss the contribution made

CHAPTER 1. INTRODUCTION 4

towards the stated research goals, and consider directiduire research arising from this body of work.

Notation and Conventions

We assume the reader is familiar with basic complexity thegnaph theory and discrete mathematics. We generally
adopt the following conventions for naming objects.

e For elementary objects, or objects we wish to consider aitang for example vertices or variablesd, ¢, . . .

For sets of elementary objectd; B, C, . ..

For structures comprising several sets, including grapdgamilies of setsA, B,C, . ..

For more complex structures:;, B, C, . ..

For sequences and simple functionss, v, . . .

e For more complex function®t, 5. ¢, . ..

1.1.1 Sets and sequences

All sets and sequences we consider in this dissertation@retable. We use botN andw to denote the natural
numbers, using the latter when we require the linear orderaldb assume thatis a natural number.

Let A be a set. We denote Bg(A) the set of subsets of. For a natural numbék, [A]* denotes the set of subsets
of A of sizek, and[A]=F denotes the set of subsetsfof size< k. Given two setsd and B, AUB denotes their
disjoint unionandA A B denotes theisymmetric differencelThat is,

AAB:=(A\B)U(B\ A).

For readability, we generally drop innermost parenthesdsrackets when the intention is clear, particularly with
functions. For example if : P(A) — B, anda € A, we write f(a) for f({a}).

We write sequences as wordss - - -, using0 as the firstindex when the first element of the sequence isiadlye
significant. For a sequenee |7| denotes the length of (|7| = w if 7 is infinite). We denote sequence concatenation
by -. Thatis, ift = aias---a, is a finite sequence and = b,b, - - - is a (possibly infinite) sequence, then =’
is the sequence as - - - apbibo---. If 1 = ajas - - - a, is a finite sequence;” is the infinite sequence -« -7 --.
Given a set4, the setdA* denotes the set of all finite sequences of element4, @gind the sed* denotes the set of
all infinite sequences. We say a reflexive and transitivetiogla< on A is awell-quasi orderingf for any infinite
sequence;as - - - € A, there exists indices< j such thate; < z;.

Letm = ajas--- andn’ = b1bs - - - be sequences of elementsAfWe writer <« if 7 is aprefixof 7/, that is,
if there exists a sequene€ such thatr’ = 7 - /. We writer < =’ if 7 is asubsequencef 7', that is, there exists a
sequence of natural numbers < ns < --- such that; = b,,, forall i < |x|.

1.1.2 Graphs

The notation we use for the graph theoretical aspects oftibgertation generally follow Diestel [Die05], however
rather than regarding directed graphs as undirected grapihswo mapsHead and Tail from edges to vertices, we
view directed graphs as relational structures. That @irected graph or digraph, G consists of a set ofertices
denoted/ (G), and aredge relation £(G) C V(G) x V(G). We use the definition in [Die05] for amdirected graph
thatisE(G) is a subset ofV (G)]?. For an edge = (u,v) in a directed graph, thieeadof e is v and thetail is u, and
we saye goesfromu to v. To avoid ambiguities, we assume that the vertex and edgaeetisjoint. Thelement®f
a graphg, is the set defined as

Elts(G) := V(G) U E(G).

CHAPTER 1. INTRODUCTION 5

We note that we could either adopt the policy of Diestel aredwa directed graph as an undirected graph with
some additional structural information, or alternativedy could view an undirected graph as a directed graph where
the edge relation is symmetric and irreflexive. We reseresdhinterpretations for the following two maps between
directed and undirected graphs. Z2tbe a directed graph. Thenderlying undirected graph @P is the undirected
graphD where:

e V(D) =V (D), and
e E(D) = {{u,v} : (u,v) € E(D)}.

Let G be an undirected graph. Théalirected graph ofj is the directed grap‘@> where:
e V(G)=V(G), and

e B(G)={(u,v),(v,u) : {u,v} € E(G)}.

We extend the definition of bidirection to parts of undirectgaphs. For example l@idirected cyclas a subgraph
of a directed graph which is a bidirected graph of a cycle. a@Rdigg the pair of edge§(u, v), (v, u)} arising from
bidirecting an undirected edge, we call such a paiti-parallel. For clarity when illustrating directed graphs, we
use undirected edges to represent pairs of anti-paralfgded-or the remaining definitions, we use ordered pairs to
describe edges in undirected graphs.

Let G be an undirected (directed) graph.(directed) pathin G is a sequence of vertices= vivs - - - such that
foralli, 1 <i< ||, (vi,vit1) € E(G). ForasubseX C V(G), the set of verticereachablefrom X is defined as:

Reacly (X) := {w € V(G) : thereis a (directed) path to from somev € X}.

For a subseX C V(G) of the vertices, the subgraph @finducedby X is the undirected (directed) graghi.X]
defined as:

e V(g[X]) =X, and
e E(G[X]) = {(u,v) € E(G) : u,v € X}.

For convenience we writé \ X for the induced subgrapfi[V'(G) \ X]. Similarly, for a setE’ of edgesG[E] is the
subgraph off with vertex set equal to the set of endpointghfand edge set equal 0.

Letv € V(D) be a vertex of a directed grafih Thesuccessors af are the vertices such that(v, w) € E(D).
The predecessors aof are the vertices such that(u,v) € E(D). The successors and predecessors afe the
verticesadjacent tov. We sayw is aroot (of D) if it has no predecessors, anteaf (of D) if it has no successors. The
outgoing edges af are all the edges fromto some successor of and thancoming edges af are all the edges from
a predecessor aefto v. Theoutdegree ob, doui(v) is the number of outgoing edgesw®éand theindegree ob, din(v)
is the number of incoming edgesof Given a subset” C V (G) of vertices, theut-neighbourhood o, Noy(V) is
the set of successors of verticesliofhot contained iri/.

If D is a directed acyclic graph (DAG), we writep for the reflexive, transitive closure of the edge relatiohafl
isv <p wif, and only if, w € Reach (v). If v <p w, we sayv is aancestorf w andw is adescendantf v.

We denote byD°P the directed graph obtained by reversing the directionk®fedges oD. That is, D is the
directed graph defined as:

e V(D) =V (D), and
o BE(D®) = (E(D)™" ={(v,u) : (u,v) € E(D)}.

In this dissertation we considegansition systemwith a number of transition relations. That is, a transisgatem
is atuple(S, sy, E1, Fs>...) whereS is the set oftatess; € S is theinitial state, andE; C S x S are the transition
relations. We observe that a transition system with onesitian relation is equivalent to a directed graph with an
identified vertex.

CHAPTER 1. INTRODUCTION 6

AN

g H GeH

Figure 1.1: The lexicographic product of graghandH

Structural relations

As we indicated earlier, the notion gfaph structureis very much a qualitative concept. Just as the “structufe” o
universal algebra is best characterized by subalgebraspmmorphisms and products, the particular graph structure
theory we are interested in is perhaps best characterizélgdebfpllowing “fundamental” relations: subgraphs, con-
nected components and graph composition. As these corarepiiequently referenced, we include their definitions.
First we have the subgraph relation.

Definition 1.1 (Subgraph) Let G andG’ be directed (undirected) graphs. We sais asubgraphof G’ if V(G) C
V(G') andE(G) C E(G").

The next definition describes the building blocks of a grabbconnected components

Definition 1.2 (Connected componentd)et G be an undirected graph. We s@ys connectedf for all v, w € V(G),
w € Reacly(v). A connected componentgfis a maximal connected subgraph.

It is easy to see that an undirected graph is the union of imected components. That is,gf, ..., G,, are
the connected components @f thenV (G) = |J!, V(G;) andE(G) = ., E(G;). From the maximality of a
connected component, it follows that a connected compdsantinduced subgraph. Thus we often view a connected
component as a set of vertices rather than a graph.

The final fundamental relation Iexicographic produgtalso known agraph composition

Definition 1.3 (Lexicographic product)Let G andH be directed (undirected) graphs. Tlegicographic product of
G andH is the directed (undirected) grapghe H, defined as follows:

e V(GeH)=V(G) x V(H),and
e ((v,w),(v,w')) € E(G eH)if,and only if, (v,v) € E(G) orv =" and(w,w’) € E(H).

Intuitively, the graplg e+ arises from replacing vertices¢hwith copies ofH, hence the name graph composition.
Figure 1.1 illustrates an example of the lexicographic pmaf two graphs.

For directed graphs we have three more basic structurakeptsicweakly connected components, strongly con-
nected components and directed union. The first two are a&reént of connected components.

Definition 1.4 (Weakly/Strongly connected componentkgt G be a directed graph. We sgyis weakly connectei
G is connected. We say is strongly connected for all v, w € V(G), w € Reacly(v) andv € Reacly(w). A weakly
(strongly) connected component®fs a maximal weakly (strongly) connected subgraph.

We observe that a directed graph is the union of its weaklyneoted components. The union of the strongly
connected components may not include all the edges of thEhgtdowever, it is easy to see that if there is an edge
from one strongly connected component to another, thee rerno edges in the reverse direction. This leads to the
third structural relation specific to directed graphs.

CHAPTER 1. INTRODUCTION 7

Definition 1.5 (Directed union) Let G, G, andG, be directed graphs. We sgyis adirected union ofj; andg, if:
° V(Q) = V(gl) U V(gg), and
* E(G) C E(G1) UE(G2) U(V(G1) x V(G2)).

It follows that a directed graph is a directed union of it®sgly connected components.

1.1.3 Complexity

The computational complexity definitions of this dissedafollow [GJ79]. We consider polynomial time algorithms
efficient, so we are primarily concerned with polynomialeineductions. We use standdnid-O notationto describe
asymptotically bounded classes of functions, particulmt describing complexity bounds.

Collaborations

The work in several chapters of this dissertation arosautjti@ollaborative work with others and we conclude this in-
troduction by acknowledging these contributions. The wedarding winning conditions in Chapter 2 was joint work
with Anuj Dawar and was presented at the 30th Internatiopad@®sium on Mathematical Foundations of Computer
Science [HDO05]. Chapter 6 arose through collaboration Wigtmar Berwanger, Anuj Dawar and Stephan Kreutzer,
and was presented at the 23rd International Symposium oorétieal Aspects of Computer Science [BDHKO06]. The
concept and namBAG-widthwere also independently developed by Jan Obdrzalek [6lbdBinally, the work in
Chapter 7 arose through collaboration with Stephan Krewatzeé was presented at the 18th ACM-SIAM Symposium
on Discrete Algorithms [HKO7].

Chapter 2

Infinite games

In this chapter we formally define the games we use througih@itissertation. The games we are interested in are
played on finite or infinite graphs (whose vertices repreaestate space) with two players moving a token along the
edges of the graph. The (possibly) infinite sequence ofoggtthat is visited constitutes a play of the game, with
the winner of a play being defined by some predetermined tondiAs we discussed in the previous chapter, such
games are becoming increasingly important in computenseias a means for modelling reactive systems; providing
essential tools for the analysis, synthesis and verifinaifsuch systems.

It is known [Mar75] that under some fairly general assummiadhese games are determined. That is, for any
game one player has a winning strategy. Furthermore, uhdeanditions we consider below, the games we consider
are decidable: whichever player wins can be computed ireftitite [BL69]. We are particularly interested in the
computational complexity of deciding which player wins irese games. Indeed, this forms one of the underlying
research themes of this dissertation.

As we are interested in the algorithmic aspects of these ganeeneed to restrict our attention to games that can
be described in a finite fashion. This does not mean that theghgon which the game is played is necessarily finite
as it is possible to finitely describe an infinite graph. Noeslbaving a finite game graph by itself guarantee that the
game can be finitely described. Even with two nodes in a gridgghmumber of distinct plays can be uncountable and
there are more possible winning conditions than one coussipty describe. Throughout this dissertation, we are
concerned witlMuller gameslayed on finite graphs. These are games in which the graptitis &ind the winner of
a play is determined by the set of vertices of the graph treavisited infinitely often in the play (see Section 2.1 for
formal definitions). This category of games is wide enoughetude most kinds of game winning conditions that are
considered in the literature, including Streett, Rabincli"and parity games.

Since the complexity of a problem is measured as a functidhefength of the description, the complexity of
deciding which player wins a game depends on how exactly #meegis described. In general, a Muller game is
defined by a directed graph, and a winning conditiodt C P(V(A)) consisting of a set of subsets B{.A). One
could specifyF by listing all its elements explicitly (we call this axplicit presentation) but one could also adopt
a formalism which allows one to specif§f more succinctly. In this chapter we investigate the rolegiecification
of the winning condition has in determining the complexifydeciding regular games. Examples of this line of
research can be found throughout the literature, for icgtéine complexity of deciding Rabin games is known to be
NP-complete [EJ88], for Streett games it is known to be ceeldplete. The complexity of deciding parity games
is a central open question in the theory of regular games.kmnown to be in NP co-NP [EJ91] and conjectured by
some to be in PIME. In Chapters 3, 6 and 7 we explore this problem in more dekadt. Muller games, the exact
complexity has not been fully investigated. In Section 2e8skiow that the complexity of deciding Muller games is
Pspacecomplete for many types of presentation.

We also establish a framework in which the expressivenedsaccinctness of different types of winning con-
ditions can be compared. We introduce a notion of polynotiia translatability between formalisms which gives
rise to a notion of game complexity stronger than that intpbg polynomial time reductions of the corresponding

8

CHAPTER 2. INFINITE GAMES 9

U1
V2 U3
U7 Ug
Vg

Figure 2.1: An example of an arena

decision problems. Informally, a specification is traredbée¢ into another if the representation of a game in the first
can be transformed into a representatibthe same game the second.

The complexity results we establish for Muller games all@taishow two important problems related to Muller
automateaare also BPACEcomplete: the non-emptiness problem and the model-chggkibblem on regular trees.

The chapter is organised as follows. In Section 2.1 we ptéisefiormal definitions of arenas, games and strategies
that we use throughout the remainder of the dissertatioSefition 2.2 we introduce the notion ofvdnning condition
type a formalization for specifying winning conditions. We pite examples from the literature and we consider the
notion of translatability between condition types. In $@tt2.3 we present some results regarding the complexity
of deciding the games we consider here, including theAg ecompleteness result for Muller games, and a co-NP-
completeness result for two games we introduce. Finall§santion 2.4 we show that the non-emptiness and model
checking problems for Muller tree automata are alseACEcomplete.

2.1 Preliminaries

In this section we present the definitions of arenas, gamestaategies that we use throughout the dissertation. The
definitions we use follow [GTWO02]. In Section 2.1.4 we intum@ a generalization of bisimulation appropriate for
arenas and gamegame simulationand we show how it can be used to translate plays and seatfgm one arena

to another.

2.1.1 Arenas
Ouir first definition is a generalization of a transition syst@here two entities gplayerscontrol the transitions.
Definition 2.1 (Arena) An arenais a tupleA := (V, Vp, V1, E,v;) where:

e (V,E)is adirected graph,

e 1), the set oPlayer O verticesandV;, the set oPlayer 1 verticesform a partition ofl/, and

e v; € Vis theinitial vertex

Viewing arenas as directed graphs with some additionatstre, we define the notions slbarenaand in-
duced subarenin the obvious way. Figure 2.1 illustrates an arefavith V5(A) = {v4,vs,v6} and Vi (A) =
{’Ul7 V2, V3, U7, Us, ’Ug}.

Given an arenad, we consider the following set of interactions between thayers: Player 0 and Playert1A
token, or pebble, is placed an(.A). Whenever the pebble is on a vertex 1,(.A), Player 0 chooses a successor of
v and moves the pebble to that vertex, and similarly when tihéleds on a vertex € V;(.A), Player 1 chooses the

1For convenience we use the feminine pronoun for Player Olmadhasculine pronoun for Player 1

CHAPTER 2. INFINITE GAMES 10

move. This results in a (possibly infinite) sequence of eedivisited by the pebble. We call such a sequerplaya
More formally,

Definition 2.2 (Play). Given an arenad andv € V(A), aplay in A (from v) is a (possibly infinite) sequence of
verticesvyvy - - - such that; = v and for alli > 1, (v;,vi+1) € E(A). If v is not specified, we assume the play is
fromv;r(A). The set of all plays it4 from v;(.A) is denoted by Playst).

We observe that ifd’ is a subarena ofl then Playé4’) C Playg.A).

As an example, the infinite sequenge v, vsvsvgveU4 U7 (VsU2)® IS @ play in the arena pictured in Figure 2.1, as
is the finite sequence v4v7v5v8V6V9Vy.

When one of the players has no choice of move, we may assurh¢htra is only one player as there is no
meaningful interaction between the players.

Definition 2.3 (Single-player arena)Let A = (V, V;, V4, E, vr) be an arena. We sa¥ is asingle-player arendf for
somei € {0,1} and every € V;, dou(v) < 1.

An important concept relating to arenas and the games wedwmgris the notion ofluality. In the dual situation,
we interchange the roles of Player O and Player 1. This gisekeifollowing definition of alual arena

Definition 2.4 (Dual arena) Let A = (V, Vo, Vi, E,vr) be an arena. Thdual arena ofA is the arena defined by
A= (‘/7‘/1)‘/07E5UI)'

We observe that for each aredaPlayg.A) = Playg.A).

2.1.2 Games

Arenas and plays establish the interactions that we areecnad with. We now use these to define games by imposing
outcomes for plays. The games we are interested in are menagames, that is, if one player wins then the other
player loses. We can therefore define a winning condition astaf plays that are winning for one player, say
Player 0, working on the premise that if a play is not in thatlsen it is winning for Player 1.

Definition 2.5(Game) A games a pairG := (A, Win) whereA is an arena anWin C Playg.A). Forr € Playg.A)
if 7 € Win, we sayr is winning for Player 0 otherwiser is winning for Player 1 A single-player gamés a game
(A, Win) whereA is a single player arena.

As we mentioned earlier, to consider algorithmic aspectsege games we need to assume that they can be finitely
presented. Muller games are an important example of a cfdistely presentable games. With a Muller game, if a
player cannot move then he or she loses, otherwise the oatoban infinite play is dependent on the set of vertices
visited infinitely often.

Definition 2.6 (Muller game) A gameG = (A, Win) is aMuller gameif A is finite and there existd C P(V(A))
such that for allr € Playg.A):

e Win < {w is finite and ends with a vertex froi (A), or

7 is infinite and{v : v occurs infinitely often int} € F.

If G is a Muller game, witnessed by C P(V(A)), we writeG = (A4, F).

As an example, consider the aredaictured in Figure 2.1. LeF = {{vz,vs5}}. ThenG = (A, F) is a Muller
game. The play; v4v7vsvsv6v9v4v7 (V5v2)* IS Winning for Player 0, but the play; v4v7 (vsvsvgvev4v7)¥ IS WinNing
for Player 1.

The games used in the literature in the study of logics anoinaatia are generally Muller games. In these games,
the setF is often not explicitly given but is specified by means afandition Different types of condition lead to
various different types of games. We explore this in moraitigt Section 2.2.

CHAPTER 2. INFINITE GAMES 11

An important subclass of Muller games are the games wheseard player wins any infinite play. Games such
as Ehrenfeucht-Fraissé games (on finite structures)qJEk®d the graph searching games we consider in Chapter 5
are examples of these types of games.

Definition 2.7 (Simple game) A Muller gameG = (A, F) is asimple gaméf either F =), or F = P(V (A)).

Two other important subclasses of Muller games which weiden this chapter are union-closed and upward-
closed games.

Definition 2.8 (Union-closed and Upward-closed games$) Muller gameG = (A, F) is union-closedf for all
X, YeF, XUY € F. Gisupward-closedf forall X ¢ FandY D X,Y € F.

Remark.Union-closed games are often called Streett-Rabin gamibeiliterature, as Player 0’s winning set can be
specified by a set of Streett pairs (see Definition 2.38 betowd) Player 1's winning set can be specified by a set of
Rabin pairs (see Definition 2.37). However, to minimize ewidn, we reserve the ter8treett gaméor union-closed
games with a condition presented as a set of Streett padshartermRabin gamdor the dual of a union-closed game
(see below) with a condition presented as a set of Rabin.pairs

We conclude this section by considering dual games and sufgaln Definition 2.4 we defined the dual of an
arena. The dual game is played on the dual arena, but we haeenjplement the winning condition in order to fully
interchange the roles of the players. That is,

Definition 2.9 (Dual game) Let G = (A, Win) be a game. The gané := (A, Win) whereA is the dual arena of
A andWin = Playg.A) \ Win is thedual game ofs.

Given a game on an arepawe can define a restricted game on a subaray restricting the winning condition
to valid plays in the subarena.

Definition 2.10 (Subgame) Let G = (A, Win) be a game, andl’ a subarena ofl. Thesubgame induced by’ is
the gameG’ = (A’, Win') whereWin’ = Win N Playg.A’).

2.1.3 Strategies

As with most games we are less interested in outcomes ofspigys in the game and more interested in the existence
of strategies that ensure one player wins against any cbbioeves from the other player.

Definition 2.11(Strategy) Let A = (V, Vi, V1, E, vr) be an arena. Atrategy (for Playet) in A is a partial function
o: V*V; — V such thatifo(vivs - - - v,) = v’ then(v,,v’) € E. Aplayr = vy - - - is consistentith a strategyr
if forall j < |x| suchthav; € V;, o(viva -+ - vj) = vj41.

Given a sequence of vertices visited, ending with a verté% jia strategy for Playergives the vertex that Playér
should then play to. We observe that given a stratedgr Player O and a strategyfor Player 1 from any vertex
v there is a unique maximal play? from v consistent withy and in the sense that any play consistent with both
strategies is a prefix of?. We call this play thelay (fromv) defined by strategies andr.

A useful class of strategies are those that can be defineddrdad number of previously visited vertices.

Definition 2.12 (Strategy memory)If a strategys has the property that for some fixed o(w) = o(w’) if w andw’
agree on their last: letters, then we say that the strategy requiidige memoryof sizem — 1). If m = 1, we say the
strategy isnemorylessr positional

Strategies extend to games in the obvious way.

Definition 2.13(Game strategies)Given a gamé& = (A, Win), astrategy for Playei in G is a strategy for Player
in A. A strategyo for Playeri is winningif all plays consistent witlr are winning for Playei. Playeri winsG if
Player: has a winning strategy fromy (.A).

CHAPTER 2. INFINITE GAMES 12

We observe that for any play = vy v - - - v, in @ Muller game, consistent with a winning strategfor Player,
if v, € V;(A) theno(n) is defined.
Earlier we alluded to the following important result of Biiand Landweber [BL69].

Theorem 2.14([BL69]). LetG = (A, F) be a Muller game. One player has a winning strategy@®mith finite
memory of size at moBr'(A)|!.

An immediate corollary of this is that Muller games are dabié: we can check all possible strategies for both
players that use at mogt (.A)|! memory, and see if the corresponding defined plays are wgniiowever, the com-
plexity bounds on such an algorithm are enormous. In [McN88\aughton provided an algorithm with considerably
better space and time bounds.

Theorem 2.15([McN93]). LetG = (A, F) be a Muller game withd = (V, V;, V4, E, v;). Whether Player 0 has a
winning strategy fromy; can be decided in tim@(|V |?|E||V|!) and space)(|V|?).

For union-closed games and their duals we can reduce the meetguirement for a winning strategy.

Theorem 2.16([Kla94]). LetG = (A, F) be a Muller game. IfF is closed under unions and Player 1 has a winning
strategy, then Player 1 has a memoryless winning strateggllip if the complement of is closed under union and
Player 0 has a winning strategy, then Player 0 has a memayil@sning strategy.

Two useful tools for constructing decidability algorithereforce-setandavoid-sets

Definition 2.17 (Force-set and Avoid-set) et A be an arena, andl, Y C V(A). The setForcek (Y) is the set of
vertices from which Player has a strategy such that any play consistent withreaches some vertex I without
leaving X . The setAvoidy (Y) is the set of vertices from which Playehas a strategy such that any play consistent
with ¢ that remains inX avoids all vertices irY".

We observe from the definitions thBdrcey (V) = X \ Avoidy, *(Y). We also observe that we may assume the
strategiesr are memoryless: if Playércan force the play from to some vertex oY, the play tow is irrelevant.

Computing a force-set is an instance of the well-known a#ieng reachability problem, and in Algorithm 2.1
we present the standard algorithm for computing a force-Blerode, Remmel and Yakhnis [NRY96] provide an
implementation of this algorithm which runs in tini§ | E(A4)|), giving us the following:

Lemma 2.18. Let.A be an arena. For any set¥, Y C V(A), Force) (V) can be computed in tim@(|E(A)))

Algorithm 2.1 FORCEY (Y)

Returns: The set of vertices € V(. A) such that Player 0 has a strategy to force a play fodmsome element df’
without visiting a vertex outsid& .
let R = {v € Vo(A) N X : there existav € Y with (v,w) € E(A)}.
let.S ={veVi(A)NnX: foralwwith (v,w) € E(A), we Y}.
if RUS CY then
return Y
else
return FORCEY(RUSUY).

2.1.4 Simulations

One of the most important concepts in transition systemBasotion of bisimulation. Two transition systems are
bisimilar if each system can simulate the other. That is,

CHAPTER 2. INFINITE GAMES 13

Definition 2.19 (Bisimulation) Let7 = (S, so, E) and7’ = (5’, sy, E') be transition systems. We sgyand7”’
arebisimilar if there exists a relationC S x S’ such that:

e S0 ~ S0,

o If (s,t) € E'ands ~ ¢’ then there exists € S” such tha{s’,t') € E’ andt ~ t/, and
e If (s',¢') € E' ands ~ s’ then there exists € S such tha{(s,¢) € E andt ~ ¢'.

We now consider a generalization of bisimulation apprdptiar arenas.

Definition 2.20 (Game simulation) Let A and A’ be arenas. Ayame simulation fromd to A’ is a relationSC
(Vo(A) x Vo(A)) U (Va(A) x Vi(A)) such that:

(SIM-1) v;(A) S v7(A),

(SIM-2) If (u,v) € E(A), u € Vo(A) andu S v/, then there exists’ € V(A’) such that(v’,v") € E(A’) and
v S o', and

(SIM-3) If (v/,0") € E(A"), u' € V1(A") andu S v/, then there exists € V(A) such that(u,v) € F(A) and
v S,

We write A 3 A’ if there exists a game simulation frashto A’

We observe that is reflexive and transitive and i < A’ then.A’ < A. In Proposition 2.28 we show that it is
also antisymmetric (up to bisimulation).

If A 2 A, then Player 0 can simulate plays @i as plays ond: every move made by Player 1 off can be
translated to a move ad, and for every response of Player 0.4 there is a corresponding responseAin Dually,
Player 1 can simulate a play chas a play ond’. More precisely,

Lemma 2.21. Let A and A’ be arenas, and le8 be a simulation from4 to .A’. For any strategy for Player 0 in
A, and any strategy’ for Player 1 inA’, there exists a strategy for Player 0 in.A’ and a strategy- for Player 1
in A such that ift = vov; - -+ € Playg.A) is a play fromvy = v;(A) consistent withr and and#’ = vjv} --- €
Playq.A’) is a play fromu, = v;(.A’) consistent witly’ and7’, thenv; S v for all 4, 0 < i < min{|~x|, |7'|}.

Proof. We defines’ andr as follows. Letr = vovivs - v, andz«’ = wvjv] ---v), and suppose; S v, for all
i, 0 < i < n. Suppose first that,, € V5(A) (sov], € Vy(A)) ando(n) = vpt1. Since(vy,, vp11) € E(A)
andv,, S v, from Condition (SIM-2) there exists), , , such that(v,,v;, ;) € E(A’) andv,41 S v;,,,. Define
o'(n") := vy, . Now suppose,, € Vi(A) (sov,, € Vi(A")). Letr'(n’') = v}, and letv,, be the successor of
vy, such thaw, 1 S v;,,; guaranteed by Condition (SIM-3). Definér) = v,,41. We observe that although and
7 are only defined for some plays, this definition is sufficiagyy S v}, it follows by induction that for every play
' = vyv] - - - v, consistent withy’ andr’ there is a playr = vgv; - - - v, (consistent withr) such thaw; S v} for all
i,0 <i <n. Thusifv), € Vu(A'), o(r’) is well-defined. O

We observe that the strategi@sandr are independently derivable fromi ando respectively. That is, we can
interchange th&r’ anddo’ (or theVo and3r) quantifications to obtain:

Corollary 2.22. Let A and A’ be arenas, and le$ be a game simulation fromd to A’. For every strategy for
Player 0 in A there exists a strategy’ for Player 0 in. A’ such that for every play;v] - - - consistent withy’ there
exists a playov; - - -, consistent witle such that; S] for all 7. Dually, for every strategy’ for Player 1 in A" there
exists a strategy for Player 1 in.4 such that for every playyv; - - - consistent withr there exists a playgv; - - -,
consistent with~’ such thaw; S v/ for all i.

We call the strategies which we can derive in such a masinarlated strategies

CHAPTER 2. INFINITE GAMES 14

Definition 2.23 (Simulated search strategylet A, A’, S, o, ¢/, 7 andr’ be as above. We call’ a S-simulated
strategy ofr, andr a S-simulated strategy af'.

We can use game simulations to translate winning stratdges one game into winning strategies in another.
However, we require that a simulation respects the winnargliion in some sense.

Definition 2.24 (Faithful simulation) LetG = (A, Win) andG’ = (A’, Win’) be games. Le§ be a game simulation
from A to A, and letS also denote the pointwise extension of the relation to playS «’ if |7| = |7’| andv; S v;
for all v; € 7 andv] € 7. We sayS is (Win, Win')-faithful if for all = € Playg.A) and allr’ € Playg.A’) such that
m S

7 € Win = 7’ € Win'.

The next result follows immediately from the definitions.

Proposition 2.25. Let G = (A, Win) and G’ = (A’,Win') be games. Le$ be a(Win, Win')-faithful game
simulation fromA to A’. If o is a winning strategy for Player O if- then anyS-simulated strategy is a winning
strategy for Player 0 irz’. Dually, if 7/ is a winning strategy for Player 1 i’ then anyS-simulated strategy is a
winning strategy for Player 1 ifs.

For simple games checking if a game simulation is faithfuklstively easy. It follows from the definition of a
game simulation that all finite plays automatically satify criterion. Thus it suffices to check the infinite playst Bu
for simple games these are vacuously satisfied in two cases:

Lemma 2.26. LetG = (A, F) andG’ = (A’, ') be Muller games and I8 be a simulation fromA to A’. If either
F=0orF =P(V(A"))thenS is faithful.

Corollary 2.27. LetG = (A, F) andG' = (A’, ') be Muller games such thak = () or 7' = P(V(A')). If
A = A" and Player 0 wings, then Player 0 win&’. Dually, if A < A’ and Player 1 wing’, then Player 1 wing.

We conclude this section by showing how game simulatiorsedb bisimulation.

Proposition 2.28. Let A = (V, V,, Vi, E,vr) and A" = (V' V), V{, E’,v}) be arenas. 1f4 X A’ and A’ 3 A then
the transition systemd’, v;, E) and(V’, v}, E’) are bisimilar.

Proof. Let S be a game simulation fromd to A’ and letS’ be a game simulation fromd’ to A. It follows from the
definitions that the relatio U(S’)~! is a bisimulation between the two transition systems. O

2.2 Winning condition presentations

As we discussed above, if we are interested in investigétiegomplexity of the problem of deciding Muller games,
we need to consider the manner in which the winning condigoresented. As we see in Section 2.2.1, for many
games that occur in the literature relating to logics andmata the winning condition can be expressed in a more
efficient manner than simply listing the elements7f To formally describe such specifications, we introduce the
concept of acondition type

Definition 2.29 (Condition type) A condition typds a functior2l which maps an arend to a pair(Z#, =) where
T4 is a set and="C Playg.A) x T is theacceptance relationWe call elements af* condition typegor simply,
conditiong. A regular condition typemaps an arenal to a pair(Z4, =4) whereZ is a set of conditions and
HAC P(V(A)) x TA,

Remark.In the sequel we will generally regard the relatjert as intrinsically defined, and associ@téA) with the
setZA. Thatis, we will use? € 2(.A) to indicate2 € 4.

CHAPTER 2. INFINITE GAMES 15

A (regular) condition type defines a family of (Muller) ganieshe following manner. Le2l be a condition typed an
arena, an@(A) = (Z4,4). ForQ € T4, the game A,) is the gamé.A, Win) whereWin = {7 € PlaygA) :
7 =4 Q}. We generally call a game where the winning condition is gjgecby a condition of typ&l an(-game for
example goarity gameis a game where the winning condition is specified lpaaty condition(see Definition 2.41
below). We can now state precisely the decision problem wéngerested in.

A-GAME
Instance: A gameG = (A, Q) where) € A(A).
Problem: Does Player 0 have a winning strategyGf

The exploration of the complexity of this problem is one oé tlmain research problems that this dissertation
addresses.

Research aim. Investigate the complexity of decidiRfigGAME for various (regular) condition typed.

2.2.1 Examples

We now give some examples of regular condition types thatmiccthe literature. First we observe that an instance
Q € 2A(A) of aregular condition typ& defines a family of subsets &f(.A):

Fo:={ICV(A):T=*Q}.

We call this theset specified by the conditidh In the examples below, we describe the set specified by atamnd
to define the acceptance relatien’.

General purpose condition types

The first examples we consider are general purpose formalisthat they may be used to specify any family of sets.
The most straightforward presentation of the winning ctiadiof a Muller game(A, F) is given by explicitly
listing all elements ofF. We call this anexplicit presentation We can view such a formalism in our framework as

follows:

Definition 2.30 (Explicit condition type) An instance of thexplicit condition types a setF C P(V(A)). The set
specified by an instance is the set which defines the instance.

In the literature an explicit presentation is sometimekedaaMuller condition However, we reserve that term for
the more commonly used presentation for Muller games ingerhcolours given next.

Definition 2.31(Muller condition type) An instance of théMuller condition typds a pair(y, C) where, for some set
C,x :V(A) — CandC C P(C). The setF, ¢ specified by a Muller conditiofiy, C) is the set{/ C V(A) :
x(I) € C}.

To distinguish Muller games from games with a winning coieditspecified by a Muller condition, we explicitly
state the nature of the presentation of the winning condlifid is critical.

From a more practical perspective, when considering agiidics of these types of games it may be the case that
there are vertices whose appearance in any infinite rureieuant. This leads to the definition ofwdn-set condition

Definition 2.32(Win-set condition type)An instance of thevin-set condition types a pair(W, W) wherelV C V' (A)
andWw C P(W). The setF(w,) specified by a win-set conditiaitV, W) is the sef{1 C V(A) : W NI e W}.

Another way to describe a winning condition is as a booleamiga. Such a formalism is somewhat closer
in nature than the specifications we have so far considerdétetmotivating problem of verifying reactive systems:
requirements of such systems are more readily expressegjiaallformulas. Winning conditions of this kind were
considered by Emerson and Lei [EL85].

CHAPTER 2. INFINITE GAMES 16

Definition 2.33 (Emerson-Lei condition type)An instance of the&Emerson-Lei condition typis a boolean formula
© with variables from the sel’(A). The setF, specified by an Emerson-Lei conditignis the collection of sets
I C V(A) such that the truth assignment that maps each elemdntioofrue and each element 6f(A) \ I to false
satisfiesp.

A boolean formula can contain a lot of repetition, so it maynare efficient to considdsoolean circuitsrather
than formulas. This motivates one of the most succinct tghegnning condition we consider.

Definition 2.34 (Circuit condition type) An instance of thesircuit condition types a boolean circuiC' with input
nodes from the sét’(.A) and one output node. The s&t specified by a circuit conditio& is the collection of sets
I C V(A) such thatC outputstrue when each input corresponding to a verteX iis set totrue and all other inputs
are set tdalse.

The final general purpose formalisms we consider are sortewbiee exotic. In [Zie98], Zielonka introduced a
representation for a family of subsets of a®etF C P(V), in terms of a labelled tree where the labels on the nodes
are subsets df".

Definition 2.35 (Zielonka tree and Zielonka DAG)Let V be a set andF C P(V). TheZielonka treg(also called a
split treeof the setF, Zr v, is defined inductively as:

1. fV ¢ FthenZr v = Zz ,,, whereF = P(V) \ F.

2. If V € F then the root o £ v is labelled withV'. Let My, Ms, ..., M, be theC-maximal sets inF, and let
Flm; = F N'P(M;). The successors of the root are the subt@eg, s, forl <i <k.

A Zielonka DAGIs constructed as a Zielonka tree except nodes labelledebgaime set are identified, making it a
directed acyclic graph. Nodes &ir i labelled by elements of are called-level nodesand other nodes afielevel
nodes

Zielonka trees are intimately related to Muller games. Irtipalar they identify the size of memory required for a
winning strategy: the “amount” of branching of 0-level nededicates the maximum amount of memory required for
a winning strategy for Player 0, and similarly for 1-levetes and Player 1 [DJW97]. For example, the 1-level nodes
of a Zielonka tree of a union-closed family of sets have attrane successor, indicating that if Player 1 has a winning
strategy then he has a memoryless winning strategy. Thudseecansider games where the winning condition is
specified as a Zielonka tree (or the more succinct Zielonk&PA

Definition 2.36 (Zielonka tree and Zielonka DAG condition type#n instance of th&ielonka tree (DAG) condition
typeis a Zielonka tree (DAGE # v (4) for someF C P(V(A)). The set specified by an instance is theBetsed to
define the instance.

Other condition types

We now consider formalisms that can only specify restri¢sedilies of sets such as union-closed or upward-closed
families. The first formalism we consider is a well-known gfieation, introduced by Rabin in [Rab72] as an accep-
tance condition for infinite automata.

Definition 2.37 (Rabin condition type) An instance of thdRabin condition typés a set of pair§2 = {(L;, R;) : 1 <
1 < m}. The setFq specified by a Rabin conditidn is the collection of set§ C V(. A) such that there exists @n
1<i<m,suchthal NL; #@andl NR; = 0.

The remaining formalisms we consider can only be used toifypaenilies of sets that are closed under union.
The first of these, the Streett condition type, introducel®in82], is similar to the Rabin condition type.

CHAPTER 2. INFINITE GAMES 17

Definition 2.38 (Streett condition type)An instance of theStreett condition typés a set of pair$2 = {(L;, R;) :
1 <4 < m}. The setF, specified by a Streett conditidn is the collection of set§ C V' (.A) such that for alk;,
1<i<m,eitherINL; #QPorINER; =0.

The Streett condition type is useful for describing faisiegnditions such as those considered in [EL85]. An ex-
ample of a fairness condition for infinite computations iBvéry process enabled infinitely often is executed infipitel
often”. Viewing vertices of an arena as states of an infinimputation system where some processes are executed
and some are enabled, this is equivalent to saying “for epergess, either the set of states which enable the process
is visited finitely often or the set of states which execugeglocess is visited infinitely often”, which we see is easily
interpreted as a Streett condition.

The Streett and Rabin condition types are dual in the foligveense: for any sef C P(V(A)) which can be
specified by a Streett condition, there is a Rabin conditibitivspecifies? (V' (A)) \ F, and conversely. Indeed, if
Q = {(Ls, R;) : 1 <i < m}isa Streett condition, then for the Rabin conditior= {(R;, L;) : 1 <i < m} we have
Fo =P(V(A))\ Fa. This implies that the dual of a Streett game can be expressadrabin game, and conversely
the dual of a Rabin game can be expressed as a Streett game.

If we are interested in specifying union-closed familiesefs efficiently, we can consider the closure under union
of a given set. This motivates the following definition:

Definition 2.39 (Basis condition type) An instance of thebasis condition typés a set3 C P(V(A)). The set
Fr specified by a basis conditidf is the collection of set§ C V(.A) such that there ar8,,...,B,, € B with

I= U1§z§n B;.

In a similar manner to the basis condition type, if we arerggted in efficiently specifying an upward-closed
family of sets, we can explicitly list the-minimal elements of the family. This gives us thigperset condition type
also called auperset Muller conditiom [LTMNO2].

Definition 2.40 (Superset condition type)An instance of thesuperset condition typis a setM C P(V(A)). The
setFq specified by a superset conditidrt is the sef{7 C V(A) : M C I for someM € M}.

The final formalism we consider is one of the most importamt imweresting Muller condition types, thgarity
condition type

Definition 2.41 (Parity condition type) An instance of thearity condition types a functiony : V(A) — P where
P C w is a set ofpriorities. The setF, specified by a parity conditiog is the collection of seté C V' (.A) such that
max{x(v) : v € I} is even.

Remark.We have technically defined here thex-parity condition There is an equivalent formalism sometimes
considered where the parity of tlmeinimumpriority visited infinitely often determines the winner,llea the min-
parity condition Throughout this dissertation we only consider the maxtpaondition.

It is not difficult to show that the set specified by a parity dition is closed under union as is the complement of
the set specified. Therefore, from Theorem 2.16 we have tleviag:

Theorem 2.42(Memoryless determinacy of parity games [EJ91, Mos9LBt G = (A, x) be a parity game. The
player with a winning strategy has a winning strategy whigmiemoryless.

Indeed, any union-closed set with a union-closed complemem be specified by a parity condition, implying
that the parity condition is one of the most expressive diomi where memoryless strategies are sufficient for both
players. This result is very useful in the study of infiniterges and automata: one approach to showing that Muller
automata are closed under complementation is to reducertiidem to a parity game, and utilise the fact that if
Player 1 has a winning strategy then he has a memorylesegstrad construct an automaton which accepts the
complementary language [EJ91].

One of the reasons why parity games are an interesting dassyes to study is that the exact complexity of the
problem of deciding the winner remains elusive. In Chaptee3liscuss this and other reasons why parity games are
important in more detail.

CHAPTER 2. INFINITE GAMES 18

2.2.2 Translations

We now present a framework in which we can compare the expessss and succinctness of condition types by
considering transformations between games which keeprémadhe same. More precisely, we define what it means
for a condition type to b&anslatableto another condition type as follows.

Definition 2.43 (Translatable) Given two condition type8l and®3, we say thafl is polynomially translatabléo 95
if for any arenad, with A(A) = (Zg', =5) andB(A) = (Zs, =4), there is a functiory : Zyt — Zg such that for
allQ e Tyt

e f(Q)is computed in time polynomial ip4| 4 ||, and
e Forallm € PlayA), m =y Q < 7 35 £(Q).

As we are only interested in polynomial translations, weptynmsay 2l is translatableto %8 to mean that it is
polynomially translatable. Clearly, if condition ty@eis translatable t@ then the problem of deciding the winner
for games of typé&l is reducible in polynomial time to the corresponding probfer games of typ&. That is,

Lemma 2.44. Let 2l and®5 be condition types such that is translatable to%. Then there is a polynomial time
reduction from(-GAME to B-GAME.

If condition type®l is not translatable t&8 this may be for one of three reasons. EitRieis more expressive than
B in that there are set§ that can be expressed using conditions fréirbut no condition fronts can specifyF;
or there are some sets for which the representation of 2lyjenecessarily more succinct; or the translation, while
not size-increasing, can not be computed in polynomial tiMé& are primarily interested in the second situation.
Formally, we say

Definition 2.45 (Succinctness)®l is more succincthan®® if 95 is translatable t@(but®l is not translatable t€5.

We now consider translations between some of the condigjpestwe defined in Section 2.2.1.

Translations between general purpose condition types

It is straightforward to show that win-set conditions arerensuccinct than explicit presentations. To translate an
explicitly presented gamg4, F) to a win-set condition, simply také” = V' (4) andWW = F. To show that win-set
conditions are not translatable to explicit presentationssider a game whet& = () andV = {0}. The setF,)
specified by this condition consists of all subsetd/@f4) and thus an explicit presentation must be exponential in
length.

Proposition 2.46. The win-set condition type is more succinct than an explieisentation.

Similarly, there is a trivial translation from the Emersbei-condition type to the circuit condition type. However,
the question of whether there is a translation in the othexction is an important open problem in the field of circuit
complexity [Pap95].

Open problem 2.47. s the circuit condition type more succinct than the Emersencondition type?

We now show, through the next theorems, that circuit pregiems are more succinct than Zielonka DAG presen-
tations, which, along with Emerson-Lei presentations,naoee succinct than Muller presentations, which are in turn
more succinct than win-set presentations.

Theorem 2.48. The Muller condition type is more succinct than the win-getdition type.

Proof. Given a win-set gaméA, (W, W)), we construct a Muller condition describing the same setubbsts as
(W, W). For the set of colours we useé = W U {c}, wherec is distinct from any element ofi". The colouring
functiony : V(A) — C is then defined as:

CHAPTER 2. INFINITE GAMES 19

o x(w)=wforweWw,
o x(v)=cforv¢W.

The family C of subsets of” is the set{ X, X U {c} : X € W}. Forl C V,if I C W, thenx(I) = I otherwise
x(I) = {c}UI. Eitherway,I N W isin W if, and only if, x () € C.

To show that there is no translation in the other directiamsider a Muller game o, where half oflV/(A),
V.., is coloured red, the other half coloured blue, and the fawiilsets of colours i€ = {{red}}. The family F
described by this condition consists of th& (Y1/2 — 1 non-empty subsets &.. Now consider trying to describe this
family using a win-set condition. In general, for the $€tspecified by the win-set conditiofi¥, W), anyv ¢ W,
andX C V(A) we have{v} UX € F' < X € F'. Observe that in our game no vertex has this latter propérty:
v € V,, then{v} € F, buth ¢ F; andifv ¢ V, then{v} UV, ¢ F, butV, € F. Thus our win-setl¥’ must be
equal toV (A), andW is the explicit listing of the2!V(A)1/2 — 1 subsets o¥/,.. Thus(W, W) cannot be produced in
polynomial time. O

Theorem 2.49. The Zielonka DAG condition type is more succinct than thedigbndition type.

Proof. Given a Muller game consisting of an areda= (V, V4, V4, E,vr), a colouringy : V' — C and a familyC
of subsets of”, we construct a Zielonka DAE v which describes the same set of subset& @fl) as the Muller
condition(x, C). Consider the Zielonka DA, ¢, whose nodes are labelled by sets of colours. If we replaabed |
L C Cinthis tree with the sefv € V : x(v) € L} then we obtain a Zielonka DAG~ 1 over the set of vertices. We
argue thatF is, in fact, the set specified by the Muller condition C) and then show tha£; « can be constructed in
polynomial time. Since the translation frafx « to Zx - involves an increase in size by at most a factoigf this
establishes that Muller games are translatable to Ziel@#A@s.

LetI C V be a set of vertices. If € F then, by the definition of Zielonka DAG#$,is a subset of a labeY of a
0O-level node of Zx 1 and is not contained in any of the labels of the 1-level siemrssoft. That is, for each 1-level
successor, of ¢, there is a vertex € I such thaty(v) & x(L.) whereL,, is the label ofu. Moreover,x(I) C x(X).
Now x(X) is, by construction, the label of a 0-level node®f -~ and we have established thatl) is contained
in this label and is not contained in any of the labels of thHevel successors of that node. Thereforéel) € C.
Similarly, by interchanging O-level and 1-level nodgél) ¢ C if I ¢ F.

To show that we can construg « in polynomial time, observe first that every sub3etC C has at mos{C|
maximal subsets. Note further that the label of any nodgdg: is eitherC', some element af or a maximal (proper)
subset of an element 6f Thus,Z¢ ¢ is no larger thad + |C| 4 |C||C|. This bound on the size of the DAG is easily
turned into a bound on the time required to construct it,gifie inductive definition of Zielonka trees. Thus, we have
shown that the Muller condition type is translatable inte #ielonka DAG condition type.

To show there is no translation in the other direction, adeisthe familyF of subsets o¥/(.4) which consist of
2 or more elements. The Zielonka DAG which describes thisfaotnsists off V' (A)| + 1 nodes — one 0-level node
labelled byV'(A), and|V (A)| 1-level nodes labelled by the singleton subset® @fl). However, to express this as a
Muller condition, each vertex must have a distinct coloncsifor any pair of vertices there is a setArthat contains
one but not the other. Thug)| = | 7| = 2!V(AI — |V (A4)| — 1. It follows that the translation from Zielonka DAGs to
Muller conditions cannot be done in polynomial time. O

To show the remaining results, we use the following obsé@rmat
Lemma 2.50. There is no translation from the Emerson-Lei condition tigothe Zielonka DAG condition type.
Proof. LetV(A) =V = {z1,...,z2}, and consider the family of sefs described by the formula
Y= \/ (x2i—1 A x2;).
1<i<k

Clearly|¢| = O(|V(A)|). Now consider the Zielonka DAG - describingF. AsV € F, the root ofZx v is a O-
level node labelled by’". The maximal subsets & notin F are the2* subsets containing exactly onefafy; 1, z2; }

CHAPTER 2. INFINITE GAMES 20

for1 <+ < k. ThusZx y must have at least this number of nodes, and is thereforeomstraictible in polynomial
time. O

Theorem 2.51. The Emerson-Lei condition type is more succinct than thddviabndition type.

Proof. Given a Muller game consisting of an aredaa colouringy : V(A) — C and a familyC of subsets of’, let
 be the boolean formula defined as:

o=V (ACV 9n ACA).

XeC ceX x(v)=c c¢X x(v)=c

It is easy to see that a subdetC V' (A) satisfiesp if, and only if, there is some sef € C such that for all colours
¢ € X there is some € I such thaty(v) = ¢ and for all colours’ ¢ X there is now € I such thaty(v) = ¢'. Since
 can clearly be constructed in time polynomialdi + |V (A)|, it follows that there is a translation from the Muller
condition type to the Emerson-Lei condition type.

For the reverse direction, we observe that as there is datarsfrom the Muller condition type to the Zielonka
DAG condition type, if there were a translation from the Ester-Lei condition type to the Muller condition type, this
would contradict Lemma 2.50 as “translatability” is tréeiva. O

Theorem 2.52. The circuit condition type is more succinct than the ZieBKAG condition type.

Proof. Given a Zielonka DAG gaméA, Zr) whereV = V(A), we define, for each nodein Zr a boolean
circuit C;. This circuit is defined by induction on the heighttofFor convenience, we associate each circuit with its
output node. Suppose the labelta$ X . We have the following cases:

(i) tisaO-level X € F) leaf: In this case, lef; = /\mgx .
(i) tisal-level X ¢ F) leaf: Inthis case, lef; = \/mex x.

(iii) tis a O-level node witlk successors, . .., tx: In this case, leCy = A,y —~z A /\f:1 Ct, .

(iv) tis al-level node witfk successorsy, ...t Inthis case, leC; =V ¢ x z V \/f:1 Cy, .

We claim that the conditioff is specified by the circuif’, wherer is the root ofZr .. This formula has size at most
[V(A)||Z#,v| and is constructed in polynomial time. To show its corressnge argue by induction on the height of
any node with label X thatC} defines the restriction of to X. We consider the following cases:

(i) tis aO-levelleaf. In this case any subsetfs in F. I C V(. A) satisfiesC; if, and only if, no variable that is
not in X appearsin, thatis/ C X.

(i) tis al-level leaf. In this case any subsetofis not inF. Herel C V(A) satisfie”, if, and only if, there is
some element id which is notinX, thatis/ ¢ X.

(iii) tis a O-level node wittk successors labelled by, ..., Xi. In this case any subset &f is in F unless it is
a subset ofX; for somes, in which case whether it is itF is determined by nodes lower in the DAG. Here
I C V(A) satisfies; if, and only if, I is a subset o and! satisfiesCy, for all successors.

(iv) tis al-level node witlt successors labelled by, . .., Xi. In this case any subset &f is not inF unless it is
a subset ofX; for somei. Herel C V satisfie, if, and only if, eitherl is not contained inX, or there is some
successot; such that/ satisfies’, .

We observe that as there is a translation from the Emersogdraition type to the circuit condition type,
Lemma 2.50 implies there is no translation from the circaiidition type to the Zielonka DAG condition type. O

Figure 2.2 summarizes the succinctness results we havesudfian, with the more succinct types towards the top.
The dashed edge indicates that there is a translation luba@tiknown whether there is a translation in the opposite
direction.

CHAPTER 2. INFINITE GAMES 21

CIRCUIT
/ = =~ ~
ZIELONKA DAG EMERSON-LEI

\ /

MULLER

WIN-SET

ExpPLICIT

Figure 2.2: Summary of the succinctness results

Translations between union-closed condition types

Turning to union-closed condition types, we observe thabdisis condition type is a succinct way of describing union-
closed sets. It is not even known if it is translatable to tineuit condition type, the most succinct type considered
above. In Section 2.3.2 we show that the problem of decidasisbgames is co-NP-complete. It follows from the
NP-completeness of Rabin games [EJ88], and duality thatriblelem of deciding Streett games is co-NP-complete.
The following result implies that we cannot use transldiigttio obtain upper or lower bounds on the complexity of
basis games based on the known bounds for Streett games.

Theorem 2.53. The basis and Streett condition types are incomparablem@@hect to translatability. That is, neither
is translatable to the other.

Proof. To show there is no translation from Streett games to basiegaletV’ (A) = {1, ..., 22}, and consider
the Streett game with winning condition described by thw)[a(mi, M:1<i< k} whereL; = {x9;_1, z2; }. Note
that the family of sets described by this conditiotfis= { X C V(A) : Vi X V(A) \ L;}. Any basis for7 must
include the minimal elements &f. However, the minimal elements include

M= {{v1,..., 06} 1 v € {21, 22:} },

and| M| = 2*. ThusF cannot be represented by a basis constructible in polyridimia.
To show there is no translation in the other directionVié) = {x1, ..., z2x }, and consider the famil§ of sets
formed by closing
B = {{xgi—1, w2} : 1 <i <k}

under union. Note that this is the same construction as éopthof of Theorem 2.52. Observe tifacontain2* — 1
sets, each with an even number of elements. Any Streett tomavhich describes the same family must contain at
least this number of pairs in order to exclude the sets of @ddicality. ThusF cannot be represented by a Streett
condition which is constructible in polynomial time. O

It should be clear that the superset condition type is tedable to the basis condition type. We include the result
for completeness.

Proposition 2.54. The superset condition type is translatable to the basiglitimm type.

We conclude these results with the following two observeti@garding translations between explicit presentations
and the basis and superset condition types.

Proposition 2.55. The superset condition type is more succinct than an expliesentation of an upward-closed set.

Proof. Given an explicitly presented upward-closed gamdeF), the setF, viewed as a superset condition, clearly
describes the same set of subsetd/¢f4). Conversely, for the superset gar(ngl, {{o} :v € V(A)}), the set

CHAPTER 2. INFINITE GAMES 22

described by the winning condition is of si2€’ (! — 1, and therefore cannot be explicitly presented in polynbmia
time. O

Corollary 2.56. The basis condition type is more succinct than an expligsentation of a union-closed set.

Proof. The fact that the basis condition type is not translatabdatexplicit presentation follows from Proposition 2.55
and Proposition 2.54 as “translatable” is transitive. Tteeodirection is straightforward, the explicit preseiuat
itself suffices as a basis. O

2.2.3 Extendibility

We now introduce a property of condition types that allowsausiake simplifying assumptions about the arena. We
say a regular condition type extendiblgf it can “ignore” a set of added vertices. More precisely,

Definition 2.57 (Extendible condition type)Let 21 be a regular condition type. We s&yis extendiblef for any
arenas4 and.A’ such that/(A) C V(A’), and any instanc € A(.A), there is an instanc®’ € 2A(.A’), computable
in time polynomial in|Q| 4 [V (A’)|, such thatF, = {I C V(A : INV(A) € Fq}.

We observe that ifi’ (A")| — |V (A)| = m, then|Fq/| = 2™|Fq|, S0 in particular, an explicit presentation is not
extendible. However, all the other condition types we haviasconsidered are extendible.

Proposition 2.58. The following condition types are extendible: Muller, citt; Emerson-Lei, Zielonka tree/DAG,
win-set, parity, Rabin, Streett, basis, and superset.

Proof. Let us fix arenast and.A’ such thal/(A) C V(A"). We show for each condition type above how to compute

the required instanc@’ from a given(2. It follows from the definitions that for the circuit, Emers&ei, win-set,

Rabin, Streett and superset conditions takKiig= Q) suffices. So let us consider the other condition types.
Supposé? = (x,C) is a Muller condition instance witly : V(A) — C. We define®?’ = (x/,C’) as follows. Let

C’ = C U {c} wherecis not an element of’. We define

) = {X(v) if veV(A)

c otherwise

and we defin€’ := CU{I U {c} : I € C}. (x’,C’) is clearly computable in time polynomial €| + |V (A")|, and
for everyl C V(A") we havey'(I) € C' if, and only if, x(I N V(A)) € C. Thus(Y' is as required.

Similarly, if Q@ = (x, P) is a parity condition, we leP’ = P U {p} for some oddh < min{x(v) : v € V(A)}
and definey’(v) = p forv ¢ V(A), andx(v) = v otherwise. For any set C V(A"), if I NV (A) # 0 then
max{x'(v) : v € I} = max{x(v) : v € INV(A)}, sol € Fo if, and only if, I N V(A) € Fq. Otherwise, if
INV(A) =0, thenmin{x'(v) : v € I} = p, and ad) ¢ Fq andp is odd, we havd ¢ Fo andI NV (A) ¢ Fq.
Thus(Y' is as required.

Given a Zielonka structur€r y whereV = V(A), consider the Zielonka structuf¥ = Zz -, whereV’ =
V(A"), defined by adding’(A’) \ V(A) to each label. That s, ifis a node inZx v/, labelled byX C V, thent is a
node inZx v labelled byX U (V(A")\ V(A)). Now considetd € F'. From the definition of a Zielonka structute,
is a subset of a label of a 0-level nodand not a subset of a label of any of the successors®fippose is labelled,
in Zzv,byX,sol CXU(V'\V). ThusINnV(A) C X. Now supposé NV (A) is asubset oY, a label (inZx)
of a successor of. It follows that/ C Y U (V' \ V), and sol is a subset of a label (ifx 1) of a successor of,
contradicting the choice ¢f SoI NV (A) € F. Interchanging the roles of O-level nodes and 1-level negd&sblishes
thatif I ¢ 7' thenI NV (A) ¢ F. ThusQ' is as required.

Finally, given an instance of a basis condition type- B, we defineY’ = B’ as follows:

B =BU{{v}:veV(A)\V(A))}.

CHAPTER 2. INFINITE GAMES 23

Supposd = |J;_, B; for setsB;, ..., B,, € B, where for somen < n, B; € B fori < m. From the definition of
B, itfollows that/ NV (A) = |J“, B;, s0INV(A) € Fq. Conversely, if NV (A) € Fq,letINV(A) =", B;.
From the definition of3’, there existsB,, 11, ..., B, € B suchthatl \ V(A) = U;_,,,, Bi. Sol = |J;_, B; for

By,...,B, € B and hencd ¢ Fo.. O

Given a game with a winning condition specified by an exteledibndition type, we can add vertices to the arena
without significantly changing the size of the instance. sTémables us to assume that the arena has a very simple
structure.

Theorem 2.59. Let 2 be an extendible regular condition type aid= (A, 2) be a Muller game with2 € 2A(A).
Then there exists a Muller gangel’, ') with ' € 2(A"), computable in time polynomial ifiG||, such that:

(i) A’is a bipartite graph withE(A4") C (Vo(A') x V1 (A)) U (Vi(A") x Vo(A)),
(i) Allvertices inV,(A’) have out-degree at most 2, and
(iii) Player O winsG if, and only if, she win&’'.

Proof. We constructd’ from A in a series of stages by adding vertices and adding and megladges, s& (A) C
V(A’). We observe that the resulting arena has size polynomialfinso it can be constructed in polynomial time.
We then use the definition of extendible condition type taobthe winning conditiof?’ from Q. Since the size of
A’ is polynomial in the size afi, we can comput€’ in time polynomial in|Q2| + |A]. Itis clear from the definition of
extendible condition types that in the resulting game Rl@y&ins fromuv;(.A) if, and only if, she wins fromv; (A’).
Thus it remains to show the first two conditions may be met afttnost a polynomial increase in the size of the arena.

First we ensure all vertices i (A’) have out-degree at most 2.dfe V(. A) has out-degres: > 2, we replace
them outgoing edges from with a binary branching tree, rootedw@gtwith m leaves — the successorsiofWe observe
that this requires adding at mastvertices andn edges. Each of the newly added vertices are add&g(td). After
repeating this for all vertices ifig(.A), the resulting arenal’ has at mostV (A)| + |E(.A)| vertices, an@|E(A)]
edges, and every vertex Iy (A’) has out-degree at most 2.

Now suppose all vertices i have out-degree at most 2. For each edge(u, v) € E(A) suchthat, v € V5(A)
(u,v € V1(A)), add a vertex, to V1(A) (Vo(A)) and replace the edgewith edges(u,v.) and (ve,v). After
repeating this for all edges ifi(A), the resulting arenal’ has at mostV (A)| + | E(A)| vertices, an@| E(.A)| edges,
andE(A") C Vp(A') x Vi(AHY UV (A) x V(A). O

2.3 Complexity results

In this section we consider the complexity of deciding wieetRlayer O has a winning strategy in a Muller game
when the winning condition is specified using some of the fidisms we have considered. We show that the problem
of deciding Muller games in which the winning condition isesgied by a win-set condition isFPACEcomplete.
It follows from our results on translatability that the dgon problems for Muller games with winning condition
specified by a Muller condition, Zielonka DAG or an Emersagi-tondition are all also $?PACEcomplete. We also
show that the decision problems for basis and superset games-NP-complete.

We first consider some upper bounds. A well-known resultas $imple games can be decided in linear time.

Theorem 2.60. LetG = (A, F) be a simple game. Whether Player 0 wihgan be decided in tim@(|E(A)|).

Proof. SupposeF = (), the case wherF = P(V(A)) is dual. LetiWW C V;(A) be the set of vertices if; (A) with

no outgoing edges. We observe that Player 0 wins fee() if, and only if, Player 0 can force the play to a vertex
v € W. Thus, Player 0 has a winning strategy if, and onlwjf(.4) € Forceﬁ(W). The required complexity bound
then follows from Lemma 2.18. O

In [IKO2], Ishihara and Khoussainov considered the follogvrestriction on explicitly presented Muller games:

CHAPTER 2. INFINITE GAMES 24

Definition 2.61 (Fully Separated game) et G = (A, F) be an explicitly presented Muller game. We €ays fully
separatedf for eachX € F there existex € X suchthaby ¢ Y forallY € F,Y # X.

Khoussainov showed that the winner of a fully separated gamée decided in tim@(|V (A)|?|E(A)|). We now
prove a generalization of this result by showing that exihfipresented Muller games can be decided in polynomial
time if the winning condition is an anti-chain with respextiie subset relation.

Theorem 2.62. LetG = (A, F) be an explicitly presented Muller game such tiféis an anti-chain, that isX Z YV
forall X,Y € F. Whether Player 0 win& can be decided in tim@(|F ||V (A)|?|E(A)]).

Proof. Consider the algorithm RTICHAIN (A4, F) in Algorithm 2.2. We show that it is correct and returns ingim
O(IFIIV (A)P|E(A))).

Algorithm 2.2 ANTICHAIN (A, F)

Returns: true if, and only if, Player 0 has a winning strategy fran(A) in (A,) whenF is an anti-chain.
foreach X € Fdo
let Nx = {v: Player 0 has a winning strategy framin the gamd A4, {X })}
let N = Forcel (Uxer Nx)
if v7(A) € N then
return true
else if N = () then
return false
else
let 7 ={X € F: XNN =0}
return ANTICHAIN(A\ N, F")

We first show that ATICHAIN (A, F) returnstrue if, and only if, Player O has a winning strategyGh= (A, F).
Let us suppos&’ has been computed as above. We consider three cases:

(i) vr(A) € N. From the definition ofV, there exist® € V(A) andX € F such that Player 0 can force the play
to v fromv;(A) and Player 0 has a winning strategy frerwhich visits every vertex it, and only vertices in
X, infinitely often. The winning strategy for Player 0 is therforce the play ta and play this strategy. Since
X € F, this is a winning strategy.

(i) N = 0. Inthis case, for everX € F, Player 1 has a strategy from every vertex ind which can ensure either
not all vertices ofX are visited infinitely often, or some vertices notinare visited infinitely often. The strategy
for Player 1 on(A, F) is as follows. Play anything until the play enters sofes F, then play the strategyy
until the play leaves(. Clearly if there is naX € F such that the play remains foreverh Player 1 wins the
play. So let us suppose the play remains indefinitely(ifor someX € F. From the definition of-x, the set
I of vertices visited infinitely often is properly containedX . SinceF is an anti-chain, it follows thaf ¢ F.
Thus Player 1 wins the play.

(i) N # 0 andv;(A) ¢ N. Inthis case, Player 1 can force the play to remaidig N and it follows from case (i)
above that Player 0 has a winning strategy from every venté.iClearly, if Player 0 has a winning strategy in
(A \ N,F’) then she has a winning strategy in the larger game: if Playtrobses to keep the play i\ N
then Player 0 can play her winning strategy on the subgarherwise if Player 1 chooses to move to a vertex in
N, Player 0 can play her winning strategy fravh Conversely, if Player 1 has a winning strategy.\ N, F')
then, as he can force the play to remaindin IV, he can play his winning strategy on the subgame.

Thus, ANTICHAIN (A, F) returnstrue if, and only if, Player 0 has a winning strategyGh= (A, F).
To show the algorithm returns in tin@(|F||V (A)|?| E(A)|), we require the following result from [IK02]:

CHAPTER 2. INFINITE GAMES 25

Lemma 2.63([IK02]). LetG = (A, F) be an explicitly presented Muller game with= {X}. Whether Player 0
has a winning strategy from a vertexc V' (.A) can be decided in tim@(|V (A)||E(A)|).

It follows that at each stage of the recursion, it takg&7 ||V (A)||E(A)|) time to computeV. Furthermore, since
|N| > 1 whenever ATICHAIN (A, F) is recursively called, it follows that the algorithm hasuesion depth at most
|V (A)]. Thus the algorithm runs in tim@(|.F||V (A)|?| E(A)|) as required. O

2.3.1 PspACEcompleteness

As we saw in Theorem 2.15, McNaughton [McN93] presented gordhm for deciding Muller games in space
O(JV(A)|?). In fact, the games he considered were win-set games. Hoytbeealgorithm is easily adapted to the
case where the winning condition is presented explicithgoa Muller condition, a Zielonka DAG, an Emerson-Lei
condition, or a circuit condition without significant ina®e in the space requirements. Thus, each of these classes of
games is decidable indPACE

We now show corresponding lower bounds. By the results ofptiegious section, it suffices to establish the
hardness result for the win-set condition type.

Theorem 2.64. Deciding win-set games RsPACEcomplete.

Proof. By the above comments, we only need to shawACEhardness. For this, we reduce the problem of QSAT
(satisfiability of a quantified boolean formula [QBF]) to theblem of deciding the winner of a win-set game.

We assume, without loss of generality a QBF,= Qy_12x—1...Vx13x09 IS given in which quantifiers are
strictly alternating andp is in disjunctive normal form with 3 literals per clause. Wemn define a win-set game
Go = (A, Q), whereQ2 = (W, W), as follows:

o Vo(A) = {p} U{z,~z : for all variablesr},

Vi(A) = {Cy,...,Cn_1}, the set of clauses ip,

E(A) given by:

- (¢,C;) e E(A)for0 < j <m;

—1f C; = (lo ANlu AN l2), then(Cj, L), (Cj, 1), (Cy, 1) € E(A);

= (zi,2i-1), (x4, wi—1) € E(A) for0 < i < k;

(mxiyxi—1), (i, —xi—1) € E(A) for0 < i < k;and
(0, 9), (720, ¢) € E(A),

o vi(A) =9,
W =Vo(A)\ {¢}, andWis

W= {Si,Si U {{L‘Z‘}, S; U {—wt'l} 0<i<k, z'even}
whereS, =) and fori > 0, S; = {z;,~2; : 0 < j <i}.

Figure 2.3 illustrates how the arena®§ would look if ¢ contained the claus€sg A xx—1 A —xzg) and(—zo A
Tp—1 N xk)

Note that as this is a win-set game, we are only interestedriices oflV that are visited infinitely often. Observe
that the winning condition ensures that Player 0 can wimiél anly if, the minimum; such that at most one ef and
—x; is visited infinitely often is even. The idea behind the stggtfor Player O is to perpetually verify. The choice
of strategies by both players then dictates the choiceseofrtith values for each of the variables, and the winning
condition guarantees a winning strategy for Player O if, anly if, ® is true. To formally show that Player O has a
winning strategy if, and only if® is true, we proceed by induction é@nthe number of quantifiers df.

CHAPTER 2. INFINITE GAMES 26

o N\ Tip—1 N\ 7T

g AN Trp—1 N\ Tk

Figure 2.3: Arena ofs for o = (xg Axg—1 A —xg) V...V (520 A Tp—1 A Zk)

Base casek = 1 By the idempotence of andVv and assumin@ is closed,® is logically equivalent to one of the
following forms.

e & = Jxg.zy or Jzp.—zp. In this case the arena consists of four vertides,Co, zo, ~xo}. Player O wins by
always returning t@ from whichever ofry and—z(Player 1 is forced to play to, anblis clearly true.

o & =3xp.(z V —xg). Hered is also true. The arena consists of five verti€esCy, C1, xo, ~zo } and Player 0
has the only choice (& andzy). A winning strategy is to always play fromito Cy, and to return immediately
to o from .

o & = Jzy.(xg A —g). Here® is false. The arena consists of four vertides Cy, xo, ~xo} and Player 1 can
force the play to visit bothry and—z infinitely often by alternately choosing each frafiy. Note that this
strategy requires memory to remember which vertex waseddist time.

Note that ifz(does not appear ip, we can add the clauge, A —z) without changing the truth value df.

Inductive case: The inductive hypothesis asserts thabihask — 1 quantifiers and is closed, then Player 0 has a
winning strategy if, and only if® is true. To show that this implies the case foguantifiers, we use the following
lemma which shows how subgames correspond to restrictddrsmblas. First we introduce some notation.xlis

free inp andv is eithertrue or false, we write [z — V] to denote the formula obtained by substitutinépr = in ¢

and simplifying. Note that ifo[x — true] simplifies totrue theny must have at least one clause containing the single
literal z, and if it simplifies tofalse, then all clauses contaifx. The crucial lemma can now be stated as

Lemma 2.65. If ® = Qzp (Q € {3,V}) and [z — true] does not simplify tarue or false, thenG ;. trq IS
isomorphic to the subgame &fs = (A, Q) induced by the set Avojq)idg(ﬂ)(x). Dually, if p[z — false] does not
simplify totrue or false, thenG,, ;a1 IS iSOMorphic to the subgame @f; induced by the set Avqig,idg(m)(ﬂx).

Proof. ¢[z — true] consists of the clauses g¢f that do not contain-z, with all occurrences of removed. The
assumption thap[x — true] does not simplify tarue or false implies that there is at least one such clause. The arena
for the gameG |, .« thus consists of vertices for{z — true], the clauses, and the variables (and their negations) of
©, excludingr and—z. The edges are the same as thoséfgrestricted to this vertex set. We show that the subarena
of G induced byAvoiqivoidﬁ(w)(x) is identical. As the winning condition only depends on \a&si corresponding
to variables, it follows that the winning conditions arecaidentical.

In Go = (A,Q), the setAvoid)(—z) consists of the vertices from which Player 0 can aveid As Player 1
chooses the play from vertices corresponding to clausesséh of vertices from which Player 1 can reagh is

CHAPTER 2. INFINITE GAMES 27

{-2} U {C : =z € C}. As there is at least one clause that does not contajrPlayer 0 can play to that clause to
avoid -z from . The only other vertex from which it is possible to reaehis x (asz is the outermost variable in
®), and from there Player 0 can play to eitheffor the next outermost variablg or ¢ (if no such variable exists).
Thus

Avoid) (—-z) = V(A) \ ({w:} U{C:-zxe€ C}).

Next we consideAvoidy, () for V/ = Avoid} (—z). As ¢ does not contain a clause containingy itself, Player 0
cannot force the play to from ¢, as Player 1 can always choose to play to another literathEtmore, ag is the
outermost variable i, the only edges te are from vertices associated with clauses. Thisthe only vertex from
which Player 0 can force the play to visit so

Avoid), (z) = V' \ {z}.

ThusAvoid,ivoidg(w)(x) =V(A)\ ({&,72} U{C : =z € C}), which is precisely the vertex set &, ,..tre]- The
edges for both arenas are thoseGaf restricted to these vertices, as are the winning conditidhsis the two games
are identical. 4

To complete the inductive step, we consider two cases.

o & =dx;_;.0. If ®is true, then there is a truth valwesuch thatp[x,_; — V] is true. Assume that = true,
the case fow = false being similar. The winning strategy for Player 0 is then toidv-x;_; and try to play
to z;_1, playing through each vertex i}, _; when the latter vertex is reached. Note that to play throwgine
vertex inSy_1 requires at least two visits tg,_; — Player 0 must remember (the parity of) the number of times
she has visited that vertex. H{x;_1 — v] simplifies totrue, then Player 0 can force the play to visit_1, by
playing to the clause that only containg_;. Otherwise Player 1 can play to avaig_,, restricting the play
to Avoid,ivoidg(wk_l)(xk,_l). From the above lemma, this subgame is equivalerit 1., ,..truej, and from
the inductive hypothesis, Player 0 has a winning strategyhisrgame. Thus the strategy of Player 0 is to play
her winning strategy on the smaller game®lfs false, then Player 1 plays a strategy similar to the siyaté
Player 0 in the case below.

e & =Vz,_;.0. Inthis case, ifb is true, then for both choices of truth valuec {true, false}, p[zi_1 — V] is
true. The winning strategy for Player O is to alternatelgmfpt to play to each of,_; and—x,_; (and then
through all vertices irb;_1), avoiding the other at the same time. If, at any point, Ridyplays to avoid the
vertex Player 0O is attempting to reach, Player 0 plays heniwinstrategy on the reduced game (which exists
from the lemma and the inductive hypothesis). Againpifs false, Player 1 plays a strategy similar to the
strategy of Player 0 in the previous case. Note that in tres &ayer 0 cannot force the play to visit bath_;
and—xy_1.

O

From our work on translatability in Section 2.2 and our olkiagon regarding the $PACE solvability of these
games, we obtain completeness results for Muller games tigawinning condition is presented as a Muller condi-
tion, Zielonka DAG, Emerson-Lei condition or a circuit catiah.

Corollary 2.66. The following problems arBspacecomplete: Deciding Muller games with winning conditioesp
ified by a Muller condition, deciding Zielonka DAG games,idiey Emerson-Lei games, and deciding circuit games.

It can be verified that an explicit presentation of the wign@ondition constructed in the proof of Theorem 2.64
would be exponentially larger than the presentation usimgraset. Thus, the proof cannot be used to provide a
Pspacehardness result for the explicitly presented games. Tlaetesomplexity of deciding the winner of such
games remains open. Indeed, it is conceivable (though &agpnlikely) that the problem is imrRME.

Open problem 2.67. Determine the precise complexity of deciding explicitgsented Muller games.

CHAPTER 2. INFINITE GAMES 28

Bounded tree-width arenas

In Chapter 4 we present a graph parameter knowtmeswidth Tree-width is a measure of how closely a graph
resembles a tree. It has proved useful in the design of digosias many problems that are intractable on general
graphs are known to have polynomial time solutions whemiotstl to graphs of bounded tree-width. In the context of
Muller games, Obdrzalek [Obd03] exhibited a polynontiale algorithm for deciding the winner in parity games on
arenas of bounded tree-width. We show that this is not the foasMuller games (and neither, therefore, for Zielonka
DAG games, Emerson-Lei games, and circuit games). The pfoldfieorem 2.64 can be modified so that the arenas
constructed all have tree-width two provided we allow olvesgto specify the winning condition as a Muller condition
rather than a win-set.

Theorem 2.68. Deciding Muller games specified by a Muller condition on @®of tree-width 2 iPsPACEcomplete.

Proof. Membership of BPAcEfollows from the fact that deciding general Muller gamescsiped by a Muller condi-
tion is in PSPACE

The construction to showdPAcEhardness is similar to that of Theorem 2.64. The reductaiso from QSAT,
and the proof that it is in fact a reduction is similar. Give®BF ® = Q_1x;_1 ... Vridxgp Wherep is in DNF
with three literals per clause, the Muller game we constigict

o Vi(A) = D whereD is the set of clauses.
o Vo(A) = {p} U (D x{1,2,3} x {x,—~x : zis avariablg).
¢ We have the following edges ifi(.A) for all ¢ € D:

o C={p}U{z,~x: xisavariablé is the set of colours,
e x:V(A) — C defined as:

- x(p) = x(c) = pforallce D

- x((e,n, 1)) =1.
o C={5;,SiU{z;},S; U{~w;}:0< i<k, iever} whereS; = {¢} and fori >0, S; = {p} U {z;,~z; :
0<yj<i}.

Figure 2.4 illustrates how this arena differs from that o€drem 2.64.
The resulting arena has tree-width 2, and the proof thatgPlayas a winning strategy if, and only @,is true is
similar to that of Theorem 2.64. O

CHAPTER 2. INFINITE GAMES 29

~
o N\ Tp—1 N\ Tk @

Figure 2.4: Arena with bounded tree-width

2.3.2 Complexity of union-closed games

We now turn our attention to Muller games where the winningdition 7 is a union-closed set. Among games studied
in the literature, Streett games and parity games are exangblcondition types that can only specify union-closed
games. Union-closed games were also studied as a classOg][IRne consideration that makes them an interesting
case to study is that they admit memoryless strategies &yePll [Kla94]. That is, on a game with a union-closed
winning condition, if Player 1 has a winning strategy therhlas a strategy which is a function only of the current
position. One consequence of this fact is that, for expjigitesented union-closed games, the problem of deciding
whether Player 0 wins such a game is in co-NP. This is becauseamemoryless strategy for Player 1 is fixed, the
problem of deciding whether Player O wins against that fixestegy is in FIME. Indeed, it is a version of a simple
game. Thus, to decide whether Player 1 has a winning strategyan nondeterministically guess such a strategy and
then verify that Player O cannot defeat it. Hence, detemmgimvhether Player 1 wins is in NP and therefore deciding
whether Player 0 wins is in co-NP. In this section, we aim taldgsh a corresponding lower bound for two condition
types that can only represent union-closed games, namehais and superset condition types.

We saw with Theorem 2.53 that we cannot use the known coniplegunds on Streett games to easily establish
similar bounds for basis games. Nevertheless, decidirig games is still in co-NP.

Proposition 2.69. Deciding basis games is to-NP.

Proof. From the comments above, it suffices to show that if we fix a nrglass strategy for Player 1 then we can
decide the resulting single player basis game in polynotime.

The algorithm is as follows. Lef be the basis for the winning condition. Initially I8 = 5, and repeat the
following:

1. LetX; = Upep, B-
2. PartitionX; into strongly connected components (SCCs).
3. Remove any element & which is not wholly contained in a SCC to obtd#, 1,

until B; = B;_1, at which point, letX = X;. This takes at mosD(|B|(|V(A)| + |E(A)|)) time using a standard
SCC-partitioning algorithm. At this point, every SCC &fis a union of basis elements — allin X are members
of basis elements, and any basis elements not contained/iB@@ of X is removed at step 3. Furthermore, any
strongly connected set & (.A) which is a union of basis elements is a subset (of an SCQ), &fecause the algorithm
preserves such sets. Thus, Player 0 can win from any nodevitdoh she can reack’ (play to X and then visit
every node within an SCC oX forever); and Player O cannot win if she cannot reAckthere is no union of basis
elements for which Player 0 can visit every vertex infiniteften). Thus the set of nodes from which Player 0 wins
can be computed i®(|8|(|V| + |E|) + |E|) time. 0

CHAPTER 2. INFINITE GAMES 30

We now obtain the lower bounds we seek on superset games.
Theorem 2.70. Deciding superset gamesds-NRcomplete.

Proof. Membership of co-NP follows from Propositions 2.54 and 2. B®show co-NP-hardness, we use a reduction
from validity of DNF formulas.
Given a formulap(xo, z1, ..., xr—1) in DNF, consider the superset game defined as follows:

o for every variabler; we include three vertices,, —z; € V;(A) andz € V1 (A);

o for eachi we have the edges;, z;), (v}, ~x:), (x4, 2}), (—xi, x,), where addition is taken modulg
o vr(A) = xz; and

e the winning condition is specified by the set

M = {{l; € Vo(A) : I; is aliteral of C'} for every clause of ¢},

As the superset condition is closed under union, if Playead dawinning strategy he has a memoryless winning
strategy. Note that any memoryless strategy for Playerectfely chooses a truth value for each variable. The set of
vertices visited infinitely often is a superset of an elenoént if, and only if, the truth assignment chosen by Player 1
makes one clause q¢f (and hence) true. Thus Player 0 wins this game if, and only if, there ignuth assignment
which makesp false. O

Corollary 2.71. Deciding basis games -NRcomplete.

We note in conclusion that the exact complexity of decidingpuo-closed games when they are explicitly presented
remains an open problem. It is clearly in co-NP but the abogeraents do not establish lower bounds for it.

Open problem 2.72. Determine the precise complexity of deciding explicitiygented union-closed games.

2.4 Infinite tree automata

One of the original motivations for studying Muller and teldgames was to establish decidability results for problem
such as non-emptiness and model checking for infinite tréen@ata [McN66]. A reduction to non-emptiness of
infinite tree automata is used in some of the most effectigerédhms for deciding satisfiability of formulas in logics
such as52S, u-calculus, CTL, and other logics useful for reasoning about non-termigatiranching computation.
Furthermore, determining if a structure satisfies a fornmulany of these logics reduces to determining if a certain
automaton accepts a particular tree. In this section we shatthe non-emptiness and model-checking problems (for
regular trees) are$PAceEcomplete for Muller automata. We first present the defindiof infinite trees and infinite
tree automata.

Definition 2.73 (Infinite tree) Fork € N, let [k] = {1,2,...,k}. An infinite, k-ary branching tree labelled by
elements oft is a functiont : [k]* — . Nodesof an infinite tree are elements of its domain, thet of an infinite
tree is the empty string.

Definition 2.74 (Regular tree) A subtreeof treet rooted atu € [k]* is the treet, defined ag,(v) = t(u - v) for
all v € [k]*. Atreet is regularif it has finitely many distinct subtrees, or equivalentfyttiere are finitely many
equivalence classes under the equivalence relation

u~v <= tlu-w)=tv-w) Yw e [k]".

CHAPTER 2. INFINITE GAMES 31

Note that if a tree is regular it can be represented by a firgtesition system, with the equivalence classes of
the above equivalence relation as states, the equivaléss® eontaining the root as the initial vertex, @ndistinct
transition relations.

Definition 2.75 (Infinite tree automaton)An infinite (Muller) (k-ary) tree automaton is a tuple = (Q, %, 6, qo, F)
where

e () is afinite set of states

e Y is a finite alphabet

e 0 C Q x ¥ x QF is a transition relation
e (o is the initial state

e F C P(Q) is the acceptance condition.

Given an infinite k-ary branching tree labelled by elements df, a run of A ont is an infinite,k-ary branching
treer labelled by elements @ satisfying the following two conditions.

e The root ofr is labelled bygy (r(¢) = qo).

e Forallw e [k]*, if r(w) = ¢, r(w-1) = q, 7(w-2) = go, ..., (w - k) = qx, andt(w) = a, then
(Qaayqlaq27~~~7q1g)€5.

We say a rurr is successful if for every (infinite) path, the detf states visited infinitely often is an elementsf
We sayA acceptg if there is a successful run éf ont. Given an automatoA, thelanguageof A is the set of trees

L(A) := {t: A accepts}.

Two important decision problems in automata theory are emiptiness and model-checking.

NON-EMPTINESS OFMULLER TREE AUTOMATA
Instance: A Muller automatorA
Problem: Is L(A) # 0?

MODEL-CHECKING FORMULLER TREE AUTOMATA
Instance: A Muller automatorA, and a regular infinite tree
Problem: Ist € L(A)?

The close connection between automata and games can blsést@dliby considering the game where the moves
of Player 0 consist of choosing a transitiondinio make from a current state, and the moves of Player 1 caoifsist
choosing which branch of the tree to descend. With this taéios in mind, the non-emptiness problem reduces to the
problem of finding the winner in the win-set garfd, (W, W)) with

e o(A) =W =0,
Vi(A) = QF,
W=7,

edges froml;(A) to V1 (A) determined by: an edge fromy to (q1, g2, - . ., i) if there isa € ¥ such that
(q7a7q15 .. C]k) S (5, and

edges froni/; (A) to V;(A) being projections: an edge frofag, . . ., qx) to g; for all i € [k].

CHAPTER 2. INFINITE GAMES 32

Clearly if Player 0 has a winning strategy in this game, itdsgible to construct a tree which the automaton accepts.
Conversely, if Player 1 has a winning strategy, no such txestse

By adapting the proof of Theorem 2.64 we are able to show ltlgaton-emptiness problem for Muller automata as
well as the problem of determining whether a given automatmepts a given regular tree are bo#PRCEcomplete.

Theorem 2.76. The non-emptiness problem for Muller tree automat@sgAcecomplete.

Proof. Membership in BPACEis established by the above polynomial time reduction floerton-emptiness problem
of Muller automata to win-set games. Here we shap&RCEhardness through a reduction from QSAT (satisfiability
of a quantified boolean formula [QBF]).

Given a QBF® = Q_1z1—1 ... Vz13xop, Wherey is in disjunctive normal form with 3 literals per clause, we
construct the following Muller automataiy = (Q, X, g1, J, F) that accepts infinite ternary trees:

o Q= {4y} U{qs ¢ : for all variablesr}
o ¥={a}?
® 4r =gy

§ C Q x Q3 given by:

— for each clausély A 1y A l2) € ¢, (4ps Q10- @1, 215) € 6;
= (Geir Qoiorr Qi s> Quiy) €6 FOM0 <@ < K;
= (G-eir Goi1 Quir s Qus—y) € 0FO0 < i <k;
= (qwo» 4+ G+ Gp) € 6; and
= (¢-20> 4o+ U+ Q) € 0.
o F={51,8U{qws},SiU{qz}:0<i<k, ieven} whereS; = {¢,} U{qs,,qz, : 0 < j <i}.

Now by using the reduction to win-set games outlined abosieng if Ag accepts any tree is equivalent to asking if
Player 0 has a winning strategy (frayg) on the win-set game used in Theorem 2.64. O

The model checking problem also reduces to deciding whiahgrlwins an infinite game. However, depending
on how the tree is presented, the resulting arena may be pitnfiize. If the tree is presented as a finite transition
system, a game with finite arena can be constructed, and wappdnTheorem 2.76 to obtain the following corollary.

Corollary 2.77. Given a regular, infinitek-ary branching treet (represented as a transition system) and a Muller
automator = (Q, %, 6, g1, F), asking ifA acceptg is PsPACEcomplete.

Proof. PspAacEhardness follows from the proof of Theorem 2.76, as the aatarmonstructed there accept at most
one tree — the ternary branching tree with all nodes labé&§ed

To show that the problem is indPACE we reduce it to the problem of deciding a Muller game. (%tso, t1, . . . , tx)
denote the transition system representing thettré&e required Muller game{A, (x, C)), is given by the following.

e (A =Q xS.
on(A)ZQXSXQk.

e There is an edge frorfy, s) € Vo(A) to (g, s,q1,---qx) € V1(A) whenever(q, a,q1,-..,qx) € § wherea is
the label ofs.

e Thereis an edge frorfy, s, q1,...,qx) € Vi(A) to (g;, t:(s)) € Vo(A) forl <i < k.

2asY. is a singleton, for ease of reading we omirom the description of

CHAPTER 2. INFINITE GAMES 33

e v(A) = (a1, 50),

Q is the set of colours,

x : V(A) — Q is defined by taking the first component of the vertex.
o C=F.

It is clear from the definitions that Player 0 has a winningtgtgy from(q;, so) in this game if, and only ifA accepts
t. O

Chapter 3

Strategy Improvement for Parity Games

In Chapter 2 we introduced parity games and briefly remarkethe significance of determining the complexity of
deciding them. One factor contributing to the importancthefanalysis of parity games is that deciding the winner of
a parity game is polynomial-time equivalent to the modedatting problem of modak-calculus, a highly expressive
fragment of monadic second order logic [EJS01]. Indeedptbdaly:-calculus is the bisimulation invariant fragment
of monadic second order logic, and therefore includes fogseful for verification such as the branching time temporal
logic CTL* [Dam94].

Another interesting aspect of parity games is that the cerityl of deciding the winner remains tantalizingly
elusive. In Section 2.3 we observed that when we can restnetplayer to memoryless strategies we can nondeter-
ministically guess the strategy and if we can check in pahyiabtime if that strategy is winning, we have demonstrated
an NP algorithm (if Player 0 has a memoryless winning stsgtega co-NP algorithm (if Player 1 has a memoryless
strategy). So, from Theorem 2.42 we obtain the followingptiary:

Corollary 3.1. Deciding the winner of a parity game is NP N co-NP.

Itis believed by some that parity games are decidable inrmohjal time, however the problem has so far resisted
attempts to find tractable algorithms, giving us the follogvivell-researched open problem:

Open problem 3.2. Determine the exact complexity of deciding parity games.

In this chapter, we analyse one of the best candidates faactabyle algorithm for parity games: the strategy
improvement algorithm. In Chapters 6 and 7 we define a la@gsdlindeed, the largest class so far known) of graphs
on which parity games can be solved in polynomial time.

Currently, the best known algorithm for deciding a parityngeon general arenas runs in tim@(v ™/ 1°6™) where
n is the number of vertices of the arena [JPZ06]. If the numlb@riorities, p, is small compared to the size of the
arena, say = o(y/n/logn), we can slightly improve on this with an algorithm that rum&ime O (dm(Lp’/LQJ) Lp/2J)
wherem is the number of edges of the arena [Jur00]. However, in [¥JJ0fbge and Jurdzifski introduced a strategy
improvement algorithm which appears to do quite well in fica; even when the number of priorities is large. To
date, the best known upper bound for its running tim@(snn HveVo(A dout(fu)), which is in general exponential in
the number of vertices. However, no family of examples hasgen ?ound that runs in worse than linear time. In
this chapter we analyse the structure of this algorithm asdoombinatorial results to improve the known upper and
lower bounds. The analysis we use is primarily taken fronOph].

3.1 The strategy improvement algorithm

The idea behind the strategy improvement algorithm is tondedi measure dependent on the strategy of Player O.
Then, starting with an arbitrary strategy for Player 0, tkkenlncal adjustments based on this measure to obtain a new

34

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 35

strategy which is in some sense improved. This process fisréeated until no further improvements can be made.
At this point, with a judicious choice of measure, the sggtis the optimal play for Player 0, and the winning sets for
each player can easily be computed. This procedure is yeadinded to any strategy that requires finite memory, so
from Theorem 2.14 we see that it can be used for games otheptrdy games. However, with parity games we can
restrict ourselves to memoryless strategies and then hatstage both the measure and the local improvements can be
efficiently computed.

In order to fully describe the algorithm, we need to introelsome concepts. Using the notation of Chapter 2, let
us fix a parity gamé& = (A, x) wherey : V(A) — P. For convenience we assume no vertexihas out-degree.
For the remainder of this chapter, we assume all strategégsasitional.

To be able to evaluate strategies, we first identify the ahtarstics of a play which are important. flay profile
is a triple(l, P,e) wherel € P, P C P ande € w. Given an infinite playr = v,vs - - - in G, we associate with a
play profile,©(r) := (I, P, e), as follows. We definéto be the maximum priority occurring infinitely often (),
so the parity of determines the winner of the play. We defiRdo be the set of priorities greater thathat occur in
x(m), ande to be the minimal index such thgtv.) =l andx(v.,) < I forall ¢’ > e. A valuationis a mapping from
each vertex € V(A) to a play profile of an infinite play from.

We next define an ordering that compares play profiles by hovefiigal they are to each player. We begin by
defining a useful linear order on the set of priorities. Tésard order C, is defined as follows: fot, j € P, C j if
either

(i) is odd andj is even, or
(i) 7 andj are evenand < j, or
(i) < andj are odd and > j.

Intuitively, ¢ C j if j is “better” for Player O than. We extendZ to play profiles by definingl, P,e) C (m, Q, f) if
either

@) I = m;or
(i) { =m andmax<(P A Q) is odd and inP, or even and irg); or
(i) I =m, P =@, and eithel is odd anc: < f, orlisevenanad > f.

The measure we use to implement the strategy improvementtithlign is a valuation that gives tHe-minimal
play profile amongst all plays consistent with the currerategy for Player 0. More precisely, letbe a strategy for
Player 0, and fop € V' (A) let Plays, (v) be the set of all infinite plays starting fromconsistent withr. We define
the valuationp,, by:

Yo (v) :==min {O(7) : 7 € Plays,(v)}.

The next proposition, taken from [VJOOb], helps give anitivte understanding of,. Given a strategy for
Player 0 and a strategyfor Player 1, we observe there is precisely one infinite play(v) consistent witho andr
from each vertex € V(A). We write®,,. for the valuation defined by:

Qo7 (v) := O(mor(v)).

If we further extend= to a partial order on valuations, in a pointwise manner then Proposition 5.1 of [VJOOb] can
be stated as:

Proposition 3.3. The set{©,,, : 7 is a strategy for Player Lhas a<-minimal element and it is equal to,.

Intuitively, this means thap,, is equivalent to the valuation defined byand the best counter-strategy for Player 1
againsto. Consequentlyy, can be efficiently computed by fixing the strategy of Playem@ aonsidering the
strategies of Player 1 in the resulting single player game.

After computingyp,,, the algorithm makes locainprovementso the strategy by switching (if necessarng(v)
to the successor af with the C-maximalp,, value. The resulting strategy is improved in the sense that < ¢,-.
This is then repeated until no further improvements can baemAt this point the strategy is optimal for Player 0,

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 36

(10:1
bo: 3 co:6
CL122 b1:5
01:4

Figure 3.1: A parity game

that is, Player O can win from a vertexc V' (A) against any strategy for Player 1 if, and only if, she can vayipg

o from v against any strategy. We can then compute the winning sefigibg Player O’s strategy and finding the
winning sets for Player 1 in the single player game. AlganitB.1 provides a detailed description of the critical part
of the strategy improvement algorithm.

Algorithm 3.1 Strategy optimization
Returns: An optimal strategy for Player O
selecta strategy for Player O at random

repeat
leto =o' {Store current strategy
Computep,
for eachv € V; do {Improveo locally according tap, }

selectw such thaiv, w) € E(A) and
oo () = max { o (') : (v,0) € B(A)}
if 0o (c(v)) C ¢o(w) then
leto’(v) = w
until o = o’
return o

As an example, let us consider the parity game pictured inrEi§.1. Lets be the strategy for Player 0 defined
by o(a) = ag, o(b) = bp ando(c) = ¢;. We will computep,, for the verticesuy, by andb;. Againsteo, Player 1
has a choice of strategiesaf: either he can play te, resulting in an infinite play with maximum priority, or he
can play toa, resulting in an infinite play with maximum priority. As1 C 4, the latter is thé_-minimal choice
and sop,(ag) = (1,0,0). At by, Player 1's choice appears to depend on the strategy:aif he plays toa and
the strategy at is to play toa then the resulting play has maximum priorityotherwise if the strategy at, is to
play toc the resulting play has maximum priority However3 C 1, so theC-minimal play in either case is going
to be to play ta, resulting inp, (bg) = (3,0,0). The valuation ab, is only dependent on the choice of strategy at
ag, S0, (b1) = (1,{4,5},4). Turning to the subsequent, improved strategywe have(3,0,0) = (1,{4,5},4).
Therefore, switching atb will be an improvement for Player 0, and hencéb) = b;.

Usingijk as shorthand for the strategy which mas a;, b to b;, andc to ¢y, the full table of relevant valuations
and subsequent strategies for each strategy is presenfiebia 3.1. Also included in this table is tiwector of
improving directions (VID)indicating which elements of had improvements. Not only does this help idenfify0
as the optimal strategy, but it is worth observing that eatthyen the VID column is unique. As we see in the next
section, this is not a coincidence.

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 37

o |li] eela) | alb) | @olc) || o |VID
00|V ity | i inbb | o.ineh e | O] 04
01 V| 0n | (oasha | (g | o]0
00 1] wan | onn | gy |H0]R°
o1 V| 1 w5 | gy | o | O] o
100 V| 00y | ey | g | 010|110
007 Goo | eisne | G | %] 101
w V| 00n | os | (s |10 0
wiV| O | e | G | 00|

Table 3.1: Table of valuations, next strategy and improvemectors for all strategies

3.2 A combinatorial perspective

In this section we show how the strategy improvement algoritan be viewed as an optimization problem on a
well-studied combinatorial structure. We will introdu¢etconcepts cécyclic unique sink oriented hyperculessd
thebottom-antipodal sink-finding algorithemd we will prove the following result:

Theorem 3.4. The strategy improvement algorithm is a bottom-antipoad-$§inding algorithm on an acyclic unique
sink orientation of the strategy hypercube.

Although this result appears in [BSV03], we present an adtive proof that utilises results from [VJOOb].

First we recall some definitions relating to hypercubesd-dimensional hypercubis an undirected graphy
such that/ (H4) = {0,1}%, and there is an edge betwegn, .. .,aq) and(by, ..., by) if for somei < d, a; # b;
anda; = b; for all j # i. We calla; the i-th componenbf a vertex(as, ..., aq) in a d-dimensional hypercube.
A subcubds a subgraph induced by a set of vertices which agree on setref somponents. We observe that a
subcube of al-dimensional hypercube is#&-dimensional hypercube for some< d, and we can specify a subcube
by a single vertex together with a set of adjacent edges.rGiveet! C {1,...,d} of natural numbers and a vertex
v = (a1,...,aq) of ad-dimensional hypercube, we denote by Swijtah the vertexv’ = (by,...,bs) obtained by
switching the components ih of v. Thatis,b; = a; if, and only if, i ¢ I. Given a vertex in a d-dimensional
hypercube, the verteantipodalto v is the vertex Switch, . 4 (v).

Given a parity gamé.A, x), we assume that every vertex Wa(A) has out-degree two. From Theorem 2.59,
we can always transform a parity game into one for which evergex inV,(A) has out-degree at most two. We
can assume there are no vertices of out-degres we can use force-sets to determine if either player aae the
play to one of these vertices. We can also change any verteéx(id) with out-degred to be a vertex iy (A) as
this does not affect the outcome of the game. As this can alldne in polynomial time, this assumption is not too
restrictive. If we fix an order offy (A) = {v1, ..., va}, and writev? andwv} for the two successors of € V;(A), then
each vecto(by, ..., bq) € {0,1}" defines a strategy for Player 0 by mappingo fuf.”, and conversely each strategy
defines a unique vector. Therefore, the space of all Plagestfitegies is equivalent to vertex set of dhdimensional
hypercube. For convenience, we will simply refer to thetstyg space as th&trategy hypercubéNe now introduce
some additional concepts to help establish Theorem 3.4.

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 38

IR SR A

Figure 3.2: AUSOs of the-cube (I) and the orientations which are not AUSOSs (r)

An orientationof a d-dimensional hypercube is a directed graph withdimensional hypercube as an underlying
undirected graph and at most one edge between any pair afegeriVe say an orientation is agyclic unique sink
orientation (AUSOIf it is acyclic and every subgraph induced by a subcube hasigqua sink (or, equivalently, a
unique source). Figure 3.2 shows the two AUSOs forteebe (left), together with the two orientations of tieube
which are not AUSOs (right).

Acyclic unique sink orientations of hypercubes are veryamignt combinatorial structures, particularly as a gen-
eralization of linear programming optimization problerRer example, @seudo-boolean function (PBE)a function
from a hypercube t&®, and a common optimization problem is to find the vertex whitthins the maximum (or min-
imum) value of a PBF. In [HSLdW88], a hierarchy of classes BFB was introduced, and one of these classes was
the completely unimodal pseudo-boolean functidiusmctions such that every subcube has a unique local mimimu
Clearly, a completely unimodal PBF induces an AUSO, and emaly any function t&R which respects an AUSO
will be completely unimodal.

One useful concept associated with AUSOs isuletor of improving directionsLet VID : {0,1}" — {0,1}"
be the function that maps each vertex of a hypercube with aB@ltb the vector which indicates which edges are
outgoing from that vertex. That is, if there is an edge froto v wherev and+’ differ in the i-th component, then
thei-th component of VIDw) is 1 and thei-th component of VIDv') is 0.

An important class of problems for AUSOs and similar strogsuarepolynomial local searclproblems (PLS).
These are optimization problems where the cost of a solai@h“neighbouring” solutions can be efficiently com-
puted, with the overall goal being to find a locally optimalugimn — one which is better than all its neighbours. For
example, if computing the directions of edges incident witrertex can be done in polynomial time, then finding the
unigque global sink of an acyclic unique sink oriented hypéecis a problem in PLS. Clearly, given a hypercube we
could iterate through all vertices to find the sink, but asssally the case for interesting problems in PLS, iterating
through all possible solutions is considered infeasibler. the sink-finding problem a more interesting question is:
can we find the global sink in time polynomial in the dimensadrihe hypercube? In fact, for acyclic unique sink
oriented hypercubes, this is an important open problem.

Open problem 3.5. Given ann-dimensional hypercube with an AUSO, is there a polynomalch that the global
sink can be found with at mogtn) vertex queries?

One reason for the importance of this question is that thrergngeresting structural results for AUSOs that suggest
this question can be answered in the affirmative. Firstlypatimensional hypercube with an AUSO satisfies the
Hirsch conjecture [WH88], which means that from each vettiexe is a directed path of length at magb the global
sink. Secondly, we have the following observation from &itison Hoke [WH88] which shows that the vector of
improving direction takes a very special form:

Theorem 3.6([WH88]). VID is a bijection.

However, despite these results, an efficient sink-findiggrhm on hypercubes with AUSOs remains elusive.
The connection between AUSOs and the strategy improverfgortthm is summarized in the following theorem:

Theorem 3.7. The valuationp,, induces an AUSO on the strategy hypercube.

In order to prove this, we must first indicate hgw induces an orientation. Let be any linear ordering on the
set of Player O’s strategies. We exteddo a partial order on strategies by sayingi ¢ if either

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 39

() po <o, 0r
(i) ¢o = o ando < o’.

This gives us an orientation on the strategy hypercube, asewevith the following result:

Lemma 3.8. Leto ando’ be strategies for Player 0 such thafv) = ¢/(v) for all but onev € V4 (.A). Then either
oc<o',oro’ <o.

The proof of this result follows directly from the followirtavo results from [VJOOb].

Lemma 5.7 of [VJOOb]. Let! C {1,...,d} be a set of natural numbers, and tebe a strategy for Player 0. If, for
eachi € I, o, (o(v;)) T po(v]) wherev! is the successor of not equal tor(v;), theno < Switch ().

Claim 7.2 of [VJOOb]. LetI C {1,...,d} be a set of natural numbers, and letbe a strategy for Player 0. If, for
eachi € I, o, (0(v;)) Z ¢o(v]) Whereu] is the successor af, not equal too(v;), then Switch(o) < o.

The orientation is then obtained by adding an edge fsamo’ if o(v) = ¢’(v) for all but onev € V(. A) ando <1 o”.
We now need to show that this orientation is an AUSO. To dg this use the fact that the strategy improvement
algorithm terminates.

Theorem 3.1 of [VJOOb]. The strategy improvement algorithm correctly computesiineer of a parity game.

Sinced is a partial order it is clear that this orientation is acycln order to show that it is an AUSO, we use the
following result about unique sink orientations.

Proposition 3.9([WH88]). A hypercube orientation is a unique sink orientation if, ady if, every2-dimensional
subcube has a unique sink.

Next we observe that every subcube of the strategy hypelindibees a subgame of the original parity game: by
definition, there is a sét C 14, (A) on which all strategies of the subcube agree. The inducegbsnb is obtained by
fixing Player O's choices ol to agree with all the strategies of the subcube. Furthernmotbese subgames, takes
the same values as in the original parity game. Thus thetiegugtrategy hypercube of the subgame is a subcube
of the strategy hypercube of the original game. Therefdrany 2-dimensional subcube of the strategy hypercube
does not have a unique sink, we can produce a parity game \Ritimensional strategy hypercube with the same
orientation. The only acyclic orientation oRacube without a unique sink is one with antipodal sinks angdaes (see
Figure 3.2). In Lemma 3.10 we describe how the strategy ingrent algorithm works on an oriented hypercube,
and from this we see that if the algorithm begins at a souradbisf2-dimensional hypercube, then the subsequent
strategy will always be the other source. Thus, on this taign, the algorithm never terminates. Since Theorem 3.1
of [VJOOb] ensures that the strategy improvement algoritinways terminates, eve+dimensional subcube has a
unique sink, and we have therefore shown that the oriemtaigdined by« is an AUSO. This completes the proof of
Theorem 3.7.

Returning to the example parity game from the previoussegctive can read the orientation of the strategy hyper-
cube directly from Table 3.1. For example, consider theefieo = {001}. Sincey, (a1) C ¢, (ap), it follows that
101 < 001, thus there is an edge froh®1 to 001. Figure 3.3 shows the resulting oriented strategy hypercub

Having established that the set of strategies for Playerrg@a hypercube oriented Ry, we can investigate how
the strategy improvement algorithm operates on this cubemRlgorithm 3.1, we see that a strategyswitches at
each point wherep, (o(v)) is not C-maximal. If this is adjusted so that when there is a choicetaftegies with
C-maximalp, values, we choose the-largest strategy, then from Lemma 3.8 we see that we aretiwgo at the
vertices corresponding to the outgoing edges in the siydtegercube. That is,

Lemma 3.10. Let o be a strategy for Player 0 and,, be the subcube of the oriented strategy hypercube defined by
o and the outgoing edges from Then the subsequent strategyin the strategy improvement algorithm is the vertex
antipodal toc on C,,.

This is a well-known sink-finding procedure for AUSO hypdres called BTTOM-ANTIPODAL [SS05], de-
scribed in Algorithm 3.2. It is clear that on an AUSO hypereuBOTTOM-ANTIPODAL terminates with the global

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 40

110 =— 111

iy
100 101

[010 011

/! /!

000 —— 001

Figure 3.3: Oriented strategy hypercube for the parity gemiégure 3.1

Algorithm 3.2 BOTTOM-ANTIPODAL
Returns: Global sink of an AUSO hypercube
selecta vertexv at random
repeat
Compute VIOv)
letv =v @ VID (v) {XOR v and VID(v)}
until VID(v) =0
return v

sink: at each stage we are jumping from the unique sourceeo$tbbcube defined by the improving directions to
some other vertex in that subcube, so we are always redutenginimal distance to the global sink. Combining
Lemma 3.10 with Theorem 3.7 gives us the main result:

Theorem 3.4. The strategy improvement algorithm is a bottom-antipoadd-§inding algorithm on an acyclic unique
sink orientation of the strategy hypercube.

3.3 Improving the known complexity bounds

The upper bound o@(mn]_[vev0 dout(v)) for the running time of the strategy improvement algorithnses from
the observations that it tak&3(mn) time to computep, and there are{]‘[vevo(A) dou(v)) different strategies for
Player 0 [VJ0OOa]. The results of Section 3.2 enable us toangpthe trivial upper bound obtained by naively running
through all possible strategies. Mansour and Singh [MSB6&jved that a BTTOM-ANTIPODAL sink-finding algo-
rithm will visit at mostO(%d) vertices of ad-dimensional hypercube. However, we can improve this uppend
further by using results from combinatorics. Instead ohgshe BOTTOM-ANTIPODAL algorithm, we can use other
sink-finding algorithms such as thed®&NAcCI SEE-SAW of Szabb and Welzl [SWO01], described in Algorithm 3.3.
This algorithm utilises structural results of AUSOs suciiheorem 3.6 and has the best-known running time upper
bound,0(1.61¢), amongst sink-finding algorithms.

These results give us the following improved upper boundth® strategy improvement algorithm:

Proposition 3.11. Assuming each vertex I} (A) has out-degree two:

(i) The strategy improvement algorithm runs in ti@émn - 2™° /ny).

(i) The Fibonacci strategy improvement algorithm runsime O (mn - 1.61™°).
Wherem = |E(A)|, n = |V (A)| andng = |Vo(A)|.

Turning to lower bounds, natural questions to consider angpteteness results. In particular, is strategy improve-
ment or finding the sink of an AUSO hypercube PLS-complete®kBjnd et al. [BSV03] show that this is not the
case.

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 41

Algorithm 3.3 FIBONACCI SEE-SAW
Returns: Global sink of an AUSO hypercube
selecta vertexm at random
let w be the vertex antipodal ta
let Cy, = {m} andC,, = {w} {Antipodali-dimensional subcubés
for i = 0ton do
Compute VIOm) = (mg, m1,...) and VID(w) = (wo, w1, .. .)
letd = min{j : m; # w;}
let C!, be thei-dimensional subcube parallel €, in directiond fromm
let C!, be thei-dimensional subcube parallel €, in directiond from w

if mqg = 1then {m is the minimal vertex of ai + 1)-dimensional subculje
Computew = FIBONACCI SEE-SAW(CY,)
else {w is the minimal vertex of ai + 1)-dimensional subcubje

Computem = FIBONACCI SEE-SAW(CY,)
letC,, = C,, UC!, andC, = C, UC],
return m

Theorem 3.12([BSVO03]). The problem of finding optimal strategies in parity gameisRi S-complete with respect
to tight PLS-reductions.

Because PLS-complete problems have exponentially longangment paths [Yan97], the fact that strategy improve-
ment is not PLS-complete gives further support to the hygsiththat it may only require polynomially many itera-
tions.

However, we can also ask if there are examples of parity gavhéh require an exponential number of strate-
gies to be considered by the strategy improvement algorithsna first step towards this, Schurr and Szab6 [SS05]
generated a family of oriented hypercubes for whichTBOM-ANTIPODAL visits 2¢/2 vertices. It remains an open
problem whether there is a family of parity games with theggeihcubes as their strategy hypercubes. In fact, this can
be generalized to a more interesting open problem:

Open problem 3.13. Given a hypercube with an AUSO, can a parity game be consiilot polynomial time with
that hypercube as its strategy hypercube?

A positive answer to this question would not only give an exgrttial worst case for the strategy improvement algo-
rithm, but it would also relate Open Problems 3.2 and 3.5: lgnmmnial time algorithm for finding the sink on an
AUSO would give a polynomial time algorithm for solving pigrgames and vice versa. On the other hand a nega-
tive answer to this question would give a smaller class of 89%or which finding a polynomial time sink-finding
procedure is an interesting and important problem.

This leads to another interesting question: Can we clagsiAUSO hypercubes that correspond to parity games?
As we mentioned previously, Hammer et al. [HSLdW88] introeldia hierarchy of pseudo-boolean functions including
completely unimodal functions. It seems plausible thatdlass of PBFs corresponding to parity games might lie
within one of the more restrictive families they considereédr example, viewing d-dimensional hypercubk, as a
polytope inR¢, a PBFy onH, is linearly separabléf for all » € R there exists a hyperplane separating the vertices
v with ¢(v) > r from the vertices’ with p(v’) < r. Itis easily seen that a divide-and-conquer algorithm aachtfie
sink of a linearly separable hypercube in time linear in timeshsion, so if the hypercube orientations associated with
parity games are linearly separable then the strategy wepnent algorithm would run in polynomial time. However,
as the next result shows, the hierarchy of [HSLdW88] is na Bnough to separate parity games and completely
unimodal functions. We say a pseudo-boolean funcfioq0, 1} — R is pseudomodulaif for all v, w € {0,1}™:

() min{f(v), f(w)} < max{f(vAw), f(vVw)},and
(i) min{f(v A w), f(0Vw)} < max{ f{v), f(w)}.

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 42

In [HSLdW88], the class of pseudomodular functions was #ast restrictive class of PBFs included in completely
unimodal functions. However,

Proposition 3.14. There exists a parity game with an oriented strategy hygmdhat cannot be induced by a pseu-
domodular function.

Proof. Consider the parity game from Figure 3.1. Its oriented styahypercube can be seen in Figure 3.3. We see
that
111 <000« 001« 110

Now takingv = 001andw = 110we see that there is no functigin: {0, 1}® — R that can simultaneously respect
and satisfy both pseudomodular axioms above. O

This result is not surprising, there is no obvious reason thieyjoins and meets of strategies should satisfy the
pseudomodular conditions. However, it does imply for insethat there are strategy hypercubes which are not
linearly separable.

Chapter 4

Complexity measures for digraphs

In the last few chapters we examined the computational cexitglof some graph-based games. We saw how the
winning condition influences the difficulty of the problem fafiding a winner of such games. We now turn our
attention to the other aspect of such games, the arena. Whefahe next few chapters is to investigate measures
of graph complexity, in particular measures for directegpiis. As we will see, such metrics give insight into the
structure theory of graphs and help identify those charigties that act as a barrier to finding efficient solutions
of various important problems (for example, finding the venof a parity game, or finding a Hamiltonian path).
Consistent with the overall theme of this dissertation dbplexity measures we define will be based on games.

So what makes a good complexity measure? First we have tadeonghat it is we are aiming to measure. This
of course depends largely on the application one has in rkiadinstance, a group theorist may be interested in graph
automorphisms and so a useful measure might reflect the Biree @utomorphism group. A topologist might be
interested in a measure that indicates how many edges nugstiora drawing of the graph on a surface, or how many
paths there are between any pair of vertices. We are inger@stalgorithmic aspects, so a practical measure might
indicate the difference between tractable and intractiaskances of many NP-complete problems. A good measure
of complexity may even encompass more than one such aim. &desirable property isoundnessthe measure
can be defined in equivalent ways for different applicatioAsother desirable property imbustnessthe measure
should be “well-behaved”. For example, if we simplify theagh, then the measure should not increase. Again, the
concept of simplification is dependent on the applicatioor. the group theorist, a simple graph is one in which all
vertices have similar structure, for example, a clique. tRertopologist a simple graph might be an acyclic graph.
From the algorithmic perspective, simplifying would indkioperations that likely reduce the complexity of many
problems, for instance taking subgraphs. In this case simrphs would be a class on which many NP-complete
problems have polynomial time solutions — again, acyclapys are a good example. Dually, if we complicate the
graph the measure should not decrease, and if this comphdatin some way uniform, we would expect the measure
to increase uniformly. One final desirable feature, paldidy for algorithmic purposes, is that the measure should
somehow encompass large classes of graphs. For exampéciggys a sound and robust measure, but it only takes
two values, a graph is either acyclic or it is not. So althoagiclicity provides a boundary between tractable and
intractable instances of many NP-complete problems, waatanse it to find larger classes of graphs which may
admit efficient solutions. This suggests that a generaizaif acyclicity, perhaps indicating how acyclic a graph is
would be an ideal candidate for a good complexity measuris. iSiprecisely the type of measure we consider in this
and the following chapters.

In this chapter we introduce an important and well-known snea for undirected graphs called tree-width. We
show how it matches the criteria outlined above, and we distiie problem with its extension to directed graphs,
providing motivation for subsequent chapters.

43

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 44

4.1 Tree-width

Tree-width can be seen as a measure of graph complexity tfoitdyoological and algorithmic purposes. That it serves
both purposes is not surprising as it is often the complefitye structure of the graph that makes problems difficult
to solve; many NP-complete problems can be solved in polyaldime on the topologically simple class of acyclic
graphs. As the name suggests, the tree-width of a grapteiteditilow close that graph is to being a tree. For example,
trees have tree-width, simple cycles have tree-widfh and highly connected graphs such as cliques have treé&-widt
one less than the number of vertices in the graph.

Although Robertson and Seymour coined the name tree-wii#84l], the parameter had been around for many
years prior to this, testament to the importance of treettwad a measure of graph complexity. Rose and Tarjan [RT75]
considered a symbolic approach to Gaussian eliminationatnices which amounts to vertex elimination on graphs.
They introduced several parameters which reflect how “diltfigt is to perform a sequence of eliminations: for ex-
ample thawidth of an elimination reflects the maximum number of operati@ggired at any stage of the elimination.
The minimum width over all vertex eliminations is a graph sw@a& equivalent to tree-width. Halin [Hal76] considered
S-functions: mappings from graphs to integers satisfyargain formal conditions, a class of functions which inasd
graph parameters such as the chromatic number, the vesterectivity and the homomorphism-degree. Halin showed
that there is a maximal S-function under the natural poiisewwartial ordering of S-functions, and this function &irn
out to be the tree-width of the graph. Arnborg [Arn85] was oiffi¢he first to show the algorithmic importance of
tree-width, by finding efficient solutions to many NP-complproblems on partidt-trees, a characterization of the
class of graphs with tree-width boundedhyWe will revisit some of these alternative characterizagiof tree-width
in Chapter 7.

To formally define tree-width, we must first introduce theiootof a tree decomposition. A tree decomposition
of a graphg is an arrangement of subgraphs®fn a tree-like manner so that all paths in the graph respést th
arrangement. More precisely,

Definition 4.1 (Tree decompositions and tree-width)et G be an undirected graph. #ee decompositionf G is a
pair (7, X') whereT is atree andt’ = (X;).cv (7 is a family of subsets of (G) such that:

(T1) Xisacoverofi(G), thatis,Jyc, X = V(G),
(T2) For each vertex € V(G) the subgraph of induced by the seft : v € X;} is a connected subtree, and
(T3) For each edgéu,v} € E(G) there exists € V(7)) such that{u, v} C X;.

Thewidth of a decompositiofi7, X') is max{|X;| : t € V(7T)} — 1. Thetree-widthof a graphg, Tree-widt{G) is
the minimum width over all tree decompositionghf

To see how this definition corresponds with our informal digsion above, letG be an undirected graph and
(7, X) be a pair such thef is a tree andt’ = (X;);cv (7 is a cover ofV (G). Foranarte = {s,t} € E(T), we
observe that the removal effrom 7" gives two subtrees: oné&,, containing the node, the other,Z; containing the
nodet. LetVs = U, . Xv andV; = U, . Xv. We define the following condition:

(T4) Foreach ar¢s,t} € E(T), every path froni/; to V; contains at least one vertex i, N X.
Condition (T4) can be used as an alternative to conditio@3 &nd (T3) as we see in the following lemma.

Lemma 4.2. LetG be an undirected graph, and@, X') a pair such that7 is a tree and¥’ = (X;).cv (1) iS a cover
of V(G). Then (T4) holds if, and only if, both (T2) and (T3) hold.

Proof. Suppose (T4) holds. For each verteg V(G), let T [v] be the subgraph &f induced by the sefit € V(7)) :
v € X, }. Supposé [v] is not connected. Let; andC, be two distinct components Gf[v]. SinceT is a tree, there
is a unique path i from C; to Cs. Let (s, ') be the first arc in that path. Sin€g andC, are distinct components,

170 assist with descriptions, we use the termsesandarcswhen referring ta7”, and the termgerticesandedgesfor G.

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 45

we haves € C4 ands’ ¢ V(T [v]), sov € X, C Vs, butv ¢ X, sov ¢ X, N X,. HoweverCo C T,/ SOv € V.
As the path (of length) from v to itself does not go through s N X, we have a contradiction. Thus (T2) holds. Now
lete = {u,v} be an edge of and suppos& [u] and7 [v] have no nodes in common. Lgt, ') be the first arc in the
unique path fron¥ [u] to 7 [v] in 7. We observe that € 7;, u ¢ 7y, v ¢ T, andv € 7. But then no vertex on the
(length1) path fromu to v alonge is contained inX; N X/, a contradiction. Therefore, (T3) holds.

Now suppose (T2) and (T3) hold. Lét, s’} be an arc off . Let (vy,...,v,) be a path from € V; tow, € V.
We show that there must be somsuch tha; € X, N X,. If v; € VNV, foranyi, 1 < i < n, then it follows
from (T2) thatv; € X, N X, and we are done. So assume that there issuch thaw,; € V; NV, . Sincev; € V; and
v, € Vi, it follows that there is somg, 1 < j < n suchthaw; € V; forall1 < i < j, andv; € V.. Butthere is an
edge fromw;_; to v; so from (T3) there existse V(7) such thaf{v;_1,v;} C X;. NowV(7,) UV (7y) = V(T),
so eithett € V(7;) ort € V(7). In the first case it follows that; € V, and in the second it follows thaj_, € Vs,
both of which are contradictions. Therefore (T4) holds. O

Path-width

Path-width, also introduced by Robertson and Seymour [RS83 measure of complexity for undirected graphs
closely related to tree-width. Just as tree-width indis&itaw close a graph is to being a tree, path-width indicates ho
close a graph is to being a path. Indeed, a path decompowitéotiee decomposition in which the underlying tree is
a path. More precisely,

Definition 4.3 (Path decomposition and path-widtH)et G be an undirected graph. path decompositionf G is a
sequenceXy, ..., X,, of subsets o/ (G) such that:

(P1) Uizy X = V(9),
(P2) Ifi <j <kthenX;N Xy C X, and
(P3) Foreach = {u,v} € E(G), there exists < n such thatf{u, v} C Xj.

Thewidth of a path decompositioX, . . ., X,,, ismax{|X;| : 1 <4 < k} — 1. Thepath-widthof G is the smallest
width of any path decomposition ¢f.

It is worth observing that ifX1, . . ., X, is a path decomposition of a graghthen so isX,,, ..., X;. Thus a path
decomposition is not completely dependent on the lineagrardposed by the fact that it is a sequence.

Because a path decomposition is also a tree decomposittimidth is a weaker notion of graph complexity
than tree-width. That is, if a graph has path-widththen the graph has tree-width k. The difference between
the two can be arbitrarily large: the class of trees haswieéh 1, but unbounded path-width. However, as argued
in [DKO5], path-width can be seen as a first approximatioreé4iwidth, and many interesting structural results can
be established with the measure. For example, we have tloaviog result of Bienstock, Robertson, Seymour and
Thomas:

Theorem 4.4([BRST91]). For every fores, every graph of path-widtk |V (7)| — 1 has a minor isomorphic t@.

4.1.1 Structural importance of tree-width

Lemma 4.2 gives us a good insight into what graph propemieswidth measures. If we take the given definition of

a tree decomposition, we see that tree-width is essenéiatigasure indicating how much structure we need to ignore
before the graph becomes acyclic. In this way, tree-widthsuees the cyclicity of a graph. On the other hand, if
we define tree decompositions using (T1) and (T4) we see tbatvwtidth measures how well separate parts of the
graph are linked. In other words, tree-width also measuressbnnectedness of a graph. Lemma 4.2 asserts that
on undirected graphs cyclicity and connectedness gereralithe same measure. As we will see, this distinction is
important, because on directed graphs cyclicity and caedeess are significantly different, giving us a variety of
complexity measures to consider.

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 46

In Chapter 1, we indicated that the concept of “graph stmectilhat we are interested in investigating is algorith-
mically motivated. As we have suggested, cyclicity and em@dness are important algorithmic structural propgertie
so this suggests that tree-width is a useful measure fohgpcture.

An important relation for the theory of graph structure thvatare investigating is thinor relation Intuitively the
minor relation relates two graphs if one is structurally ‘heocomplex” than the other. We formally define the concept
in Chapter 8. It is not surprising that tree-width and the anirelation are closely connected. Indeed, tree-width was
an important tool in the proof by Robertson and Seymour [R80the Graph Minor Theorem (see Theorem 8.42),
described by Diestel as “among the deepest results mathsrhas to offer” [Die05]. In addition many other structural
measures have been shown to be intimately related to trégwror instance eedback vertex s&t a set of vertices
whose removal result in an acyclic graph. It is easy to shawiffa graph has a feedback vertex set of dizthen it
has tree-width at mogt + 1. Two other important structural measures are havens amalibes.

Definition 4.5 (Haven) LetG be an undirected graph akds N. A haven of ordek: in G is a functions : [V (G)]<F —
P(V(G)) such that for allX C V(G) with | X| < k:

(H1) B(X) is a non-empty connected componen&of X, and
(H2) If Y C X, theng(Y) D B(X).

Definition 4.6 (Bramble) Let G be an undirected graph. Bramblein G is a set3 of connected subsets &f(G) such
that for all pairsB, B’ € B eitherB N B’ # (), or there exist§u, v} € E(G) with uw € B andv € B’. Thewidthof a
brambleB is the minimum size of a set which has a non-empty interseetith every element oB.

Seymour and Thomas [ST93] demonstrated the relation betheeens, brambles and tree-width with the follow-
ing theorem:

Theorem 4.7([ST93]). LetG be an undirected graph. The following are equivalent:
1. G has tree-width> k — 1
2. G has a haven of ordek.
3. G has a bramble of widtf.

This theorem asserts that the smallest width of all tree mi@ositions is always equal to the largest width of all
brambles. Since the width of tree decompositions is a makigimeasure and the width of brambles is a minimizing
measure, Theorem 4.7 is a minimax theorem. We explore thecasf tree-width further in Chapter 8.

The importance of tree-width as a measure of structural éexitp suggests that tree-width is robust under various
structural transformations, particularly those, suctaéaigg subgraphs, which may affect the complexity of proldem
Indeed, this can be verified by examining the definition oé tdecompositions, but is perhaps best illustrated by
Theorem 5.37, which we present in the next chapter.

4.1.2 Algorithmic importance of tree-width

The nature of tree decompositions further supports therighgoic significance of tree-width, as the structure of a
decomposition lends itself well to dynamic programmindntéques [Bod88]. When we restrict to a class of graphs of
bounded tree-width, we bound the size of the tree deconposiand many algorithms based on dynamic program-
ming will run in polynomial time. Thus restricting to classef graphs of bounded tree-width can provide large classes
of tractable instances for many NP-complete problems. Wassbest illustrated by Arnborg and Proskurowski [AP89],
when they provided efficient algorithms for many well-knoNR-complete problems on graphs of bounded tree-
width. This was further extended by Courcelle’s elegantati@rization of a large class of problems which can be
efficiently solved with dynamic programming:

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 47

Theorem 4.8([Cou90]) Any problem which can be formulated in Monadic Second Ordgiclcan be solved in
linear time on any class of graphs of bounded tree-width.

Of course the applicability of these results depends Igirgelthe complexity of the following decision problem:

TREE-WIDTH
Instance: An undirected graply, and a natural numbér
Problem: s the tree-width ofj at mostk?

While this problem is NP-complete [ACP87], for a fixed valki@etermining if a graph has tree-widthand
indeed, computing a tree decomposition of wifltifione exists, can be performed in linear time [Bod96]. Thisams
that finding the tree-width of a graph is fixed parameter #alet, and so it is not surprising that tree-width has also
played a major role in advancing the field of parameterizedpiexity.

As we mentioned earlier many important graph parameterslasely related to tree-width, so a common tech-
nique for finding fixed parameter tractable algorithms forapaeterized problems is to use tree-width to separate
instances into those which can be trivially solved and thvasieh can be solved using bounded tree-width techniques.
For example, consider the parameterized problem of findifepdback vertex set of size We can use the fixed
parameter tractable algorithm for computing tree-widtisdmpute a tree decomposition of widtht+ 1. If no such
decomposition exists then there cannot be a feedback vestef sizek. Otherwise, since the feedback vertex set
problem can be formulated in MSO, Courcelle’s theorem iegpthere exists an algorithm to solve the problem in
linear time, giving us a fixed parameter tractable algorifonfinding a feedback vertex set of sikze

4.1.3 Extending tree-width to other structures

The above discussion indicates that tree-width is a pr¢ctiound and robust complexity measure for undirected
graphs. We now consider other structures such as direcapthgor hypergraphs. One key to the success of tree-width
is that tree decompositions are readily extendable torargitelational structures. If, in Definition 4.1, we rep@ac
“vertices” with “elements of the universe”, and conditiar8j with:

(T3) For each relatiork and each tupléas, a2, ...) in the interpretation ofR there exists € V(7)) such that
{a’lv a’27 . '} g Xt)

then we obtain a definition of tree-width for general relatibstructures. Consequently, we can benefit from the
algorithmic advantages of tree-width, such as a structetesuited to dynamic programming, and obtain large classe
of tractable instances of problems outside graph probl&utshow good is tree-width as a measure of complexity on
these structures? It is easy to see that the tree-width ofietste is precisely the tree-width of the Gaifman graph of
that structure: the graph with vertex set equal to the us&ef the structure and an edge between any two elements
that occur in a tuple of a relation. The main drawback of tigpraach is that by considering the Gaifman graph,
we lose information about the structure, and in some casesnflormation loss may be crucial. For example, the
Gaifman graph of a directed graph is the undirected grapairdd by ignoring the orientation of the edges, so the
tree-width of a directed graph is the tree-width of the uhdeg undirected graph. This means that directed acyclic
graphs (DAGs) can have arbitrary tree-width as any graphbeathe underlying graph of a DAG. However, many
interesting problems based on directed graphs are greatplied when restricted to DAGs, so we would expect
DAGs to have low complexity. This suggests that tree-widtihdt a good complexity measure of directed graphs,
especially for algorithmic purposes.

This leads to the following research problem, the invesitigeof which forms the core of the remaining chapters.

Research aim. Find a complexity measure for directed graphs which geriegaltree-width.

Before we give an overview of the current status of this peobhlwe discuss what exactly “generalizes tree-width”
entails. First, we are interested in measures which gdamerabe-width as a measure. This has two aspects. As
tree-width is defined for directed graphs, we are not intetes measures that may be “worse than” tree-width. In

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 48

other words, we are searching for measures that are bouthded ay tree-width. On the other hand, we can view
undirected graphs as directed graphs by interpreting airectedd edge as a pair of anti-parallel edges — recall the
definition of bidirection in Section 1.1.2. So we can look géomeasure which matches tree-width on undirected
graphs by using this transformation to directed graphs.

The second property of tree-width we are interested in gdizarg is the structural aspect. Many structural proper-
ties of graphs have natural extensions to directed graphexémple acyclicity or connectivity. A good generalipati
of tree-width to directed graphs would reflect the behavajuree-width with regard to these properties. In particula
we expect structurally simple directed graphs such as DAgIsdirected cycles to have low complexity, but struc-
turally complex directed graphs such as cliques to have togplexity, just as trees and cycles have small tree-width
and cliques have large tree-width. Similarly, we expect gh@asonable measure would be robust under the structural
relations for directed graphs we considered in Sectior?1 Hor example, we expect that the measure would not in-
crease under the taking of subgraphs, or that it would beldeds compute the measure on a graph from its strongly
or weakly connected components, or more generally fromragbaubgraphs which comprise a directed union. This
last property was considered in [JRSTO1] as an importarpigatg for the generalization of tree-width to directed
graphs.

Finally, we are also interested in generalizing tree-widtthe algorithmic sense. We are particularly interested
in being able to find efficient algorithms for interesting Iplems on directed graphs of bounded complexity. Having
some sort of decomposition which generalizes tree decoitigusmight be one way to achieve this.

4.2 Directed tree-width

In [JRSTO1], Johnson, Robertson, Seymour and Thomas inteatian extension of tree-width to directed graphs
known as directed tree-width. Informally, directed treieldv is based on a decomposition, known as an arboreal
decomposition, which is defined by generalizing Conditidd)(Formally, to define directed tree-width, we require
the following definition:

Definition 4.9 (Z-normal) Given two disjoint subset& and S of vertices of a digraply, we sayS is Z-normal if
for every directed pathy; - - - v, in G such that,, v, € S, eithery; € S forall 1 < i < n, or there existg < n such
thatv; € Z.

Also, given a directed tre@& with edges oriented away from a unique vertex V(7) (called theroot), we write
t>efort € V(7)ande € E(T) if e occurs on the unique directed path frerto ¢, ande ~ t if e is incident witht.
The following concepts were introduced in [JRSTO1].

Definition 4.10(Arboreal decompositions [JRSTO2}A\n arboreal decompositioaf a digraphg is a tuple(7, B, W)
where7 is a directed tree with a unique root, aid= (B);cv (1) andW = (We).cg(7) are families of subsets of
V(G) that satisfy:

(R1) Bis a partition of\/(G) into non-empty sets, and
(R2) Ife € E(T), thenB>, := |J{B:|t > e} is W.-normal.

Thewidth of an arboreal decompositidd’, B, W) is the minimumk such that for alt € V(7), |[B; U ,., We| <
k + 1. Thedirected tree-widthof a digraphg, dtw(G), is the minimal width of all its arboreal decompositions.

It follows from this definition that directed tree-width dogeneralize tree-width as a measure in the sense de-
scribed above.

Towards showing that directed tree-width is also a strattgeneralization, Johnson et al. considered the natural
generalization of havens (using strongly connected compisrather than connected components) and proved the
following analogue of Theorem 4.7:

Theorem 4.11([JRSTO1]) LetG be a directed graph.

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 49

1. If G has a haven of ordet thenG has directed tree-width & — 1.
2. If G has no haven of ordét thenG has directed tree-widtkl 3k — 2.

Johnson et al. conjectured that the bound in the second iteifd be reduced t&l k£ — 1, showing an equivalence
between havens and directed tree-width. However AdlerQBdhas shown that this is not the case. Safari [Saf05]
showed that natural generalization of brambles (usingigtyoconnected sets rather than connected sets), can also be
related to havens and directed tree-width.

Theorem 4.12([Saf05]). For a directed graplg let H(G) be the largest order of a haven §h and B(G) the largest
width of any bramble iry. Then
H(G) <2B(G) <2H(G),

and there exist graphs for which equality holds in eithegoality.

Johnson et al. also demonstrated the algorithmic poteuitidirected tree-width, firstly by providing a general
algorithm scheme for finding efficient algorithms on digrajfi bounded directed tree-width, and secondly by using
this scheme to produce an algorithm which solves the fotigwiroblem in polynomial time on graphs of bounded
directed tree-width:

k-DISJOINT PATHS
Instance: A directed graply, and a set of: pairs of (not necessarily disjoint) vertices
{(Sl,tl), e (Sk,tk)}
Problem: Are therek vertex disjoint path$”, . . ., P, in G such that for each P; is a
path froms; to ¢;?

A corollary of this result is that many other important NRygaete problems, such as the Hamiltonian path and cycle
problems, can be solved efficiently on graphs of boundedtdicetree-width.

Theorem 4.13([JRSTO1]) The following problems can be solved in polynomial time on@ass of directed graphs
with bounded directed tree-width: Hamiltonian cycle, HHiamiian path, k-Disjoint paths, Hamiltonian path with
prescribed endpoints, Even cycle through a given vertex.

In terms of parameterized complexity, directed tree-widthlso quite useful. Although there is no known algo-
rithm for computing the exact directed tree-width of a graphrt from a brute-force search, generalizing the approach
used to compute tree-width in fixed parameter linear timegus a fixed parameter tractable algorithm for computing
an approximation of directed tree-width. This means thatareuse directed tree-width in a similar role as tree-width
for finding fixed parameter tractable algorithms for proldeon directed graphs.

Johnson et al. conclude their paper by observing that Sevder more natural extensions of tree decompositions
to directed graphs are not appropriate as they are not robdstr simple graph operations. They highlight that one
of the major problems with defining a notion of tree-width étirected graphs is that on directed graphs many other
structural measures are not as closely linked as they ahe iartdirected case, as we saw in Theorem 4.12.

4.3 Beyond directed tree-width

So with a seemingly appropriate complexity measure definbgjs the generalization of tree-width to directed graphs
still an interesting research problem? The answer is thattid tree-width does not seem to complete the whole
picture. For a start, unlike with tree-width the definitisrawkward, as is the given algorithm scheme, and it is difficul
to gain an intuitive understanding. The structure of arBbdecompositions is not as flexible as tree decompositions,
which means we cannot provide alternative forms of the deamition which may be useful algorithmically (see,
for example, Theorem 6.28). This makes it challenging tetgyalgorithms outside of those provided in [JRSTO1],
suggesting directed tree-width is not as practical as itdijppears.

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 50

In addition, contrary to the claims made in [JRSTO01], dieelctree-width is not robust under some very simple
graph operations. Adler [AdIO5] has shown that directed-trédth may increase under the taking of butterfly minors
(see Definition 8.28), and it appears that this can be extetadshowing that directed tree-width may increase under
the taking of subgraphs. However, it follows from Theorerl4 that this increase can only be by a constant factor,
as havens are robust under these operations. While thisstiegtralgorithmically directed tree-width is still a usefu
measure of complexity, it lessens the importance of dicetree-width as a structural measure. This was further shown
by Adler, with the following result which shows that havems distinct from directed tree-width.

Theorem 4.14(JAdIO5]). There exists a directed graghwith no haven of ordet and directed tree-widtH.

This implies that we cannot reduce the bound in the secontdp@heorem 4.11 to obtain an equivalence between
havens and directed tree-width.

Nevertheless, in the next chapter we show that Theorem shfilleis that directed tree-width at least approximates
a good complexity measure for directed graphs. But the pdtustill not complete. The problem is that on directed
graphs there is a difference between connectivity and edality — if there is a path frona to v it does not necessarily
follow that v andwv are in the same strongly connected component, and similatlyandv are in the same weakly
connected component, there may not be a path fréonv. The tree-width of a directed graph can be seen as a measure
of its weak connectivity, as tree-width is a connectivityasere that, on directed graphs, ignores edge direction.
Likewise, the definitions of directed tree-width and iteatiative characterizations suggest that directed treéawi
is a measure of the strong connectivity of a graph. So thetipmesan be asked, “What, if anything, measures the
reachability, odirected connectivityof a directed graph?” In Chapters 6 and 7 we address thigiqnemtroducing
two distinct, but closely related measures which seem taate directed connectivity. As strong connectedness
implies reachability, and reachability implies weak cocteeness, it is not surprising that these measures lie batwe
tree-width and directed tree-width. We argue that as thesssares are closer to tree-width than directed tree-width
is, they are more practical as a complexity measure for @idegraphs. In Chapter 8 we consider the structural
implications of the question, endeavouring to find geneadilbns of havens, brambles and minors that correspond to
our measures.

An interesting follow-up question is “Should a good comjitiexneasure for directed graphs be invariant under
edge reversal?” As many important structural features ssatycles or strongly connected sets are preserved under
reversing edges, it would seem that a good structural measould be invariant under this operation. However,
from an algorithmic point of view edge direction is much maréical. Consider the problem of trying to find a
path between two vertices when it is not easy to compute tige eglation, but it is relatively easy to compute the
successors of a vertex. Such a problem might arise for iostéinve were considering the computations of a Turing
machine. On a tree where all edges are oriented away frongkesiartex, finding such a path could involve a lot of
back-tracking, but with all edges oriented towards a singleex, the problem becomes significantly easier. Unlike
directed tree-width, the measures we introduce in Chaptarsl 7 are not invariant under the edge reversal operation,
providing further evidence that they are more suitablerssitans of tree-width from a practical point of view.

Chapter 5

Graph searching games

With a view to finding good complexity measures for directedpips, we now turn our attention to a means of
developing robust measures of graph complexity. We inttedugame played between two players, one controlling
a fugitive located on the graph, and the other controllingtao$ searchers whose purpose is to locate the fugitive.
Such games are useful for describing problems such as ttgitagate a virus in a network, or locate someone in a
cave system. They can also be used to define measures of gnaplegity: we obtain various complexity measures
by considering variants of the game and the resources esjbiy the searchers to locate the fugitive. Indeed, the
tree-width of a graph can be characterized by the minimumbeaurof searchers required to locate the fugitive in some
of the variants we consider.

We first define a very general form of the game which encompass@y games considered in the literature, for
example [ST93, KP86, BG04, DKT97, FFNO05, GLS01, GMO06]. Térimbles us to define some important concepts
we use throughout the next few chapters: plays, searchiagges and monotonicity. After demonstrating how this
game includes other games considered in the literaturentnadiuce a general framework for developing measures of
graph complexity. In Section 5.4, we show how these measueaobust under some basic graph operations such as
taking subgraphs. Finally, we conclude the chapter by denisig the complexity of the problem of determining these
graph parameters.

5.1 Definitions

The definitions we present in this chapter are applicableoth Hirected and undirected graphs, though it is often
necessary to assume we are working within only one of thessses. Thus we use the tegraphto refer to a
structure with a single, binary edge relation which may oy mat be symmetric.

We recall from Definition 2.7, the definition of@mple game The game we are interested in is a simple game
played on an arena defined by the graph to be searched. That s,

Definition 5.1 (Graph searching gamel graph searching game tygea functionl’ which maps a grapé to a triple
(Ls, Ly, A) wherel; and Ly are sets of subsets of El¢s) and.A is an arena which satisfy:

o Nc L,

0 ¢ L, andL; has a unique-maximal elemenR,, .,

Vo(A) C L x Ly consists of pairéX, R) whereX N R = 0,

Vi(A) C L x L, x Ly consists of triples of the foriX, X', R) whereX N R = 0),
vr (-A) = (®7 Rmax)y

51

CHAPTER 5. GRAPH SEARCHING GAMES 52

e If (X,R),(X’,X",R)) € E(A) thenX = X'andR = R/,

o If (X,X',R),(X",R)) € E(A) thenX’ = X" and for all7’ € R’ there isr € R such that- ands’ are in
the same (weakly) connected componerg of(X N X'), and

e If S C R, thenforallS’ suchtha((X, X', 5), (X', 5")) € E(A), thereexist®?’ O S’ suchtha((X, X', R), (X', R)) €
E(A).

Given a graph searching game typeand a graplyy, with I'(G) = (L, Ly, A) thegraph searching game of
(defined byl'(G)) is the simple gam&L, := (A, F), whereF = (), so Player 1 wins all infinite plays. In a graph
searching game elements 4§(.4) are calledpositions (of the gameklements ofl;(.A) are calledintermediate
positions and we call Player O theearchersaand Player 1 théugitive

Intuitively, the game works as follows. A graph searchingngaong is a game played by a number of co-
operating searchers against an omniscient fugitive. Alties occupy elements @f, however, while the locations of
the searchers are known to everyone, the location of théifads not necessarily known, so the fugitive “occupies”
a set of potential locations. When the game is at the posifiorRR), X € L, represents the location of the searchers,
andR € Ly represents the set of potential fugitive locations. Thaahposition, (), Ruax), thus indicates that at
the beginning there are no searchersfoand the fugitive may be anywhere @t),... The searchers and fugitive
move aroundy, but, as indicated by the edge relation of the arena, onljutigive is necessarily constrained by the
topology ofG.

From position(X, R), the searchers, if possible, choose a new set of locafidn#f this is not possible then the
fugitive has escaped and he wins. Otherwise, the game pisted¢he intermediate positiqiX, X', R). For ease of
later descriptions, we say the searchersonX’ have beememovedvhile the searchers o N X’ remainstationary
and the searchers g¥t’ \ X will be placedafter the fugitive has completed his move.

The fugitive responds to the move of the searchers at eadb pbtential locations, but he is not permitted to pass
through any stationary searchers. However, he is omnisai@his aware of the impending occupationof \ X
by the searchers that will be placed, and can modify his mspaccordingly. The final condition in the definition
of the arena of a graph searching game asserts that the sespainthe fugitive at each of his potential locations are
somewhat independent: if the set of potential locationgsdseiased, then so are the sets of his potential responses.
Some information about the response of the fugitive may bdahle to the searchers, resulting in a (visible) choice
for the fugitive about the next seR’, of his potential locations. If he has no such choice and rssipte location to
move to ' =), then he has been captured and the searchers win. Othetladsgame proceeds to the position
(X', R). This whole process is represented in the graph searchimg §g moving the token fronlX, R) to the
vertex(X, X', R), and then tq X', R’). If the fugitive can avoid capture forever, then again hedsmsmped and he
wins.

From this we can see that an arena of a graph searching gagheasnbe described by defining the set of positions
and a set of legal transitions between positions, esshrttighoring” non-terminal intermediate positions. It folvs
that all plays ending with a move from the fugitive can beydeéscribed as a sequence of positions:

(XO, RO)(Xla Rl) te (Xn; Rn)

where(Xo, Ry) = (0, Rimax) and for0 < ¢ < n and for all*’ € R;,; there isr € R; such that- andr’ are in the
same connected componenthf (X; N X;.1). We extend this to include plays that are winning for the clears by
usingR,, = () to indicate that the play ended@,,—1, X,,, R,—1). This motivates the following definition:

Definition 5.2 (Search) Let G, be a graph searching game @niefined by(Z,, £y, A), and let(X1, Ry) € Vo(A).
A proper search fronf X1, Ry) in G is a (possibly infinite) sequenceX1, R1)(Xa, Ry) - - -, such that for alk > 1:

o (Xi, R;) € Vo(A),
o ((Xi,Ri),(X;,Xiy1,R:)) € E(A), and

CHAPTER 5. GRAPH SEARCHING GAMES 53

o (X4, Xip1,Ri), (Xi1,Riy1)) € E(A).
A complete search fromiX1, Ry) in Gj is a finite sequenceX1, Ry) - - - (X,,, Ry,) such that
o (X1,Ry1)- (Xn_1,Ry_1) is a proper search frofiXy, R,) in Gf,
o (Xn-1,Rn-1),(Xn-1,Xn,Rn_1)) € E(A),
o (Xn-1,Xn, Ry_1)) € Vi(A) has no outgoing edges, and
o R, =0.

A searchin Gg is a sequence which is either a proper or a complete searchamkltsr can beextendedo a search
7', if w is a prefix ofr’. A search fromv;(A) is winning for the searcheri it can be extended to a complete search,
otherwise it iswinning for the fugitive

In the sequel we will generally adopt this representatioplaf/s as we are primarily concerned with the game
from the perspective of the searchers.

Variants of graph searching games are obtained by resgitite moves available to the searchers and the fugitive,
in other words, by placing restrictions on the arena on wltiehgame is played. Before we consider some examples,
we introduce some definitions and results relating to gjiase

5.1.1 Strategies

Since a graph searching game is a simple game, it followstibatinner is determined by reachability, and therefore if
either the fugitive or the searchers have a winning stratbgy have a memoryless strategy. However, in this chapter
we are interested iresource boundedinning strategies, and in this case memoryless strateigiésed, even finite
memory strategies may no longer be sufficient. However, soilenthat computing such strategies remains decidable,
we impose restrictions on the resource measures we corssidbat searches consistent with strategies are only ever
simple paths in the arena. This motivates the definitionluistory-dependent strategy

Definition 5.3 (History-dependent strategy).et G be a graph, andig a graph searching game ghdefined by
(Ls, Ly, A). Given a sek, ahistory-dependent strategy for the searchisra partial functiory : £* x L x Ly —
¥ X L, such that:

e (¢, Xo, Ro) is defined for the empty word and(Xo, Ro) = vr(A),
o If o(w,X,R) = (a,X’) for (X, R) € Vy(A), then
- (X, X',R) € Vi(A),
— thereis an edge iff(A) from (X, R) to (X, X', R), and
— ifthere is an edge il£(A) from (X, X', R) to (X', R’) € Vu(A) theno(w - a, X', R") is defined.

We say a search = (X, Ry)(X1, R1) - - - is consistentith o if there exists a wordy = ajas --- € ¥* U X such
thatforalli > 0, X; 11 = o(ay - - - a;, X;, R;). We callw thehistory consistentvith 7.

Remark.In the sequel we will usually define history-dependent etiats inductively, often omitting the associated
history when it is clear from the context what the play to agiposition should be.

Nevertheless, we show in Section 5.3 that the resource leoustiategies we are primarily concerned with are
equivalent to winning strategies in a graph searching g&woethis reason, we reserve the definitiorsthtegiedor
positional strategies.

CHAPTER 5. GRAPH SEARCHING GAMES 54

Definition 5.4 (Strategy) Let G be a graph, an@; a graph searching game grdefined by(L,, L, A). A strategy
for the searcherss a partial functiong : £, x L — L, such that ifo (X, R) is defined there is an edge \(A)
from (X, R) to (X,0(X, R), R). If 7 = (X0, Ro)(X1, Ry) - - - is a search if5§;, we sayr is consistentith o if for
alli >0, X;41 = o(X;, R;). We sayo is winning (for the searchers) every search fromy; (A) consistent withv is
winning for the searchers.

A strategy for the fugitivés a partial functiorp : £; x £ x L; such that if(X, X', R) € V;1(A), there is an
edge inE(A) from (X, X', R) to (X', p(X, X', R)). If @ = (X0, Ro)(X1,Ry)--- is a search irGf;, we sayr is
consistenwith p ifforall i > 0, R,11 = o(X;, Xi+1, R;). We sayp is winning (for the fugitive)f every search from
vr(A) consistent withp is winning for the fugitive.

Given a strategy for the searchers and a strategfor the fugitive, the unique maximal search consistent with
andp is thesearch defined by andp

We now use strategies to define a structure that will prov&ulsethe next few chapters. Given a strategyor
the searchers in a graph searching gaE@edefined by(Ls, L, A), we see that induces a subgraph od in the
following way. LetV C V(. A) be the set of positions and intermediate positions reachetime play fromv;(A)
consistent withr. Considering for the moment positional strategies, itdiwh that from each positiofX, R) € V
there is precisely one succes$éf, X', R) € V, namely the element df; (A) with X’ = o(X, R). The structure
we are interested in is a slight variation of this subgraplenghjust as with our policy for describing searches, the
intermediate positions are ignored.

Definition 5.5 (Strategy digraph)Let G be a graph antﬂ&g a graph searching game grdefined by(L,, £, A). Let
o be a strategy for the searchers. Buategy digraph defined by, D, is the directed graph defined as:

e V(D,) is the set of all pairé X, R), including “positions” of the forn{ X, @), such that there is some search in
Gg, (Xo, Ro)(X1, Ry) -+, fromv;(A) = (Xo, Ro) and consistent withr, with (X, R) = (X;, R;) for somei.

e Thereisan edge froifX, R)to (X', R') in E(D,) if X’ = o(X, R) and either there is an edge frdii, X', R)
to (X', R') in E(A), or there are no edges frofX, X', R) in E(A) andR’ = .

Remark.Sometimes it may be convenient to assume that nodes of timg #6f, ()) of a strategy digraph are duplicated
so that each such position actually corresponds to a véXeX’, R) in V1(A). When this is the case, we see that
every leaf of the form(X,) has a unique predecessor:(X’,) is associated witli X, X', R) then (X, R) is the
unique predecessor X', (). We observe that after these duplications, we still H&ED,)| < |V (A)|.

An observation that will prove useful concerns the form tinategy digraph takes for winning strategies.

Lemma5.6. LetG be a graph andsg a graph searching game @ndefined by(L,, L, A). If o is a winning strategy
for the searchers the®,, is a directed acyclic graph and all leaves®f, are of the form(X, ().

Proof. We observe that from the definition, there is a path fraitd) = (Xo, Ro) to every nod€ X, R) € V(D,).

We also observe that every pdtk, Ro)(X1, R1) - - in D, fromwv;(A) correspondsto a searchmg consistent with
o,andif(X, R) is aleafthen there is no search consistent widxtending any consistent search which endsatR).
Sinceo is a winning strategy for the searchers, all searches densiwith o can be extended to a complete search.
Thus, if (X, R) is aleaf, it follows that all searches frofiXy, Ry) which end af X, R) must be complete, sB = (. To
show acyclicity, it suffices to show that#?,, is not acyclic, themwr is not a winning strategy for the searchers. Suppose
(Y1,81) -+ (Y, Swm) is a cycle inD,. By our earlier observation; = (Y7,51) -+ (Y, Sm)(Y1, S1) is a search
from (Y7, S1) consistent withy. Now from the definition ol (D,,), there exists a searetl = (Xo, Ro) - - - (X, Rk),
where(Xy, Ri) = (Y1,.51) consistent witho from (X, Ry) = vr(.A). Therefore, the infinite search

o= (XOaRO)'"(Ylvsl)"'(Ymvsm)v(yl’sl)"'

is a search fromv; (.A) consistent withr. As this cannot possibly be extended to a finite search anfliffigive wins
all infinite plays, it follows that is not a winning strategy for the searchers. O

CHAPTER 5. GRAPH SEARCHING GAMES 55

Definition 5.7 (Strategy DAG) Let G be a graph anﬁg a graph searching game gnIf ¢ is a winning strategy for
the searchers then we cal|, thestrategy DACGdefined byo.

One important property of plays, searches and strategisvh are interested in is the concept of monotonicity.
In particular, we concentrate on two types of monotoniditigitive-monotonicity, where the set of potential fugéiv
locations is always non-increasing, and searcher-morimtgnvhere no location vacated by a searcher is ever re-
occupied.

Definition 5.8 (Fugitive and Searcher Monotonicityl.et G be a graph and let = (X, Ry)(X1, R1) - - - be a search
in a graph searching game gnWe sayr is

¢ fugitive-monotond R, 2O R;4, foralli > 0, and
e searcher-monotonié X; N X; C X;for0 <i<j <k.

A strategy,o, for the searchers in a graph searching gamg as fugitive-monotonésearcher-monotonef every
search consistent with is fugitive-monotone (searcher-monotone).

Our next result concerning strategies in the general graepifthing game is a useful observation regarding mono-
tone strategies. We show that, under some simple assuraptigearcher-monotone winning strategy must also be
fugitive-monotone. Let us say that a graph searching gpemmits idlingif the fugitive is able to remain at any
location which is not about to be occupied by a searcher.hBuriore, let us say that a graph searching game-is
cating sensitivéf, whenever some location becomes available to the fugitivere must be some location, previously
occupied by a searcher, that the fugitive can now occupyeNdoecisely,

Definition 5.9 (Permits idling) Let G be a graph anﬂ;g a graph searching game gndefined by(L,, L¢, A). We
sayGg permits idlingif for all (X, X', R) € Vi(A) andallr € R\ X', there exists?’ C Elts(G) such that- € R’
and there is an edge ifi(A) from (X, X', R) to (X', R).

Definition 5.10 (Vacating sensitive)Let G be a graph an(ﬂEg a graph searching game grdefined by(L,, L, A).
We say thatz§, is vacating sensitivé, whenever there is an edge B{(A) from (X, X', R) to (X', R') with R’ Z R,
thenX N R’ # 0.

Lemma 5.11. LetG be a graph and}g a graph searching game ahwhich permits idling and is vacating sensitive.
If o is a searcher-monotone winning strategy for the searchm@@ theng is fugitive-monotone.

Proof. Supposer = (Xy, Ro)(X1, R1) - - - is a search consistent withwhich is not fugitive-monotone. Létbe the
least index suchthak; 2 R;41. SinceGg is vacating sensitive, there exists X; N R;1. But then, aﬂ}g permits
idling, the fugitive can always choose a response whichubhesr until it is occupied by a searcher. That is, there is
a searcht’ = (X, R()(X1, R}) -+, consistent withr, which agrees withr up to (X1, R;+1) and either there is
somek such that € R} forall j withi +1 < j < kandr € Xy, orr € R} forall j > i + 1. In the first case, we
haver € X; N X} butasr € R;,, we also have ¢ X, contradicting the fact that is searcher-monotone. In the
second case, sindé; = () for all j, it follows that=’ is an infinite search, contradicting the fact thais a winning
strategy for the searchers. O

Remark. Earlier, we asserted that variations of graph searchingegaare obtained by imposing restrictions on the
arena. In this way, we see that questions relating to fugithonotone strategies can be viewed as questions in
a restricted version of the game: the game defined in the saagewith the restriction that we do not allow the
searchers to make any move which enables the fugitive to malm-monotone move (a move for which the set of
potential fugitive locations is not non-increasing). Tiwmtif A is the arena of a graph searching game,4ébe

the arena obtained by removing edges frak R) to (X, X', R) if there is an edge froniX, X', R) to (X', R’)
whereR’ ¢ R. Now a strategy for the searchers g is a fugitive-monotone strategy for the searchers4n

On the other hand, searcher-monotonicity is a more dynagsiciction — the moves available to the searchers are
dependent on the play to that point. Lemma 5.11 illustrates In some cases, the strategy restrictions imposed by
searcher-monotonicity can also be interpreted as rastigbn the game.

CHAPTER 5. GRAPH SEARCHING GAMES 56

5.1.2 Simulations

In Definition 2.20, we saw the idea ofgame simulationWe now introduce a refinement of this suitable for graph
searching games.

Definition 5.12 (Searching simulation)Let Gg be a graph searching game @mlefined by(L,, Ly, A), anngﬁ be
a graph searching game ¢t defined by(Ly, £, A’). A searching simulatiofrom Gg to Ggi is a pair of relations
(Rs, Ry) such that:

e RaC Ly x LRy C Ly ><£,’f,and
e The relationS onV(A) x V(A’) defined by
- (X,R)S (Y,R)if (X,Y) € R, and(R, R’) € Ry, and
- (X,X',R)S (V,Y',R)if (X,Y),(X,Y') € R, and(R, R') € Ry,
is a game simulation frond to A’.

As a searching simulation is a restricted game simulatiod,searches correspond to plays in the arena, the next
result follows immediately from Lemma 2.21.

Lemma 5.13. Let Gf, be a graph searching game ghdefined by(L,, Ly, A), anngi be a graph searching game
on G’ defined by(L}, £, A'). Let(R;, Ry) be a searching simulation froffig; to GL, with (0,0) € Ry. For all
searcher strategies on (Gg and all fugitive strategieg’ on Ggi, there exists a searcher strategy on GL, and
a fugitive strategy on G§ such that ifr(, ,) = (X1, R1)(X2, Rz)-- - is the search irGj defined by and p, and
T(or) = (X{, R)) (X3, RY) - - - isthe search iz}, defined by’ andy’, then|r(,)| = |7(,)|, and(X;, X]) € R,
and(R;, R}) € Ry foralli < |74,]

As with game simulations, we observe that the definition efdtiategy’ is independent of the choice pf This
gives us the following analogue to Corollary 2.22:

Corollary 5.14. Let Gg be a graph searching game @h anngi be a graph searching game @i. Let(R,, Ry)
be a searching simulation fro@f to GL, with (0,0) € Ry, and leto be a strategy for the searchers @&f,. Then

there exists a strategy for the searchers oft%, such that for every searahX/, R})(X}, R}) - - - consistent withy’
there exists a searctiX 1, R1)(X2, Rs) - - - consistent withr with (X, X/) € R, and(R;, R;) € Ry forall i > 1.

As with game simulations, we call the strategies which wedznive from a simulatiosimulated strategies

Definition 5.15(Simulated search strategyJhe strategy”’ in Corollary 5.14 is called atrategy(R, Ry)-simulated
byo.

This enables us to state the following consequence of Goyal.27.

Lemma 5.16. Let (Gg be a graph searching game ghand Ggﬁ a graph searching game oif. Let(R;, Ry) be a
searching simulation frorlﬁ}}g to Gg/,, and leto be a strategy for the searchers @g If o’ is a strategy(R, Ry)-
simulated byr on G}, then:

1. If o is a winning strategy, thes’ is a winning strategy, and
2. If(X,X') € Ry and(R, R') € Ry, then(o(X, R),0’ (X', R')) € R,.

With some straightforward assumptions about the relatidmsh comprise a searching simulation, we can show
that strategies simulated by monotone strategies are alsotone. First we recall two definitions regarding relagion
of sets.

CHAPTER 5. GRAPH SEARCHING GAMES 57

Definition 5.17 (Monotone andh-compatible relation) Let X andY be sets, and ek C P(X) x P(Y) be arelation
between subsets df and subsets df . We sayR is monotonéf for all (4, A’), (B, B’) € Rwith A C B, we have
A’ C B'. We sayR is N-compatiblef forall (4,A4),(B,B’) € R,(ANB,A'NB’) € R.

Lemma 5.18. LetGg be a graph searching game ghand G%, a graph searching game of. Let (Rs,Ry) be a
searching simulation fror(ﬁ}g to Ggi, and leto is a strategy for the searchers @E If o’ is a strategy(Rs, Ry)-
simulated byr onGL,, then:

1. If Ry is monotone and is fugitive-monotone, the#t is fugitive-monotone, and
2. If R, is monotone and-compatible andr is searcher-monotone, theri is searcher-monotone.

Proof. Letn’ = (X7, R)(X5, RS) - -+ be a search consistent witth. By the definition of simulated strategies, there
exists a searchXy, R:) - - - consistent withr such that X;, X/) € R, and(R;, R;}) € Ry forall i > 1.

1. If o is fugitive-monotone, thek; O R;,; forall i > 1, so if Ry is monotone, it follows thak; O R;, , for
all ¢ > 1. Thusz' is fugitive monotone, and as was arbitrary, it follows that’ is fugitive-monotone.

2. If o is searcher-monotone, then for alk j < k, we haveX; N X, C X;. If R, is N-compatible, then
(X; N X%, X! N X}) € R, and so ifR; is also monotone, theX! N X, C Xj’.. Thusr’ is searcher-monotone, and
asw’ was arbitrary, it follows that’ is searcher-monotone. O

We now introduce some concepts that will prove useful lategnwe establish robustness results for graph search-
ing games.

Definition 5.19 (Quasi-simulation family) A quasi-simulation familys a partial functior?? which assigns to a pair
of graphs(G, G’) a pair of relationg i;, ;) with Ry, R, C P(Elts(G)) x P(Elts(G")).

Often it is easier to define a quasi-simulation family as & pipartial functiongR,, M), each of which takes a
pair of graph<g, G’) to a relation frontP(Elts(G)) to P(Elts(G))

Definition 5.20 (R-closure) Let R be a quasi-simulation family, and a graph searching type. We shyis -
closedif for any pair of graphgj andg’ with R(G,G’) = (R}, R}), T'(G) = (Ls, Ly, A) andT'(G') = (L}, L, A');
(Rs, Ry) is a searching simulation froffi, to Gg, whereR, = R}, N (L x L;) andRy = R} N (L x Ly).

To help gain an intuition, we provide an examplé&tlosure. Consider the following property of graph searghi
game types.

Definition 5.21 (Respects restriction)et I' be a graph searching game type. We Bagspects restrictioiif for any
graphsg andg’ such thag is a subgraph of’, if T'(G) = (L, Ly, A) and[’(G') = (L{, L%, A'), then

o If Ryax is theC-maximal element of ¢, andR,, . is the C-maximal element o', thenRy,ax = R, N
Elts(G).

e Ifthereis an edge fromiX, R) to (X, X', R) in E(A’) andv = (X NElts(G), RNEIts(G)) € V(A), then there
is an edge fromy to (X N Elts(G), X' N Elts(G), RN EIlts(G)) in E(A), and

e If there is an edge froniY,Y”’, S) to (Y’,S") in E(A) then for all X, X', R such that X, X', R) € V;(A’),
Y = X NEIts(G), Y = X' NElts(G), andS = R N Elts(G), there existsk’ such thats’ = R’ N Elts(G) and
there is an edge froiX, X', R) to (X', R') in E(A’).

Intuitively, if a graph searching game type respects re#in, then ifG is a subgraph off’, a strategy for the
searchers iy’ is also a strategy ig when we disregard the elementsd@fwhich are not part ofj. In other words,
a restriction of a search strategy is a search strategy oftdatéon. In Section 5.4 we introduce the dual notion,
restriction reflection, in which a search strategy of a gregainbe viewed as a search strategy in any larger graph. We
now show that this property corresponds tof&tlosure for a quasi-simulation famiit of relations similar to the
superset relation.

CHAPTER 5. GRAPH SEARCHING GAMES 58

Definition 5.22 (). For each pair of graph&’’, G), with G a subgraph off’, we defineag/g P(Elts(G")) x
P(Elts(G)) as follows. ForA C Elts(G’') and B C Elts(G) we sayA Dg/ Bif B = AnEIts(G). Let > denote the
function which assigns to each pair of graghs, G), with G a subgraph of’, the pair of relation$38', Dg').

Lemma 5.23. LetI" be a graph searching game type. THerespects restriction if, and only if} is ©-closed.

Proof. LetG andG’ be graphs. We observe that if neitlgeis a subgraph of’ norG’ is a subgraph of then nothing
can be said about whethErrespects restriction or whethBris >-closed. Thus we assume without loss of generality
thatg is a subgraph of’. LetI'(G) = (Ls, Ly, A) andI'(G') = (L5, L, A’). For convenience we will drop the

subscript and superscript and use¢o denote the relatiomg.

First let us assumE respects restriction. From the definitionfwe have Elt§G’) Elts(G), thus we must show
that(>,) is a searching simulation froffi, to Gg. In the definition ofR-closure, we assune is restricted to be a
relation on the appropriate sets, so it suffices to show bieatelation defined by pointwise application®mis a game
simulation fromA’ to A. For convenience we will also denote the pointwise relabipm. Clearly, sincddNElts(G) =
0, we have) > (. Furthermore, ifR,,.x is the C-maximal element oy and R}, is the C-maximal element of

L, then ad’ respects restrictiommax = Ry, NERS(G). TAUSR] .. D Rmax, and(0, R},,x) D (0, Rmax). Thus

(2, D) satisfies (SIM-1). Now suppose there is an edge ftdmR) to (X, X', R) in A’ and(X, R) > (Y, S). From
the definition of>, Y = X N Elts(G) andS = R N Elts(G), so by the definition of respecting restriction, there is an
edge from(Y, S) to (Y, X' N Elts(G), S) in A. Since clearlyX’ > (X' NElts(G)), it follows that (SIM-2) is satisfied.
Finally suppose there is an edgedrfrom (Y, Y, S) to (Y’,5") and(Y,Y”,S) ® (X, X', R). From the definition of
>, we haveY = X NElts(G), Y/ = X' N Elts(G) andS = RN Elts(G). Thus, ad" respects restriction, there exists
R € L) such thats’” = R’ N Elts(G) and there is an edge iA from (X, X', R) to (X', R’). SinceX' > Y’ and
R » &, itfollows that(X’, R") » (Y, 5’), thus (SIM-3) is satisfied. Thereforgp, ®) is a searching simulation
from Gg/ to Gg. Sinceg andg’ were arbitrary, it follows thaf' is >-closed.

Now supposé’ is D-closed. Since the relation defined by pointwise applicatib> is a game simulation from
A"t10 A, vi(A) = (0, Rmax), andvy(A") = (0, R.,..), it follows from (SIM-1) that) > @ and R, ., D Rmax-
From the definition of, it follows that Ry.x = R.,.. N Elts(G). Now suppose there is an edge fr¢id, R) to
(X, X',R)in A, and(Y, S) € V(A) whereY = X N Elts(G) andS = RN Elts(G). From the definition ob, it
follows thatX » Y andR > S, thus as(», D) is a game simulation, it follows from (SIM-2) that there éxis’
such that there is an edge frqi¥, S) to v" andv’ is related to(X, X', R) by the pointwise application ab. By the
definition of graph searching games$,= (Y,Y’, S) for someY”’ € L, and by the definition of searching simulation
X' Y’. ThusY’ = X' nElts(G). Finally suppose there is an edge fr¢in Y”, S) to (Y’,5’) and X, X', R are
such that” = X N Elts(G), Y’ = X’ N Elts(g) andS = R N Elts(G). From the definitionof>, X > Y, X' > Y’
andR ® S. Thus, from (SIM-3), there exists € V;(A’) such that there is an edge froX, X', R) to v andv is
related to(Y”, S”). From the definition of graph searching games; (X', R’) for someR’, and by the definition of
searching simulation’ ® S’. ThusS’ = R’ N Elts(G). Therefore, all conditions necessary for respectingimsn
are satisfied. Sincg andG’ were arbitrary, it follows thal’ respects restriction. O

5.2 Examples

We now look at some examples of graph searching game typefwhbcur in the literature. Many of these examples
were introduced to provide an intuitive understanding ohemf the graph parameters we discussed in the previous
chapter. We show how each of these games can be describegthsiframework we have introduced, thereby
motivating the use of graph searching games to formally defirasures of graph complexity.

5.2.1 Cops and visible robber

Thecops and visible robber ganveas introduced in [ST93] to provide a characterization eétwidth. We can define
it as a graph searching game played on an undirected graghfollows.

CHAPTER 5. GRAPH SEARCHING GAMES 59

Definition 5.24 (Cops and visible robber gamd)et G be an undirected graph. Tkeps and visible robber game on
G is a graph searching game grdefined by the tripl¢ L, £, A) where:

o L;=P(V(G)), Ly ={RCV(G): Ris non-empty and connected {V(G)},

o (X,R) € Vu(A)if Ris aconnected component@f\ X,

o (X,X',R) € Vi(A)if (X,R) € Vo(A) andX’ € L,

e (X,R),(X,X',R)) € E(A) forall (X,R) € Vy(A),

e (X,X",R),(X',R)) € E(A) if RUR'is contained in a connected componengof (X N X’).

Intuitively, the cops (searchers) and robber (fugitivedugay vertices of the graph. There is no constraint on the
cops, they can be removed and placed on any set of verticesrobiber is constrained to move along paths of any
length in the graph, provided he does not pass through assati cop. The robber’s location in the graph is known to
the cops, but because he is able to move infinitely fast, we Rig set of potential locations as a connected component
of the subgraph obtained by removing vertices occupied pg.cA move consists of some cops being removed from
the graph, and announcing vertices that are about to be mctuphe robber is then able to move to any vertex he
can reach, and then cops are placed on the announced veltitesrobber is located on a vertex which has become
occupied, then he is captured and the cops win. If he can aagitiire forever, then he wins.

We observe that the cops and visible robber game permitmidiven an intermediate positidiX, X', R) and
r € R\ X', let R’ be the connected component®f, X’ which contains-. ThenR U R’ is contained in a connected
component as they are connected sets with a non-emptyentiens. Thus there is an edge fropX, X', R) to
(X', R). Furthermore, the game is vacating sensitive: if it is gaesio move from(X, X’, R) to (X', R') where
R’ ¢ R then there exists € R’ \ R such that- is adjacent to some vertex R. Now R U {r} is connected, so if
r ¢ X, thenR is not a connected component®f X . Hencer € X, soX N R’ # (. Thus we can apply Lemma 5.11
to obtain:

Lemma 5.25. A cop-monotone winning strategy in the cops and visible eolglame is robber-monotone.

There are some interesting variants of the cops and visiitibar game obtained by restricting the movements
of the cops. For example, cops are either removed or placéd s&’, R) is an intermediate position only if either
X' C X,orX C X’; at most one cop is moved, $&, X', R) is an intermediate position only X’ A X| < 1;
or at most one cop is placed, 6&, X', R) is an intermediate position only X" \ X| < 1. Another variation is the
following parameterized class of games, in which we bouediimber of cops trying to capture the robber:

Definition 5.26 (k-cops and visible robber gamel)et G be an undirected graph. Thecops and visible robber game
ong is defined as the cops and visible robber game, ex¢ept [V (G)]=F.

In Section 5.3 we show that strategies in these games areadenti to resource-bounded strategies in the unre-
stricted game, where the resource we are concerned witk iméximum number of cops occupying the graph at any
stage. While this may seem obvious, the observation is gsiéul when we consider the complexity of the problem
of determining the existence of resource-bounded winniragegies.

We also show in Section 5.3 how this game, particularly thé$ Variant, is closely connected to tree-width. So
it would seem that extending this game to directed graphdduoeia useful way to generalize tree-width to directed
graphs. There are two obvious ways to extend this game: wle eatend the informal description, constraining the
robber to move along directed paths of any length; or we cexilend the formal description, having positidis, R)
whereR is a strongly connected componentidf X, and a transition fronlX, R) to (X', R') if RUR' is contained in
a strongly connected component®f (X N X’). The game corresponding to the latter extension seemstessie:
it corresponds to restricting the robber to being able to er@ong directed paths to any vertex from which he has
a directed cop-free path back to his starting vertex. Thimegavhich we call thestrongly connected visible robber
game or more simply thestrong visible robber gamevas considered in [JRSTO01], and later in this chapter waudis
its relationship with directed tree-width. We investigtite other, arguably more natural, generalization in Chapte

CHAPTER 5. GRAPH SEARCHING GAMES 60

5.2.2 Cops and invisible robber

The cops and invisible robber gamalso known as theode searching gamer vertex decontaminatiohas been
well-studied in the context of graph theory [KP86, BS91, 3P In our framework, the definition is as follows.

Definition 5.27 (Cops and invisible robber gamel)et G be an undirected graph. Tkeps and invisible robber game
ong is a graph searching game grdefined by the tripl¢ L, L;, A) where:

o L =P(V(9)), L; =P(V(9)) \ {0},

e (X,R) € Vu(A) if Ris a union of non-empty connected component§ §fX,
o (X,X'"'R) e Vi(A)if (X,R) € Vo(A) andX’ € L,

e ((X,R),(X,X',R)) € E(A) forall (X, R) € Vy(A),

e (X,X",R),(X',R)) € E(A) if R = Reacly\ (xnx/)(R) \ X.

The game is played on an undirected grépin the same way as the cops and visible robber: the cops a¢ofre
move anywhere og, and the robber can run at great speed along cop-free patis graph. In this game however,
the location of the robber is not known to the cops — they ahg @mare of the vertices the robber cannot be at: either
because those vertices are currently occupied by copse thno possibility that the robber could not have reached
those vertices from when they were vacated by cops. So pesitn this game are paifX, R) whereX, R C V(G)
andR is a union of connected componentgpf X, and a search in this game endind &t R) can be extended to a
search ending dtX’, R’) if, and only if, R" = Reacly\ (xnx)(R). We observe that sinc®’ is uniquely determined
from X, X’ and R, the robber has no choice from the intermediate posit®nX’, R), so this game is effectively a
single player game.

In the literature, this game is often viewed as the probletnyirig to clean a contaminated graph. Vertices where
the robber could be are “contaminated”, vertices wheredhber cannot be are “cleared”, and occupation of a vertex
by a cop “clears” that vertex.

5.2.3 Cave searching

The next game we consider is an example of a searching gameatedtby a real-life problem. In [Bre67], in a
publication for the spelunking community, Breisch consédkthe problem of finding a lost person in a cave sys-
tem. In response to a question posed by some cavers abouterlesisting search techniques could be improved,
Parsons [Par78] reformulated the problem as a graph-ttiealrproblem and investigated games knowngeaph
sweeping gamed hese can be defined as graph searching games as follows.

Definition 5.28 (Graph sweeping game) et G be an undirected graph. Tlyeaph sweeping game dhis the graph
searching game og defined by the tripl¢ L, £, A), where:

e X L, ifandonlyif, X =V UE,whereV CV(G), E C E(G),|E| <1,andifE = {e} thenenV # 0,
e L;=P(Elts(G)) \ {0},
e (X,R) € Vy(A)if,and onlyif, X N R = 0,

e (X, X' R)e Vi(A)if,andonlyif, X =V UE, X' =V'UE,withV, V' CV(G)andE,E’' C E(G), and
eitherE’ =0 andV’\ V =0, orif E' = {{u,v}} withv € V' thenu € V.

o If (X,R) € Vo(A) and(X, X', R) € V1(A) then((X, R), (X, X', R)) € E(A), and

e There is an edge frofiX, X', R) to (X', R') if, and only if, R’ consists of all elements € Elts(G) \ X’ such
that if C is the connected component@f, (X’ N (X U E(G))) which contains:, thenC' N R # 0.

CHAPTER 5. GRAPH SEARCHING GAMES 61

In this game, the graph represents the cave system, wittsedgeesenting traversable paths. The fugitive, or lost
caver, is located somewhere in the cave system — represented game by having sets of elementstbfor the
locations of the fugitive. The searchers move through thelgby moving from one vertex to an adjacent vertex along
an edge connecting them.

5.2.4 Detectives and robber

The next game was introduced by Berwanger and Gradel [B®GHfine a measure of complexity for directed graphs
known asentanglementWe can present their definition in terms of graph searcharges as follows.

Definition 5.29 (Detectives and robber gamd)et G be a directed graph. Thaetectives and robber game gnis a
graph searching game defined by the triple, L4, .A) where:

o Li=P(V(9), Ly ={{r}: 7 €V(G}U{V(9)}.

Vo(A) ={0,V(9)} u{(X,{r}) : r & X},

Vi(A) = {(0,0,V(@)}U{(X, X" {r}) : (X,{r}) € Vo(A) andX’ C X U {r}},
If (X,R) € Vo(A) and(X, X', R) € V1(A) then((X, R), (X, X', R)) € E(A),

There is an edge frorf®), B, V(G)) to (0, {r}) forall r € V(G),

Forall(r,7") € E(G) and(X, X', {r}) € V1(A) with ' ¢ X', there is an edge if(A) from (X, X', {r}) to
(X’,r"), and

e There are no other edgesi#(A).

In this game, the detectives and robber occupy verticesiigtaph. The robber has to move to a successor of his
current location and the detectives can only move to theplasition of the robber or remain where they are.

5.2.5 Cops and inert robber

As with the cops and visible robber game defined in Definiti@#5the final game we consider is also a game played
on an undirected graph closely related to tree-width. thiced by Dendris, Kirousis and Thilikos [DKT97], theps
and inert robber gamean also be viewed as a graph searching game in the followamer.

Definition 5.30(Cops and inert robber)Let G be an undirected graph. Tlteps and inert robber game ahnis the
graph searching game ghdefined by the tripl€L,, L¢,.A), where:

o L;=PV(9). Ly =PV(G)) \ {0},
o (X,R) € Vu(A)if Ris a union of non-empty connected component§ §fX,
e (X,X''R) e Vi(A)if (X,R) € Vo(A) andX’ € L,,

(X,R),(X,X",R)) € E(A) forall (X, R) € V,(A),
N

(X,X',R),(X',R)) € E(A) if R =(RUReachy (xnx)(RNX"))\ X".

As with the cops and invisible robber game defined in Definita27, in this game the cops and robber occupy
vertices of the graph, the cops are free to move anywhereeigrfiph, and the robber may run at great speed along
paths in the graph. Furthermore, the location of the roldenknown to the cops. However we impose the restriction
that he is only able to move from his position if it is about ® dccupied by a cop. Thus at positioi, R), X
represents the location of the cops a®depresents the set of potential locations. Now if the copgetio X', then

CHAPTER 5. GRAPH SEARCHING GAMES 62

the resulting potential locations for the robber consishisfcurrent set of locations together with any vertefor
which there is a path from a vertex iN X"’ to v, excluding any vertex now occupied by a cop. Tlitisthe new set
of potential locations, can be defined as:

R’ :(R U Reac@\(mef)(R N X,)) \X,'

In the next section we see that this game is also closely adethéo tree-width, suggesting that the generalization
of this game to directed graphs would be a practical way teldgwcomplexity measures which extend tree-width. In
Chapter 7 we consider such a generalization.

5.2.6 Cops and robber games

Examples 5.2.1, 5.2.2, and 5.2.5 highlight one of the mopbmtant and simple variants of the graph searching game,
the cops and robber game. In this game the cops (searchdrd)earobber (fugitive) only occupy vertices of graph,
with the robber being able to start at any vertex of the graph.

Definition 5.31(Cops and robber gamel.et G be a graph an@g be a graph searching game @ulefined by a triple
(Le, Ly, A). We sayGyg is acops and robber gamié £. € P(V(G)), £, € P(V(G)) andV(G) € L,. We call
the searchers of a cops and robber gametips and the fugitive is called thebber. Likewise, searcher-monotone
searches and strategies aap-monotonand fugitive-monotone searches and strategiegareer-monotone A
graph searching game tyjpas acops and robber game tyjifefor all graphsg, Gg is a cops and robber game.

One advantage of the restriction of the searchers andYadii vertices of the graph is that the resulting games
are less dependent on the edges of the graph. In partiduisgften the case that the presence of multiple edges or
loops does not affect the game — the arena is the same as tlaefar¢he graph searching game on the graph with all
loops removed and all multiple edges replaced with a singgeeln the sequel we assume all cops and robber games
are played on simple graphs, unless otherwise stated.

5.3 Complexity measures

Unlike the games we considered in Chapter 2, we are not sodelgerned with which player wins a graph searching
game. In most of the examples above, it is clear that the seez@an always find the fugitive by (eventually)
occupying all of the graph, so as it stands the question isntetesting — the searchers always have a winning
strategy. One exception to this is the parameterized clagares, the:-cops and visible robber games defined in
Definition 5.24. This suggests that it may be more fruitfuttmsider resource-bounded strategies. For instance, for a
cops and robber game, we can ask “Gikea N, can the cops capture the robber while at any time occupyingat

k vertices?”. Consistent with viewing the cops as physicétien, this can be viewed as asking if there is a winning
strategy fork cops, defined more precisely as:

Definition 5.32(Winning strategy fok cops) LetGg be a cops and robber ganaea strategy for the cops, atde N.
We say that is awinning strategy fork copsif ¢ is a winning strategy, and for any searcky, Ro)(X1, R1) - - -
consistent withs, | X;| < k for all i.

From this we can derive a complexity measure, in this pderotase, the minimum number of cops required to
capture the robber. In the following chapters this is the sueawe are interested in, but for the remainder of this
chapter we consider a more general framework which encasapasany other important graph parameters. For this
we introduce the concept ofrasource measurthat can be used to restrict plays and, by associationegtestin a
graph searching game. First, we introduce two partial ardarthe class of sequences of sets.

Definition 5.33. Letm = X3 X5 --- andn’ = Y1Y5 - - - be two (possibly infinite) sequences of sets. We wititel 7
if 7' is a subsequence af That is, there exists an increasing sequence of indiges ny < --- < || such that
Y = X, forall i <|7'|. We writer’ C rif |#/| < |r| and for alli < ||, Y; C X;.

CHAPTER 5. GRAPH SEARCHING GAMES 63

Definition 5.34 (Resource measureA resource measures a functiony which maps sequences of finite sets to
elements ofv U {w}, with p(7) = w only if = is infinite. We sayy is order-preserving (order-reversing for all

m, € dom(), 7' <7 = (') < p(r) (' <7 = o) > o(n)). We sayyp is monotone (anti-monotoné)for
allm, 7" € dom(p), 7’ C 7 = (') < p(n) (@ C 7= p(r’) > ¢(n)).

The resource measure which motivated the above discussimm é&xample of a monotone, order-preserving re-
source measure:

Definition 5.35 (¢max). The resource measuig, . is defined as follows. Ifr = X; X5 --- is a sequence of finite
sets, then

99111ax(77) = Iflzalx{|X1|}

A resource measure defines a measure on a searck (X, Ro)(X1, R1)--- in the following way: letm; =
XoX1 --- be the sequence of first components of elements, @nd definep(w) := p(71). We only consider the
sequence of searcher locations because we are primaghggtéd in the resource usage of the searchers. It follows
that requiring a resource measure to be bounded imposeigiati@s on the searches, and consequently, the strategies
available in a graph searching game. So asking if the se@rblage a winning strategy is no longer a trivial problem.
Indeed, it would seem that interesting metrics for graphddcbe derived from the “optimal” bounds of resource
measures for which the searchers still have a winning glyaihis leads to the following definition of a very general
measure of graph complexity defined by graph searching games

Definition 5.36 (Graph searching width)Let I" be a graph searching game type, andn order-preserving (order-
reversing) resource measure. lgebe a graph. Thel', p)-widthof G, wr) (G), is the minimum (maximumj such
that in Gg there exists a winning strategy for the searcherso that for any search;,, consistent witho, we have
o(m) < k (o(7) > k). Likewise, if we restrict to fugitive-monotone or searciieonotone winning strategies (%,
we obtain thdugitive-monotoner searcher-monoton@’, ¢)-width of G.

Remark.As we are interested in minimizing (maximizing) an ordeegarving (order-reversing) measure, it suffices
to consider searches that are simple paths in the arena e@pg/dre only going to increase (decrease) the resource re-
quirements. Consequently, we only need to consider stestéat require finite memory to determine if the searchers
have a resource bounded winning strategy. Thus, the regeirethat the resource measure is order-preserving (or
order-reversing) ensures that the restriction of searob&sined by bounding the resource measure does not affect
the decidability of determining if the searchers have a wigrstrategy. In particular, the requirement maintains our
maxim that strategies with finite memory are sufficient, esgly for the resource bounded game.

Many practical measures of graph complexity can be defingdyukis framework, as we see with the following
examples.

5.3.1 Example: Cops and visible robber

We recall the cops and visible robber game defined in Examglé 5n [ST93] when this game was first considered,
Seymour and Thomas showed that it could be used to chamtege-width by observing that the number of cops
required to capture the robber was equal to one more thangievidth of the graph being searched. More precisely,
they proved:

Theorem 5.37([ST93]). LetG be an undirected graph. The following are equivalent:
1. G has tree-width< k£ — 1.
2. k cops have a cop-monotone winning strategy in the cops aitdeviesbber game.
3. k cops have a robber-monotone winning strategy in the cops/asilale robber game.

4. k cops have a winning strategy in the cops and visible robbenga

CHAPTER 5. GRAPH SEARCHING GAMES 64

Recalling the definition of.,.x in Definition 5.35, we can rephrase this theorem as:

Corollary 5.38. LetI" be the cops and visible robber game type defined in Definitidf, and letG be an undirected
graph. Then
Tree-widthG) = w(r ;... (9)-

We remarked in Example 5.2.1 that there were several vargdnhe cops and visible robber depending on various
restrictions placed on the movement of the cops. It is easgaanformally that the number of cops required to catch
the robber in each of these games is the same. We now provigealfproof of this often glossed-over point.

Proposition 5.39. LetT'y be the cops and visible robber game type defined in Definitia#.3.etl’; be the cops and
visible robber game type where cops are either placed or v@dolLetl’s be the cops and visible robber game type
where at most one cop is placed, andligtbe the cops and visible robber game type where at most onescopied

at atime. Leig be an undirected graph. Then the following are equivalent:

(i) % cops have a winning strategy@\g“.
.e . . 1"1
(i) k cops have a winning strategy (&' .
(iii) % cops have a winning strategy (.
(iv) k cops have a winning strategy@lg?

Proof. From the definitions provided in Example 5.2.1, it followsiathat a strategy for the searchers@@3 is a
strategy inng and also a strategy i@gl; a strategy for the searchers((Pfg2 is a strategy irGgo; and a strategy in
Ggl is also a strategy iﬂgo. Thus (iv)=-(iii) = (i) and (iv)=(ii) =(i). We now show that (B> (iv).

Suppose: cops have a winning strategyin Ggﬂ. LetTo(G) = (Le, Ly A), andl'3(G) = (L, L), A"). Note
that by the definition of's, £ = L., L] = L., Vo(A) = V,(A") andVi(A) D Vi(A’). We show how to define
a strategy’ for k cops such that for allX, R) € Vu(A'), |¢'(X,R) A X| < 1. The idea is that we replace each
move ofo which involves moving more than one cop with a sequence ofasioremoving one cop at a time frakh
until cops remain onX N ¢(X, R), and then adding cops one at a time until they occafy, R). More formally,
let = = Vy(A). We define a history-dependent strategyas follows. Leto’(e, Xo, Ro) = ((Xo, Ro),) where
(Xo, Ro) = v1(A). Now supposev € ¥*, w # ¢, and the last symbol af is (X, R) € V;(A). Defines’ (w, X', R’)
as follows. If X No(X,R) C X' C X, letX” = X'\ {v} forsomev € X'\ o(X, R), and defines’(w, X', R') :=
((X,R), X"). Otherwise, ifX No(X,R) C X' C o(X,R), let X" = X' U {v} for somev € o(X,R) \ X', and
defineo’ (w, X', R') := ((X, R), X"). Finally, if X’ = (X, R) defines’(w, X', R') = (X', R'), X’). Clearlyo’
is a strategy for at mogt cops which involves placing or removing at most one cop at etep. We now show that it
is a winning strategy.

Letm = (X{, Ry)(X1, R})--- be a search consistent with. Letw’ € ¥* U X¢ be the history consistent with
m, and letw be the word obtained by replacing repeated symbols iwith single occurrences. We observe that these
repetitions arise where we have replaced a single multipfemove with a finite sequence of single-cop moves so
is infinite if, and only if,w’ is infinite. We also observe that by the definitionsdfw is a subsequence af We make
the following claim:

Claim. The search defined hy is a search consistent with

Proof of claim. Letw = (X1, R1)(X2, R2) - - - . From the definition o6’ we haveX; ., = o(X;, R;) foralli > 1, so

it suffices to show that for all > 1 there is an edge il from (X, X;11, R;) to (X;+1, R;+1). Thatis, each possible
set of locations for the robber available after the sequehsingle-cop moves is available after a single multipl@-co
move. Letm andn be such thatX;, R;) = (X/,, R, ..) and (X;+1, Ri+1) = (X, R,,) and letq be such that
m < ¢ <nandX; = X;N X;;1. We prove by induction that for afi, with m < j <n, R’ U R, is contained in a
connected component ¢f\ (X, N X?). Clearly this is true fofj = m. Now suppose for somg> m, R}, U R}, is

max

CHAPTER 5. GRAPH SEARCHING GAMES 65

contained in a connected componengof (X, N X}), and considef?’ ;. By the definition of the cops and visible
robber gameR’; U R, is contained in a connected componengof (X} N X;11). We consider the following two
cases. Ifj < ¢, thenX;;; C X; C X,, andR; O Rnax. Thus the connected componédniof G \ X;H which
containsR .y is the only component contained in the same connected coanpohG \ (X}, N X7}) asR;. Thus
R, = R. SinceRU Ry, = Ris a connected component@f\ X’ , = G\ (X}, U X}), our hypothesis holds
for j + 1. Now supposg > ¢. ThenX,, N X, = X; N X;41, andXJ’}+1 D Xj’.. Thus ifl’%}+1 is in the same connected
componentofi \ (X;NX].,) =G\ X} asR, itfollows thatR}; O R} . By the inductive hypothesig?’ is in the
same connected componentdf (X;, N X}) asi,,,.. ButasG\ (X;,NX}) = G\ (XiNX;41) = G\ (X;,N X}, 1),

it follows that R’ , is in the same connected componengof (X;, N X’) asR;,,.. This completes the inductive
step and the proof of the claim. -

Next we observe that as there is always a move available todpg,7 is winning for the robber if, and only fif,
it is infinite. But this is the case if, and only ify is infinite. Asc is a winning strategy, there are no infinite searches
consistent withr, thusm must be finite and therefore winning for the searchers. O

Our final observation regarding the cops and visible robbengyand the number of cops required to capture the
robber is a straightforward result which relates the gantetha resource measure with the parameterized class of
games we also introduced in Example 5.2.1.

Lemma 5.40. LetG be an undirected graph. The cops have a winning strategyeg-#tops and visible robber game
if, and only if,k cops have a winning strategy in the cops and visible robbengja

Proof. Clearly a winning strategy for k& cops in the cops and visible robber game is a winning stratagye cops
in the k-cops and robber game: singe X, R)| < k for all positions(X, R) in the cops and visible robber game, it
follows thato (X, R) € [V(G)]=* for all positions(X, R) in the k-cops and visible robber game.

For the converse, let be a winning strategy for the cops in thkecops and robber game. Let us extentb a
strategy in the cops and visible robber game by definil§j, R) = 0 for all X C V(G) with |X| > k. Then, since
lo(X, R)| < k for all positions(X, R), o is a strategy fok cops. Since any search in the cops and visible robber
game consistent with is also a search in the-cops and visible robber game consistent witlit follows thate is a
winning strategy in the cops and visible robber game. O

Remark. This example shows that with the resource meagurg. we can view resource bounded strategies as win-
ning strategies in a parameterized family of graph seagchames. As such games are simple, if either the fugitive
or the searchers have a winning strategy, then they have somglass winning strategy. This justifies our use of
positional strategies in subsequent chapters.

Theorem 5.37 motivates the nomenclature used for Theorénasaven is, as the name suggests, a characteriza-
tion of a winning strategy for the robber. Carrying this i@aiag to the definition of haven used in [JRSTO01], we see
that Theorem 4.11 can be restated as the following charzatien of directed tree-width in terms of graph searching
games. We recall the strongly connected visible robber giefired in Example 5.2.1.

Lemma5.41. LetG be a digraph. Eitheg has directed tree-widtkl 3k + 1 or k£ cops do not have a winning strategy
in the strong visible robber game ¢h
5.3.2 Example: Cops and invisible robber

We now consider the resource measyfg.« applied to the cops and invisible robber game. Kirousis sayubHim-
itriou [KP86] showed that the number of cops required to wepthe robber in this game is equivalent to one more
than the path-width of the graph.

Theorem 5.42([KP86]). LetG be an undirected graph. The following are equivalent:
1. G has path-width< k& — 1.

CHAPTER 5. GRAPH SEARCHING GAMES 66

2. k cops have a cop-monotone winning strategy in the cops aigibtesrobber game.
3. k cops have a robber-monotone winning strategy in the copsrassible robber game.
4. k cops have a winning strategy in the cops and invisible rolgaene.

Together with Theorem 5.37, this theorem shows how we cam thie relationship between path-width and tree-
width via graph searching games. As an example of the coeseguof this, Fomin, Fraigniaud and Nisse [FFNO5]
considered a parameterized family of cops and robber garhesawhe robber is invisible, but the cops are allowed
queries of the location of the robber during a search. Thdtieg family of measures corresponding to the number of
cops required in each game gives a parameterization whistbétween path-widtly (& 0) and tree-widthd =).
Because such parameterized measures can be seen as aizgiwralf both path-width and tree-width, they are
particularly useful for investigating the structural cdepty of graphs.

5.3.3 Example: Cops and inert robber

We again consider the,,. resource measure, but this time with the cops and inert rajdrae. Dendris, Kirousis
and Thilikos [DKT97] showed that the number of cops requitechpture an invisible, inert robber is another measure
equivalent to one more than tree-width.

Theorem 5.43([DKT97]). LetG be an undirected graph. The following are equivalent:
1. G has tree-width< k& — 1.
2. k cops have a robber-monotone winning strategy in the copsrertrobber game.
3. k cops have a winning strategy in the cops and inert robber game

Combining this with Theorem 5.37, we see that the number p§ cequired to capture a robber in the cops and
visible robber game is equal to the number of cops requireapdure a robber in the cops and inert robber game. In
Chapter 7, where we consider the generalization of the cogsreert robber game to directed graphs, we show that
this is not the case for the generalizations of the gamegaplns.

Dendris et al. also showed that the cop-monotone versiohetops and inert robber game may require more
cops than the robber-monotone version. In Chapter 7, we #ievthe number of cops required in the cop-monotone
version of the natural extension of this game to directeglggas equivalent to the extension of path-width to digraphs

5.3.4 Example: Other resource measures

We now consider some graph parameters which can be chazadtby the invisible and inert robber games, but with
other resource measures. In [FG00], Fomin and Golovachaenesi the following resource measure which intuitively
represents the “cost” of a search.

Definition 5.44 (pcos). The resource measugg,stis defined as follows. I = X; X5 - - - is a sequence of finite sets,

then
Peost(T) = Z | Xl

i>1

In [FGOQ] it was shown that the minimum cost of a search in ascqd invisible robber game on a graghis
equivalent to therofile of G: the minimal number of edges of an interval supergrap@.dih [FHTO04] it was shown
that the minimum cost of a search in a cops and inert robbeegar§ is equivalent to the fill-in ofj: the minimum
number of edges which need to be added to nfakbordal. Summarizing these results in our framework:

Theorem 5.45([FGO00, FHTO04]) LetI'y be the cops and invisible robber game type defined in Defin&id7 and let
I"; be the cops and inert robber game type defined in Definitio®.3.8tG be an undirected graph. Then

CHAPTER 5. GRAPH SEARCHING GAMES 67

1. The profile of is equal towr, ... (G)-
2. The fill-in ofg is equal tow(r, . (9)-

In [RS82] Rosenberg and Sudborough considered a pebblimg géich Fomin et al. [FHT04] observed can be
seen as a version of the cops and invisible robber game. Besgand Sudborough showed that minimizing the
resource measure defined by the maximum life-time of a pedble graph is equivalent to finding the bandwidth
of the graph: the minimum, over all linear layouts of the \a&$ of the graph, of the maximum distance between any
pair of adjacent vertices. Fomin et al. [FHT04] viewed tleisaurce measure in the setting of graph searching games,
to define the following measure which indicates the “occigpetime” of a search.

Definition 5.46(¢or). Letm = X7 X5 - - - be a sequence of finite subsets of aléeFor eachi > 1lety; : V — {0, 1}
be the characteristic function of;, so thaty;(v) = 1if, and only if,v € X;. Thenyp is defined as follows:

or(m) = max ; Xi(v).

Remark. In order for this measure to be non-trivial, we assume thaawmeworking with version of the cops and
robber game where at most one cop is moved at a time.

The result of Rosenberg and Sudborough can then be sumuohérize

Theorem 5.47([RS82]). LetI" be the cops and invisible robber game type defined in Defin§i@7 where at most
one cop is moved at a time, and {&be an undirected graph. Then the bandwidtiga$ equal tow r) (G).

Fomin et al. [FHT04] used Theorem 5.47 to generate a gemataln of bandwidth, calleteespanby considering
the resource measugg; on the cops and inert robber game.

Theorem 5.48([FHTO04]). LetI" be the cops and inert robber game type defined in Definitio® Wi8re at most one
cop is moved at a time, and Iétbe an undirected graph. Then the treespag o equal towr) (F).

5.3.5 Monotonicity

Theorems 5.37, 5.42 and 5.43 all indicate an interestingeytg of some of the graph searching games we have
considered: the restriction imposed by bounding the ressusupercedes the restriction imposed by monotonicity.
This provides an explanation as to why measures like trethware good complexity measures from a practical
and structural perspective: winning strategies which atenecessarily monotone indicate the existence of various
structural properties such as havens or brambles (as wensgbaipter 8); on the other hand, monotone winning
strategies are very useful algorithmically. As we saw withmima 5.11, monotone strategies can be represented as
restrictions on the arena, so it is often easier to computeotome winning strategies. Furthermore, as we see in the
next few chapters, monotone strategies often lend theeséivdecompositions with properties that make them very
useful for practical purposes. Thus it is important to idfgrgames where monotonicity is not too great a restriction,
as these games will provide measures that are good indscat@lgorithmic and structural complexity. This leads
to the question, “For which graph searching game types asmliree measures is monotonicity sufficient?” More
precisely,

Open problem 5.49. For which graph searching game typEsand resource measures does(T', p)-width give a
bound on fugitive-monotone or searcher-monot@Rep)-width?

Remark. Allowing approximate equivalence gives some flexibilitytire above question: while it may not be the
case that a winning strategy implies the existence of a nomolvinning strategy with the same resource bounds, it
might still be possible that the resource requirements fobaotone strategy can be deduced from those of a winning
strategy.

CHAPTER 5. GRAPH SEARCHING GAMES 68

5.4 Robustness results

We now use the framework we have developed to show that thplesity measures we have defined are well-behaved
under some simple graph operations, thus indicating thgmifscance as a robust measure of graph complexity. In
particular we show that, under some reasonable assumptienwidth measure defined by a graph searching game
and a resource measure does not increase under the sintiplifioperation of taking subgraphs. We also show that
the complexity measure we have defined can be determinedffreconnected components of the graph. Finally, we
consider the cops and robber game. We show that the restrictihaving the searchers and the fugitive located on
vertices enables us to show that the width measure defindtehyumber of cops required in a cops and robber game
suitably increases under a graph operation which can beasegminiform complication, namely graph composition.

For convenience, we only consider width measures definedd®sr-@reserving resource measures. Thus for each
of the following results, there is a dual result obtained d&ylacing order-preserving with order-reversing, moneton
with anti-monotone, ang with >.

5.4.1 Subgraphs

In Definition 5.21 we introduced a restriction on graph skarg game typesgespecting restrictionwhich asserted
that searching strategies in a grapttan be restricted to be searching strategies in subgraghsloturns out that
imposing this restriction on the graph searching game tyjktlae monotonicity restriction on the resource measure
is sufficient to show that graph searching width is well-hadtbwith respect to subgraphs.

Theorem 5.50. Let I be a graph searching game type which respects restrictioet ¢Lbe a monotone, order-
preserving resource measure. For any two graghg§’ such thaig’ is a subgraph o&:

W(r,e)(G) < wirp)(9).

Proof. Let G; andGg, be the graph searching games®andg’ defined byl'(G) andI'(G’) respectively. Sinc&
respects restriction, it follows from Lemma 5.23 tifat, o) is a searching simulation frof8f; to Gf,. Leto be a
winning searcher strategy @ such that for any searehconsistent withr, () < w(r) (G). Leto’ be a searching
strategy inGL, (®, ®)-simulated byo. It follows from Lemma 5.16 that’ is a winning strategy for the searchers.
Furthermore, by the definition of , for any search’ = (X, Ry) (X1, R}) - - - consistent withy’ there exists a search
m = (Xo, Ro)(X1, Ry1) - - - consistent withr such thatX; > X/ for all i. Thus, X! = X, N Elts(G’) C X;. Sincey

is monotone, it follows thap(n’) < () < w(r) (), and this holds for any seareti. Thus, from the definition of
w(r) (G'), we havewr) (G') < wr) (G) as required. O

In Lemma 5.18 we observed properties sufficient for a sinmab respect fugitive and searcher-monotonicity.
We now show thab satisfies these properties, implying that Theorem 5.50 eaxtended to fugitive-monotone and
searcher-monotone width.

Lemma 5.51. LetG andG’ be graphs withg a subgraph ofj’. The relationbg/ is monotone anch-compatible.

Proof. TakeX’,Y” C Elts(¢’) andX,Y C Elts(G) such that’ ¢ X andY’ 9 Y. From the definition of, it
follows thatX = X’NElts(G) andY = Y'NEIts(G). Thus, ifX’ C Y, X = X'NElts(G) C Y'NEls(G) = Y, s0>Y
is monotone. FurthermoreX’'NY")NElts(G) = (X'NEIts(G))N(Y'NEIts(G)) = XNY, so(X'NY") Dgl (XNY),
and thereforejg' is N-compatible. O

Corollary 5.52. LetI" be a graph searching game type which respects restrictioet ¢Lbe a monotone, order-
preserving resource measure. For any two graghg§’ such thaig’ is a subgraph o§:

1. The fugitive-monoton@’, ¢)-width ofG is at most the fugitive-monotofE, ¢)-width ofG’, and

2. The searcher-monotoriE, ¢)-width ofG is at most the searcher-monotofig ¢)-width ofG’.

CHAPTER 5. GRAPH SEARCHING GAMES 69

5.4.2 Connected components

We now show how the widths of the connected components ofgghgran be used to compute the width of the graph.
First we need to introduce a notion which is dual to reswittiespecting.

Definition 5.53 (Reflects restriction)Let I" be a graph searching game type. We Bagflects restrictiorif for any
graphsg andg’ such thag is a subgraph of’, I'(G) = (Ls, Ly, A), andl'(G') = (L, L}, A'), then

e If Rnax is theC-maximal element of ¢, and R, is the C-maximal element o', thenRyax = R, N
Elts(G).

e If there is an edge froniy, S) to (Y,Y”,S) in E(A) then for all(X, R) € Vo(A') and(X, X', R) € V1(A")
such that” = X NElts(G), S = RN Elts(G) andY’ = X' N Elts(G), there is an edge if(A") from (X, R)
to (X, X', R), and

e If there is an edge fromX, X', R) to (X', R’) in E(A’) and(Y,Y",S) € V(A) forY = X NElts(G),Y’ =
X' NEls(G) and S = R N Elts(G), then eitherR’ N Elts(G) = § or there is an edge frorl,Y’, S) to
(Y',R'NElts(G)) in E(A).

Just as respecting restriction can be viewed adosure, it would appear that restriction reflection skalso be
equivalent tdR-closure for some quasi-simulation famifyysimilar to >. However, the last condition in the definition
is problematic for the game simulation: the fugitive may béeao move in the larger grapt®(# (), but because
R’ N Elts(G) = 0, there is no response on the smaller graph. Neverthelesarenable to obtain a result, similar to
Lemma 5.13, sufficient for our purposes.

Lemma 5.54. LetT" be a graph searching game type which reflects restriction lah@ and G’ be graphs such
that G is a subgraph of’. LetI'(G) = (Ls, Ly, A), I'(G') = (L5, L}, A'), and take(Xq, Ry) € V(A') such
that X, N Elts(G) = 0 and R, N Elts(G) is either() or the C-maximal element of ;. If o is a winning strategy
for the searchers 5§, then there exists a strategyfor the searchers oft{;, such that any search frofiX{, R{))
consistent witty can be extended to a searth), R;,)(X], R}) - - - consistent witly so that there exists > 0 with
R, NEIts(G) =0,and foralli, 1 <i <n, X =0(X;_1,R;—1) forsome(X;_1, R;_1) € Vu(A).

Proof. For (X', R') € V(A’) with (X,R) € V(A) whereX = X' N Els(g) and R = R’ N Elts(G), define
o(X',R") := o(X, R). From the second condition of restriction reflection, tlsigiwell-defined (partial) strategy:
(X',0(X’,R), R is a successor dfX’, R’). We now show thaf is sufficiently defined to satisfy the requirements
of the lemma.

Let ' = (X, Rp) (X1, R)) -+ (X}, R,,) be a search froniX{, R;) consistent witho. Fori > 0, let X; =
X/ NEls(G) andR; = R} NEIlts(G). By the definition ofs, X! = 0(X;_1, R;—1) for all i such thatR;_; # (. Thus
if we taken to be the minimum index such th&, = (), we are done. So suppose there isisich thatr,, = (. We
claim:

Claim. 7 = (X, Ro)(X1, R1) - - - is a search fronw; (.A) consistent withy.

Proof of claim. We prove this by induction ofy the length ofr consistent withr. From the definition of X, R})),
and sinceR?) N Elts(G) # 0, (Xo, Ro) = vi(A), so the claim is true foi = 0. Now supposé€ Xy, Ro) - - - (X;, R;) is
consistent withy. From the definition ob’, X; 11 = X/, | = o(X;, R;). As (Xg, Ry) - -- (X[, , R,) is consistent
with 7, andR; , NElts(G) # 0, it follows that there is an edge i (A’) from (X, X/ |, R}) to (X, R). Thus,
from the third condition of restriction reflection, thereas edge from(X;, X;11, R;) to (X;11, Ri1+1). Therefore,
(Xo,Ro) -+ (Xi41, Riy1) is consistent withr as X, 1 = o(X;, R;) and there is an edge frof;, X;,1, R;) to
(Xit1, Rit1)- =

Now, sinceos is a winning strategy for the searchers, every search irgd) consistent withr can be extended
to a complete search. Howevét; = () for all « > 0, sow cannot be extended to a complete search. Thus there exists
n such that?,, = (), contradicting the assumption that there is no such O

CHAPTER 5. GRAPH SEARCHING GAMES 70

We also need to assume that our graph searching games shédiyllowing property: if the searchers have a
winning strategy from(X, R) then the searchers can play the same strategy and win(fkorfi) for any S C R. To
be more precise, we require the graph searching game tydid B)-closed where id is the quasi-simulation family
which assigns to each pair of grapfts G') with G = G’ the identity relation, and is the quasi-simulation family
which assigns to each pair of graptts G’) with G = G’ the superset relation. Given such a graph searching game
type, we can apply Lemma 5.13 to obtain the following:

Lemma 5.55. LetI" be a graph searching type which(isl, D)-closed, and leg be a graph witlT'(G) = (L5, £y, A).
Forany (X1, R:1), (X1, R}) € V(A) with X; = X{ andR; 2 R/ and any strategy for the searchers oft;, there
exists a strategy for the searcherson G such that for every seardtX{, R})(X}, R,) - - - consistent withy’, there
exists a searcfiXy, R1)(Xs, R2) - - - consistent withr with X; = X! andR; D R;, for all i.

To compute the width of a graph from the widths of its conneé@emponents, we need to be able to combine
the widths of the components. To do this we require some $@peration,d, onw which reflects how our resource
measure is computed. For example, if we are interested inuher of searchers required to capture a fugitive, then
the functionmax is the combining operation we are interested in, the numbszarchers required in the whole graph
is at most the maximum number of any of its components. In faetcan use any operatienfor which our resource
measure is “well-behaved”, in the following sense:

Definition 5.56 (@-morphism) Let ¢ be a resource measure abd w x w — w an operation ow. We sayyp is a
@-morphismif ¢(7 - 7’) = p(7) & ¢(x’) for all sequences andn’.

Remark.We note that ifp is a@-morphism, then (on the image @) the operatior® is uniquely defined. That is,
for any resource measuie there is at most one possible operatiprsuch thaty is a @-morphism. However, we
also observe that given any monoid struct(ice @) on w and a functionf from finite sets tav, we can define a
@-morphismypg, as follows:

pale) = id,
Yo (X1 Xn) f(X1) @ @ f(X,), and
va(m) = wif risinfinite.

We also note that ip is a®>-morphism, then, due to the associativity of concatenatiois necessarily associative.
Thatis, ifa = ¢(m,), b = p(m), ande = (n.), then we have:
(adb)dec = (¢
= o((
= (- (- 7))
= @) ® (p(m) ® p(me)) =a® (b o).

Our next observation is that if we combine the restrictiomsh&ve just introduced, then the combination of the
widths of the components of a graph provides an upper bourtkdeowidth of the graph.

7T(L) (7'('17)) D 50()

Ta * 7Tb c)

Lemma 5.57. LetI" be a graph searching game type which reflects restriction iar{@l, 2)-closed. Letp be an
order-preservings-morphism. IfG is a graph with (weakly) connected compon&hitsss, ..., G,, then:

w(re) (G <@wl“<p)gj

X CElts(G), let X7 = X NEIlts(G;). Note that sincé reflects restriction, if?.x is the C-maximal element of ,

Proof. LetI'(G) = (Ls,Ly¢, A) and forl < j < n, letT'(G;) = (Eg,ﬁi;,Aj). For convenience, for each set

CHAPTER 5. GRAPH SEARCHING GAMES 71

then R/ . _is the C-maximal element otjc. For eachy, 1 < j < n, leto; be a winning strategy for the searchers
such that for every search; in Gg consistent withr;, () < wr) (G;). The idea is that the strategy defined
by playing each of the strateg|e§ sequentially is a winning strategy which has a resourceireuent of at most

@?:1 w(r) (G;). Before we formally define the strategy, we make the follayabservation.

Claim. Let (X1, R1)(X2, Ry) - - - be a search ifs;. Foranyj, 1 < j < n, if there exists: > 0 such thatk}, = 0,
thenk! = @ forall i > n.

Proof of claim. Fix j, and suppose is such thatk! = (). Suppose there exisis> n such thatR{ #+ (. Letk

be the minimal index such thdfi # (), and taker’ € Ri. From the definition of a graph searching game, there
existsr € Rj_; such that- ands’ are in the same (weakly) connected componerd §f(X;_; N Xj). Thus, as

1 € Elts(G;), it follows thatr € Elts(G;). Thusr € RJ,_,, contradicting the minimality of. Thereforer! = for

all: > n. =

We defineo inductively as follows. IfG has one connected component,det= o;. Clearlyo is a winning
strategy ong, and for any search consistent witho we havep(r) < wr) (G1). Now consider the subgraph
g = U?:Q g;. LetI(g') = (L, L%, A"). Suppose there exists a winning strategyon Gy such that for any
searchr consistent withoy we havep(r) < @;7':2 w(r,,(G;). Using the notation from Lemma 5.54, Ie§ be the
strategy ortGg defined byoy, and leto; be the strategy 0@5 defined byos;. The strategy is as follows: from
0, Rmax) play o1 until a position(X, R) is reached wher& N V(G;) = 0. Thatis, untiR' N V(G") = 0, let

o(X',R') = 01(X’,R"). From Lemma 5.54, we hav&® C V(G;), soX NV (G’') = 0, and sinceR C V(G'),
RN V(g) C R, whereR! . istheC-maximal element ot} Thus(X, R},,.) is (id, D)-related to X, R). Since

max max

X NV(G) =0, it follows thatay (X, R.,..) is defined. Let, be a(id, D)-simulated strategy of,, which, from
Lemma, plays fron{X, R) whenoy plays from(X, Ryax). For all subsequent positiofX”’, R') reached, including
(X, R), definec (X', R') = o((X', R’). From the earlier claim, a&' N V(G;) = 0, it follows from the definition
of simulated strategies thatis well-defined for all subsequent positions. Asands’ are winning strategies, it also
follows thato is a winning strategy.

Let us now consider the resources requiredsbyet 7 = (X, Rp)(X1, R1) - -- be a search consistent with
From the definition o, it follows thatr = 7; -7’ wherer is a search consistent wigh andr’ is a search consistent
with o). Therefore, from Lemmas 5.54 and 5.55, it follows that ttgusecer = Xy X, - - - is equal tory - @ where
7 is the sequence of first components of a search consisténtwand7’ is the sequence of first components of a
search consistent witl'. Thus

p(r) = p(m -7') = w(m) @ p(n')

<w(Fap gl @@w(r‘tp gj @w(FLp gj

Jj=2

As this holds for any play consistent with ando is a winning strategy, it follows that -) (G) < @ 1 W(r,e)(Gj)-

If we impose some further restrictions on the operatipnand suitable restrictions ol and ¢, we can use
Theorem 5.50 to obtain equality in the above result.

Definition 5.58. Let & : w x w — w be an operation on. We say® is monotondf for all a,b,c,d € wwitha < b
andc < d, a ® c < b® d. We sayd is deflationarnyif for all « € w, a > a ® a.

Theorem 5.59.LetT" be a graph searching game type which respects and reflec¢teten and is(id, D)-closed. Let
@ : w X w — w be an associative, monotone, and deflationary operation.dretp be a monotone, order-preserving

CHAPTER 5. GRAPH SEARCHING GAMES 72

@-morphism. IfG is a graph andj,, G», . . ., G,, are the (weakly) connected component§ ahen,
wirp)(9) = P wr.e(G)).
j=1

Proof. From Lemma 5.57, we have) (G) < @;’:1 w(r,)(G;). For the reverse inequality, we observe thagas
is a subgraph of for all j, we have from Theorem 5.5@r) (G;) < wr) (G) for all j. Thus, asp is deflationary
and monotone:

W) (9) = P wry)(G) = P wr.y)(G))
j=1 j=1

5.4.3 Lexicographic product

We now consider the cops and robber game with the resourcsumgethat indicates the maximum number of cops
used by a strategymax. We show that, under some simple assumptions, if we repkatiees in a graph with copies

of a complete graph with vertices, the number of cops required to capture the roliseeases by a factor af We
recall from Section 1.1.2 the definition of the lexicograpmioduct. We now introduce some useful relations between
a graph and its lexicographic factors. Although these déjims are quite technical, later in the section we introduce
some more intuitive properties which we show are sufficierdtablish the robustness results we are interested in.

Definition 5.60 (M,,, D,, andP,,). Let G andH be graphs and le§’ = G ¢ 1. We defineM$,C P(V(G)) x
P(V(G")) andDf,, P§,C P(V(G')) x P(V(G)) as follows. IfA C V(G) andB C V(G'), then

e AMY, Bif B=AxV(H),

e BDJ Aif A= {u: (u,v) € Bforallv e V(H)},

e BPY Aif A= {u: (u,v) € Bforsomev € V(H)}.

The following results follow immediately from Lemma 5.16daprovide an idea of the results we are interested
in.
Lemma5.61. LetG and’H be graphs and le§’ = G e H. LetGg be a cops and robber game Granngi be a cops

and robber game og’. If (M%, M%) is a searching simulation fror@g to Ggﬁ andk cops have a winning strategy
onG¢, thenk - |V (H)| cops have a winning strategy G,

Proof. Let o be a winning strategy for the cops ﬂg which uses at most cops. Lets’ be a strategy for the cops
on Ggi (M%, M%)—simulated by. From Lemma 5.164” is a winning strategy for the cops. From the definition of
MY, for each positior X', R') of G5, we haves’(X', R') = o(X, R) x V(H) for some positior{ X, R) of G}. So

o' (X', R")| < k- |V(H)|, and therefore’ is a winning strategy for at most- |V ()| cops. O

Lemma 5.62. LetG andH be graphs and lef’ = G e H. LetGg be a cops and robber game Granngi be a cops
and robber game of’. If (D%, P%) is a searching simulation fror@g', to Gg and the robber can defeat— 1 cops
onG¢, then the robber can defeat |V ()| — 1 cops onGL,.

Proof. We consider the contrapositive: supp@séV/ (H)| — 1 cops have a winning strategy on GL,. We show that
k — 1 cops have a winning strategy @E Leto bea stratngD%, P%)-simulated by’. From Lemma 5.167 is a
winning strategy for the cops. Suppdsé¢X, R)| > k for some positioff X, R). From the definition o&, there exists
a position(X’, R') of GL, such thav’ (X', R') DY, (X, R). Butthen, aso(X, R)| > k, |o'(X', R')| > k- |V (H)],
contradicting the assumption thatwas a strategy fok - |V ()| — 1 cops. Thus’ is a winning strategy fok — 1
cops. O

CHAPTER 5. GRAPH SEARCHING GAMES 73

With these two results in mind, we introduce two quasi-satioh families which we use to define the restriction
on graph searching game types that we require for games telb&é&haved under lexicographic product.

Definition 5.63(Composition-expanding).et 97t be the quasi-simulation family which assigns to each pagraphs
(G,G"), whereG’ = G e K for some complete graphi, the pair of reIation$M%, M%). Let® be the quasi-simulation
family which assigns to each pair of graples, G), whereG’ = G ¢ K for some complete graph, the pair of relations
(D%, P%). LetT" be a cops and robber game type. We Bay composition-expandini§it is 9i-closed and®-closed.

Using Lemmas 5.61 and 5.62, we obtain:

Theorem 5.64. LetT" be a composition-expanding cops and robber game typeg lbet a graph, and leiC,, be the
complete graph om vertices. Then

N W o) (G) = W prae) (G @ Kn).

Proof. Letwr .. (9) = k andwr ... (G K,) = m. From Lemma 5.61, we have < n -k, SO suppose
m =mn-k—r. Butifr > 1, then by Lemma5.62y .. 1(G) <k — 1. Thusr = 0 and the result follows. 0

To help identify cops and robber game types which are cortipnsexpanding, we now present an alternative
characterization of composition-expanding, similar te tlefinition of restriction respecting in Definition 5.21.stlu
as with Lemma 5.23, the proof follows directly from the ddfaris, and is therefore omitted.

Lemma 5.65. LetT" be a cops and robber game type such that for all gra@hend all complete graph&, where
F(g) = (L(H ‘CT‘) A)a F(g o ,C) == (Lé, L;, A/) and

() If there is an edge inE(A) from (Y, S) to (Y,Y”’,S) and(X,R) € Vp(A)for X =Y x V(K) andR =
S x V(K), then there is an edge iB(.A’) from (X, R) to (X, X', R) whereX’ =Y’ x V(K);

(1) If there is an edge inE(A’) from (X, R) € V(A') to (X, X', R) and (Y, S) € Vy(A) forY = {u : (u,v) €
X forallv e V(K)}andS = {u: (u,v) € R forsomev € V(K)}, then there is an edge iBi(A) from (Y, .5)
to (Y,Y’,S)whereY’ = {u: (u,v) € X'forallv e V(K)};

(1) If there is an edge inE(A’) from (X, X', R) to (X', R’) and (Y,Y",S) € Vi(A) whereX =Y x V(K),
X' =Y xV(K),andR = S x V(K); and thenR’ = 5’ x V(K) for someS’ and there is an edge i’ (A)
from (Y,Y’,S) to (Y, S")

(IV) If there is an edge irE(A) from (Y, Y’,S) to (Y, 5") and (X, X', R) € Vi(A") whereY = {u : (u,v) €
Xforallv e V(IK)}, Y = {u: (u,v) € X'forallv € V(K)}, andS = {u : (u,v) € Rforsomev €
V(K)}, then there is an edge iB(A’) from (X, X', R) to (X', R’) for someR’ such thatS’ = {u : (u,v) €
R’ for somev € V(K)},

thenI' is composition-expanding.

We observed in Lemma 5.51 that therelation satisfied the necessary conditionsfor »)-simulation to respect
fugitive and searcher-monotonicity. We now show that tHatiens M, D, andP also satisfy similar conditions
implying that Theorem 5.64 holds for robber-monotone argHemnotone width.

Lemma 5.66. LetG be a graph andC a complete graph.
1. The relatiorM{. is monotone andi-compatible.
2. The relatiorD{. is monotone and-compatible.

3. The relatiorP{ is monotone.

CHAPTER 5. GRAPH SEARCHING GAMES 74

Proof. 1: TakeX,Y C V(G) andX’, Y’ C V(G e K) such thatX M{ X’ andY M{. Y". By the definition ofM{,
it follows thatX’ = X x V(K) andY’ =Y x V(K). Soif X C Y, X’ C Y’, and sdVI{. is monotone. Furthermore,
since(X NY) x V(K) = (X x V(K)) N (Y x V(K)), it follows thatM{. is N-compatible.

2: TakeX,Y C V(G) andX', Y’ C V(G e K) such that’ DY X andY’ D{. Y. By the definition ofDY,, it
follows thatX = {u : (u,v) € X' forallv € V(K)} andY = {u: (u,v) € Y forallv € V(K)}. Now if X' CY’,
it follows that X = {u : (u,v) € X'forallv € V(K)} C {u: (u,v) € Y'forallv € V(K)} = Y. ThusD{. is
monotone. Furthermordy : (u,v) € X’ NY'forallv € V(K)} = {u : (u,v) € X'forallv € V(K)} N {u :
(u,v) € Y forallv € V(K)}, so(X' NY’) DY X NY, and henc®{ is N-compatible.

3: TakeX,Y C V(G) andX’, Y’ C V(G & K) such thatX’ P{ X andY’ P{ Y. By the definition ofP{, it
follows thatX = {u : (u,v) € X' forsomev € V(K)} andY = {u : (u,v) € Y’ forsomev € V(K)}. Now if
X' CY/,itfollowsthatX = {u: (u,v) € X’ forsomev € V(K)} C {u: (u,v) € Y’ forsomev € V(K)} =Y.
ThusPY. is monotone. O

Corollary 5.67. LetI" be a composition-expanding cops and robber game typeg beta graph, and lekC,, be the
complete graph om vertices. Then:

1. The robber-monoton@’, ¢.,.x)-width of G e IC,, is n times the robber-monotorn€’, ..«)-width of G.

2. The cop-monoton@’, ¢max)-width ofG e KC,, is n times the cop-monoton€, ¢,ax)-width ofG.

5.5 Complexity results

To conclude this chapter we consider the complexity of tiudlam of determining thél",)-width of a graph. More
precisely, for a graph searching game typand an order-preserving resource measyreve are interested in the
complexity of the following problem:

(T, ¢)-WIDTH
Instance: A graphgG andk € w
Problem: Is the(T, ¢)-width of G at mostk?

Of course, the complexity of this problem is dependent on Hifficult it is to compute the arena @}g and the
resource functiorp. To have a sensible analysis, we assume that we can compstithamortized constant time,
that is, we can compute a path of lengtin the arena, or the-value of a sequence efsets in timeD(n). In practice
computing edges of the arena and value® affe more likely to require time polynomial in the size of thagh, but
as the bounds we obtain are generally exponential in theo$ibe graph, this assumption is not going to significantly
affect the overall complexity.

From Definition 5.1, we know that a graph searching gﬂ@edefined by(Ls,Ls, A) is a simple game, so it
might appear at first that determining if the searchers haviaaing strategy can be decided in time linear in the size
of the arena, as per Theorem 2.60. However, for an arbitesgurce measurge, whether a vertex of the arena is
winning for the searchers in the resource-bounded gamependient on the play to that vertex. So it could be the
case that for any strategy, all possible consistent plays ttabe checked to ensure the resource measure is bounded.
Hence it may not be possible to do better than to iterate gir@li possible strategies and all consistent searches, or
equivalently, all possible plays in the arena. However, aWserved after Definition 5.36, we need only consider
plays that are simple paths in the arena, so this is at lea&tatde. Since every play can be characterized by a search,
and a search is a sequence of positions, there are atiidst(.A)|!) plays that might have to be checked. NBy(.A)
consists of pairs of subsets of B3, thus|V, (A)| = O(4/ES9l) = 0(4191), giving us the following bound:

Proposition 5.68. LetI" be a graph searching game type apén order-preserving resource measufE, ¢)-WIDTH
can be decided in tim@(4™!).

CHAPTER 5. GRAPH SEARCHING GAMES 75

We can do considerably better by considering specific regomreasures, in particular the measyrg,. In
Lemma 5.40, we saw how the existence of a resource boundetdngistrategy is equivalent to the existence of a
winning strategy in a game with a smaller arena: the parametegame defined in Definition 5.26. We can use
Theorem 2.60 to decide if the cops have a winning strateglgisndarameterized game in linear time, and therefore
determine if the cops have a resource bounded winning gyratehe original game. More precisely,

Proposition 5.69. Let T be the cops and visible robber game type defined in Definitids. ThenT', ¢uax)-WIDTH
can be decided in tim@(n2k+4).

Proof. Supposg7, an undirected graph, arid € w are given. Lefl” be thek-cops and visible robber game type
defined in Definition 5.26, and suppds&g) = (L., L., A). From Lemma 5.40, we have thiatops have a winning
strategy inGg if, and only if, the cops have a winning strategy@rg'. From Theorem 2.60, we can determine if the
cops have a winning strategy @\5/ in time O(|E(A)|), so it suffices to find an upper bound gi(.A)|. From the
definition of the game, we observe that for edchX’ € L. there are at mos$V'(G)| setsR such tha{ X, R) € V5 (A)
and(X, X', R) € V1(A). Therefore, from the definition ofl we see that each elemeiiX, X', R) of V1(A) has a
unigue incoming edge (froriX, R)) and at mostV (G)| outgoing edges (t6X’, R')). Thus the number of edges
is at most(|V(G)| + 1)|Vi(A)|. From the definition ofC., we have|L.| < |V(G)[FT!, thus|Vi(A)| is at most
IL||L:]IV(G)] < [V(G)|?**3. Therefore, the number of edges.dfis bounded byO(|V (G)|?#+*), and the result
follows. O

The parameterized class of games we defined in Definitioni5.2ésily extended to other graph searching game
types, so we can use a similar argument as above to d€tigs, ..)-WIDTH more efficiently than Proposition 5.68.
In the more general case, we may not be able to bound the siZg df) as efficiently, nor the number of outgoing
edges from elements &f (A). However, we observe th& (A) C L£s x L x Ly, so|Vi(A)| < |G|*-|G|* 2141, and
there are at mos_ ;| < 219! outgoing edges from any elementsf(.A). This gives us the following improvement
for deciding(T", ¢ max)-WIDTH:

Proposition 5.70. LetI" be a graph searching game tyf@., ¢max)-WIDTH can be decided in tim@(n2k+24m),

We observe that all the algorithms we have so far consideredanstructive: if the algorithm returns a positive
answer, then it is possible to extract a winning strategytfersearchers.

We conclude the section by considering the complexity afiaeining the fugitive-monotone and searcher-monotone
widths of a graph. As we observed following Lemma 5.11, ttstrietion to fugitive-monotone strategies can be en-
forced by removing edges from the arena. It therefore faltvat the bounds we obtained for the general games are
applicable to the fugitive-monotone case.

Proposition 5.71. LetT" be a graph searching game type.
(i) FUGITIVE-MONOTONE (T, ¢max)-WIDTH can be decided in timé&(n2*+24"), and

(i) If T"isthe cops and visible robber game type defined in Definitidf.5TherFUGITIVE-MONOTONE (T, (o1ax) -WIDTH
can be decided in tim@(n2k+4).

Unfortunately, for searcher-monotone strategies thatdtn is not as straightforward. Indeed, just as with aglpjtr
resource measures, the algorithm of Theorem 2.60 cannggriaral, be used as the set of successors available from
(X, R) is dependent on the play (&, R). Thus in the searcher-monotone case, we can in general dettev than
the bounds obtained for an arbitrary resource measure.

Proposition 5.72. LetI" be a graph searching game tyf8EARCHER-MONOTONE (I', omax)-WIDTH can be decided
intimeO(4™!).

Chapter 6

Digraph measures: DAG-width

In Chapter 4 we discussed the problem of finding a measurerplexity for digraphs. We reviewed the definition
of tree-width, arguably one of the most suitable measureofplexity for undirected graphs, and we considered
the problem of finding a suitable generalization of treettir directed graphs. In Chapter 5 we introduced graph
searching games, a useful tool for developing robust measafrgraph complexity, and saw that several such games
can be used to characterize tree-width. In this chapter wedace a complexity measure for directed graphs which
we argue is a more natural generalization of tree-width theetted tree-width. We introduce a decomposition which,
unlike arboreal decompositions, is defined in a similar nearia tree decompositions. Just as tree decompositions
are decompositions based on trees, our decompositionsaeel lon directed, acyclic graphs (DAGs), so we use the
nameDAG-decompositiongAnd just as tree decompositions give rise to tree-widthGBdecompositions give rise to

a graph parameter which we cBIAG-width

We show that DAG-decompositions and DAG-width enjoy manyperties similar to tree decompositions and
tree-width. For example, in Theorem 6.28, we show that we assume a DAG-decomposition satisfies certain
conditions similar to those of nice tree decompositiongpituced in [Bod97]. This normalized form is particularly
useful for designing dynamic programming algorithms wtrigh efficiently on classes of directed graphs of bounded
DAG-width. We see this in Section 6.3.3 when we present suchlgorithm for parity games. But perhaps the
strongest point in favour of DAG-width being a more naturahgralization of tree-width is that it can be characterized
by a natural generalization of the cops and visible robberega graph searching game which we saw in Chapter 5
characterizes tree-width. As the generalized game isoqudaitly dependent on directed paths in the graph, this sigge
that DAG-width is a good indicator of the directed conneittiof a digraph, a notion we discussed in Chapter 4.

The game characterization of DAG-width also provides supfoo the argument that DAG-width is a good mea-
sure of digraph complexity. For example, it is straightfardito show that DAG-width does not increase under the
taking of subgraphs, and that the DAG-width of a graph candmeputed from the DAG-width of its strongly con-
nected components.

After we introduce DAG-width and its associated graph d@ag-game, we consider the algorithmic benefits of
DAG-width. As a digraph measure, DAG-width lies betweeriwdth and directed tree-width. That is, classes of
graphs of bounded tree-width have bounded DAG-width angdlgr@f bounded DAG-width have bounded directed
tree-width. In particular this implies that algorithms whiare efficient on graphs of bounded directed tree-width are
efficient on graphs of bounded DAG-width, so in particulae®drem 4.13 applies also to graphs of bounded DAG-
width. In this chapter we extend this algorithmic result atdw that parity games can be decided in polynomial
time on arenas of bounded DAG-width, something which is motemtly known for graphs of bounded directed tree-
width. We also show that DAG-width, tree-width and directie-width are different measures by exhibiting a class
of digraphs with bounded DAG-width and unbounded tree-wattd a class of digraphs with bounded directed tree-
width and unbounded DAG-width. This suggests that weak eotivity, directed connectivity and strong connectivity
are three very different properties of directed graphs.

The chapter is arranged as follows. In Section 6.1 we inttedhe cops and visible robber game for directed

76

CHAPTER 6. DAG-WIDTH 77

graphs and we establish some results to help gain an unddirsgeof the game. We then define DAG-decompositions
in Section 6.2, and show the equivalence between DAG-widithtlae number of cops required to capture the fugitive
with a monotone strategy. In Section 6.3 we discuss someitiigoc aspects of DAG-width. We also prove the
existence of a polynomial time algorithm for solving paggmes on arenas of bounded DAG-width, and in Section 6.4
we relate DAG-width to other measures of graph connectiwvitgarticular tree-width, directed tree-width and diestt
path-width.

6.1 Cops and visible robber game

We recall from Chapter 5 the cops and visible robber game tEaample 5.2.1. In this game a number of cops and
a robber occupy vertices of an undirected graph and the tlgeaf the cops is to capture the robber. The cops move
by removing some of their number from the graph and annogrecset of vertices to be occupied. Following this, the
robber can move at great speed along paths in the graph t eapiure, however he is not permitted to pass through
any cop which remains on the graph. The cops then occupy ttieegthat were announced, and if the robber is
located on one of these vertices then he is captured. Thdédaaa the robber in the graph is always known to the
cops. In Theorem 5.37 we saw that the minimum number of capsined to capture a robber on an undirected graph
is equal to one more than the tree-width of the graph.

We now consider the natural extension of this game to didegtaphs, where the robber is constrained to move
along directed cop-free paths. More precisely,

Definition 6.1 (Cops and visible robber gameé)et G be a directed graph. Theps and visible robber game ¢his
the cops and robber game defined(By, £,., A), where

o L.=P(V(G)andL, = P(V(G)) \ {0},

e V5(A) consists of(), V(G)) together with pair§ X, R) € L. x L, such thatR = Reacl, x(r) for some
r e V(G9),

e Vi(A) consists of triple§ X, X', R) € Vi (A) forall (X, R) € Vi(A) and allX’ € L.,
e Forall(X,R) € Vy(A) and allX’ € L. there is an edge i&(A) from (X, R) to (X, X', R), and

e If R = Reacly x/(r’) then there is an edge ifF(A) from (X, X', R) to (X', R') if, and only if, 7' €
Reacly (xnx) (R).

Remark. In the sequel, it may be more convenient to view (non-inigEdsitions of the game as paifX,) with
X C V(G)andr € V(G) to represent the positiarX, R) whereR = Reacly x (7).

We recall from Chapter 5 the definitions ofearchand astrategy As with the game characterizing tree-width, we
are interested in the minimum number of cops required toucahe robber. Because of this, and from the definition
of the game, it follows that we may assume the first move of tygsds to not place any cops on the graph and
“wait and see” where the robber moves: if the robber can wimf(@, r,) for somer; € V(G) then he can win
from (0, V(G)), and conversely, if the cops have a winning strategyhich uses at most cops from(f,) for all
r € V(G), then the strategy defined by playifigt (0, V(G)) ando otherwise is also a winning strategy which uses
at mostk cops. In view of this, and the above remark, we introduce aerpoactical definition of a strategy where the
strategy is only defined for positiofi&’, ») whereX C V(G), |X| < k, andr € V(G).

Definition 6.2 (k-cop strategy) Let G be a directed graph, and consider the cops and visible rgjzme ong. A
(k-cop) strategyfor the cops is a functior : [V (G)]SF x V(G) — [V(G)]=F. A search(X;,r)(Xa,72)-- is
consistentvith a strategy if X;11 = o(X;,r;) forall i. A strategyo is awinning strategyif every search consistent
with ¢ is finite.

In a similar way, we can define a strategy for the robber ag&insps.

CHAPTER 6. DAG-WIDTH 78

Definition 6.3 (Strategy againgt cops) LetG be a directed graph, and consider the cops and visible rgamee on
G. A strategy against copsis a functionp : [V (G)]=F x [V (G)]=F x V(G) — V(G) such that for allX, X’ C V(G)
andr € V(G) \ X, p(X, X', r) € Reacly (xnx)(r). Asearch(Xy,r1)(X2,r2) - - - is consistentith a strategyp if
Tit1 = p(XZ‘, Xi+1, Ti) for all 1.

We observe that, similar to the game on undirected graphignia of the cops and visible robber game where
only one cop can be moved at a time, or the cops are lifted ambgdlin separate moves are all equivalent in that the
number of cops required to capture the robber on a graph daefepend on the variant.

We call the graph searching width (recall Definition 5.363a$ated with this game and the resource we are
interested in bounding, thep numbef the graph. That is,

Definition 6.4 (Cop humber) Thecop numbenf a directed graphy is the leask such that cops have a strategy to
win the cops and visible robber game @n

Before we introduce the technical aspects of this game wgadater sections, we present a couple of results that
illustrate some of its properties.

Lemma 6.5. LetG be a (finite) non-empty directed graph. At least one cop igsired to capture a visible robber on
G and exactly one cop is required if, and onlydfjs acyclic.

Proof. As we have no requirement that the robber moves, as long esithene vertex, the robber can defeat zero
cops by remaining at that vertex. That isyiE V(G), then functionp defined byp(0, §,v) = v is clearly a winning
strategy againdt cops.

If G is acyclic, then one cop can catch the robber by always piagithe current position of the robber. Eventually,
the robber will not be able to move and the cops will captume.hilore precisely, define(X,r) = {r}. Then for
any search{ Xy, ro)(X1,71) - - - consistent withr, we observe that for all, r; # r;+1 and there is a directed path
fromr; tor; 1. Sinceg is finite and acyclic, it follows that every search consisteith o must be finite and therefore
winning for the cops.

Conversely, ifG has a cycldv,vs, . .., vy,), then the robber can defeat one cop by forever staying inytble.c
Thatis, forallr € V(G) andX € [V(G)]=! letp(X, X', r) = v; forall X’ suchthat; ¢ X’ andp(X, {v1},7) = va.
This is clearly a strategy for the robber against one cop,andny search consistent withcan be extended to an
infinite search, it is winning for the robber. O

The cops and visible robber games we have already seen Chagitaracterizing tree-width and directed tree-
width have the property that they are invariant under edgersal. That is, the number of cops required to catch the
robber does not change if the directions of all the edgesefjtph are reversed. As we see below, this is not the
case for the game we consider here. One exception is graglapofumbed, that is, acyclic graphs. We recall from
Section 1.1.2, the definition ¢f°P.

Proposition 6.6. The cop number of a directed graghis 1 if, and only if, the cop number ¢ is 1.
Proof. This follows from Lemma 6.5 by observing thatis acyclic if, and only if G°P is acyclic. O

Proposition 6.7. For anyj, k with 2 < j < k, there exists a grap‘r‘n’,j with cop numbey such that the cop number of
(T7)°Pis k.

Proof. Informally, T,j is a binary branching tree of heightsuch that every vertex has edges to all its descendants,
and edges back to ifs— 1 nearest ancestotsMore preciselyZ,’ is the directed graph defined as follows:

o V(T)) = {we {0,1}*: |w| < k}, and

170 aid informal descriptions we view this graph as a diretted with additional structure. Thus we use descendantestors, root and leaves
to refer to various vertices in the graph as they would beénuthderlying directed tree.

CHAPTER 6. DAG-WIDTH 79

o (wy,ws) € E(Tkj) if, and only if, eitherw; < wy or we < w; and|wy| — |wa| < j, where< is the prefix
ordering on{0, 1}*.

We now show that the cop numberljj is j and the cop number Qﬂ'kf)OP is k. First we see thatcops have a winning

strategy orﬂjj by initially playing on the root then following the robberwn, in a leap-frogging manner, whichever
subtree he plays in. More precisely, we inductively defireedtiategy as follows. Initially,o (0, V(G)) = {e}. We
observe that from the definition of the edge relation, if thielrer chooses to respond by moving to a vettexith
first symbol0, then he is unable to reach any vertekwith first symboll. Similarly if the robber chooses to move
to a vertex with first symbol, he cannot reach any vertex in thesubtree. Now suppose the cops aremnd the
robber is onw,. andX andw, satisfy the following:

There existSumin andwmax sUCh thatX’ = {w : wmin =2 w < wmax} andReach,;, (wr) = {w :

- ‘ :)

Thenwmax IS the next vertex to be occupied by a cop.|X| < j, theno(X,w,) = X U {wmax}, Otherwise if
|X|=7,0(X,w,) =X\ {wmin} U{wmax}. Letw!. be the next location of the robber after the cops move oo

X' = o(X,w,). We show that the resulting positi¢iX’, w!.) satisfies). Clearly from the definition o, we have
eitherX’ = {w : Wpin 2 W X Wnax} OF X' = {w : Wpin < W X wWpax }, SO the first part of«) is true. Next we
show thatw,. € Reacl}]\X X)wy \ {wmax}. Clearly, if X’ D X thisis true, so we need only consider the case when

| X | = j. Butthis implieSwmax| — |wmin| = 7, thus there are no edges fram, x 10 wmin. AS wmiy IS the only vertex
vacated and every vertex reachable framis reachable fromuw,.x, the set of vertices reachable by the robber must
decrease. Now let’ be the shortest word which is a prefixof and for whichwy,. is a proper prefix. It follows
from the definition of the edge relation that every vertexahhihe robber can reach must haveas a prefix. Thus
ReacP}J\X Jwl. = {w: w" <X w}. Clearly the strategy is a strategy foy cops, we now show that it is winning.
We observe that for every search consistent witthe sequence af,,,. is a sequence of words of increasing length.
So afterk moves there will be no vertex available for the robber to maverhuso is a winning strategy foy cops.

A winning strategy folk cops on(7;’)°P can be similarly defined, replacingwith & in the above definition. Note that
when|X | = k there is no vertex available for the robber, so the cops resez to make a “leap-frog” move.

We now show that the robber can defgat 1 cops orfTJ andk — 1 cops on(TJ)Op The strategy for the robber
involves choosing some leaf. Whenever a cop moves to thiatdesimple counting argument shows that there must
be at least one unoccupied ancestor which the robber caimwathcat least one clear path to a leaf below. The robber
then plays to that ancestor and along that path to the leafe l[decisely, lel. = {w € V(7) : |w| = k — 1}. For
eachX, X’ € [V(G)]<’ andw, € V(G), let p(X, X', w,) = w' for somew’ € (L N Reachy;, (X NX")r) \ X".
Clearly if p is well defined, it describes a winning strategy for the rolagminsti — 1 cops. We now show that there
always exists some suell. Since|L| = 2¥~! > j — 1, the robber can always choose an element dfitially, so
we may assume that, € L. If w, ¢ X’ then choosingy’ = w, suffices, so suppose, € X’. Sincew, ¢ X
and|X|,|X’| < j, it follows that| X N X’| < j — 1. Thus there exist®’’ < w, such thajw,| — |w”| < j and
{w: w" 2 wandw, £ w}N X" = () wherew, is the shortest word which is a prefix of. and for whichw” is a
proper prefix. Thus for every € L such thatw” is a prefix ofw, there is a path fronw, to w in 7,/ \ (X N X").
Thus choosingy’ € L such thatw” is a prefix ofw gives a well-defined strategy. A winning strategy for thelrab
against: — 1 cops on(7;/)P is defined similarly, replacing with % in the above definition. O

Wmax = w}

6.1.1 Monotonicity

For the remainder of this chapter, we are primarily concgmi¢gh monotone strategies. We recall from Definition 5.8
the definitions of fugitive-monotone (robber-monotone) aearcher-monotone (cop-monotone) searches and strate-
gies. We observe that, as with the cops and visible robbeegamundirected graphs, the cops and visible robber
game for directed graphs permits idling and is vacatingiseasThus from Lemma 5.11, we have:

Lemma 6.8. A cop-monotone winning strategy fbicops is robber-monotone.

CHAPTER 6. DAG-WIDTH 80

We saw in Theorem 5.37 that for the cops and visible robbeegamundirected graphs, the converse to this holds:
if & cops have a robber-monotone winning strategy theaps have a cop-monotone winning strategy. In [JRSTO01] it
was shown that this is not the case for the strongly connedséale robber game. The next result shows that as with
the game on undirected graphs, for the game we are congjddratwo notions of monotonicity coincide.

Lemma 6.9. If k cops have a cop-monotone or robber-monotone winning gtyateen they have a winning strategy
that is both cop-monotone and robber-monotone.

Proof. From Lemma 6.8, it suffices to show thatitops have a robber-monotone winning strategy theops have a
cop-monotone winning strategy. Suppose the cops have argbbnotone winning strategy, and (&, 7o) (X1,71) - - -

be a search consistent with that strategy. From this we earist sequence which can be used to define a cop-
monotone strategy in the obvious way. SuppéseZ X,.; and letv € X; \ X;+1. Asv € X;, the robber is
unable to reach when the cops are oH;. As the strategy is robber-monotone, the robber is unabiegohv at any
further stage, in particular, he cannot reaciwhen the cops are ai; ;. Thus, no cop needs to revisitin order to
prevent the robber from reaching Thus, we can remove from all X;, j > i. Proceeding in this way results in a
sequencéXy, ro)(X1,71) - - -. The strategy which takes\/, ;) to X;, is cop-monotone for this search. Repeating
this for all plays (that is, every choice for robber) resirts. cop-monotone strategy. Hence, whenever the cops have
a robber-monotone winning strategy they also has a cop-tonaatrategy. O

With this lemma in mind we definermaonotone winning strategy the obvious way. Note that we have actually proved
a slightly stronger assertion:

Corollary 6.10. If k£ cops have a monotone winning strategy in the cops and vigiblzer game on a digrap$, then
k cops have a winning strategysuch thatr (X, r) € X U Reacly, x(r) forall X C V(G) andr € V(G) \ X.

In Theorem 5.37, we also saw that in the visible robber gamaratirected graphs, it cops have a winning
strategy therk cops have a monotone winning strategy. An interesting ¢qures whether this extends to the game
on directed graphs. Kreutzer and Ordyniak [KO07] have rdgshown that this is not the case.

Theorem 6.11([KOO07]). For anym € N, there exists a digraph for whickhm cops can capture a visible robber but
6m cops are required to do so with a monotone strategy.

Of course, this result does not preclude the possibility, ths with the strong visible robber game, the number
of cops required for a monotone capture is bounded by sonwifumof the number of cops required for a winning
strategy which is not necessarily monotone. This gives @$dlowing interesting open problem:

Open problem 6.12. Does there exist a functiofi : w — w such that for all digraphg/, if £ cops can capture a
visible robber org then f (k) cops can capture the robber with a monotone strategy?

6.2 DAG-decompositions and DAG-width

In this section, we present a decomposition of directediggdipat is somewhat similar in style to tree decompositions
of undirected graphs. This leads to the definition of DAGtWjdvhich can be seen as a measure of how close a given
graph is to being acyclic. We show then that a graph has DA@h#iif, and only if, £ cops have a monotone winning
strategy in the cops and robber game played on that graphokddude with some algorithmic properties enjoyed by
DAG-width.

Definition 6.13 (Guarding) Let G be a directed graph. A s& C V(G) guardsa setl’ C V(G) if W NV = () and
whenever there is an edge, v) € E(G) such thats € V andv ¢ V, thenv € W.

Definition 6.14 (DAG-decomposition) Let G be a digraph. ADAG-decompositioof G is a pair(D, X') whereD is
a directed, acyclic graph amtl = (X4)qcv (p) is a family of subsets of (G) such that

CHAPTER 6. DAG-WIDTH 81

(D1) UdeV(D) Xq=V(9).
(D2) For all vertices! <p d' <p d’, XgN X4 C Xg.

(D3) Foralledgesd, d’) € E(D), XaN Xy guardsX>q \ Xq , whereX>q = Uy < 40 Xav. FOrany rootd, X>4
is guarded by. a

The width of a DAG-decompositiofD, X) is defined asnax{|Xg4| : d € V(D)}. TheDAG-widthof a graph is
defined as the minimal width of any of its DAG-decompositions

The main result of this section is an equivalence betweenotooe strategies for the cop player and DAG-
decompositions.

Theorem 6.15. For any directed graply, there is a DAG-decomposition gfof width & if, and only if,k cops have a
monotone winning strategy in the cops and visible robbergany;.

To prove this, we first need some simple observations abarting.
Lemma 6.16. LetG be a directed graph, ant/, X, Y, Z C V(G).
() X guards Reach x (Y).
(i) If W guardsY, X guardsZ, then(W U X))\ (Y U Z) guardsY U Z.
(i) If X guardsY, Z D X andZNY = 0, thenZ guardsY’.
(iv) If X guardsY thenX U Z guardsY \ Z

Proof. (i): Clearly X NReacl x(Y') = (). Now supposév, w) € E(G), v € Reacly x (Y') andw ¢ Reacl, x (V).
It follows from the definition oReach, x (Y') thatw € X. ThereforeX guardsReachy, x (V).

(i) : Supposév,w) € E(G),ve YU Zandw ¢ YU Z. If v € Y, thenw € W, asW guardsY. Similarly, if
v € Zthenw € X asX guardsZ. Hencew € (WU X)\ (YU Z),and(W U X)\ (Y U Z) guardsY U Z.

(iii): Suppos€v,w) € E(G),v € Yandw ¢ Y. As X guardsY,w € X. AsZ 2O X, w € Z. ThereforeZ
guardsy’.

(iv): SinceXNY =@andZn (Y \Z) =0, itfollowsthat(X UZ)N (Y \ Z) = 0. Now supposév, w) € E(G),
veY\Zandw ¢ Y\ Z. Thus,w ¢ Y orw € Z. For the first casey € X asX guardsY. Hencew € X UZ. O

We now turn to the proof of Theorem 6.15.

Proof of Theorem 6.15Supposé: cops have a monotone winning strategiy the cops and visible robber game on a
directed grapldj. Aso is monotone, from Corollary 6.10 it follows that we may assuthmat cops are only ever placed
on vertices that are reachable by the robber. That is,

o(X,r) € X UReach x(r). (6.1)

We recall the definition of a strategy DA®,,, from Definition 5.7. Since the nodes D%, are positions in the
cops and robber game, the functieris well defined for alld € V(D,). We claim thatD,, X'), with X defined by
X4 =o(d)foralld € V(D,), is a DAG-decomposition af of width < k. To support our claim, we first observe the
following simple facts. Fod = (X, r) € V(D,),

Reacly,x(r) € | J o(d') € X UReacly x(r). (6.2)

d=p,d’

CHAPTER 6. DAG-WIDTH 82

The first inclusion follows from the fact that is a winning strategy for the cop player: at positio¥,) every
vertex reachable by the robbeRéacly, x (r)) will be occupied by a cop at some point in the future. The Beco
inclusion follows from repeated application of (6.1). Fhet, ford = (X, r) € V(D,),

Reac@\x (7”) = ReaCQ\(xmg(x’r))(T). (63)

As X No(X,r) C X, Reach x(r) € Reacly xno(x,)(r). The reverse inclusion follows from the fact thais a
robber-monotone strategy.
Equations (6.2) and (6.3) together imply 0= (X, r):

(U od))\ X = Reacy (xno(x,m (1)- (6.4)

d=p,d’

We now show thatD,,, X) is indeed a DAG-decomposition of width k. For (D1), if there was & € V(G) \
UdeV(Dd) X4, then the robber could defeatby playing tov at the beginning and staying there indefinitely. Hence
UdeV(D) X4 = V(G). (D2) follows immediately from the (cop-)monotonicity dfe winning strategy. Towards
establishing (D3), let us first consider a rebt (X, r) of D,. From the definition oD, this root is unique, thus
X>q = V(G) and is therefore guarded iy Now supposéd, d’) € E(D,). If ' = (X',7") thenXy = o(d) = X'.
So by (6.4),

Xoa \ Xa=(U a(d")) \ X" = Reacky (x/no(x) (1")-
d'<p,d"
Therefore, from Lemma 6.16(i)Xy N X¢ = X' No(X',7’) guardsX>y \ Xg4. It follows that(D,, X) is a DAG-
decomposition. To see that it has widthk, note thatmax{|X4| : d € V(D,)} = max{|o(d)| : d € V(D,)} < k.
Conversely, le{D, X') be a DAG-decomposition of width. A strategy fork cops can then be defined as:

(1) Letthe robber choose a vertexc V(G). From (D1), there existg, € V(D) such thaty € X,4,. Letd be a root
of D which lies abovel,.

(2) Place cops 0X .

(3) From (D3) and Lemma 6.16(iii)Xy guardsX>, \ X4. Therefore, the robber can only move to vertices in
X>q \ Xq. Suppose the robber movesifoe X, Letd’ be a successor afwhich lies abovel”.

(4) Remove cops oX,; \ X4 (leaving cops oXy N Xa)

(5) AsXynN Xy guardsXsq \ X4, the robber can only move to verticesifii. o — that is, the robber must remain in
the sub-DAG rooted at'.

(6) Return to step 2 with’ asd.

As D is a DAG, at some point the robber will not be able to move bseait.; \ X, is empty wheni is a leaf. Hence,
this is a winning strategy fat cops. To show that it is monotone, observe that (D2) enshedst no point does a cop
return to a vacated vertex. This concludes the proof of Témds.15. O

We observe that as a strategy DAG is the underlying DAG in #mdhposition(D, X') constructed in this proof,
and a strategy DAG has a unique root, we have the following:

Corollary 6.17. If a digraph G has a DAG-decomposition of width thenG has a DAG-decompositiofD, X') of
width < k such thatD has a unique root.

Inthe sequel we show that we can make further simplifyingieggions about the structure of DAG-decompositions.
The remainder of this section looks at some properties of RI&Gompositions motivated by similar results for
tree-width and tree decompositions. We first observe thatimning strategies for the cop player in Lemma 6.5

CHAPTER 6. DAG-WIDTH 83

and Proposition 6.7 are monotone. These results therafgly ithat a graph has DAG-widthif, and only if, it is
acyclic (indeed, the graph itself will suffice as a decomims) and that the DAG-width of a graph may change by an
arbitrary amount if its edges are reversed. This last olsiervis particularly useful when searching for alternativ
characterizations of DAG-width, such as those we introducghapter 8.

We further observe that, as with the game on undirected grapk cops and visible robber game enjoys the
properties of graph searching games introduced in SectibnI& particular this means that DAG-width decreases
when taking subgraphs, and suitably increases when tagiigplgraphic products.

Lemma 6.18. Let (D, X') be a DAG-decomposition of a digraggh and letG’ be a subgraph of. (D, X|g:) where
Xlgr = (XaN V(g’))deV(D) is a DAG-decomposition &F'.

Proof. Clearly, (D1) and (D2) still hold fo(D, X|g-). For (D3), we observe that, X guardst” in G, thenX NV (G’)
guardsy NV (G’)in G'. Thisis because, if e Y NV (G'),w € V(G')\ Y and(v,w) € E(G') C E(G), thenw € X
(asX guardsY’), hencew € X N V(G'). Then, (D3) follows immediately from (D3) for the originabdomposition
(D, X). O

Corollary 6.19. LetG andg’ be directed graphs such th@t is a subgraph of;. Then DAG-widtfG’) < DAG-width(G).

Lemma 6.20. Let G be a directed graph and’,, the complete graph on vertices. DAG-widttG ¢ ,,) = n -
DAG-width G).

Proof. From Theorem 5.64, it suffices to show that the cops and weisiddbber game is composition-expanding. We
show that it satisfies conditions (I)-(1V) of Lemma 5.65. &lg as the cops are free to make any move, conditions
() and (11) are satisfied. For condition (lll), suppose@ms the cops move frof to X', the robber can move from
r tor’. It follows by the definitions oReachand lexicographic product that if the cops move fréinx V (IC,,) to

X' xV(K,)in G eK,, the robber can move frofx, v) to (', w’) for allv,w € V(K,,). Thus there is an edge in the
arena (of the game aie K,,) from (X x V(K,,), X' x V(K,,), R x V(K,)) to (X' x V(K,), R x V(K,)) where

R = Reacly x (r) andR" = Reacly x-(r'). Finally, to show condition (IV), we observe that far C V(G e KC,,)
and(r,v) € V(G e K,), Reachg.x,)\ x (r,v) consists of those verticds’,v') ¢ X such that’ inReaclyy (r)
whereY = {z € V(G) : (z,w) € X forallv € V(K,,)}. Thus, if there is an edge in the arena (for the gamé)n
from (Y,Y’,S) to (Y, S’), then there is an edge in the arena (for the gamé eI1kC,,) from (X, X', R) to (X', R’)
whereX, X', Y,Y’, R, R’, S andS’ are as defined in condition (IV) of Lemma 5.65. O

We also show that the DAG-width of graphs is closed undeictiigeunions, which, as we discussed in Chapter 4,
is an important property of a reasonable decompositionrettkd graphs.

Lemma 6.21. LetG be a directed union of the digrapldg andgG,. Then
DAG-width G) = max{DAG-width G,), DAG-width G2)}.

Proof. For DAG-decompositionéD!, x'1) and(D?, X2) of G; andG, respectively, the DAG obtained by adding
an edge from every leaf dP' to every root ofD?. together witht := (X])aev (p1)U(X3)4ev (p2) forms a DAG-
decomposition off. Conversely, any DAG-decompositi¢®, X') of G can be restricted t§; andg. yielding DAG-
decompositions for these graphs, according to Lemma 6.18. O

We observe that it follows that the DAG-width of a directedgin is the maximum DAG-width of all its strongly
connected components.

For algorithmic purposes, it is often useful to have a norimiath for decompositions. The following is similar to
one for tree decompositions as presented in [Bod97].

Definition 6.22. [Nice DAG-decompositions] A DAG-decompositig¢®, X') is niceif

(N1) D has a unigue root.

CHAPTER 6. DAG-WIDTH 84

Figure 6.1: Splitting atly

(N2) Everyd € V(D) has at most two successors.
(N3) If d1, ds are two successors a@f, thenX,, = X4, = Xq,.
(N4) If dy is the unique successor d@f, then| X, A Xg4,| < 1.

The final result we establish in this section is that everphnaith DAG-width k£ has a nice decomposition with
width k. For this, we transform a DAG-decomposition into one whichice that has the same width. To do this we
formalize the transformations we use, and show that exegtiiem (possibly subject to some constraints) does not
violate any of the properties of a DAG-decomposition. Rivetrequire the following useful observation.

Lemma 6.23. Let (D, X) be a DAG-decomposition. For altl, d’) € E(D),
Xoa \ Xg=X>a0 \ (XanN Xg).

Proof. As Xg N Xg C Xy, X>a \ Xg € X>a \ (Xg N Xg). Conversely, suppose € X4, thatis,v € Xg»
for somed” =p d’. We will show thatv € X; N X4, orv ¢ X4. Suppose € Xy. Thenasd <p d' <p d”,
ve XgNXygr € Xyg. Hencev € XgN Xy, ThUS,XZd/ \Xd B XZd' \ (Xd n Xd/). O

Definition 6.24 (Splitting). Let (D, X') be a DAG-decomposition, and suppakec V(D) hasm > 1 successors
dy,ds,...,d,. The decompositiofiD’, X') obtained fromD, X') by splitting d, is defined as follows:

(i) V(D) =V(D)J{d,,d,},

(i) E@) = (BMD)\{(do,di):1<i<m})
U {(d07 dl)7 (d07 dr); (dl) dl)}
u{(d,,d;) : 2 <i<m}, and
(i) Xj = Xg,foralld € V(D), andX);, = X} = Xq,.
Figure 6.1 gives a visual representation of this transféioma

Lemma 6.25. Let (D, X') be a DAG-decomposition of a digraghof width k£, and supposd, € V(D) hasm > 1
successorsly, ds, . .., d,,. Then(D’, X’) obtained from(D, X’) by splitting dy is a DAG-decomposition af of
width &.

Proof. First we observe that, a is the unique predecessor@fandd,., for anyd € V(D) such that! <p. d; or
d <p’ d,, it must be the case thdt=<p dy. Thus, for alld € V (D),

i li
Xy= U Xo= U Xo =Xz
d=<prd’ d=<pd’

CHAPTER 6. DAG-WIDTH 85

since if X4, or X4, is included in the union on the left, then soXs;,, and so neitheX;, nor X, contribute to the
overall union.
Also, for alli such thatl <i < m, itis the case thak ;,N X4, guardsX>4, \ Xq,. Therefore, by Lemma 6.16(iii),

Xdo guardsXZdi \ng- (65)

It is easily seen that the edges added do not create any cwde®’ is a DAG. Further,Udev(D/) X, =
Udev(p) Xa = V(G). To prove the connectivity condition (D2), létd’, d” € V(D'), be suchthat =p/ d’ =p/ d".
If & =dord” thentrivially X, N X/, C X/, so suppos€ <p' d' <p: d’. We consider four cases:

e If none ofd,d’,d"’ is d; or d,, thend,d’,d” € D, and (D2) follows from the fact tha{D, X) is a DAG-
decomposition.

e If dis d; ord, then since all descendantsdére inV (D), andd, € V(D) is the unique predecessor@fwe
obtain the following chain of nodes iB: dy <p d' <p d”. SoX,;N X)), = X4, N Xg» C Xg = X},

o If d" is d; or d, then from the comments at the beginning of the prdokp d' <p do. Thus, X/, N X}, =
XgN Xdo C Xy = Xc/l"

e Finally, if d’ is d; or d, then by the same reasoning as the previous two cdses, dy <p d’. SoX,N X/, =
XaNXgr C Xg, = Xc/l"

Thus, in all casesX, N X/, € X/,, showing that (D2) holds. To see that condition (D3) alsalbpbbserve first that
every root ofD’ is a root ofD too. Sof) guardsX >, = X% ,. Now let(d,d') € E(D'). We consider three cases:

o d € V(D) (ie.,d #d,d;). Ifd =d ord,, thenX), = X, . Otherwise(d,d’) € E(D). In both cases,
XN Xy guardsX? , \ X5

o d = dl (SOd — dO) HereX’Zd’ = XdoUXZdl’ SOX/Zd/\X(/i = X2d1 \Xdo- HenCe, by (6.5)Xdo = X(/imX(I]/
guardsX>q, \ Xa, = X35 \ X7

o d = d, (SOd = do) HereX’Zd, = Xdo U UQSiSm XZdi’ and SOXIZd’ \X/ = (UXZdi) \Xdo = U(XZdi \
X4,), where the unions are taken ovglor 2 < ¢ < m. From Lemma 6.16(ii) and (6.5)/ N X, = X,
guardd J, . <,,, (X>a, \ Xa,) = XL \ Xy

As X = X; = X4,, we have
max{|X}|:d € V(D')} = max{|X4|: d € V(D)} = k.
Consequently, the decomposititf’, X’) has widthk. O

By the decomposition resulting from splittingm — 1 timeswe mean the decomposition resulting from splitting
d, and then recursively splitting,. until d,. has only one successor. ddmplete spliof (D, X) is the decomposition
(D', X') obtained by recursively splitting every node with more th&a successors.

Definition 6.26 (Adding). Let (D, X') be a DAG-decomposition of a digragh If (dy,d;) € E(D) andX C V(G)
thedecomposition resulting from addirg to (do, d;) is the pair(D’, X’) with

() V(D) = V(D)U{dx}
(i) E(D) = (B(D)\ {(do, d1)}) U {(do, dx), (dx, 1)}
(i) X}, = X,andforalld € V(D), X} = Xa.

See Figure 6.2 for a visual interpretation.

CHAPTER 6. DAG-WIDTH 86

OO,

Figure 6.2: AddingX to (do, d1)

Lemma 6.27. Let (D, X) be a DAG-decomposition of a digraghof widthk and let(D’, X’) be the decomposition
resulting from addingX’ C V(G) to (do, d1). If either

(i) X4, N X4, € X C Xy,,0r
(i) Xao NXa, €X C Xy,
then(D’, X’) is a DAG-decomposition & of width k.

Proof. We observe that for all € V(D), if d <p/ dx, then, asily € V(D) is the unique predecessordf, we have
d =p dp, and ifdx <p/ d, then asiy € V(D) is the unique successor @k, we haved; <p d. This implies, for all
de V(D)
X= U Xp= U Xo=Xza
d=prd’ d=pd’

since if X is included in the union on the left, then boly, and X, are, and so in either case of the lemma
X; . = X does not contribute to the overall union.

Further, Xy, N Xg4, guardsX>gq, \ X4, = X>a, \ (Xg, N Xq,) from Lemma 6.23.

Clearly, D’ is a DAG. We now show thafD’, X’) satisfies the properties (D1) to (D3). It is easily seen that
UdeV(D,) X, =XU UdEV(D) X4 = V(G). This shows (D1). Towards establishing condition (D2),mg®ed <p-
d <p d". Ifd =dord = d" then trivially X/, N X/, C X/,, so supposé <p: d" <p: d’. We consider four
cases:

e If none ofd,d’,d” is dx thend, d’, andd” are all inV (D), so (D2) follows from the fact thatD, X) is a
DAG-decomposition.

e Supposel = dx. From the observations made at the beginning of the proofgetehe following chain of
nodes inD: dy <p di =p d' <p d’. So in cas€i) of the lemma, we hav&l C X,4,. SoX, N X/, =
XNXg C XgyNXgr € X = X)), by condition (D2) of(D, X). Otherwise, ifX C X,,, thenX,N X/, =
XNXgr CXg, NXgr C Xy = lei/'

e The other cases are similar. df = dx then we obtaini <p d’ <=p do <p di. S0 if X C Xy, then
X/NX,, =XgNnX CXgnNXygy € Xgr =X, IF X C Xy, thenX)NX) =XgNX CXgNXg C
Xar = X)),

e Finally, assume@’ = dx. Thend <p dy <p d1 <p d’. HenceX;N X4 C X4, andX,;N X4» C Xg4,. Thus,
X(/i ﬂX(Iiu =XgNXgr CXg,NXyg, CTX = X(/i/'

Finally, towards (D3), il is a root ofD’, thend is a root ofD. Hence) guardsX >, = X>4. Nowlet(d,d’) € E(D’).
We consider three cases:

e dxy ¢ {d,d'},i.e.,(d,d") € E(D). Inthis case, (D3) follows from the fact thg®, X') is a DAG-decomposition.

CHAPTER 6. DAG-WIDTH 87

e Now suppose@ = dx (sod = d;). If X4, N X4, C X C X4,, SO We are in casg) of the lemma, then
Xoa, \ (Xgo N Xa,)) 2 Xz \ X 2 Xog, \ X

Further, by Lemma 6.23 >4, \ (X4, N X4,) = X>a, \ X4, ThereforeX>q, \ X = X54, \ Xq4,- As(D, X)
is a DAG-decompositionX 4, N Xg4, guardsXs>q4, \ Xg,, and asXy, N X4, € X N X4, Lemma 6.16(iii)
implies thatX; N X, = X N Xg, guardsX>q, \ Xa, = X5, \ X

Otherwise we are in cagei) and we haveXy, N X4, € X C Xg,. LetZ = X \ (Xg4, N X4,). We know
(X, N Xg,) guardsX>g, \ (Xq, N X4,), due to Lemma 6.23. Hence, by Lemma 6.16(W},N X = X =
(X4, N X4,) U Z guards

(XZdl \ (Xdo N Xdl)) \ Z = X2d1 \ ((Xdo N Xdl) U Z)
del \X == X/Zdl \X(/il.

e Finally, supposel’ = dx (sod = do). Here we claimX’, \ X = X>4, \ Xq,. If X C Xg,, then
XLg \ Xy = (X UX>a,) \ Xgp = (X \ Xgp) U (X>a, \ Xap) = X4, \ Xop. If X C Xg,, then since
dx =p di, XLy, = X5y = X>a, NOW X D Xy, N Xy, SO by Lemma 6.16(ii)) X = X guards
XZdl \Xdo = X/de \X(/io'

Note that sinceX C Xy, or Xg4,, max{|X}| : d € V(D')} = max{|Xy4| : d € V(D)} = k. So(D', (X})acv (D)
has widthk. 0

If X1, Xo,...,X, is asequence of subsetsiéfG), thedecomposition resulting from adding;, X», ..., X, to
(do, dy) is the decomposition resulting from addifg to (dy, d;) and then recursively adding; 1 to (dx,, d1).
We can now describe how to transform a DAG-decompositianamie which is nice and has the same width.

Theorem 6.28. If G has a DAG-decomposition of widkh thenG has a nice DAG-decomposition of width

Proof. Let (D, X') be a DAG-decomposition of width. From Corollary 6.17, we may assume t#atas a unique
root. We carry out each of the following steps.

1. We apply a complete split ofD, X') to obtain a DAG-decomposition such that every node has at tnas
successors, anddfhas two successods andd,, thenX; = X4, = Xg4,. This establishes (N2) and (N3).

2. To satisfy (N4), we require two stages. First, for e&th d;) € E(D) with Xy, # X4,, we addX g, N Xg4, to
(do, d1) to obtain a DAG-decomposition such that for evedyd') € E(D’), X, is either a subset or a superset
of X 4.

3. Secondly, for eacld,d’) € E(D) with | Xy4| — |X¢| = m > 1 (or | Xg| — | Xg| = m > 1), let Xy =
X4, X1,...,X;m = Xg be a strictly decreasing (increasing) sequence of subsish a sequence exists
because at the previous step we finished with a DAG-decomiosuch thatXy; C X4 or X; O Xy . Add
X1, Xo,...,Xm-1 to (d,d'). At this point we have a decomposition which satisfies (N1{Nd), and is
therefore nice.

Finally, from Lemmas 6.25 and 6.27, at each step we have a Bégmposition of widttk. O

6.3 Algorithmic aspects of DAG-width

We now consider algorithmic applications of DAG-width asllvess the complexity of deciding the DAG-width of a
graph and computing a DAG-decomposition.

CHAPTER 6. DAG-WIDTH 88

6.3.1 Computing DAG-width and decompositions

Because deciding if the tree-width of a graph is at most argineeger is NP-complete, it is no surprise that deciding
if the DAG-width of a graph is at most a given integer is intedide. Indeed, the following is a direct consequence of
the NP-completeness of the&REEE-wIDTH decision problem and Proposition 6.36.

Theorem 6.29. Given a digraphg and a natural numbek, deciding if the DAG-width of is at mostk is NP-hard.

Despite the similarity to tree-width, it is currently unkmo whether deciding if the DAG-width of a graph is
bounded by a given value is in NP. However, we strongly beltbat this is the case, giving us the following:

Conjecture 6.30. Given a digraphg and a natural numbek;, deciding if the DAG-width of is at mostk is NP-
complete.

However, for any fixed, it is possible, in polynomial time, to decide if a graph ha&@width at mostk and to
compute a DAG-decomposition of this width if it has. Thiddets in a similar manner to Proposition 5.71, so for the
proof of the next result we refer the reader to Section 5.5.

Theorem 6.31.LetG be a directed graph and lét < w. Deciding ifk cops have a monotone winning strategy in the
cops and visible robber game gh and computing such a strategy if it exists can be executghaO(|V (G)|?¢+4).

Note also that the translation of strategies into decontiposiis computationally easy, that is, it can be done in
polynomial time. Since winning strategies can be computegbilynomial time in the size of the graph, we get the
following.

Proposition 6.32. Given a graphg of DAG-widthk, a DAG-decomposition @ of width k can be computed in time
0(|g1°™).

6.3.2 Algorithms on graphs of bounded DAG-width

We can use DAG-decompositions, particularly nice DAG-aepositions, to define dynamic programming algorithms
similar to those used with tree decompositions. Workingdiotup from the leaves of the underlying DAG for each
noded € V(D) we compute a data set containing information for the sutigiraguced byX >, := (J - 4 X4 The
general pattern is described in Algorithm 6.1. We obseragiffthe starting decomposition is nice, then titenbine
andexpandsteps become significantly simplified. Indeed, doenbinestep can be seen as applying to inner nodes
with two successors and tiupdatesteps apply to inner nodes with only one successor.

Algorithm 6.1 Dynamic programming using a DAG-decomposition
Given a DAG-decompositiofD, X):

Leaves: Compute the data set fof; for all leavesd.

Combine:If d € V(D) is an inner node with successods,...,d,, combine the data sets computed for
X>qy,...,X>q, toadatasetforthe unidy;-, X>q;.

Expand: Finally, expand the data set to includg.

As the directed tree-width of a graphis bounded above by staatfactor of its DAG-width (see Proposition 6.37),
any graph property that can be decided in polynomial timelasses of graphs of bounded directed tree-width can be
decided on classes of graphs of bounded DAG-width also. ifitp§ies that properties such as Hamiltonicity that are
known to be polynomial time on graphs of bounded directegtvith can be solved efficiently on graphs of bounded
DAG-width too. We give a nontrivial application of DAG-widlin Section 6.3.3 where we show that parity games can
be solved efficiently on arena of bounded DAG-width, sonreghwhich is not known for directed tree-width.

CHAPTER 6. DAG-WIDTH 89

We observe that the arena used in the proof of Theorem 2.6@MA@swidth 2: place one cop on vertey, and the
remaining graph is acyclic and can be searched monoton#iyomne cop. This implies that, unlike parity games, win-
set games (and, consequently, Muller games, Zielonka DAGegaEmerson-Lei games and circuit games) remain
hard on arenas of bounded DAG-width.

Proposition 6.33. Deciding win-set games on arenas of DAG-wigltls PSPACEhard.

As for the relation to undirected tree-width, it is cleartthat all graph properties that can be decided in polynomial
time on graphs of bounded tree-width can also be decidedeeffig on graphs of bounded DAG-width. For instance,
the 3-colourability problem is known to be decidable in pmiynial time on graphs of bounded tree-width. However,
the problem does not depend on the direction of edges. Fogiaey (undirected) graph, we can simply direct the
edges in such a way that it becomes acyclic. Thus, arbitrestamnces are polynomial-time reducible to instances of
DAG-width 1. As 3-colourability over arbitrary graphs is Mrd, it follows that the problem cannot be solved in
polynomial time on graphs of bounded DAG-width, unlessniE = NP.

6.3.3 Parity Games on Graphs of Bounded DAG-Width

Using the algorithm scheme of Algorithm 6.1, we now outlindyaamic programming algorithm for solving parity
games. The advantage of such an algorithm is that on anyaflasenas of bounded DAG-width it runs in polynomial
time, giving us a large class of graphs for which there exstactable algorithm for solving parity games. Full detail
of the algorithm can be found in [BDHKO06].

Given an arenal, a DAG-decomposition ofl is a DAG-decomposition of the underlying directed gréapii.A), E(A)).

Theorem 6.34.For anyk, given a parity gaméA, x) where the DAG-width ofl is at mostk, determining if Player O
has a winning strategy can be decided in polynomial time.

Let us fix a parity gaméA, x) wherey : V(A) — P, and letn = |V (A)|. We assume that every vertex.ih
has out-degree at maat It is easy to see that the arena resulting from the transfbomdescribed in Theorem 2.59,
replacing vertices that have out-degree more thavith binary branching trees, requires at most one more cop to
capture a visible robber. Thus such a transformation regulin arena with DAG-width at mo&t+ 1. Let (D, X)
be a DAG-decomposition afl of width & which we assume is nice. For technical reasons, we also asthanfor
the rootd of D, X; = 0. From Proposition 6.32 we can compute such a decompositipolynomial time. The
idea is that we utilise the restrictions imposed by a DAGeaegosition to bound the number of strategies we need to
consider. Although memoryless strategies are sufficiemdoity games, we do not assume the strategies we consider
are memoryless.

ConsidertU C V(A) and a setV that guardd/. Fix a pair of strategies andr. For anyv € U, there is exactly
one playr = vy - - - that is consistent with Player O playiagand Player 1 playing. Let 7’ be the maximal prefix
of 7 that is contained V. Theoutcomeof the pair of strategie§r, 7) (givenU andv) is defined as follows.

wing if 7/ = 7 andr is winning for Even;
out, (U, v) := < wing if 7 = 7 andr is winning for Odd;
(vig1,p) 7' =vp---v; andp = max{x(v;) : j <i+1}.

That is to say that, if the play consistent with Player O pigyi and Player 1 playing leads to a cycle contained
entirely within U, then the outcome simply records which player wins the gatewever, if the winner is not
determined entirely withirt/, the outcome records the vertexin 1 in which the play emerges froi and the
largest priority that is seen in the playstarting inv and ending inv, including the end points.

By construction, if ow (U, v) = (w,p) thenw € W. More generally, for any sé/ C V, define the set of
potential outcomes ifV, written pot-outW), to be the sefwing, wini} U {(w,p) : w € W andp € P}.

We recall from Chapter 3, the definition of theward orderC. We now define a partial ordet on pot-outi?’)
which orders potential outcomes according to how good theya Player 1. It is the least partial order satisfying the
following conditions:

CHAPTER 6. DAG-WIDTH 90

(i) win; <o for all outcomew;
(ii) o < wing for all outcomes;
(i) (w,p) < (w,p’)if pCp' forallwe W.

In particular,(w, p) and (w’, p’) are incomparable ifv # w’. The idea is that ifr and+’ are strategies such that
out, - (U,v) <out, (U, v) then Player 1 is better off playing strategyather tharr’ in response to Player 0 playing
according tas.

A single outcome is the result of fixing the strategies plalygdboth players in the subgame induced by a set of
verticesU. If we fix the strategy of Player O to kebut consider all possible strategies that Player 1 may playan
order these strategies according to their outcome. If aagesly achieves outconseand anotheo’ with o < o', there
is no reason for Player 1 to consider the latter strategys;Tiva define resw{U, v) to be the set of outcomes that are
achieved by the best strategies that Player 1 may follovespanse to Player 0 playing accordingtdViore formally,
result, (U, v) is the set ofd-minimal elements in the s¢b : o = out, - (U, v) for somer}. Thus, resulf(U, v) is an
anti-chain in the partial ordépot-ou{W), <), whereW is a set of guards fav. Finally, we write REsuLT(U, v) for
the set{result, (U, v) : o is a strategy for Player}0

The data structure which we wish to compute is defined asslié-or anyl € V (D), let Vy = X>4 \ Xq. Let

FRONTIER(d) = {(v,7) : v € Vg andr € RESULT(Vy,v)}.

We show how to compute in polynomial time&8&NTIER(d) for all d € V(D). It follows from the definitions that if
wing € RESULT(V (A),v), then Player 0 has a winning strategy fremThus, asX>, = V(.A) whenr is the root of
D, it follows thatwing € RESULT(X >, v;(.A)) if, and only if, Player O wins the game.

We observe that Sinc&> 4 \ X, is guarded byXy, | X4 < k and|Vy| < n, the number of distinct values of
result, (Vz,v) aso ranges over all possible strategies is at nfest- 1)* + 2. This bound on the number of possible
values of result(Vy, v) guarantees thaFRONTIER(d)| < n((n + 1)* + 2).

We now outline how we computeRBNTIER(d) for each stage of the dynamic programming scheme presented
earlier.

Leaves If d € V(D) is a leaf, then asV,| < k, itis clear that for allv € V,;, ResuLT(Vg,v), and hence
FRONTIER(d), can be computed in constant time.

Combine If d € V(D) is a node with two successods andds, then asX, = X4, = Xg,, it follows thatV,; =
Va, U Va,. Inthis case, aX 4 guardsVy, andVy, there is no path from a vertex iy, to a vertex inV;, except
throughX. Itis straightforward to show thatRONTIER(d) = FRONTIER(d;) U FRONTIER(dz).

Expand If d € V(D) is a node with one successdr we consider three cases.
Case 1:.X,; = X 4. Inthis case, RONTIER(d) = FRONTIER(d').

Case 2: X, \ Xo = {u}. Then, by (D2)u ¢ Vy . Also, by the definition ofy, u ¢ V;. We conclude that
V4 = V. Moreover, sinceX g guardsVy (by Lemma 6.16(iii)), there is no path from any elementpfto u
except throughX ;. Thus, if(w, p) € result, (Vy, v) for somev ando, it must be the case thate X, . Hence,
FRONTIER(d) = FRONTIER(d').

Case 3: X4 \ X4 = {u}. Thisis the critical case. Hefi¢; = V; U {u} and in order to constructfONTIER(d)

we must determine the results of all plays beginning.alf « has one successor, then this is trivial, so let us
assumey has2 successors; andus. We observe that for € {1, 2} eitheru; € Xy oru; € V. If u; € Xy,

let R; = {(u;, max{p, ¢})}, wherep = x(u) andq = x(u;). Otherwise lelR; = RESULT(Vy, u;). ThUusSR; is

the set of outcomes obtained if the play proceeds fucimu;.

Consider a play fromv € V. If it does not reachu, then we can read, fromeBuLT(V,/, v) € FRONTIER(d'),

the outcome of the play. Otherwise, if the play reachdscontinues to eitheti; or us. If bothu; andus are in
Vu then either the play returns tg in which case we know the winner of the play, or the play reachvertex

CHAPTER 6. DAG-WIDTH 91

in X;. This latter case also occurs if either®f or us is in X;. Thus to compute RsuLT(V,, v), and hence
FRONTIER(d), we proceed as follows.

For eachr € ResuLT(Vy,v), we do the following. If there is n@ € P such that(u,p) € r addr to
ReEsuLT(V,v). Otherwise, let(u,p) € r for somep. We now consider two cases. if € V;(A) then

for eachr; € R; andry € Ry, let R = r; U ry. Replace eacliw,q) € R with (w, max{p,q}). Let
R'=RU (r\{(u,p)}). If (u,q) € R’ for some odd; then Player 1 wins the play for the chosen strategies, so
replace(u, ¢) with win;. Similarly, replacgu, g) € R’ for ¢ even withwing. Finally, we remove the elements
of R’ which are notd-minimal and addk’ to RESULT(V, v).

Now suppose: € V(. A) for eachr’ € R; U Ry, if (u,q) € v andmax p, ¢ is odd, replace’ with win; and
add it to RESuLT(Vy, v). Otherwise, leR = (r\ {(u,p)}) U{(w,q) : (w,¢') € r’ andg = max{p,q'} }. If R
contains a paifu, ¢) theng must be even and we replace this paifimy wing. Finally, we add thed-minimal
elements ofk to RESULT(Vy, v).

In a similar way, we can also compute the setsRLT(V;, u).

It is clear from the bounds on the size ®&ENTIER(d) that at each stage RONTIER(d) can be computed in polyno-
mial time. Since the DAG-decomposition has size at niyst?*+), it follows that this algorithm runs in polynomial
time. This completes the outline of the proof of Theorem 6.34

6.4 Relation to other graph connectivity measures

As a structural measure for undirected graphs, the condepeswidth is of unrivalled robustness. On the realm of
directed graphs, however, its heritage seems to be splingreeveral different concepts. In the sequel we compare
DAG-width with several other connectivity measures foedted graphs, namely tree-width, directed tree-width, and
directed path-width. We show that, despite their similaurs the measures are all significantly different.

6.4.1 Undirected tree-width

First we formalize the relationship between DAG-width amdivected tree-width alluded to in previous sections. We
recall from Chapter 4, the definition of tree-width. We alsoall that the tree-width of a directed graglis defined
as the tree-width of the undirected graph obtained fébhy forgetting the orientation of the edges.

Proposition 6.35.
(i) If a directed graphg has tree-width, it has DAG-width at most + 1.
(i) There exists a family of directed graphs with arbitdgriarge tree-width and DAG-width.

Proof. (i). Suppos€7,)V) is atree decomposition ¢f of width &, with W = (W}),cy (7). Choose some € V(T)
and orient the edges @f away fromr. Thatis, if{s,t} € E(7) ands is on the unique path fromto ¢, then change
{s,t}to(s,t). SinceT is atree, every edge has a unique orientation in this mahagP be the resulting DAG. For all

d € V(D), setX, := W; wheret is the node off corresponding ta. We claim thatD, X') with X' = (Xg)4ev ()

is a DAG-decomposition off of width £ + 1. The condition (D1) is trivial from (T1); (D2) follows fromT2).
The orientation ensureB has one root, so X>, = V(G). Condition (D3) is hence satisfied at the root. For the
other nodes, (D3) follows from Lemma 4.2. Lgt d') € E(D) and suppose € X>4 \ Xy4. Suppose also that
(v,w) € E(G) andw ¢ X>4 \ X4. As there is a path (of lengtt) from v to w, it follows from Lemma 4.2 that either
veXgNXg orwe XyN Xy Sincev ¢ Xy, w € XgN Xy and (D3) holds.

(ii): For any integen € N, let K,, be the (undirected) complete graph witlverticesvy, vs, . . ., v,. Orient the
edges oflC,, such that(v;,v;) is an edge if and only if < j. The resulting directed graph is acyclic and therefore
has DAG-width 1, but the underlying undirected graph is aglete graph of vertices and therefore has tree-width
n — 1. a

CHAPTER 6. DAG-WIDTH 92

We now observe that DAG-width is equivalent to tree-widthumdirected graphs if we view an undirected graph
as a directed graph in the natural way. We recall from Sedtibr®, the directed grapf obtained from an undirected
graphg by replacing each eddfe:, v} with two anti-parallel edgeg:, v) and(v, u).

Proposition 6.36. LetG be an undirected graphg has tree-widthk — 1 if, and only if,? has DAG-widthk.

Proof. It is easily seen that the-cops and robber game for undirected graphgjaa equivalent to thé-cops and

robber game for directed graphs 5 The result follows from the correspondence between thesurea and
existence of monotone winning strategies. O

6.4.2 Directed tree-width

In Chapter 4 we saw directed tree-width from [JRSTO01] andhafier 5 we discussed how it was characterized by
the strong visible robber game. We can use this game chaeatien to relate directed tree-width and DAG-width:
as the strong visible robber game is defined similarly to thygscand visible robber game with added restrictions
on movement of the robber, we see that a (robber-monotome)ing strategy fork cops in the cops and visible
robber game is a (robber-monotone) winning strategy:foops in the strong visible robber game. Thus, we can use
Lemma 5.41 to obtain a bound on the directed tree-width. Tdsva converse to this, we show that directed tree-
width and DAG-width are very different measures by exhitgta class of graphs with small directed tree-width and
arbitrarily large DAG-width.

Proposition 6.37.
(i) If a directed graphg has DAG-widthk, it has directed tree-width at mo3k + 1.
(i) There exists a family of graphs with arbitrarily largeA®B-width and directed tree-width

Proof. (i): If G has DAG-widthk thenk cops can win the cops and visible robber gam&oihus,k cops can win
the strongly visible robber game ¢h as the robber is more restricted in this game. From Lemni #.#bllows that
G has directed tree-width at md%t + 1.

(ii): Consider the family{(7,;2)°P : k > 2} of graphs defined in Proposition 6.7. Note th@F)P is a binary
branching tree of height with back-edges from every vertex to each of its ancestors.héve shown thatz,?)°?
has cop numbet, and it is clear that the strategy described focops is monotone, s(7;%)°P has DAG-widthk.
On the other hand, consider the directed fFeebtained from(7;?)°° by removing back-edges. For eaghe V (7),
let By := {t, s} wheret is the vertex inV ((7;2)°P) corresponding t¢’ ands is the predecessor of(if ¢ is not the
root of T'), and letW(, .y := {s} forall (s',t') € E(T). Then, itis easy to see thél, (B})ycv (1), (We)ecr(1))
is a directed tree decomposition @;?)°P of width 1. Fork > 2, (T7)°P is not acyclic and therefore has directed
tree-width exactlyl. O

6.4.3 Directed path-width

We saw in Chapter 4 the definition path-width According to Barat [Bar05], Reed, Seymour and Thomas ddfin
a natural extension of path-width to directed around 199%dver [Tho02] seems to be the first occurrence of the
definition in the literature. The definition mirrors the défom of path-width, however the direction of the edges is
accounted for by fully utilising the linear ordering presena sequence.

Definition 6.38(Directed path decompositions and directed path-width(Bp. LetG be a directed graph. directed
path decompositioof G is a sequencé, . .., X,, of subsets 0¥/ (G) such that:

(DP1) UL, Xi = V(9),
(DP2) Ifi < j < kthenX,; N X; C X, and

CHAPTER 6. DAG-WIDTH 93

(DP3) For eacl = (u,v) € E(G), there exists < j such that, € X; andv € X;.

Thewidth of a directed path decompositioly, . .., X,,, ismax{|X;| : 1 < ¢ < k} — 1. Thedirected path-widttof
g is the smallest width of any directed path decompositio@.of

Just as tree-width can be characterized by the cops andevisibber game, we saw in Chapter 5 that path-width
can also be characterized by a cops and robber game: therwbpwesible robber game of Example 5.2.2. In [Bar05]
Barat considered the natural extension of this cops anlerodpame to directed graphs and showed that it the number
of cops required to capture an invisible robber lies withie of the directed path-width of the graph. He also observed
that the number of cops required to capture an invisible eohlith a cop-monotone strategy is equal to one more than
the directed path-width of the graph.

Itis therefore not surprising that directed path-widthigmately related to DAG-width. From the game character-
izations, it appears that directed path-width is to DAG{Wids path-width is to tree-width. Indeed, as we see from the
definitions the two are closely connected. In fact, a DAGeagosition can be seen as a generalization of a directed
path decomposition where we replace the linear order ofubsets ofi’(G) with a partial order. This means that a
directed path decomposition is a DAG-decomposition wheeainderlying DAG is a directed path. It is therefore not
surprising that DAG-width bounds directed path-width bebnd there are families of graphs of bounded DAG-width
and unbounded directed path-width. Just as the class afyhirees is a class of graphs with bounded tree-width and
unbounded directed path-width, we now show that the clabglotcted binary trees is a class of graphs with bounded
DAG-width and unbounded directed path-width.

Proposition 6.39.
(i) If a directed graphG has directed path-width, it has DAG-width at most + 1.
(ii) There exists a family of graphs with arbitrarily largérdcted path-width and DAG-width.

Proof. (i) LetWh,..., W, be a directed path decomposition@bf width k. Let D,, be the directed path with
vertices. Thatid/(D,,) = {d1,...,d,} and(d;,d;) € E(D,) if, and only if, j = i + 1. SetX,, := W, for all
d; € V(Dy). We claim(D,,, (Xa)aev (p,)) is @ DAG-decomposition of of width £ + 1. Condition (D1) follows
from (DP1) and (D2) follows from (DP2). To show (D3) fbr< i < n, suppose € X>q4,., \ X4, and(v, w) € E(G).
From (DP3) there exist < j’ such that € W, andw € Wj. If ' < 4, then by (DP2p € Xj,, contradicting the
choice ofv. Thus,i < i < j andw € X>q4,,,. Ifw ¢ X>q,,, \ Xq, thenw € Xy, and thereforev € X, ., by
(DP2). Thus, X4, N Xg4,,, guardsX>q, ., \ Xa,.

(ii): Let 7 be the (undirected) binary tree of height> 2. From Proposition 6.36ﬁ has DAG-width2. It
is easy to see that dﬁ an invisible robber can defeat— 1 cops, butk cops have a winning strategy. Therefore,

from [BarOS],ﬁ must have directed path-width at le&st 2. Thus, the family{ﬁ> : k > 2} satisfies the proposition.
0

Chapter 7

Digraph measures: Kelly-width

In Chapter 4 we introduced the concept of tree-width as a uread graph complexity. We remarked on its usefulness
for algorithmic purposes, and discussed the importanckeeoptoblem of extending tree-width to directed graphs. In
this chapter, we continue investigating this extension days@ering other characterizations of tree-width andrthei
natural generalizations to digraphs.

Part of the reason why tree-width is such a good measure phgmamplexity is that many other measures arising
from different areas of graph theory can be shown to be elgnvéo tree-width. For instance, we saw in Chapter 5
that the number of cops required to capture a visible robbargraph-searching game is equivalent to the tree-width
of that graph. In this chapter we consider three other chariaations of tree-width: partidl-trees, elimination orders
and a graph searching game in which an invisible robber gtietn avoid capture by a number of cops, subject to the
restriction that he may only move if a cop is about to occugyplisition. Partiak-trees are the historical forerunner of
tree-width and are therefore associated with graph stre¢heory [Ros70]. In fact, many of the original algorithmic
results for tree-width were formulated in terms of parkidrees (see, for example [AP89]). Elimination orderings
are particularly useful in the analysis of (symmetric) mafactorizations such as Cholesky decompositions [Liu90]
For example, elimination orders can be used to determinpdhalel time required to factorize a symmetric matrix
with Gaussian elimination [BGHK95]. Finally, as we saw inaper 5 (and also [DKT97, FHT04]), graph searching
games have recently been used to explore and generate nodastires of graph complexity. We generalize all these to
directed graphs, resulting in partfalDAGs, directed elimination orderings, and an inert roldeene on digraphs. We
show that all these generalizations are equivalent on pligrand are also equivalent to the width-measure associated
to a new kind of decomposition we introduce. As the game isniseent of capturing hideout-based outlaws, we
propose the name Kelly-decompositions, after the infanfastralian bushranger Ned Kelly. The fact that all these
notions are equivalent on digraphs as they are on undirgetgzhs suggests that this might be a robust measure of
complexity and connectivity of digraphs.

As with tree-decompositions and DAG-decompositions, kdikcompositions have a structure that is well suited
for designing dynamic programming algorithms that will inrpolynomial time when the width of these decomposi-
tions is bounded. However, unlike DAG-decompositionséass is currently known), the size of Kelly-decompositions
can be made linear in the size of the graph it decomposesfisagily reducing the space complexity of such al-
gorithms. As with the previous chapter, we will introduceengral scheme for producing dynamic programming
algorithms that use the additional structural informatwavided by Kelly-decompositions. We illustrate its use by
producing algorithms for solving NP-complete problemshsas Hamiltonian cycle, and computing the winner of a
parity game. Both these algorithms run in polynomial timegoephs of bounded Kelly-width.

The chapter is organised as follows. In the first section wea&dly define inert robber games, elimination orders,
and partialk-trees andk-DAGs. We show that on digraphs the associated width messarmeall equivalent. In
Section 7.2, we introduce Kelly-decompositions and Keligth and show that it also coincides with the measures
defined in Section 7.1. In Section 7.3, we present applicatidlgorithms for Hamiltonian cycle, weighted disjoint
paths and parity games that all run in polynomial time on bsapf bounded Kelly-width, and detail a connection

94

CHAPTER 7. KELLY-WIDTH 95

between Kelly-decompositions and asymmetric matrix fazation. Finally, we compare Kelly-width to some of the
other directed graph measures we have already seen sucteditece-width and DAG-width, showing that it is a
unique measure of complexity. However, we also provideavig to suggest that Kelly-width and DAG-width are
measuring the same fundamental property of digraphs.

7.1 Inert robber games, elimination orderings, and partialk-DAGs

7.1.1 Inert robber game

The cops and robber game we consider for this chapter is {e ad inert robber game from Example 5.2.5. This
game consists of an invisible robber who is able to run frosmplaisition along any path which does not pass through
a cop, however he may only move if a cop is about to land on hégtipn. For convenience, we say that heriert.

The natural generalization of this game to directed graphgfined as followed.

Definition 7.1 (Cops and inert robber gamel)et G be a directed graph. Theps and inert robber game ahis the
cops and robber game defined (&, £, A), where

L.=PWV(G)) andL, =P(V(G))\ {0},
Vo(A) consists of pair$ X, R) € L. x £, suchthatX N R = 0§,

Vi (A) consists of triple$ X, X', R) € V1(A) forall (X,R) € Vy(A) andallX’ € L.,

Forall (X, R) € Vu(A) and allX’ € L, there is an edge iB'(A) from (X, R) to (X, X', R), and

There is an edge iv(A) from (X, X', R) to (X', R') if, and only if,

R = (RU Reacl@\(;mxf)(X’ QR)) \X/'

We recall from Chapter 5 the definitions ofaarch monotonicityand astrategy As with the game characterizing
tree-width, we are interested in the minimum number of caggiired to capture the robber, so we also recall the
definition of astrategy fork copsfrom Definition 5.32. Sincd?’ is uniquely defined froniX, R and X, the inert
robber game is in actuality a single player game. As we meati®arlier, this is typical for games with an invisible
robber. One consequence is that given a strategy for the tog® is a unique play consistent with that strategy.
We call this the playassociatedvith the strategy. In the remainder of this chapter we amnarily concerned with
robber-monotone strategies. However, we first show thaddaded constraint on the movement of the invisible robber
does not affect the existence of a cop-monotone winningestyeor & cops.

Proposition 7.2. Let G be a digraph. Ther: cops have a cop-monotone winning strategy in the cops arnsibies
robber game o if, and only if,k cops have a cop-monotone winning strategy in the cops amtrotgber game on
g.

Proof. Since the cops and inert robber game is more restrictive@rotbber than the cops and invisible robber game,
a winning strategy in the latter is a winning strategy in tberfer. We now show how a cop-monotone winning
strategy,o, for k& cops in the cops and inert robber game is also a cop-monotwméng strategy folk cops in the
cops and invisible robber game. LeXy, Ro)(X1, R1) - - (X,, Ry,) be the unique search associated witin the
cops and inert robber game. We defink-aop cop-monotone strategy,, for the cops and invisible robber game as
follows. DefineR; inductively as:Rj = V(G), and forl < i < n, R} = Reacly x,nx,_,)(R;_;) \ Xi. Then define
o'(X;, R;) = Xi+1, Soo’ is essentially the strategy resulting from playingn the cops and invisible robber game.
By definition, (Xo, R}) (X1, R}) - - - is the search associated with and it is clearly a cop-monotone strategy for
cops. We now show that it is winning. In particular, we proyerduction or: that R, = R; for0 < i < n.

CHAPTER 7. KELLY-WIDTH 96

SinceRy = V(G) = R}, our claim is clearly true foi = 0. Now supposeR; = R, for somei > 0. Since
R; UReachy (x,nx,,,)(Ri N X;41) C Reacky (x,nx,,,)(R;), we haveR; 1 C R ;. Sosuppos®; 1 2 R ;.
Then there exist® € Reacly (x,nx,.,)(Ri)\ Xit1 suchthat ¢ R; UReach (x,nx, ,)(RiNXit1)\ Xiy1. Thus
w ¢ X; UR;. Note that sincev ¢ R;, we havei > 1. Furthermore, there exists€ R; \ X;;+1 such that there is a
path fromv tow in G\ (X; N X,11). Letv’ be the last element @&; on this path, and let’ ¢ R; be the successor of
v’ on this path. Since the pathis¢h\ (X; N X;11), w’ ¢ X; N X;+1. Supposev’ ¢ X;. Then sinceX; N R; = 0,
there is a path from to w’ in G\ X;. Therefore, as € R; = R, = Reacly\ (x, ,nx,)(Ri—1) \ X; we havew’ € R;,
contradicting the definition of’. Thus

w € X; \ XiJrl.

Now letj > i+ 1be suchthat’ € R; \ R;+1. Sinceo is winning, andv’ € R;41, there is such a. By the definition
of the cops and inert robber game, it must be that X ;1 \ X;. We claim thaty’ € R;14. Sincei <i+1 < j+1,
andw € X; \ X1, by the cop-monotonicity of, w’ ¢ X;. Therefore, agv’, w’) € E(G),

w € Reacl@\(xmx)(Rj N Xj+1) =Rjq1.

J+1
Now letl > j + 1 be such thatv’ € R; \ R;41. Sinceo is winning andw’ € R, 1, such arl exists. By the definition
of the cops and inert robber game, it must be thate X; ;. Butsince: < i+ 1 <[+ 1, anduw’ € X;, by the
cop-monotonicity obr, w’ € X, 41 — contradiction. Thus; O R}, and therefor&?; = R!. O

7

7.1.2 Elimination orderings

Our next definition extends the idea of vertex eliminatiodigraphs. Vertex elimination, for undirected and directed
graphs, has been researched for many years in the studyeaf jimogramming [RT75]. One technique for solving
a system of equations is to combine equations so that the @dilsome variables can easily be determined, thereby
eliminating those variables and reducing the system to @lsinone. This elimination process may introduce new
relations between the remaining variables, and captuhigggrocess in a more general setting is the motivation
behind vertex elimination of graphs. We can represent &sysf equations as a graph with a vertex for each variable
occurring in the system, and an edge between variables taakebkted by some equation in the system. Vertex
elimination is then a symbolic representation of varialil@i@ation.

More precisely, lef be an undirected graph amde V(G). To eliminatev from G, we removev, but add edges
(if necessary) between any two vertices adjacent. tdén this way, we see that vertex elimination is the process of
removing vertices from a graph but adding edges to preseaahability. It is this concept that we extend to directed
graphs.

Definition 7.3 (Directed elimination) LetG be a digraph and € V(G). The graph resulting fromirected elimination
of v from G is the graphy’ obtained fromG by deletingv and adding new edgés, w) (if necessary) ifu, v) and
(v,w) € E(G).

We can use vertex elimination to define a complexity measoreralirected graphs. L& be an undirected
graph. A linear orderx = (vq,v2,...,v,) ONV(G) defines a sequence of eliminations whereby the verticgs of
are successively eliminated in the order specifiedibyFor convenience we catt an elimination orderingand this
sequence of eliminations, tledimination defined byi. We define thevidth of < to be the maximum of the degrees of
the vertices when they are eliminated. These definitiori/deanslate to directed graphs, but the complexity measur
we are interested in is the maximum out-degree of eliminadetices.

Definition 7.4 ((Partial) Directed elimination ordering).et G be a digraph and Iét C V' (G) be a subset of vertices.
A partial directed elimination ordering ot is a linear orderingd = (v1, v, ...,v,) of V. A directed elimination
orderingis a partial directed elimination ordering &1(G). The(partial) directed elimination defined by is the fol-
lowing sequence of directed graphs. We defige:= G, and letG,3 , be the graph resulting from directed elimination
of v;41 from G¥. Thewidth of < is the maximum over all of the out-degree of; in gf. For convenience we also
define thesupport ofv; with respect to as supp,(v;) := {v; : (vi,v;) € E(GY)}.

CHAPTER 7. KELLY-WIDTH 97

We observe that the width of a directed elimination ordeisnpe maximum cardinality of all its supports.
Immediately from the definitions, we have this simple lemglating the support of an element in an elimination
ordering to the set of vertices reachable from that vertex.

Lemma 7.5. Let < be a directed elimination ordering of a graghand letv € V(G). LetR := {u : v <u}. Then
supp,(v) = {u: v <u andthere is’ € Reacly, z(v) such that(v’,u) € E(G)}.

7.1.3 Partial k-trees and partial k-DAGs

The class of-trees and, more generally, chordal graphs are importahividely studied classes of undirected graphs.
A graph ischordalif any cycle of four or more vertices contains a chord — an dolgfgveen a pair of vertices not
adjacent in the cycle, and a chordal graph isteeeif it contains no(k + 2)-clique as a subgraph. These structural
restrictions are algorithmically beneficial: for exampthprdal graphs have a linear number of maximal cliques, so
problems such as finding a clique of a given size, which areemegal NP-complete, can be efficiently solved on
chordal graphs ankt-trees.

An equivalent way to characterize the classédfees is as a class of graphs generated by a generalizatiomwo
one might construct a tree.

Definition 7.6 ((Partial)k-trees) The class ok-trees is defined recursively as follows:
e The complete graph ohvertices is &-tree.

e A k-tree withn + 1 vertices is obtained from A-tree’H with n vertices by adding a vertex and making it
adjacentto &-clique inH.

A partial k-treeis a subgraphof a k-tree.

The last concept we define in this section is a generalizatfquartial k-trees, called partiat-DAGs. Just as
k-trees are a generalization of treésDAGs are a class of digraphs generated by a generalizatioovo one might
construct a directed, acyclic graph in a top-down manner.

Definition 7.7 ((Partial)k-DAG). The class ok-DAGsis defined recursively as follows:
e A complete digraph witlt vertices is a&-DAG.

e A k-DAG with n + 1 vertices is obtained from &-DAG H with n vertices by adding a vertex and edges
satisfying the following:

— Edges fromv to X C V(H) where|X| < k
— An edge fromu € V(H) towv if (u,w) € E(H)forallw € X \ {u}.

A partial k-DAG s a subgraph of &-DAG.

The second condition on the edges provides a method to addmag enlges as possible going to the new vertex
without introducing cycles. Note that ¥ = (J, the antecedent of this condition is true forale V (), so a digraph
is a partial 0-DAG if, and only if, it is a directed acyclic gia

We also observe that this definition generalizesees, for if the verticesX) adjacent to the new vertex)
induce a clique, we will add edges back froknto v, effectively creating bidirected edges betweeand X (and
possibly some additional edges frdth\ X to v). The following result shows thatDAGs generalize the alternative
characterization of-trees we presented initially.

Lemma 7.8. LetG be ak-DAG. Then:

1Technically a partial graph is a spanning subgraph, thasubgraph with the same vertex set. However, for the resudtestablish the
distinction is not significant.

CHAPTER 7. KELLY-WIDTH 98

(i) g contains nak + 2)-clique as a subgraph,
(i) Any cycle inG with at least three vertices contains a chord, and
(iif) Any bidirected cycle with at least four vertices coimsa bidirected chord.

Proof. (i) LetW C V(G) be a set ok + 2 vertices. Suppose € W was the last vertex dfi’ to be added in the
construction ofj. Since all other vertices d¥ were added before, all edges fromv to W were added as part of the
first condition on the added edges. Therefore, there mudtinestk outgoing edges from to vertices iniV, and so
W cannot be the vertex set of & + 2)-clique.

(i): LetC = (v1,v9,...,v,) be acycle of lengtlh > 3 in G. Without loss of generality, assunag was the last
vertex ofC' to be added in the construction@f Since there is an edge from to v1, it follows that there must be an
edge fromw,, to all successors af; added before;, in particular tovs. Thus(v,,,v2) is a chord ofC.

(iii): LetC = (v1,v9,...,v,) be abidirected cycle of length > 4. Again we assume; was the last vertex af’
to be added in the construction@f From the proof ofii), there is an edg@,,, v2) € E(G). Since(vy, v, ..., vs) IS
also a cycle, the same argument implies there is also an(edgs,) € E(G). These two edges make up a bidirected
chord ofC. O

Lemma 7.8 does not provide an equivalent characterizatioh-DAGs because the given properties are invariant
under edge-reversal. We see in Proposition 7.40 that tlss ofk-DAGs is not closed under this operation.

7.1.4 Equivalence results

We have introduced three notions that can be used to defirmthplexity of digraphs, all of which naturally extend
measures for undirected graphs. On undirected graphshithe mmeasures are equivalent to each other, and also to
tree-width [DKT97]. Our main result of this section is thaetthree measures introduced are equivalent on digraphs.

Theorem 7.9. LetG be a digraph. The following are equivalent:

1. k + 1 cops have a robber-monotone winning strategy to capturaart robber ong.
2. G has a directed elimination ordering of width k.
3. G is a partial k-DAG.

Proof. 1 = 2: Supposet + 1 cops have a robber-monotone winning strategyWithout loss of generality, we
assume that only one cop is placed at a time.(1X&f, R,)(X1, R1) - - - be the (unique) search consistent withFor
eachv € V(G), letz, = min{i : v € X;}. Sinces involves placing one cop at a time, for distinctw € V (G),
Ty # Ty. Let< = (vy,v2,...,v,) be the order defined as; < v; if, and only if, z,, < z,,. For convenience, let
Vi = {v1,...,v;}, andz; = x,, for all i. We observe that from the definition of, V; N X,,, = {v;}.

We claim < has width< k. If this were not the case, there must existsuch thatisupp, (v;)| > k + 1. As
|supp, (v;)] > k + 1 and|X,,| < k it follows that there exists; € supp,(v;) \ X,,. From the definition of
supp, (v;), we havev; < v;, sox; < x;. Furthermore, from Lemma 7.5; € Reacly(y,{.,})(v:). Therefore, since
VinX,,—1NX,, = 0 andv; € X, itfollows thatv; € R,,. Butsincev; ¢ R, the robber-monotonicity af implies
v; ¢ R, foralll > x;, contradicting the fact that; € R,,. Thus there exists no sueh with |[supp, (v;)| > k + 1,
and< has width< k.

2= 3: Let< = (v1,v9,...,v,) be adirected elimination ordering gfof width k. For ease of notation, define
X; = supp,(v;), and letm = n — k. Let Ky be the complete graph on the vertides, 11, vym+2, ..., v, }, and let
K; (7 > 1) be thek-DAG formed by adding,,,— ;11 to K;_1, and edges from,,,_ ;1 t0 X,,_;+1 (together with the
other edges added frof@;_; to v,,_x—_;+1 in the definition ofk-DAGS). We claim that for ald < j < m, g:n{_j isa
subgraph ofC;. The result then follows by taking = m. We prove our claim by induction ofi For the base case
(j = 0) the result is trivial asC; is a complete graph. Now assume the result is trug for0, and consider the graph

27];1- For simplicity leti = m — j. By the definition of directed elimination, for every edge v) € E(G)
either:

CHAPTER 7. KELLY-WIDTH 99

(@) v ¢ {’U,,U},
(b) u=v; or
(©) v=u;.

In the first case(u,v) € E(G;) and therefore inE(K;) C E(K;4+1) by the induction hypothesis. For the second
case,(u, v) is added during the construction &, . For the final case, for any € X;, (v;,w) is an edge 0§ |,
so(u,w) is an edge of* (for u # w), and therefore ok’; by the induction hypothesis. Thys, v;) is added during
the construction of;1, andE (G ;) C E(K,+1) as required.

3 = 1: LetG be a partiak-DAG. Suppose; is a subgraph of thé-DAG, K, formed from a complete graph
on the vertices\y, := {v1,va,...,v;}, and then by adding the verticeg, 1, vi42,...,vn. Forl <i < n —klet
Xk4i C{v1,...,vkt+i—1} denote the set of successorsupf ;. Thatis, whernv,; is added during the construction
of K, edges are added from. ; to each vertex ifX;;. Note that for alli, | X;| < k. We define a (history dependent)
strategyo for the cops inductively as follows. For &il, (0, R) = X. If X = X, for some;,

k <i<mnthenforalR, o(X,R) = X; U{v;}. If X = X; U {v;} for somei, k < i < n, then for allR,
(X, R) = X;+1. We claim that this defines a monotone winning strategy:fer 1 cops. LetR; = {v; : j > i},
then from the definition ok-DAGs and theX;, it is easy to see that the search associated with the striateg

0, V(G) (X, Ri)(Xir1, Bi) (X1 U{vp 41}, Rier1) - (X U {on }, 0).

As R; O R;, forall i, the strategy is monotone and winning as required. O

7.2 Kelly-decompositions and Kelly-width

Theorem 7.9 shows that the concepts introduced in the pregiection define a sound measure of digraph complexity
which naturally generalizes tree-width. We now turn to thagtem of finding a closely related digraph decomposition.
The decomposition we introduce is a partition of the vegjegranged as a directed acyclic graph, together with §ets o
vertices which guard against paths in the graph that do speet this arrangement. We have an additional restriction
to avoid trivial decompositions: vertices in the guard setst appear either to the left or earlier in the decompasitio
Before we present the formal definition, we recall from Deiimi 6.13, the definition ofjuarding

Definition 7.10 (Kelly-decomposition and Kelly-width) A Kelly-decompositiorof a digraphg is a tripleDD :=
(D, B,W) whereD is a DAG andB = (Bg)4cv(p)y andW = (Wa)aecv (p) are families of subsets df (G) such
that

(K1) Bis a partition ofl/ (G),
(K2) foralld € V(D), Wy guardsB>,4 := Udtpm By, and

(K3) foralld € V(D) there is a linear order on its successéys. . ., d, so thatforalll <i <p, Wy, C B4UW,U
Uj<i B>q4,. Similarly, there is a linear order on the roots such that C Uj<i B>,;.

Thewidth of D is max{|Bq U Wy| : d € V(D)}. TheKelly-width of G is the minimal width of any of its Kelly-
decompositions.

Our main result of this section is that Kelly-decompositi@o in fact correspond with the complexity measure
defined at the end of the previous section.

Theorem 7.11. LetG be a digraph. The following are equivalent:
1. k cops have a robber-monotone winning strategy to captureart robber ong.

2. G has Kelly-width< %.

CHAPTER 7. KELLY-WIDTH 100

Proof. 2 = 1: Let(D, B, W) a Kelly-decomposition of of width k. Let7 be the spanning tree &f obtained from
the depth-first traversal d which always chooses the greatest successor according tardlering on successors
guaranteed by (K3). Let1,to,...,t,) be the order o¥ (7)) (and hencel/ (D)) visited in the depth-first traversal
of 7 which always chooses the least successor according todeeing. Sot; will always be the root oD which is
first in the linear order on the roots, will be the least successor of which is not a descendant of any greater root,
or the next root o in the ordering if no such successor exists, and so on. Weabget by the construction of this
ordering, every descendamntof ¢; in D is either a descendant ofin 7, or ¢; andt; have a common ancestor from
whicht; is a descendant of a lesser successor tham both caseg > i from the depth-first traversal af. It follows
that

U Bi, nBxr, =0. (7.1)

Jj<i

We now define the strategy. For< i < n, let Xo,_1 = W, and Xo; = W, U B,,. We define a (history

dependent) strategy inductively aso (0, R) = X; ando(X;, R) = X;41 forall R C V(G). We claim thatr is a
robber-monotone winning strategy fercops. Let(X, Ro) - - - (Xan, Ra2y,) be the search associated with the strategy.
We show by induction oiithat for0 < i < mn, Roj_o = Ro;—1 = Uj>i B>, . It follows immediately that the strategy
must be monotone and winning. Sinke = W;, = (), we haveR; = Ry =V (G) = Uj21 B>¢;. Now let us assume
Roi_o = Roj_1 = Usz‘ B>y, for somei > 1. From (K2), we observe thﬁieacl@\wti (Bt;) € B>t, € Rg;—1. Thus

Rai = (Rai—1 UReachy (x,; ,nx.) (R2i—1 N X2;)) \ X
= (R2i—1 UReack\w, (B,)) \ B,
= UjZi thj \ By,
= Uj2i+1 B>y, (from Equation 7.1).

SinceWy N B>q = 0 for all d € V(D), it follows from (K3) and the construction of the orderingativ;,,, C
Uj,<; B, Therefore, from Equation 7.1, we haite; N Wy,,, C U;-, B>, NU;<; By, = 0. Hence,

Rait1 = (Rai UReacky (x,inxs:,0) (R2i N Xair1)) \ Xai1
= (Ry; UD) \ W,
- R2i7

i+1

completing the inductive step.

1= 2: Itfollows from Theorem 7.9 that it suffices to show thagihas a directed elimination ordering of width
k — 1 theng has Kelly-width< k. Let< = (v1,v2,...,v,) be a directed elimination ordering Gfof width & — 1.
We define(D, B, W) as follows.V (D) := V(G). For alld € V(D) let B; := {d} andWy := supp,(d) and define
B := (Bg)iev(p) andW := (Wa)aecv (p). Towards defining the edge relationDf letd < V(D) be a node. For
convenience we writg, for the induced subgrapfij{w : w < d} U {d}]. LetC4, ..., C, be the strongly connected
components ofj; \ d. Letdy, ..., d, be theg-maximal elements of,, . .., C,, respectively. We put an edgé, d;)
betweend andd; if d; is reachable frond in G5 and there is nd; with d; < d; <1 d such thatl; is reachable frond
in G4 andd; is reachable frord,; in G4 \ d.

We claim that(D, B, W) is a Kelly-decomposition of widtk< k. Clearly,D is a DAG, as all the edges ifi(D)
are oriented following the ordering. Further, the width of the decomposition is clearly at most eore than the
width of <.

To establish (K2), we first show the following claim.

Claim. For alld € V(D), Reacly, (d) = B>g.

Proof of claim. We first show by induction on the indexof d in < thatReacly,(d) C B>4. Fori = 1 there is
nothing to show. Suppose the claim has been proven for alli. Letv € Reacly,(d). LetCy,...,C,, be the
strongly connected components®j \ d. Without loss of generality we assume that C;. Let s be the<-maximal
element ofC; and letd’ be the<t-maximal element such that

CHAPTER 7. KELLY-WIDTH 101

e d' is the<-maximal element of somg;
e there is a directed path frothto d’ in G4
e there is a directed path frodi to s in G, \ d.

By construction, there isan ed¢é d') € E(D). If d’ = v, orinfactifd’ is the<-maximal element of’;, then there
is nothing more to show. Otherwise,df andv are not in the same strongly connected componegofd, thens,
and hence, must be reachable frodf in G,;. For, by constructions is reachable frond’ in G, \ d andd’ is the
<-maximal element reachable fra#in G,; and from whichs can be reached i@, \ d. Thus, ifs was not reachable
fromd’ in G4 then the only path from’ to s in G, \ d must include an element <1 d such that’ < w, contradicting
the maximality ofd’. Henceyp is reachable frord’ in G4 and therefore, by induction hypothesiss B>y C B>,.

A simple induction on the height of the nodedirestablishes the converse. -

It remains to show that for all € V(D) there is a linear ordering of the successors satisfying the ordering
condition required by the definition of Kelly-decomposit# For successots# v’ of d definev v’ if v’ <1 v, that
is, is the inverse ordering Gf.

Letdy,...,d,, be the successors dfordered by—. We claim that for ali € {1,...,m},

Wa, € BqUWgU U BZdj~
j<i
If v € By there is nothing to show. W < v thenv € W, asd; < d is reachable frond and therefordV,, N {« :
d<z} =supp,(d;)N{z:d Lz} Csupp,(d)N{z:d<z} = Wyn{x:dJz}. Finally, suppose < d. Butthen,
v € B>4 and hence € B4, for somel < j < m. By definition of support sets; ¢ B>, andd; < v. But then,
v & Bxgq, forall j 04, thatis,j <4, as theni; < v and by constructiony <1 d; for all w € B>g4;. Hencep € B>g,
for somed; > d;. This completes the proof of the theorem. a

The proof of Theorem 7.11 is constructive in that given amglation ordering of widthk — 1 we construct a
Kelly-decomposition of widttk, and conversely. In fact, the proofs establish a slightigreger statement.

Corollary 7.12. Every digraphg of Kelly-widthk has a Kelly-decompositidil = (D, B, W) of widthk such that for
alld e V(D):

e |B4l =1,

o W, is the minimal set which guards: 4, and

e Every vertew € B>, is reachable ing \ W, from the uniquev € By.
Further, if G is strongly connected, theld has only one root.

We call such a decompositiapecial

Just as with the cops and visible robber game, it is easy tohseehe cops and inert robber game satisfies the
properties introduced in Section 5.4. The characterinaifd<elly-width by such graph searching games implies that
Kelly-width is well behaved under important structuralaténs. The proofs of the following results are similar to
those presented in Section 6.3.

Lemma 7.13.Let (D, B, W) be a Kelly-decomposition of a digrajgh and letG’ be a subgraph of. (D, Blg/, W|g')
whereB|g: := (Ba N V(G'))aev () andWlg: := (Wa NV (G'))aev (p) is a Kelly-decomposition @’

Corollary 7.14. LetG andg’ be directed graphs such th@t is a subgraph off. Then Kelly-widtfiG") < Kelly-width(G).

Lemma 7.15. Let G be a directed graph and’,, the complete graph on vertices. Kelly-widtfiG ¢ £,,) = n -
Kelly-width(G).

CHAPTER 7. KELLY-WIDTH 102

Lemma 7.16. Let G be a directed union of the digraplds andG,. Then
Kelly-width(G) = max{Kelly-width(G;), Kelly-width(G2)}.

We observe that from this last result it follows that the I¢edlidth of a directed graph is the maximum Kelly-width
of all its strongly connected components.

7.3 Algorithmic aspects of Kelly-width

7.3.1 Computing Kelly-decompositions

In this section we mention several algorithms for computtdly-width and Kelly-decompositions. The proofs
of Theorems 7.9 and 7.11 show that Kelly-decompositionsefficiently be constructed from directed elimination
orderings or monotone winning strategies, so we concersetwes with the problem of finding any of the equivalent
characterizations.

In a recent paper Bodlaender et al. [BFB6] study exact algorithms for computing the (undirecteeiwidth of
a graph. Their algorithms are based on dynamic programmiggmpute an elimination ordering of the graph. The
algorithms translate easily to directed elimination onulgs and can therefore be used to compute Kelly-width, givin
us the following theorem:

Theorem 7.17. The Kelly-width of a graph with vertices andn edges can be determined in
e O((n+m)-2") time andO(n - 2") space, or
e O((n+m)-4m) time andO(n?) space.

Proof. The algorithms we require for these bounds are presentedgasithm 7.1 and Algorithm 7.2 respectively.
Lemmas 7.18 and 7.20 prove that these algorithms are cpoartt emmas 7.19 and 7.21 establish the running times
and space requirements. O

Algorithm 7.1 KELLY-WIDTH-DP(G)
let KW(@)=0
for k =1to|V(G)| do
foreach S € [V(G)]* do
for eachv € S do
Compute supp(v) := Nou(Reack(v)) U {v}
let KW (S) = min,es max{ KW (S\ {v}), |suppy(v)|}
return KW (V(G))

Lemma 7.18. For any digraphg, KELLY-WIDTH-DP(G) outputs the Kelly-width of.

Proof. We observe that for a directed elimination orderiag= (v1,...,v,), sSupp,(v;) is not dependent on the
order of the vertice§uv1,...,v;—1}. The algorithm uses this observation to reduce the numbgossible orderings
which need to be considered fromh to 2. It is easily seen thgsupp;(v)| is v together with the support set of

in any directed elimination ordering wheteis preceded by some ordering of the remaining elements. ofhus
max{ KW (S \ {v}), |suppy(v)|} is one more than the minimal width of a partial directed etiation ordering orf
wherew is the last vertex eliminated. It follows th& 1/ (S) returns one more than the minimal width of a partial
directed elimination ordering ofi, and thusK W (V' (G)) returns the Kelly-width of;. O

CHAPTER 7. KELLY-WIDTH 103

Lemma 7.19. LetG be a digraph withn vertices andn edgesKELLY-WIDTH-DP(G) requires at mosO ((n +m) -
2") time andO(n - 2™) space.

Proof. For a setS C V(G) and a vertexw € V(G), it is readily seen thaReach (v) can be computed with a depth-
first search fromv. Since such a search can be executed in tiie + m) [CLR96], it follows that supp(v) can be
computed in time&)(n 4+ m). The innermostor loop is executed once for ea¢hC V(G), and loopd S| times. So
if each value forK W (.S) is stored as it is computed so that its value can be found istaahtime, the total running
time for the algorithm i€)(n +m) Y- gy (g) O(|S]) = O((n +m) - 2). i

Algorithm 7.2 KELLY-WIDTH-REC(G, L, S)

if $ = {v} for somev then
return suppg, (v)

let Opt = oo

foreach S’ C S with |S’| = []S]/2] do
Computew; = KELLY-WIDTH-REC(G, L, S")
Computewy = KELLY-WIDTH-REC(G, LU 5", S\ 57)
let Opt = min{Opt, max{wy, w2} }

return Opt

Lemma 7.20. For any digraphg, KELLY-WIDTH-REC(G, 0, V(G)) outputs the Kelly-width of.

Proof. We prove by induction onS| that KELLY-wIDTH-REC(G, L, S) returns one more than the minimal width of
a partial directed elimination ordering dnu S where the firstL| vertices are elements @ From our observations
regarding supp(v) in the proof of Lemma 7.18, we see this is true f§f = 1. Now suppose it is true fdiS| < s,
we show that it is true for alb with | S| < 2s. Consider a single execution of tfer loop. Since|S’| = |[|S]/2],

it follows by the induction hypothesis that; is one more than the minimal width of a partial directed etiation
ordering onL U S’ where the firs{L| elements are froni andws is one more than the minimal width of a partial
directed elimination ordering oh U S where the firs{L| + |S’| elements are fronk U S’. Thus, the maximum of
wy andws is one more than the minimal width of a partial directed efiation ordering orl. U .S where the first |
elements are froni, and the nextS’| elements are frony’. Opt stores the minimum of all these maxima, over all
subsetsS” with |S’| = ||S]/2]. As the minimal width of a partial directed elimination orufg of L U S where the
first |L| elements are fronh must be the minimal width of a partial directed eliminationering of L U S where the
first |L| elements are fronk and the next|S|/2] elements are frony’ for someS’ C S, it follows thatOpt stores
the required value. ThusB{LY-WIDTH-REC(G, (}, V(G)) returns the Kelly-width of;. O

Lemma 7.21. LetG be a directed graph with vertices andn edges. TheKELLY-WIDTH-REC(G, 0, V(G)) runsin
O((n+m) - 4™) time andO(n?) space.

Proof. LetT'(s) be the time required to computeEKLY-wIDTH-REC(G, L, S) when|S| = s. We prove by induction
onsthatT'(s) = O((n+m)-4%) time. If s = 1, as we saw in Lemma 7.21, supf») can be computed i@ (n + m)
time, so the assumption holds for this case. for 1, the algorithm runs in timé(sz)T(s/2). Using asymptotic
approximations of Catalan numbers [GKP9§]}) € O(4™), soT(s) = O(4*/*)T(s/2) = O((n + m) - 4°). The
space requirement follows from the observation that at state of the recursion we neédn) space to store the
current subse$’ of S and the values we have computed. Since the recursion treedxdasmum heightlog |S|] < n,
we obtain the space bound ©{n?). O

For a givenk, the problem whether a digragh has Kelly-width< k is decided in exponential time with the
above algorithms. As the minimization problem is NP-corte(é generalizes the NP-complete problem of deciding
the tree-width of an undirected graph), we cannot expegtnaohial time algorithms to exist. However, the exact

CHAPTER 7. KELLY-WIDTH 104

complexity of determining if a digraph has Kelly-width & for fixed k is currently unknown. Clearly a digraph has
Kelly-width equal tol if, and only if, it is acyclic, and recently Meister, Telle @Watshelle [MTVQ7] exhibited a
polynomial time algorithm for determining if a digraph haslk-width 2. So fork < 2 the problem can be solved in
polynomial time. Fotk > 2 it is an open problem.

Open problem 7.22. For a fixedk > 2, what is the complexity of the following problem: Given ardfgth G doesG
have Kelly-width< £7?

It seems plausible that, as in the case of DAG-width, stugiginategies in the inert robber game will lead to a
polynomial time algorithm wheh is fixed.

7.3.2 Algorithms on graphs of small Kelly-width

In this section we present algorithmic applications of Ka&lecompositions, including a general scheme that can be
used to construct algorithms based on a decomposition. Sueraesthat a Kelly-decomposition (or even an elimination
ordering) has been provided or pre-computed. We give an pbeaatgorithm based on this to compute the winner of
a parity game, which runs in polynomial time on graphs of lmadhKelly-width. As the algorithm is similar to the
algorithm of the previous chapter, we outline the majoradtighce between the two.

Dynamic programming algorithms using Kelly-decomposiifollow a pattern similar to algorithms that use tree-
decompositions and DAG-decompositions. Starting withexip Kelly-decompositiofD, 5, W) and then working
bottom up to compute for each node= V(D) a data set containing information on the &t := (J,;. , Ba. The
general pattern is described in Algorithm 7.3. B

Algorithm 7.3 Dynamic programming using a Kelly-decomposition
Given a special Kelly-decompositi@®, B, W):

Leaves: Compute the data set f@s, for all leavesd.

Combine: If d € V(D) is an inner node with successaks . . ., d,,, ordered by the ordering guaranteed by the Kelly-
decomposition (we observe that such an ordering can be deshpasily with a greedy algorithm), combine the
data sets computed f@> 4, , . .., B>q, to a data set for the unidy", B>g;.

Update: Update the data set computed in the previous step so thaethevertexu with By = {u} is taken into
account. Usually, the vertexwill have been part of at least some guard 3&1s.

Expand: Finally, expand the data set to include guard®lin\ |, W, and also paths starting at

We illustrate this pattern by briefly presenting an algeritfor computing the winner of a parity game. The full
algorithm can be found in [HKO7]. The algorithm is similartte algorithm based on DAG-decompositions, however
the separation of guard sets in Kelly-decompositions m#kegpresentation more straightforward. As with DAG-
decompositions, we define a Kelly-decomposition of an aré@s a Kelly-decomposition of the underlying directed
graph(V (A), E(A)).

Theorem 7.23. For any k, given a parity gaméA, x) and a Kelly-decomposition oA of width < k, determining if
Player 0 has a winning strategy from(.4) can be computed in polynomial time.

To prove the theorem, we first need some preparation. Foesief this section fix a parity ganiel, x) where
x : V(A) — P. We assume that the maximal out-degree of any vert@X(id) is 2. Using the inert robber game, it is
straightforward to show that the graph resulting from thalification described in Theorem 2.59 has Kelly-width at
most one more than the original graph.

We recall from the proof of Theorem 6.34 the definitions ofiiggU, v) and REsuLT(U, v) for a (not necessarily
memoryless) strategy for Player 0, a subset of verticés C V(.A) and a vertew € V(A). We show how, for a

CHAPTER 7. KELLY-WIDTH 105

fixed k and given a special Kelly-decompositi¢®, 3, W) of A of width &, to compute RSULT(B>q4,v) for each
d € V(D) andv € Bx4 in polynomial time. As with Theorem 6.34 we observe thaif3as; has at mosk guards
(Wa), IRESULT(B>4,v)| < (n+ 1)* + 2.

The dynamic programming algorithm can then be presenteallasvt.

Leaves: It follows with the same argument as theavesstep in the proof of Theorem 6.34, that for any léaf V (D),
and vertex € B, the set RSULT(By, v) can be computed in constant time.

Combine: Let d be an inner node db with successord, ..., d,, ordered according to the ordering guaranteed by
(K3). Forl <i < m,letB; := Uj<l. B>q4, and letB := B, = J,<;<,, B>d4,- We aim to compute the set
RESULT(B, u) for eachu € B. We observe that if < j andu € Bx4, then every path from to a vertexv €
B> a4, \ B>4, mustgo through;. Hence, ifu € B> 4, then RESULT(B, u) = RESULT(B;, u). We compute for
eachi < mandu € B; the set RSULT(B;, u) by induction on. Fori = 1, RESULT(By, u) = RESULT(d1, u).
Leti > 1andletu € B; \ B;_1.

To compute RSULT(B;, u), we do the following. Let = result,(B>g4,,u) € RESULT(B>q4,,u) be a set of
results against a strategyfor Player0. The result set gives us the set of verticese W, to which Playen
can force the play againstand also the best priority he can achieve in doing so. NowdfW,;, N B;_; is a
guard contained ifB;_, then once the play has reacheitican never return t@; \ B;,_; and continues iB;_
until it reaches a vertex if/;. Hence, once the play has reachedve can determine the results of possible
strategies inB;_, from RESULT(B;_1,v).

This suggests the following algorithm for computing$ULT(B;,). For eachr € RESULT(B>q4,,u) We
compute a seRR, of sets as follows. LeR := {(w,p) € r : w € Wy, \ Wy} be the set of outcomes in
r for plays which end in vertices i3;_;. Let (wi,p1),..., (ws,ps) list the elements oR. For each tuple
p=(r,...,rs)withr; € RESULT(B;_1,w;) Let R, be defined as follows. For ea¢h, p) € r\ R add(v, p)
to R,. If (v, q) € r; add(v, max{p;,q}) to R,. Then, add the set, to R,. Then, RESULT(B;, u) contains for
eachR, € R, the set ofd-minimal pairs inR,,.

Update and ExpandWe now consider how to update the data structure to take atodpaths that include vertices
enteringB>q. The argument is similar to tHexpandstep of the proof of Theorem 6.34, so we refer the reader
there for the details.

We observe that each step of the above algorithm, and hercentire algorithm, runs in polynomial time. This
completes the outline of the proof of Theorem 7.23.

7.3.3 Asymmetric matrix factorization

We saw in Section 7.1.2 that the idea of vertex eliminatios webtivated by the practical application of solving
systems of linear equations. Such systems are more commemigsented as matrix equationkfx = b, with
the goal being to find a solution for the x 1 vector of variablesx, given anm x n matrix M, and anm x 1
vectorb. A straightforward solution to such an equation is to find™', the inverse of\/, to obtainx = M ~'b,
however a more common approach is to factofiZzen such a way that solutions may be easily computed. Cholesky
decompositions and LU-factorizations are two such exaswpi¢his. If M is anm x n matrix, anLU-factorization
(or LU-decompositiopof M is anm x m lower triangular matrix{. and anm x n upper triangular matrix/ such that
M = LU. If, in addition M is symmetric and positive definite, then there is an LU-fezdion of M wherelU = L7
Such a decomposition is calledzholesky decompositioWhen a matrix has an LU-factorization we can solve the
equationMx = b as follows: first we use forward substitution to solvg = b, and then backward substitution to
solveUx =y.

The elimination process we described in Section 7.1.2, latewn as Gaussian elimination, is one of the most
common methods for computing an LU-factorization or a Cskyedecomposition. More precisely, Gaussian elimi-
nation is the process of transforming a matrix into an uppangular matrix via row operations: adding a multiple

CHAPTER 7. KELLY-WIDTH 106

of one row to another (including itself), or interchangingptrows (also known apivoting). The resulting upper
triangular matrix is thé/ factor of a LU-factorization, and the row operations can &gresented by a sequence of
transformation matrices, the product of which form théactor of the LU-factorization. If the original matrix was
symmetric and positive definite, this process will geneaa@holesky decomposition.

Since Gaussian elimination can be used to compute LU-fzetizns and Cholesky decompositions, it is not
surprising that elimination orderings and two associatettgires we introduce here, elimination trees and elitiona
DAGs, are useful for investigating the complexity of comipgtthese matrix decompositions. We first define the
particular relationship between graphs and matrices teaine interested in.

Definition 7.24. Let M = (a;;) be a squares x n matrix. We defineG,; as the directed graph with (Gys) =
{v1,...,v,}, and fori # j, (v;,v;) € E(Gn) if, and only if, a;; # 0. We also define the elimination orderirg,,
as<y = (v1,...,0p).

When M is a symmetric matrix, we view,, as an undirected graph rather than a bidirected graph.
One structure that is particularly useful for analysing syetric matrix factorization is thelimination tree

Definition 7.25(Elimination tree) LetG be an undirected graph, ardan elimination ordering fof. Theelimination
treedefined by« is a pair(7, \) whereT is a rooted tree andl: V(7)) — V(G) is a bijection such thati§ € V(7)
is the parent of € V(7), then\(s) = ming (Supp,(A(?))).

Liu [Liu90] observed that elimination trees can be used t@stigate many aspects of Cholesky decompositions,
for example the row and column structure of the Choleskyof@otan be extracted directly from an elimination tree.
Another observation, from Bodlaender et al. [BGHK95], iatttihe height of an elimination tree gives the parallel time
required to compute a Cholesky decomposition of a symmetaitix using Gaussian elimination.

In [GL93], Gilbert and Liu introduced a generalization oihehation trees, called elimination DAGs, which can
be similarly used to analyse factorizations in the asymimetise. We recall thataansitive reductiorof a directed
graph is a minimal graph with the same transitive closurevemdbserve that an acyclic graph has a unigue transitive
closure.

Definition 7.26 (Upper and Lower elimination DAGs [GL93])Let M be a square matrix that can be decomposed as
M = LU without pivoting. Theupper (lower) elimination DAGs the transitive reduction of the directed gragh
(G respectively).

Gilbert and Liu [GL93] observed that elimination DAGs enjmany properties similar to elimination trees. For
instance, they are an efficient storage scheme for sparseeasatand an upper and lower pair of elimination DAGs
are sufficient to capture the path structure of a graph: ifetieea directed path from to v in the graph, then there is
a vertexw such that there is a path fromto w in the upper elimination DAG, and a path framto v in the lower
elimination DAG. They also showed that when the matrix is syatric, the upper elimination DAG is isomorphic to
the elimination tree, as is the lower elimination DAG whendtiges are reversed.

The Kelly-decomposition constructed in the proof of Theoie11 captures the upper and lower elimination DAGs
in a very direct manner.

Theorem 7.27. Let M be a square matrix that can be decomposedas= LU without pivoting. Le{(D, B, W) be
the Kelly-decomposition @f; obtained by applying the proof of Theorem 7.11 with elimorabrder<i,,. Then

(@) (D, B) is isomorphic to the lower elimination DAG, and

(b) Gu = (V(Gum), {(v,w) : w € W, }), thus the upper elimination DAG is isomorphic to the tramsiteduction of
the relation{ (v, w) : w € W, }.

Proof. Forv € V(Gar), let X, = {v} U{w € V(Gn) : w <pr v}. First, from Theorem 1 of [RT78]:

(E(GL))TC = {(v,w) : w <p v, and there is a path fromto w in G/ [X,]},

CHAPTER 7. KELLY-WIDTH 107

whereRT¢ denotes the transitive closure Bf We observe that in the construction of the Kelly-decomipmrsi £(D)
is the transitive reduction of the right-hand side. Singectnstruction, elements & are singletons, we can viet/
as a bijection betweevi (D) andV (G), and the first result follows. Secondly, from Theorem 4.6@£93], we have

E(Gy) = {(v,w) : v <y w, and there is @’ € Reach, (v) with (v',w) € E(Ga)}-

The second result then follows from Lemma 7.5, which shows{ttv, w) : w € W, } = {(v,w) : w € supp,,, (v)}
is equivalent to the right-hand side. O

We can use the results of [GL93] to make the following obstmmavhen we construct Kelly-decompositions on
undirected graphs.

Corollary 7.28. LetG be an undirected graphs an elimination order orG and (D, B, W) the Kelly-decomposition
of G (considered as a bidirected graph) obtained by applyinggteof of Theorem 7.11 with elimination order.
ThenD is a tree, and more preciselyD°?, B) is isomorphic to the elimination tree associated with thedjected)
elimination order<.

7.4 Comparing Kelly-width and DAG-width

In this section we use graph searching games to compare-Wealiyr to DAG-width and directed tree-width. In the
undirected case, all the games we consider require the samigem of searchers, however we show that in the directed
case there are graphs on which all three measures differ lybéginary amount. We show that Kelly-width bounds
directed tree-width within a constant factor, but the cosgdails as there are classes of graphs of bounded directed
tree-width and unbounded Kelly-width. We also provide evice to suggest that Kelly-width and DAG-width are
within a constant factor of each other.

We recall from Definition 6.1 the cops and robber game usetdcecterize DAG-width. For convenience, we will
refer to this as the visible robber game. In Example 5.2.1 iweudsed another cops and robber game that partially
characterizes directed tree-width: the strongly conmkeeisible robber game. The following theorem summarizes
Theorems 6.15 and Lemma 5.41:

Theorem 7.29. LetG be a digraph.
1. G has DAG-widthk if, and only if,k cops have a monotone winning strategy in the visible robbengong.

2. G has directed tree-widtkt 3k + 1 or k& cops do not have a winning strategy in the strongly connedtgtle
robber game org;.

For the undirected case, the following proposition sumsasplts from [DKT97] and [ST93].
Proposition 7.30. On any undirected grap§, the following are equivalent

1. k cops have a winning strategy in the visible robber game.

2. k cops have a robber-monotone and cop-monotone winningeglyan the visible robber game.

3. k cops have a winning strategy in the inert robber game.

4. k cops have a robber monotone winning strategy in the inetheslyame.

5. The tree-width of; is at mostt — 1.

It follows from these results that Kelly-width is a genezalion of tree-width in the following sense.

Corollary 7.31. LetG be an undirected graptg has tree-width if, and only if,? has Kelly-widthk.

CHAPTER 7. KELLY-WIDTH 108

On general directed graphs, the situation is more complicafs we saw in Theorem 6.11, monotonicity is not
sufficient for the visible robber game. Kreutzer and Ordiijl§O07] have also recently shown that monotonicity is
not sufficient for the inert robber game.

Theorem 7.32([KO07]). For anym € N, there exists a graph for whictin cops can capture an invisible, inert
robber but7m cops are required to do so with a robber-monotone strategy.

Of course, as with Theorem 6.11, this does not preclude tissilpibty that the number of cops required for
monotonicity is bounded by some factor of the number of cegsired with any strategy.

Open problem 7.33. Does there exist a functiofi : w — w such that for all digraphsj, if k£ cops can capture an
inert robber ong then f (k) cops can capture the robber with a robber-monotone stréegy

Before we compare Kelly-width with directed tree-width aDAG-width, we first observe that Proposition 7.2
allows us to compare Kelly-width and directed path-widtls.wée mentioned previously, Barat [Bar05] observed that
the directed path-width of a digraph was one less than th@maim number of cops required to capture an invisible
robber with a cop-monotone strategy. Thus, using the obtiervthat a cop-monotone strategy in the cops and inert
robber game is also robber-monotone, and the example fropoBition 6.39, we obtain the following relationship
between Kelly-width and directed path-width.

Proposition 7.34.
(i) If a directed graphG has directed path-width, it has Kelly-width at most + 1.
(ii) There exists a family of graphs with arbitrarily largérdcted path-width and Kelly-widtf.

Our next comparison result shows that a robber-monotoneimgrstrategy in the inert robber game can be trans-
lated to a (not necessarily monotone) winning strategyervikible robber game.

Theorem 7.35. LetG be a directed graph. If cops can catch an inert robber with a robber-monotone sgaeng,
then2k — 1 cops can catch a visible robber gh

Proof. Supposé: cops have a robber-monotone winning strategy in the inbldengame on a digragh By Theorem
7.9 this implies that there is a directed elimination ondgkii on G of width < k£ — 1. We use the elimination ordering
to describe the winning strategy ® — 1 cops against a visible robber, thereby establishing thétres
The cops are split into two groupscops called thélockersandk — 1 cops called thehasers Similarly, the cop
moves are split in two phases, a blocking move and a chasiaggph
In the first move .k cops are placed on thee highest elements with respect to These cops form the set of
blockers. Let the robber choose some elemefithis concludes the first (blocking) move. We observe:
If v is the<t-smallest vertex occupied by a blocker, then every direptgd fromo to a vertex (%)
greater than: has at least one vertex occupied by a cop.

This invariant is maintained by the blocking cops duringpley. Now suppose afterrounds have been played, the
robber occupies vertex and the blockers occupy vertices ¥ so that the invariants is preserved. Let be the
<-smallest element iX and letCy, . . ., C; be the set of strongly connected componen@[¢f.’ : v’ < u}]. Further,
let _ be a linear ordering of := {C1,...,C} so thatC; C Cj if, and only if, the<-maximal element irC; is
<-smaller than thes-maximal element of’;. Now the cops move as follows. Lét € C be the component such that
v € C and letw € C be the<x-maximal element irC’. The cops place thke — 1 cops not currently on the graph on
supp,(w). These cops are the chasers. As the chasers approach, liee hais two options. Either he stays within
C or he escapes to a vertex in a different strongly connectetboaentC’. If the robber runs to a vertex € C or
x € ¢’ for someC’ C C then after the chasers land Sn= supp, (w) there is no path from to a nodeu such that
u > u' for the <-minimal vertexu’ in S. Hence, the chasers become blockers and the chasing phasapteted.
Otherwise, if the robber escapes t6’awith C' = C’, then the chasers repeat the procedure and move tQ,swpp

CHAPTER 7. KELLY-WIDTH 109

U1

[}
o s/ "\ o
[] [}

Figure 7.1: Grapl¢/ showing the difference between DAG-width and inert roblsng

for the <-maximal element ir€’. However, as the robber always escapesiiolarger strongly connected component
and also can not bypass the blockers, this chasing phaseemaistfter finitely many steps with the robber being on
a vertexv € C for some componerd@ and the chasers being on sygp) for the <-maximal element irC'. At this
point the chasers become blockers. One of the old blockersvisplaced onv and all others are removed from the
board. The cop ow makes sure that in each such step the robber space shrinkiebgtaone vertex. By construction,
the invariant in ¢) is maintained. Further, as the robber space shrinks byaat tne after every chasing-phase, the
robber is eventually caught by the cops. O

An immediate consequence of this is that the Kelly-width gfaph bounds the directed tree-width of the graph.
Corollary 7.36. LetG be a directed graph with Kelly-width. ThengG has directed tree-widtkl 6k — 2.

Since it is not known whether the number of cops required foinaing strategy in the visible robber game bounds
the number of cops required for a monotone winning strategycannot obtain a similar bound for DAG-width. We
can, however, ask whether we can improve the bound. Thatdsnaing thak cops have a robber-monotone winning
strategy against an invisible, inert robber can we defineraiwg strategy for less thatk — 1 cops in the visible
robber game? Although it might be possible to improve theltethe next theorem shows that we cannot do better
than with 3k cops.

Theorem 7.37.For everym € N, there is a graph such th&tn cops have a robber-monotone winning strategy in the
inert robber game but no fewer tham» cops can catch a mobile visible robber.

Proof. Consider the grap8 in Figure 7.1. We show that ai, 3 cops do not have a (hon-monotone winning) strategy
to catch a visible robber, howevércops do. Consider the partition 8f(G), H = {{v1,v2,va}, {vs}, {vs}, {ve}}.
The strategy for the robber agairdstops is to move to any element &f which is not occupied by a cop. As long
as the robber moves to one ff;, v, } when the cops occupys, vs, ve}, it will always be possible for him to move
to such an element when the cops move. Howedveops can capture a visible robber with a monotone strategy by
occupying the following sequence of sets of vertices;, v4, vs, vg }, {v2, v3, vs, v }, {v1, V2, U3 }.

On the other hand, cops suffice to capture an invisible, inert robber with a eraimonotone strategy by occupying
the following sequence of sets of verticesuy, vs, vs}, {vs, vs, v}, {va, v5,v6}, {v2,v3}, {v1,v2,v3}. The result
follows by taking the lexicographic product of this graphitwihe complete graph an vertices. O

Since4 cops can capture a visible robber with a monotone stratedlyeograph in the previous proof, we have the
following:

Corollary 7.38. For all m € N there are graphs of DAG-widtfim and Kelly-width3m.
Despite this% bound, for graphs of small Kelly-width we can do better.

Theorem 7.39.For k = 1 or 2, if G has Kelly-widthk, G has DAG-widthk.

CHAPTER 7. KELLY-WIDTH 110

Proof. If G has Kelly-width1, then it must be acyclic, as all guard sets are empty. ThuastDAG-widthl. If G
has Kelly-width2, then it has an elimination ordering = (v1, v, . . ., v,) of width 1. A cop-monotone strategy for
two cops against a visible robber is as follows. InitialBtd = n and place one cop on. At this point, the robber
is restricted to{vy,...,v;—1}. Letj < i be the maximal index such that the robber can regchPlace a cop on
v;. After the cop has landed, we claim that the robber is unabtedch both); andv;. For otherwise, let be the
maximal index such that the robber can reaglfwith cops orw; andv;) and fromw,. can reachy; (with a cop ornw;)
andv; (with a cop onv;). By the maximality ofj, » < j. Lets > r be the first index greater tharwhich occurs on a
path fromw, to v; that does not go througly, andt > r be the first index greater tharwhich occurs on a path from
v, t0 v; that does not go through. Then from the maximality of, s # t. Furthermore{v,,v;} C supp,(r), so
|supp, (v)| > 1, contradicting the width of the ordering. So we can remoeecthp from whichever vertex the robber
can no longer reach without changing the robber space, timet ¢he robber is now restricted {0+, . .., v;} or the
maximal index which the robber can reach is smaller. Cleérlyg is a monotone winning strategy for two cops.0I

We now turn to the converse problem, what can be said aboutelg-width of graphs given their directed
tree-width or DAG-width?
Firstly we observe the following analogue of Propositionfor Kelly-width.

Proposition 7.40. For any j, k with 2 < j < k, there exists a grapﬁ;j such that KelIy—widt(ﬂjj) = j and
Kelly-width((77)°?) = k.

Proof. Consider the grapﬁ’kj from Proposition 6.7. In the proof of Proposition 6.7, theagies described for the
cops and the robber are also winning strategies in the iakkar gamé. O

It follows, using the same argument of Proposition 6.37 thate are families of graphs of bounded directed
tree-width and unbounded Kelly-width.

Corollary 7.41. There exist families of digraphs with directed tree-wigltind unbounded Kelly-width.

Our final result is a step towards relating Kelly-width to DA@dth by showing how to translate a monotone
strategy in the visible robber game to a (not necessarilyatue) strategy in the inert robber game.

Theorem 7.42.If G has DAG-width< k, thenk cops have a winning strategy in the inert robber game.

Proof. Given a DAG-decompositiofD, X') of G of width k, the strategy fok cops against an invisible, inert robber
is to follow a depth-first search on the decomposition. Maoezzely, we assume the decomposition has a single root
r, and we have an empty stack of nodegof

1. Initially, place the cops oX,. and push- onto the stack.

2. At this point we assume is on the top of the stack and the cops areXgn We next “process” the successors
of d in turn. To process a successdrof d, we remove all cops not oy N X/, place cops o4, pushd’
onto the stack, and return to st2pNote that a node may be processed more than once.

3. Once all the successors of a node have been processedpweepaode off the stack and if the stack is non-
empty, return to step.

Because the depth-first search covers all nodes of the DAGemzE all vertices of the graph are eventually occupied
by a cop, the robber will be forced to move at some point. Dut¢oguarding condition for DAG-decompositions,
when the robber is forced to move this strategy will alwaysdothe robber into a smaller region and eventually
capture him. O

2Indeed, the winning strategy for the robber is winning eehe robber is visible and inert.

CHAPTER 7. KELLY-WIDTH 111

Again we observe that it is unknown if, in the inert robber gathe number of cops required to capture the robber
with a robber-monotone strategy is bounded by the numbeop$ cequired to capture him with any strategy. So
this result does not allow us to directly compare Kelly-widhd DAG-width. However, we strongly believe that the
number of cops required for monotone strategies is boundedth the inert robber game and the visible robber game,
giving us the following conjecture:

Conjecture 7.43. The Kelly-width and DAG-width of a digraph lie within constdactors of one another.

Chapter 8

Havens, Brambles and Minors for Directed
Connectivity

In this chapter we present some preliminary work towardsucsire theory for directed graphs based on directed
connectivity. The aim of such a structure theory would betimim generalizations of some of the significant results for
undirected graphs, for example finding a directed analofitteedGraph Minor Theorem. However, as we show, even
determining some of the basic building blocks of such a stinedheory leads to some interesting open problems. We
work on the assumption that DAG-width, Kelly-width and tt@enAamonotone versions of their cops and robber games
are all approximately the same and can therefore be useddsuresthe directed connectivity of a digraph. Then,
using the premise that DAG-width or Kelly-width measures tbmplexity of a graph, we consider the following two
qguestions: What structural features are present in dulegtgphs which are “complex”?; and what relation on directed
graphs indicates “structural simplification”?

As we observed with Theorem 4.7 the existence of a brambleh@van in an undirected graph indicates that
the tree-width is not going to be small. Similarly, Theorefng and 4.11 show that the existence of the natural
generalizations of havens and brambles imply that the widetree-width is not going to be small. So in order to
address the first question, we consider generalizationawdtis and brambles which correspond to DAG-width and
Kelly-width. Although we are unable to show full equivaleres with Theorems 4.7 and 4.11, we can show, via cops
and robber games, that they do provide obstructions for M@k and Kelly-width. That is, their existence in a
graph places restrictions on the DAG-width or Kelly-widtttlat graph.

Towards finding a relation which indicates structural siifigation, we consider the problem of extending the
minor relation to directed graphs. As we mentioned in Chagtehe minor relation is an important relation in the
structural theory of undirected graphs as it indicates twredne graph is structurally more simple than another. So
having a minor relation for directed graphs is the cornerstof any digraph structure theory. We argue that the
existing definitions in the literature of minors for diredtgraphs are not sufficient, in the sense that a structureytheo
based on them would not be able to produce similar resultssgetof undirected graph structure theory. While it may
be the case that there is no appropriate relation for didegtaphs, we provide some examples which may take the
investigation further.

8.1 Havens and brambles

The aim of this section is to define various structural probegmwhich may lead to a minimax theorem for DAG-width
and Kelly-width, similar to Theorem 4.7. To achieve this, wgoduce some generalizations of havens and brambles
and show how they relate to DAG-width and Kelly-width. Weattérom Chapter 4, the definitions and theorem that
we wish to generalize:

112

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 113

Definition 4.5 (Haven) Let G be an undirected graph arkd € N. A haven of orderk in G is a functiong :
[V(6)]<F — P(V(G)) such that for allX C V(G) with | X| < k:

(H1) B(X) is a non-empty connected componen&of X, and
(H2) If Y C X, theng(Y) D B(X).

Definition 4.6 (Bramble) LetG be an undirected graph. Bramblein G is a set53 of connected subsets &f(G) such
that for all pairsB, B’ € B eitherB N B’ # (), or there exist§u, v} € E(G) with uw € B andv € B’. Thewidthof a
brambleB is the minimum size of a set which has a non-empty interseetith every element oB.

Theorem 4.7([ST93]). LetG be an undirected graph. The following are equivalent:
1. G has tree-width> & — 1
2. G has a haven of ordek.
3. G has a bramble of widtt.

We saw with Theorems 4.11 and 4.12, that the natural extendithese definitions to directed graphs — replacing
“connected components” with “strongly connected compdsien results in structural properties closely related to
directed tree-width. In this section we introduce some t#®8ous extensions that are closer to DAG-width and
Kelly-width. One of the major obstacles to finding such déifimis, and the reason why the extensions we consider
are less obvious is that the definitions have to be dependesrdge direction. That is, a bramble or haven of a graph
should not necessarily be a bramble or haven of the grapimebthy reversing the direction of the edges. The above
definitions of haven and bramble do not have obvious extassihich satisfy this property, however the definitions
we introduce next are dependent on edge direction.

Definition 8.1 (D-Haven) Let G be a directed graph and € N. A D-haven of orderk in G is a functiong :
[V(G)]<F — P(V(G)) such that for allX C V(G) with |X| < k:

(DH1) g(X) is a non-empty subset &f(G \ X), and
(DH2) If Y C X theng(Y) 2 3(X) andvy € 5(Y), B(X) N Reachyy(y) # 0.

As suggested by the nomenclature, and as we observed ineZBaph undirected graphs havens describe winning
strategies for the robber in the cops and visible robber gafhat is, when the cops are df, 3(X) suggests the
locations the robber should occupy to defeat the cops. Talegous result for the game on directed graphs suggests
that D-havens are the “correct” extension of havens for Dii@th. More precisely,

Proposition 8.2. LetG be a directed graph. The robber can deféatops in the visible cops and robber game®n
if, and only if,G has a D-haven of ordek + 1.

Proof. If G has a D-have of orderk + 1, then the strategy for the robber is to remaiBiX') whenever the cops
are onX. The D-haven axioms guarantee that this is always posditilee precisely, we define the following strategy
for the robber:p(X, X', R) = Reacly, x/(r') for somer’ € 3(X’) N Reacly (xnx(r). We observe that at every
position(X,r), r € B(X) and show that this implies that such a choice is always pless8inceX O X' N X, it
follows from (DH2) thatr € (X N X’). Then, sinceX’ D X N X', 3(X’) N Reachxnx(r) # 0, sop is well
defined. Finally, since(X, X', r) € Reacly xnx)(r) by definition,p is a valid strategy for the robber in the cops
and visible robber game.

For the converse, suppose the robber has a winning strateayainst: cops. Define, foiX € [V (G)]<F,

B(X) = U{R : the robber wins fron{ X, R) playingp}.

We show thaf3 is a D-haven of ordet + 1. We observe that((, X, V(G)) C 3(X), so asp is a winning strategy,
B(X) is non-empty for allX € [V (G)]=F. Thus (DH1) holds. For (DH2) we observe from the definitionhaf cops

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 114
U1 V2 T~
[] [] [] []
~__ 73 Uy

Figure 8.1: Graph to show that D-havens may be disconnected

and visible robber game that if the robber can win fr@i R) then he can win fronfY, R) forall Y C X. Thus, if
Y C X, thens(Y) 2 B(X). O

Immediately from this result and Lemmas 6.18, 6.20 and @&2Xybserve that D-havens behave as we expect
under subgraphs, lexicographic product, and directednurdso as a consequence of Proposition 8.2, the existence
of a D-haven in a digraph imposes a restriction on the DAGHwid the graph.

Corollary 8.3. LetG be a digraph. IfG has a D-haven of widtk then the DAG-width of; is at leastk.

Since a D-haven corresponds to a winning strategy for thieeoagainst any cop strategy and DAG-width corre-
sponds to monotone winning strategies, the converse ofll@or®.3 is equivalent to the monotonicity question for
the cops and visible robber gamekitops have a winning strategy, #@ops have a monotone winning strategy? As
there are graphs where more cops are required to captureliherrwith a monotone strategy [KO07], we know that
this does not hold in general. However, a result similar tedrem 4.11 would provide a solution to the more general
monotonicity problem posed in Open Problem 6.12.

Obdrzalek [Obd06] observed that the relaxation of cotesecomponentsin (H1) to subsets in (DH1) is necessary
if we require havens to correspond to strategies for thegoldore precisely, let us say that a D-havénis connected
if it also satisfies:

(DHY) B(X) is a non-empty weakly connected componer@ of X .

Proposition 8.4 ([Obd06]). There exists a directed gragh such that the robber can defeatcops in the cops and
visible robber game og, but there is no connected D-haven of or@en gG.

The graph that illustrates this result is shown in Figure Bi$ difficult to define a notion of haven that corresponds
to the inert robber game for two reasons. First, because ti#itgnof the robber is dependent on the move of the
cops, there may be a number of “responses” to a given copqositthis game. So having a function defined only for
sets of cop locations is not going to be sufficient. Secoradiyye observed in Chapters 5 and 7, the cops and robber
game with an invisible robber is essentially a single plageene. Thus there is only one strategy for the robber and it
is either winning or it is not. So having a function which dymiaally suggests a strategy for the robber is not going
to be particularly interesting. A more practical approaciuld be to identify the structural features which are présen
when the strategy for the robber is winning. This leads ubkégtroblem of extending the definition of brambles.

Before we introduce the extension of brambles we are inkxlés, we need to introduce the concept of initial and
terminal components.

Definition 8.5 (Initial and Terminal Component)_et G be a directed graph, arfd a strongly connected component
of G. H is aninitial componenif it is closed under predecessors. Thatis; & V(G) with (v, w) € E(G) for some
w € V(H), thenv € V(H). H is aterminal componeni it is closed under successors. That isyit V(G) with
(w,v) € E(G) for somew € V(H), thenv € V(H).

We denote by Initg) the set of all vertices in initial components, and Tegimthe set of all vertices in terminal
components. For a subset of verticBsC V(G) we write Init(B) and TerniB) for Init(G[B]) and TerntG[B])
respectively whei is clear from the context.

Another way to view initial and terminal components are &srtiots and leaves (respectively) of the block graph
of G: the directed acyclic graph with the strongly connectedponents ofj as vertices and an edg€, C’) if there
is an edge ing from some vertex irC' to some vertex irC’. With this interpretation it is straightforward to show
that initial and terminal components are well-behaved wéigpect to the structural relations for directed graphs we
consider important.

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 115

Lemma 8.6. LetG, G’ andG” be non-empty directed graphs a6dC G an initial (terminal) component af.

1. If G’ is a subgraph ofj with C NV (G’) # 0 then there is an initial (terminal) compone@f C G’ such that
' Cc.

2. IfGis adirected union of’ andG” thenC is either an initial (terminal) component §f or an initial (terminal)
component of,.

3. If G’ is a directed union off andG” (directed union of;” andgG) thenC is an initial (terminal) component of
g'.

4. If either|C| > 2 or G’ is strongly connected, thefi e G’ is an initial (terminal) component af e G'.
5. IfG =G e G" thenm (C) = {v: (v,w) € C} is aninitial (terminal) component &'

Definition 8.7 (Initial bramble) LetG be a directed graph. Anitial bramblein G is a set5 of subsets 0¥/ (G) such
that for all pairsB, B’ € B and for allz < Init(B), there existg < Init(B’) such thaty € Reachs (/) ().

Definition 8.8 (Terminal bramble) Let G be a directed graph. Aerminal bramblein G is a setBB of subsets of
V(G) such that for all pairsB, B’ € B and for allx € TermB), there existyy € Term(B’) such thaty <
Reackemp)up (7).

Definition 8.9 (Bramble width) Let G be a directed graph arglan initial or terminal bramble i§. Thewidth of B
is the size of the smallest hitting set Bf That is, the size of the minima&l C V(G) such thatX N B # 0 for all
B eB.

Although it would appear that initial and terminal brambége similar entities, we show that there are graphs
where the smallest width of an initial bramble differs frolne tsmallest width of a terminal bramble. It might also
seem that, since an initial component of a grgpis a terminal component of the graphi® obtained by reversing
the direction of the edges @f, that an initial bramble iry is a terminal bramble ig°°. However, the ordering of
the quantifiers in each of the definitions means that this is\acessarily the case: an initial bramblégins, in G,

a set of subsets such that for all paiBs B’ and allz € Term(G°P[B]), there existyy € Term(G°P[B’]) such that
x € Reaclorerm)un) (v). Before we show how initial and terminal brambles differ, sh@w how they correspond
to DAG-width and Kelly-width, and establish some robusgesults.

Lemma 8.10. Let G be a directed graph.
1. If G has an initial bramble of widtl then the robber can defe&t— 1 cops in the cops and visible robber game.
2. If G has a terminal bramble of width then the robber can defeat— 1 cops in the cops and inert robber game.

Proof. 1 Suppos& has an initial brambl# of width k. Then, for any seX with | X| < k — 1 there exist8Bx € B
such thatBx N X = (. The strategy for the robber is to be on some vertex irf Bit) whenever the cops are located
on X. Itis clear from the definition of an initial bramble that sug move is always possible. As the robber is able to
do this forever, it follows that this is a winning strategy tbe visible robber againgt— 1 cops.

2: Now suppos&j has a terminal bramblB of width k. Again, for any setX with | X| < k — 1 there exists
Bx € BsuchthatBx N X = (). The “strategy” for the robber is, when he can move and wherettps are o, to
move to the first element of a strongly connected componemhénf(By) that will be occupied by the cops. More
precisely, we show that after every cop move, there edists 53 such that TerrfB) is contaminated. Clearly this is
true at the beginning, as every vertex is contaminated. Nppase the cops are moving frakhto X’ and for some
B € B and some terminal componefitof G[B], X N C' = () and there exists a contaminated vertex X' N C.
As Bx: N X' =), andC is a terminal component, the path in Téf) U By from v to somew € Term(Bx-) is
cop-free. ThusBx- is now an element 0B such that TerriBx-) is contaminated. a

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 116

An immediate corollary from the game characterizationsAEbwidth and Kelly-width is that initial and terminal
brambles provide obstructions for DAG-width and Kelly-#id

Corollary 8.11. LetG be a directed graph.
1. If G has an initial bramble of widtl: thenG has DAG-width> k.
2. If G has a terminal bramble of width thenG has Kelly-width> k.

Unfortunately, it is not known whether the converse to Len@ri#® holds.

It is relatively straightforward to show that brambles beheanner to the cops and robber games under various
graph operations. For example a bramble of a graph is a beaofilainy supergraph, and the width of a bramble in-
creases by an appropriate factor under lexicographic mtediihis strongly suggests that the converse of Lemma 8.10
does hold.

Conjecture 8.12. LetG be a directed graph.

1. If the robber can defedt — 1 cops in the cops and visible robber game®theng has an initial bramble of
width k.

2. If the robber can defedt — 1 cops in the cops and inert robber game @thengG has a terminal bramble of
width &.

We observe that since monotonicity is not sufficient in eitb@ps and robber game [KO07], we know that the
converse of Corollary 8.11 does not hold. However, as withaens, a result along the lines of Theorem 4.12 would
resolve Open Problems 6.12 and 7.33.

We conclude this section by combining these results withesgaults from Chapter 7 to show that initial brambles
and terminal brambles are different.

Proposition 8.13. For all m € N, there exists a directed graph with an initial bramble of thidm but no terminal
bramble of width> 3m + 1.

Proof. Consider the grapl in Figure 7.1. As we observed in the proof of Theorem 73@ops suffice to capture
an inert robber oiy. We also showed that has an initial bramble of width: {{v1,va,v4}, {vs}, {vs}, {ve}}. The
result follows by taking the lexicographic product of thregh with/C,,,, the complete digraph om vertices. O

8.2 Directed minors

In this section we investigate the problem of finding a relatin directed graphs which represents structural simglific
tion. Such relations are ubiquitous throughout mathersghic example in algebra or model theory homomorphisms
describe structural simplifications, and in geometry orotogy homeomorphisms are the key structural relations.
Graphs can be viewed both as relational structures and atotpal complexes, so there are well-defined notions
of graph homomorphisms and graph homeomorphisms. Howirenndirected graphs at least, the minor relation
is arguably the most suitable relation for comparing funeatal graph structural properties such as connectivity and
cyclicity. Intuitively, a graphg is a minor of a grapli if G can be embedded iH modulo connected sets. That is, if
we consider connected setsfifhas “vertices”, therg is a subgraph of this “graph”. More precisely,

Definition 8.14 (Minor). Let G and’H be undirected graphgy is aminor of H, written G < H, if there exists a
function¢ : V(G) — P(V(H)) which maps distinct vertices to disjoint sets such that:

e Forallv € V(G), H[¢(v)] is a connected graph, and
e Forall{v,w} € E(G) there exist{v’,w'} € E(H) such that' € £(v) andw’ € {(w).

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 117

So why is the minor relation a good indicator of structuraigiification? As we observed above, there are well-
defined notions of graph homomorphisms and graph homeonsonghA homomorphism preserves relational struc-
ture and a homeomorphism preserves topological shapejestivie homomorphisms or subgraph homeomorphisms
would seem to be reasonable indicators of structural sfio@iion. However, the minor relation subsumes these. We
see from the definition that the minor relation can be comsidla generalization of injective graph homomorphisms:
G is a minor ofH if there is a homomorphic-like injective map frov(G) to connected sets 1. Presently we will
also show that if7 is homeomorphic to a subgraph&ftheng is a minor ofH. So the minor relation can be seen as
a generalization of both relational and topological stusetsimplification. We now turn to the problem of finding an
extension of the minor relation to directed graphs whictogsgimilar properties.

The definition of a minor has two obvious extensions to deegraphs: either map vertices to weakly connected
sets or map vertices to strongly connected sets. Howevere asgue below, neither of these truly reflect the notion
of structural simplification that complexity measures likeected tree-width, DAG-width and Kelly-width suggest. |
the remainder of this section we identify the charactexssbif the minor relation that make it useful and we introduce
several definitions of digraph minor relations and comphesrnt against these criteria. First we show how we can
view the minor relation operationally, and how this impliast the minor relation is a generalization of subgraph
homeomorphism.

Definition 8.15 (Edge contraction)Let G be a graph, and = (v,w) € E(G). The graphG’ obtained fromg by
contractinge is defined as:

o V(G") =V(9)\{v},
o B(G') = (E(G)U{(u,w): (u,v) € EG)}U{(w,u): (v,u) € E(G)}) \{(u,v), (v,u) - u € V(G)}.

The following result follows easily from the definitions aisdoften used as an alternative definition of the minor
relation.

Lemma 8.16. LetG andH be undirected graphs. The following are equivalent:
1. G is a minor ofH,
2. G is isomorphic to a subgraph of a graph obtained by contragtdges of{, and
3. G is isomorphic to a graph obtained by contracting edges oftaysaph of .

Proof. 1 = 2: Supposéj is a minor ofH and let¢ : V(G) — P(V(H)) be the function witnessing this. Lét’
be the graph obtained froft by contracting, for each € V(G) the edges irt{[¢{(v)]. Now ¢ can be viewed as an
injective mapping from/(G) to V(H’) such that for eackv, w} € E(G), {£(v),&{(w)} € E(H'). Thatis,£ is an
embedding ofj in H’, sog is isomorphic to a subgraph &', a graph resulting from contracting edges-of

2 & 3: Let us view the subgraph relation as the operation of dejetidges and isolated vertices. Thatds,
is a subgraph of{ if G can be obtained by deleting edges and isolated verticés. ofVe observe that edge and
isolated vertex deletion and edge contraction commute,ishae obtain the same graph independent of the order
of the operations. Thus if we perform all edge contractiorss &nd then all deletions we obtain the same graph by
performing all deletions first followed by all edge contians and vice versa. Thus any subgraph of a graph obtained
by contracting edges is a graph obtained by contractingsaig@ subgraph and conversely.

3 = 1: Supposej is isomorphic to a graph obtained by contracting edge’ofvhere’’ is a subgraph oH.
For convenience, we will assume thais a graph obtained by contracting edgeg¢f For eactw € V(G) define
&(v) as the set of vertices € V(H') such that there is a path fromto v consisting of edges which are contracted to
obtainG. From the definition of, H[¢(v)] = H'[¢(v)] is connected. Now suppose, w} € E(G). It follows from
the definition of edge contractions that there ex{stsw’} € E(H’) such that there are paths frarhto v and from
w’ to w consisting of edges which are contracted to ob@iThat isv’ € £(v) andw’ € &(w). AsV(H') C V(H),
h is a function fromV (G) to P(V(H)), sogG is a minor ofH. O

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 118

Indeed, as subgraphs and edge contractions are well-dédingidected graphs, this lemma suggests the following
natural definition of a minor relation on directed graphs.

Definition 8.17 (Minor for digraphs) Let G and’H be directed graphs; is aminorof H, G < H, if G is isomorphic
to a graph obtained frori{ by a sequence of edge and isolated vertex deletions and edgfactions.

It is clear from Lemma 8.16 that this definition is equivalemthe minor relation on the underlying undirected
graphs, hence the notation. That is,

Proposition 8.18. LetG and’H be digraphsG < H if, and only if,G < H.

We also observe that the-minor relation corresponds to the weakly connected “raditigeneralization of the
minor relation.

Proposition 8.19. LetG and’H be digraphsG < H if, and only if, there exists a functign: V(G) — P(V(H)) such
that:

e if v # w theng(v) is disjoint fromé(w),
e forall v € V(G), H[¢(v)] is a weakly connected graph, and
e forall (v,w) € E(G) there existgv’,w’) € E(H) such that’ € £(v) andw’ € £(w).

These observations show that the minor relation has a ktfargvard extension to directed graphs. However, just
the simple extension of tree-width to directed graphs isamodeal measure of complexity, we argue below that this
definition is not restrictive enough to be a suitable reftafior structural simplification for digraphs. In particular
a minor of an acyclic digraph need not be acyclic, which gagsrest our tenet that acyclic graphs are structurally
the least complex graphs. However, all the minor relatioesmtroduce in the Section 8.2.2 are restrictions of this
relation.

Lemma 8.16 also demonstrates how minors can be seen as algeiem of subgraph homeomorphisms. First
we recall the definition of a subgraph homeomorphism.

Definition 8.20 (Subgraph homeomorphismlet G andH be (directed) graphs. We s&@yis homeomorphic to a
subgraphof H if there is an injective functiom : V(G) — V(H) and a mapping from edges ofj to pairwise
internal-vertex-disjoint paths i such that fore = (v, w) € E(G), p(e) is a (directed) path from(v) to n(w).

Lemma 8.21. LetG and’H be undirected graphs. §§ is homeomorphic to a subgraph&ftheng is a minor ofH.

Proof. We observe that i is homeomorphic to a subgraph&f, theng is isomorphic to a graph obtained from a
subgraph ofH by repeatedly replacing vertices of degtewith an edge joining its neighbours. But this operation
can also be viewed as contracting edges that have at leashdpeint with degre@. Thereforeg is isomorphic to a
graph obtained by contracting edges of a subgrapt,afo by Lemma 8.165 is a minor ofH. O

8.2.1 What makes a good minor relation?

We now consider the properties we expect a reasonable d=finit a minor relation for directed graphs to satisfy.
First and foremost, the relation should respect digraphpdexity. That is, ifG is a minor ofH theng should not be
more structurally complex thal. But which notion of digraph complexity should we use? As wentioned at the
start of the chapter we are primarily interested in a refatiorresponding to directed connectivity, so DAG-width or
Kelly-width or their associated cops and robber games wbelsluitable. However, there is also no known appropriate
relation for strong connectivity, so we also consider dieddree-width. In Section 8.2.3 we consider various graph
properties that are preserved under the operation “takinghar” and use these to identify unsuitable candidates.
The second property we are interested in is being able toropémeralizations of theorems concerning the minor
relation. In particular, we are concerned with trying toesd two results: the Graph Minor Theorem, which asserts

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 119

that the minor relation is a well-quasi order, and the atparic result that for a fixed grapH, determining ifH is
a minor of G can be decided in cubic time. The latter result implies thmgt @ass characterized by a finite set of
excluded minors can be decided in polynomial time, and thedo implies that any minor-closed property can be
characterized by a finite set of excluded minors. Althoughshew that many of our defined relations fail to satisfy
this property, the investigation raises some interestirgstjons.

Our final requirement for a reasonable notion of a minor ietefor directed graphs is that it should be an extension
of the minor relation for undirected graphs. In particuiig and’ are undirected graphs such tlgats a minor of
H then? should be a minor o<ﬂ_i). Furthermore, it should also generalize subgraph homeginens (for directed
graphs). Thatis, if we replace internal-vertex-disjoiatts with single edges we should obtain a minor of the orlgina
graph. Although many of our defined relations do satisfy lib#se requirements, some interesting relations do not,
including the strongly connected “natural” generalizataf the minor relation and two relations which occur in the
literature: the butterfly minor relation and the topologjiménor relation.

8.2.2 Directed minor relations

In this section we define several minor relations for digeapile adopt the operational definition of minor implied by
Lemma 8.16 and generate variations by considering diffeesirictions on the edge contraction operation. For the
results we establish, it is convenient to consider two tygfegige contraction operation: one which contracts a single
edge, and one which contracts multiple edges simultangdiye call the first kindedge contractionand the second

set contractions We observe that when a sequence of edge contractions doermped, it does not matter in which
order they are performed, the resulting graphs are all isphio. Thus to “simultaneously” contract a set of edges, we
can contract them individually in some arbitrary order. Végvrdefine the edge and set contractions we use to define
our minor relations.

Definition 8.22. Let G be a directed graph anrd= (u,v) € E(G).
e We saye can betopologically contractedf either

— u has in-degreé and out-degreg, or
— v has in-degreé and out-degreé.

e We saye can bebutterfly contractedf either

— u has out-degreg, or
— v has in-degreé.

e We saye can beD-contractedunless either

— there is a directed path fromto v edge disjoint fron{u, v), or
— there exists two vertex disjoint cyclé€g, Cs, each with at least two vertices, such that C; andv € Cs.

Before we introduce the set contractions, we observe tleaaliove definitions of edge contractions are ordered
from most restrictive to least restrictive. That is,

Lemma 8.23. Let G be a directed graph and = (u,v) € E(G). If e can be topologically contracted thencan be
butterfly contracted, and # can be butterfly contracted thercan be D-contracted.

Proof. If e can be topologically contracted then cleaglgan be butterfly contracted. Now suppesgan be butterfly
contracted. If, has out-degregthene is the only outgoing edge fromso there is no path from to v which is edge
disjoint frome and there is no cycle which containgnd does not contaiin Thuse can be D-contracted. Otherwise
v has in-degreé ande is the only incoming edge to. Again, there can be no path fromto v which is edge disjoint
from e and there is no cycle which containgnd does not contaim. Soe can be D-contracted. O

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 120

Definition 8.24. Let G be a directed graph and C E(G).
o If £ = {(u,v), (v,u)} then the simultaneous contraction6fis ananti-parallel contraction
e If G[E] is a strongly connected graph, then the simultaneous atiuneof £ is astrong contraction

Clearly these definitions are also ordered from most refsteito least restrictive. We include the result for com-
pleteness.

Lemma 8.25. LetG be a directed graph an&d C E(G). An anti-parallel contraction o is a strong contraction of
E.

We now combine these edge and set contractions with the gplgelation to obtain a number of minor relations.

Definition 8.26 (Subgraph minor) Let G and’H be directed graphsg is asubgraph minonof H, G € H, if G is
isomorphic to a graph obtained froki by a sequence of edge and isolated vertex deletiohs ananti-parallel
subgraph minoof H, G €4” H, if G is isomorphic to a graph obtained fromby a sequence of edge and isolated
vertex deletions and anti-parallel contractiogsis astrong subgraph minoof H, G €® H, if G is isomorphic to a
graph obtained frori{ by a sequence of edge and isolated vertex deletions andjstomrractions.

Definition 8.27 (Topological minor) Let G and’H be directed graphsg is atopological minorof H, G 4 H, if

G is isomorphic to a graph obtained froki by a sequence of edge and isolated vertex deletions andotgipal
contractions.G is ananti-parallel topological minorof H, G #4F H, if G is isomorphic to a graph obtained from
‘H by a sequence of edge and isolated vertex deletions, anganatiel and topological contraction§. is a strong
topological minorof H, G 4 H, if G is isomorphic to a graph obtained fral by a sequence of edge and isolated
vertex deletions, and strong and topological contractions

Definition 8.28 (Butterfly minor) Let G and’H be directed graphsg is abutterfly minorof H, G <« H, if G is
isomorphic to a graph obtained frofby a sequence of edge and isolated vertex deletions andflyutentractions.

G is ananti-parallel butterfly minorof H, G <4¥ H, if G is isomorphic to a graph obtained frah by a sequence

of edge and isolated vertex deletions, and anti-paraliélarterfly contractionsg is astrong butterfly minoof H,

G <° H, if G is isomorphic to a graph obtained fraoh by a sequence of edge and isolated vertex deletions, and
strong and butterfly contractions.

Definition 8.29 (D-minor). Let G and’H be directed graphsy is aD-minor of H, G < H, if G is isomorphic to a
graph obtained from by a sequence of edge and isolated vertex deletions and actions.g is ananti-parallel
D-minor of H, G <AP H, if G is isomorphic to a graph obtained from by a sequence of edge and isolated vertex
deletions, and anti-parallel and D-contractiogisis a strong D-minorof H, G <° H, if G is isomorphic to a graph
obtained fronH by a sequence of edge and isolated vertex deletions, angysiral D-contractions.

Remark. Unlike the case for the undirected minor relation, the edu set contractions we have defined here do
not commute with edge and vertex deletion: an edge may nod¢pe eontractible until some other edges have been
deleted, and a set of edges may no longer be set contradtiblesame edges have been deleted. However, for our
definitions it is the case that the reverse holds: if an edgdge contractible before some other edges or vertices have
been deleted, then it is still edge contractible after thaedetions, and if a set of edges is set contractible afteesom
deletions then it is set contractible before those delstid®o we may assume that to obtain a minor we perform a
sequence of set contractions, followed by a sequence ofaufjsolated vertex deletions, followed by a sequence of
edge contractions.

Before we establish some results, we define a useful funatioch captures the inverse of edge contraction.
Definition 8.30 (Vertex expansion)Let < be a minor relation, and I€t and be directed graphs such that< H.

A =-vertex expansionf G to H is a function¢ : V(G) — P(V(H)) defined to b&™ in the following construction.
LetGy = G = ... = G, be a sequence of graphs such tGgt= H, G, = G andg,. is obtained frong; by a

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 121

<

AN
S]S

/S

<5

AN

<A

N

AP

_|S

NS

<

/N, N
N/ N
NN

Figure 8.2: Inclusion diagram for the introduced minor tielas

single edge deletion, vertex deletion, or edge contrattibar eachi < n define¢? : V(G;) — P(V(H)) as follows.
&) = {v}. If G;41 is obtained frong; by contracting(u, v) then&+1(v) = £ (v) U € (u) and& ™ (w) = £(w)
for all w # u, v (recall thatu ¢ V(G;41)). Otherwise we let*+! (w) = ¢ (w) forallw € V(Giy1).

Lemmas 8.23 and 8.25 imply that all the minor relations weetsavfar defined can be arranged as in the inclusion
diagram of Figure 8.2. Presently we will show that each isiclo in Figure 8.2 is strict, however first we need to show
that these minor relations are well-behaved with respedirézted connectivity.

Theorem 8.31. Let G and’H be directed graphs, witlF <° H. If k cops can capture a visible robber 61 thenk
cops can capture a visible robber ¢h

Proof. As a consequence of Lemma 6.18, it suffices to show that thdeuaf cops required decreases after either
a D-contraction or a strong contraction. léebe a<i®-vertex expansion frorg to 7. The idea is that if any of the
vertices of¢ (w) is occupied by a cop, then we occupywith a cop. Itis clear that iff is obtained fron# by strong
contractions only, then this describes a winning strategytfe cops as the robber is more restricted in his movement.
So it suffices to consider the case whgiis obtained fron?{ by a single D-contraction of the edde, v). In this
case, the robber may be able to reach some verticgghiat he could not reach iK by a directed path through the
contraction ofu andv. LetU C V(H) be the set of vertices, not includingu, for which there is a path from to w
edge disjoint from(u, v), and letV C V(H) be the set of vertices, not includingv, for which there is a path from

w to v edge disjoint from{u, v). We observe that aftéw, v) is contracted, the robber is able to move from vertices in
V to vertices inU. We argue that he can only do this once.

Since(u, v) can be D-contracted] andV are disjoint, as otherwise there would be a path froimv edge disjoint
from (u, v). Thus, any path frony to V- must include the edge:, v). For anyz € V, suppose there is a directed path
in G to somey € U such that there is a directed path frgnto somez € V. Since such a path i must go through
(u,v), it follows that there is a path fromto « and a path from to z. Thusu andy are two distinct vertices in a
cycle, as are andz, contradicting the assumption that, v) could be D-contracted.

The strategy for the cops is now as follows. Play as beforeymgngw € V(G) if some vertex iné(w) is
occupied. If the robber never moves frdmto U, then each move of the robber can be simulate@orDtherwise,
if the robber does move froi to U, he can never return 3, so we can discard this part of the graph and continue
playing the winning strategy on the subgraptaf O

We now have sufficient tools to demonstrate that each mindatioa we have defined is distinct from the others,
and that there are no other inclusions other than those weediezady identified.

1we treat set contractions as sequences of single edge dinns sag; might not necessarily be a minor 6§ 1

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 122

=4 € =B Gi Go
n H4ge° ot / N\
m <g | NS
am < g<s | N S
v) <g < I\ o—o
V) erfg < R /\
.\\7.
' I
(V) eS¢ 4P * /\
A N,
0<—o/ \.<—.
\ \

Table 8.1: Separating examples of the introduced minotiogis.

Theorem 8.32. The inclusion diagram of Figure 8.2 is strict and complete.
Proof. To prove the result, it suffices to show the following six inatjons:
0 +4¢Ze’
(I < g -+
(m < <"
(Iv) <g <5
(V) et ¢ <
(VI) €5 ¢ <4F

Now consider Table 8.1. We show that for each pair of minatiehs(=<, <’), Go < G, butG, £’ G;. Itis easy to
see that in each examplg, < G;. We therefore show that, A’ G;.

(= (1) : We observe that in each example, the grgpthas only one less edge thgn. It is easily checked
that deleting any edge frodh will not result in the graplgj,, thus the only possible way f@f, <’ G; is from edge
contractions. In (I), by symmetry any edge will suffice. Botsingle edge is contractible under strong contractions,
thusG, &° G;. In (1) and (I1), to obtain a vertex of degreg the only edge which can be contracted is the vertical
edge. However, in (I1) both endpoints of this edge have agree2 and therefore it cannot be topologically contracted,
and in (1) this edge is neither the only outgoing edge ofaitnor the only incoming edge of its head, thus it cannot

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 123

be butterfly contracted. In both cases it cannot be conttatimg a strong contraction, thus in (@) #° G;, and in
() G &5 G

(IV): This follows directly from Theorem 8.31, &k is acyclic and’, is not.

(V): We observe that it is not possible to D-contract any edgg ifmrhus ifG, is a D-minor ofG,, G, must be a D-
minor of some subgraph ¢f; with at least one edge deleted. However, only two cops angnexjto capture a robber
onG; with any edge deleted, whereas three cops are required tureaprobber os. Thus, from Theorem 8.3G;
cannot be a D-minor af;.

(VI): We observe that it is not possible to D-contract any edgé,imwithout first deleting some edges. As
anti-parallel contractions reduce the number of antiHtelna@airs of edges, we cannot obtajg from G, through anti-
parallel contractions alone. Thusgf <4” G, to obtainG, from G; we must first delete some edges. However, it is
easy to check that after any edge is deleted féamthree cops have a winning strategy to capture a visibleaobb
intuitively, removing an edge makes one of the small cyclesaker” than the others, either by removing one of the
edges which leaves the cycle, or removing one of the edgé®inyicle. The strategy for three cops is then to chase
the robber into this weaker cycle, and then use the weakoesgpture him. As four cops are required to capture the
robber onGs, it follows from Theorem 8.31 thaj, A47G;. O

Remark.Example (IV), which shows that ¢ <9, illustrates that a-minor of an acyclic graph may not necessarily
be acyclic. This supports our earlier claim tkatvas not restrictive enough to be a reasonable indicatoradtstral
simplification for directed graphs.

Before we consider some other structural properties whielpeeserved by the minor relations we have defined,
we show that the relations we have introduced include otlyggaph relations that we have already considered. First
we show that topological minors correspond to directed myifyhomeomorphisms.

Proposition 8.33. LetG andH be directed graphsy 4 if, and only if,G is homeomorphic to a subgraph&f.

Proof. Using the proof of Lemma 8.21 we see thatjifis homeomorphic to a subgraph &fthenG 4 H, as the
edge contractions used in the proof are all topologicalremtibns. For the converse, suppgkel H. Without loss

of generality, we may assuniis obtained by a sequence of edge and vertex deletions fedldwy a sequence of
topological contractions. Thug is obtained from a subgragh’ of H by a sequence of topological contractions.
Leté : V(G) — P(V(H')) be a—-vertex expansion. We show hagvcan be used to define a (directed) subgraph
homeomorphism. From the definition of topological coni@ttwe observe that for eache V(G), there is at most
oneu’ € {(u) with out-degree> 1, as otherwise it would not be possible to contrgt) to a single vertex. This
means that intuitively'[¢(u)] looks like a star with one central vertex, paths radiatingvauds, and a path from

to the central vertex. We defing: V(G) — V(H) by settingn(u) to be either the vertex ifi(«) with more than
one successor, arif there is no such vertex. We observe the following: if thedegree ofu is greater thar, then
n(u) = u; there is a directed path §{u) fromw ton(u); and there is a directed path§tw) fromn () to all vertices in
&(u) with a successor outside &fu). Now let(u,v) € E(G) be an edge igy. From the definition of edge contraction,
there existsv € £(u) such thajw, v) € E(H'). From our observations regarding:) and¢(u), it follows that there
exists a path fromy(u) to v. Since there is a path fromto n(v), it follows that there is a path from(u) to n(v).

To show this path is vertex distinct (excluding end-poifitsin any other, we observe that for any# v such that
(u,v") € E(G), the path fromy(u) to v’ is disjoint (except fom(u)) to the path fromy(u) to v, and ifu’ # wis a
predecessor af in G, thenn(v) = v, so the paths from(u) to n(v) and fromn(u’) to n(v) are disjoint. O

Now we observe that the strong subset minor relation cooredpto the strongly connected “natural” generaliza-
tion of the minor relation.

Proposition 8.34. LetG andH be digraphsG € H if, and only if, there exists an functign: V(G) — P(V(H))
which maps distinct vertices to disjoint sets such that:

e forall v € V(G), H[¢(v)] is a strongly connected graph, and
o forall (v,w) € E(G) there existgv’, w') € E(H) such that' € {(v) andw’ € &(w).

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 124

Proof. Let ¢ be ae®-vertex expansion of in H. From the definition of strong contraction and edge coniracit
follows that¢ satisfies the requirements. O

Finally we observe from Lemma 8.16 that if a minor relatiolowak anti-parallel contractions, then on bidirected
graphs the relation is equivalent to the minor relation foditected graphs.

Proposition 8.35. LetG andH be undirected graphs, and a minor relation such tha De“”. Theng < H if,
> >
andonlyifG < H.

8.2.3 Preservation results

Theorem 8.31 showed that all the minor relations we intreduespect complexity as defined by directed connectivity.
We now consider some other structural properties that @asepved under the operation of taking a minor. Our first
result shows that the taking of butterfly minors preservesmachability, or equivalently, a butterfly minor vertex
expansion preserves reachability.

Proposition 8.36. Let G and H be digraphs such tha§ <° H. Let¢ be a<®-vertex expansion of in H. Let
u,v € V(G). If there is a directed path from to v then there exists’ € £(u) andv’ € &(v) such that there is a
directed path from.’ to v’.

Proof. Clearly if G is a subgraph o then the result holds, and similarly ¢f can be obtained frorf®/ by strong
contractions. Thus it suffices to assume ifiaan be obtained frorfi by butterfly contractions. Lab € V(G) be a
vertex ofG Since&(w) butterfly contracts to a single vertex, it follows that thexésts a vertexv’ € £(w) such that
there is a path ta’ from all vertices in{(w) with in-degree greater thain and there is a path from’ to all vertices
in £(w) with out-degree greater thdn Furthermore, there is a path framto w’ and a path fromv’ to all vertices in
&(w) with a successor not if(w). If wow; - - - wy, is a path inG fromu = wp tov = w,, letw; be the vertex irg (w;)

which satisfies the above observation. It follows from thnigon of edge contraction, that for all> 0, there is a
path inH from wj to wj_ ; (in &(w;) U &(w;+1)). Thus there exists a path from = w; tov' = w;,, as required. O

Example (Ill) in Table 8.1 shows that Proposition 8.36 dagold for D-minors. However, D-minors do preserve
a more restrictive structural property: strong connettivi

Proposition 8.37. Let G and H be digraphs such thaf <° H. Let¢ be a<®-vertex expansion of in H. Let
u,v € V(G). If there are directed paths from to v and fromw to u then there exista’ € £(u) andv’ € £(v) such
that there are directed paths froni to v and fromu’ to v’.

Proof. As with Proposition 8.36, we observe that we can assumetitain be obtained frorfi{ by D-contractions.
Forw € V(G), we observe from the definition of D-contractions thét (w)] takes the following form: a directed
tree, rooted atv, such that ifw; ws - - - w,, is a path inH with wq, w,, € £(w), thenw,, is an ancestor ab; in H[&(w)].
For if this were not the case, then it would not be possible-mobtract (w) to a single vertex. The result now follows
by expanding the vertices in the cycle containingndv in a similar way to Proposition 8.36. O

8.2.4 Algorithmic results

We now consider the algorithmic aspects of the minor refatioe have defined. In particular, we are concerned with
the following decision problem:

(G, =<)-MINOR
Instance: A directed graphH
Problem: IsG <X H?

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 125

In [RS95], it was shown that for undirected graphs and thedsted minor relation(G, <)-MINOR is solvable in cubic
time, so it is worth investigating if any of the minor relat®we have defined enjoy a similar property. Unfortunately,
we show that this is not the case unless NPPTIME, as the problem is in general NP-complete for most of the
relations we have defined.

Fortune, Hopcroft and Wyllie [FHW80] showed a dichotomyulesor the directed subgraph homeomorphism
problem for a fixed pattern gragh. If G is a star, that is there is a unique source or sink which isatet head
(respectively) of every edge, then deciding if a given grajth a given node mapping has a subgraph homeomorphic
to G is solvable in polynomial time. Otherwise it is NP-compldtet surprisingly, from Proposition 8.33, this result is
partly applicable tdG, 4)-mINOR. The difference is that in [FHW80] it is assumed that the nod@ping was given.
That is, they were asking if given a node mapping could benebdd to a subgraph homeomorphism. The-)-
MINOR problem corresponds to the case when the node mapping isveot grhis case was discussed in [FHW80]
where it was observed that firstly the polynomial time resalties over, as there are at most a polynomial number
of node mappings, and secondly with some additional stradtuthe pattern graph, the node mapping required for
NP-completeness can be forced to be the only possible nopginta so the NP-completeness result holds for a large
class of directed graphs (but not quite the complement ddtidregraphs). Summarizing their results in the terminology
of this chapter gives us:

Theorem 8.38([FHW80]). If G is a directed graph which is a star thég, H)-MINOR is solvable in polynomial time.

Theorem 8.39([FHW80]). If G is a directed graph with at least four distinct verticés;, v, v3,v4} and edges
(v1,v2) and(vs, v4) such that fori < 4 the degree of; is greater tharB and different from the degree of for j # i,
then(G, -)-MINOR is NP-complete.

Corollary 8.40. Let=< be a minor relation which includes and letG be a directed graph which satisfies the require-
ments of Theorem 8.39. Théh, <)-MINOR is NP-complete.

Because of the additional structure required in the pageaph to show NP-completeness when the node mapping
is not specified, we no longer have the dichotomy result. éddeis an interesting problem to investigate the com-
plexity of the problem wheg is neither a star nor a directed graph satisfying the remeérds of Theorem 8.39, for
example if the maximum degree of any vertexgiis 3. This gives us the following problem for further investiigat

Open problem 8.41. Characterizej, < and the class of graph¥ such that(G, <)-MINOR is NP-complete

8.2.5 Well-quasi order results

We conclude this chapter by showing that only a few of thetieia we have introduced can be used to generalize
one of the most significant theorems associated with the mn@lation: theGraph Minor Theorenof Robertson and
Seymour [RS04]. Recalling the definition of a well-quasierftom Section 1.1.1, the theorem can be stated as:

Theorem 8.42(Graph Minor Theorem [RS04])The minor relation is a well-quasi order.

In particular this implies that for any infinite set of graghere is a pair of graphs such that one is the minor of the
other. From this, it follows that any family of graphs whichdlosed under the minor relation can be characterized by
a finite list offorbidden minors That is, if F is a family of graphs such th&f € F andG < H impliesG < F, then
there exists a finite set of grapk§;, ..., G,,} such thaG € F if, and only if, G; £ G for all i < m. Together with
the observation that for a fixed graghdetermining ifG is a minor of a given graph can be decided in cubic time, this
we obtain the following important algorithmic consequence

Corollary 8.43 ([RS04]). LetF be a minor-closed family of graphs. The problem of decidiggg F can be computed
in cubic time.

Thus it is an interesting problem to see if we can generdligegaraph Minor Theorem to directed graphs. Unfor-
tunately, for most of the minor relations we have defined ifinot the case.

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 126

AT

Figure 8.4: An infinite anti-chain for thec® relation

Theorem 8.44. < and <° are not well-quasi orders.

Proof. Consider the sequence of bidirected cyalgsCy, Cs, . . . pictured in Figure 8.3. Using the same argument as

in the proof of Theorem 8.32, Example (V), it is easy to see¢thadC; for i < j. Thus< is not a well-quasi order.
Now consider the sequence of graghs, C¢, . . . pictured in Figure 8.4. It is easy to see that for all even 4,

an edge irC:¥ can neither be butterfly contracted nor strong contractedittze deletion of any edge results in a graph

with an acyclic underlying graph. Thus for alk j, C® ¢° C;@, and so<* is not a well-quasi order. O

Chapter 9

Conclusion and Future work

In this dissertation we examined the role of infinite gamedimite graphs in two aspects of complexity: computa-
tional complexity and structural complexity. The reseaie$plved some unanswered questions in the literature and
opened up some interesting avenues for further researcltovdude this dissertation by recalling the major results
established, and discussing possible areas for futurg.stud

9.1 Summary of results

In Chapter 1 we stated the two main goals of this dissertatmmvestigate the computational complexity of infinite
games on finite graphs, and to use infinite games to define anthlgically useful notion of structural complexity
for directed graphs. The first of these goals was predoniinadtressed in Chapters 2, 3, 6 and 7, while the second
was catered for in Chapters 4 to 8. We now summarize the boitith each chapter made to each goal.

Complexity of Infinite Games

In Chapter 2 we considered the general class of infinite gamdmite graphs. We introduced a generalization of
bisimulation calledyame simulatiorwhich enables us to translate strategies from one game themdVe then in-
troduced the notion of aondition type which gives us a general framework for comparing many tygfegames
which occur in the literature, for examphMuller gamegMul63], Rabin game$Rab72], Streett gamefStr82] and
parity gamegMos91, EJ91]. The notion dfanslatabilitybetween condition types lets us compare the computational
complexity of two games via the expressibility and succimees of their winning conditions. We considered the com-
putational complexity of deciding the winner in Muller gasn&Ve provided polynomial time algorithms for explicitly
presented Muller games under various restrictions on théyaf sets which specified the winning condition, namely
simple games, and games where the condition is an anti-cM@showed that deciding the winner of win-set games
was BspPAceEcomplete. Following our work on translatability, it folls that the problems of deciding the winner of
Muller games where the winning condition is specified as d&fuZielonka DAG, Emerson-Lei, or a circuit condition
are all also BpAcEcomplete, thus closing one of the open problems relatingga@omplexity of Muller games that
we discussed in Chapter 1. We showed that the completermgtsrearries over to arenas of bounded tree-width for
games specified by a Muller condition. We also gave examplasion-closed and upward-closed games for which
deciding the winner is co-NP-complete. We ended the chéygtshowing how the lower bounds for deciding win-set
games can be used to establish that the non-emptiness ared-ahedking problems for Muller automata are also
Pspacecomplete, thereby resolving an open question in the fiemltdmata theory.

Our foray into the sticky world of parity games began in Cleaj8t where we analysed one of the best performing
algorithms for deciding parity games in an effort to esstbliighter bounds on the running time. We interpreted
the algorithm from a combinatorial perspective, in pataclias a method for finding a global sink on an acyclic

127

CHAPTER 9. CONCLUSION AND FUTURE WORK 128

unigue sink oriented hypercube. Using techniques from é¢oatbrics, we improved the upper bound for the running
time. We also provided an example which shows that the hyerorientations resulting from parity games are not
pseudomodular.

In Chapters 6 and 7, we demonstrated how the structure oféma affects the complexity of deciding the winner
of parity games. We used DAG-decompositions in Chapter ekaatig-decompositions in Chapter 7 to produce two
dynamic programming style algorithms for solving parityrggs. The upshot of such algorithms is that on a class of
arenas of bounded DAG-width or bounded Kelly-width, thera polynomial time algorithm for deciding the winner
of a parity game. As DAG-width and Kelly-width encompassastgraph parameters such as tree-width, this gives us
the largest class of graphs so far known on which parity garae$e solved in polynomial time.

Complexity by Infinite Games

In Chapter 4 we discussed the properties that a good meafsdigraph structural complexity should have. We cited
tree-width as an example to aspire towards, and discussgdregrwidth is not suitable as a measure for directed
graphs. We also discussed why the established notion aftddé¢ree-width from [JRSTO1] is also not entirely suitable

In Chapter 5 we introduced a framework for defining reasamatolictural complexity measures geaph search-
ing gamesa form of the infinite games we have been considering. We stidvow these games encompass many
similar games in the literature, including those that cande to characterize tree-width.

In Chapter 6 we used the work from Chapter 5 to define an exterdfi tree-width to directed graphBAG-
width. Unlike directed tree-width and Kelly-width, the definitimf a DAG-decomposition closely resembles tree
decompositions. After showing that cop-monotonicity amlokrer-monotonicity coincide in this game, we showed that
DAG-width is equivalent to the number of cops required totaegpa visible robber with a monotone strategy, thereby
demonstrating that it is a reasonable measure of struatanaplexity for directed graphs. We also showed that DAG-
width defines an algorithmically useful complexity meadwyehowing that a number of problems, including deciding
the winner of a parity game, can be solved in polynomial timgaphs of bounded DAG-width. We concluded the
chapter by demonstrating that DAG-width is markedly déferfrom three other measures defined in the literature:
tree-width, directed tree-width and directed path-width.

In Chapter 7 we considered the generalization to directaphgy of three characterizations of tree-width: partial
k-trees, elimination orderings and the cops and inert rogbewh searching game. This resultspartial k-DAGS
directed elimination orderingsand the cops and inert robber game for directed graphs. deezhthat the graph
parameters defined by these three generalizations werguiadent, and these, in turn, were equivalent to the width
of a decomposition we introduced calleHelly-decompositionAs with DAG-width, we demonstrated the algorithmic
potential of Kelly-width by exhibiting polynomial time adgithms for a number of problems, including deciding the
winner of a parity game, on graphs of bounded Kelly-width. ¥@mcluded the chapter by showing that, as with
DAG-width, Kelly-width is quite different from tree-widttdirected tree-width and directed path-width. Howevar, it
relation to DAG-width is somewhat more complex. We showed, tim the graph searching games which characterize
DAG-width and Kelly-width, a monotone winning strategy file cops in one game implies a winning strategy in
the other (with possibly twice as many cops). Without a reisuéither game relating the number of cops required
for a monotone strategy to the number of cops with a winningtegjy, we are unable to compare DAG-width and
Kelly-width directly. However, we do show that there arepjra on which DAG-width and Kelly-width differ (by an
arbitrary amount).

Finally, in Chapter 8 we presented preliminary results talsaa directed graph structure theory, based on the
notions of structural complexity we have developed. Weoithiced generalizations of havens and brambles which
appear to correspond with DAG-width and Kelly-width. Theambles for DAG-width are dual to the brambles for
Kelly-width, suggesting that DAG-width and Kelly-widthewvery closely connected. We also considered the problem
of extending the minor relation to directed graphs. We itimed a number of distinct relations ranging from the
subgraph relation to the minor relation on the underlyinditetted graphs. We showed that these relations do not
enjoy the algorithmic properties of the minor relation, a&siding if a fixed subgraph is a minor of a given graph
is, in general, NP-complete for most of the minor relatiores snsidered. We concluded the chapter by showing

CHAPTER 9. CONCLUSION AND FUTURE WORK 129

that all except two of the minor relations we introduced edminfinite anti-chains. This implies that to consider a
generalization of the Graph Minor Theorem using the minkatiens we defined, we need to use either the anti-parallel
D-minor or the strong D-minor relation.

9.2 Future work

The work we have presented in this dissertation raises a aupflinteresting questions and directions for further
research. We now discuss some of these, roughly in the drdgiatrose during the dissertation.

The exact complexity for deciding Muller games when the wigrcondition is explicitly presented remains open,
as does the question for union-closed games with an expliésented winning condition. We saw in Theorem 2.62
that if the winning condition is an anti-chain then the garae be solved efficiently. Thus it is possible that the
complexity of the former problem can be derived from the ctaxipy of the latter. This would also be an interesting
guestion to investigate.

The exact complexity for deciding parity games also remaimsnteresting open problem. Characterizing the
acyclic unique sink orientations that arise from valuagiam parity games could either establish a polynomial time
algorithm for parity games, or give a super-polynomial lolweund for the strategy improvement algorithm.

Monotonicity questions frequently arise in the study ofgfraearching games. An interesting line of research
would be to characterize the properties of graph searchémgeg necessary for monotonicity to be sufficient. For
example, extending the work of Fomin and Thilikos [FT03]. ®more specific level, for the cops and visible robber
game on directed graphs an important open problem is findme¢ption between the number of cops required for a
monotone winning strategy and the number of cops requineafdnning strategy which is not necessarily monotone.
Such a correspondence allows us to compare DAG-width witergiarameters we have considered such as D-havens
and Kelly-width. Similarly, finding a relation between thember of cops required for a robber-monotone winning
strategy and the number of cops required for a not necegsaoihotone winning strategy in the inert robber game
allows us to compare Kelly-width to other measures.

Two important questions regarding the complexity of DAGHthiand Kelly-width still remain open. First is the
guestion of whether deciding if a digraph has DAG-width astreogiven integer is in NP. Second is the question of
whether, for a fixedk if deciding whether a digraph has Kelly-width at mésis decidable in polynomial time. An
improved bound fron©(n*) on the size of a DAG-decomposition of a graph would benefifitsequestion.

Finally, the preliminary work on a structure theory baseddirected connectivity raises a number of interest-
ing questions. For example, determining the precise oelaliip between DAG-width, Kelly-width, and initial and
terminal brambles; characterizing the pattern graplfier which (G, <)-MINOR is solvable in polynomial time; de-
termining if any of the introduced minor relations is a wellasi order; and characterizing classes of graphs via
forbidden minors.

9.3 Conclusion

In conclusion, this dissertation has made a significantridmriton towards the analysis of the complexity of infinite
games and to the development of a notion of structural caxitpleor directed graphs, and opened up exciting possi-
bilities for future research. We resolved the open questiegarding the exact complexity of deciding Muller games
and Muller automata non-emptiness and model-checkingwanthade substantial progress towards answering the
guestion for parity games. We introduced two similar measwf structural complexity for directed graphs which
appear to measure thitrected connectivitpf a digraph, a metric which lies between weak connectivitgl atrong
connectivity and is distinct from both. We demonstratedrthkgorithmic benefits by providing efficient algorithms
for problems not known to be decidable in polynomial time.

Bibliography

[ACP87]

[AdIO5]

[AP89]

[Arn85]

[Bar05]

[BDHKO6]

[BFK+06]

[BGO4]

[BGHKO5]

[BL69]

[Bod8g]

[Bod96]

[Bod97]

Stefan Arnborg, Derek G. Corneil, and Andrzej Puoskvski. Complexity of finding embedding in a
k-tree.SIAM Journal on Algebraic and Discrete Metho8277-284, 1987.

Isolde Adler. Directed tree-width examples. To appinJournal of Combinatorial Theory (Series,B)
2005.

Stefan Arnborg and Andrzej Proskurowski. Lineardiadgorithms for NP-hard problems restricted to
partial k-trees DAMATH: Discrete Applied Mathematics and Combinatoriale@gtions Research and
Computer Scienc®3:11-24, 1989.

Stefan Arnborg. Efficient algorithms for combingsd problems on graphs with bounded decompos-
ability — A survey.BIT, 25:2-33, 1985.

Janos Barat. Directed path-width and monotayiiti digraph searching. To appear @raphs and
Combinatorics2005.

Dietmar Berwanger, Anuj Dawar, Paul Hunter, and@tan Kreutzer. DAG-width and parity games. In
Proceedings of the 23rd International Symposium on ThaadeAAspects of Computer Sciengages
524-536, 2006.

Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Kosteiefer Kratsch, and Dimitrios M. Thilikos.
On exact algorithms for treewidth. Proceedings of the European Symposium on Algorift2®86.

Dietmar Berwanger and Erich Gradel. Entanglemehtreasure for the complexity of directed graphs
with applications to logic and games. Rmoceedings of the 11th conference on Logic Programming and
Automated Reasoningages 209-223, 2004.

Hans L. Bodlaender, John R. Gilbert, Hjalmtyr deginsson, and Ton Kloks. Approximating treewidth,
pathwidth, frontsize, and shortest elimination tréeurnal of Algorithms18(2):238-255, 1995.

J. Richard Bichi and Lawrence H. Landweber. Solvéeguential conditions by finite-state strategies.
Transactions of the American Mathematical Sogigé88:295-311, 1969.

Hans L. Bodlaender. Dynamic programming on gragtmanded treewidth. IProceedings of the 15th
International Colloquium on Automata Languages and Progmsing volume 317 ofLecture Notes in
Computer Sciencpages 105-118, 1988.

Hans L. Bodlaender. A linear time algorithm for finditree-decompositions of small treewid®lAM
Journal on Computing?5:1305-1317, 1996.

Hans L. Bodlaender. Treewidth: Algorithmic tecués and results. IRroceedings of the 22nd Inter-
national Symposium on Mathematical Foundations of Comm&tencevolume 1295 ot ecture Notes
in Computer Scien¢c@ages 19-36, 1997.

130

BIBLIOGRAPHY 131

[Bre67]

[BRST91]

[BS91]

[BSVO03]

[CLR96]

[Cou90]

[Dam94]

[Die05]

[DIW9T7]

[DKO5]

[DKT97]

[EF99]

[EJ88]

[EJ91]

[EJSO1]

[EL85]

[FFNO5]

R. Breisch. An intuitive approach to speleotopgla§outhwestern Cavery1:72—78, 1967.

Daniel Bienstock, Neil Robertson, Paul D. Seymaumd Robin Thomas. Quickly excluding a forest.
Journal of Combinatorial Theory (Series,B2(2):274—-283, 1991.

Daniel Bienstock and Paul D. Seymour. Monotonicitygraph searching.Journal of Algorithms
12:239-245, 1991.

Henrik Bjorklund, Sven Sandberg, and Sergei Vomb On combinatorial structure and algorithms
for parity games. Technical Report 002, Uppsala Univer&igpartment of Information Technology,
January 2003.

Thomas H. Cormen, Charles E. Leiserson, and RonaRiVest. Introduction to Algorithms The MIT
Press, 1996.

Bruno Courcelle. Graph rewriting: An algebraic dogic approach. In J. van Leeuwan, editdgnd-
book of Theoretical Computer Science, Volume B: Formal Moded Semantics (Bpages 193—-242.
Elsevier, 1990.

Mads Dam. CTtand ECTL* as fragments of the modal mu-calculdheoretical Computer Science
126(1):77-96, 1994.

Reinhard DiestelGraph Theory Springer, 3rd edition, 2005.

Stefan Dziembowski, Marcin Jurdzihski, and IgoalMkiewicz. How much memory is needed to win
infinite games? IrProceedings of the 12th Annual IEEE Symposium on Logic inpgliten Science
pages 99-110, 1997.

Reinhard Diestel and Daniela Kihn. Graph minor &rehies. Discrete Applied Mathematics
145(2):167-182, 2005.

Nick D. Dendris, Lefteris M. Kirousis, and DimitreoM. Thilikos. Fugitive-search games on graphs and
related parameter3heoretical Computer Scienckr2(1-2):233—-254, 1997.

Heinz-Dieter Ebbinghaus and Jorg FluRnite Model Theory Springer, 2nd edition, 1999.

E. Allen Emerson and Charanjit S. Jutla. The compjeaf tree automata and logics of programs
(extended abstract). Froceedings for the 29th IEEE Symposium on Foundations of@iter Science
pages 328-337, 1988.

E. Allen Emerson and Charanijit S. Jutla. Tree autamau-calculus and determinacy (extended ab-
stract). InProceedings for the 32nd Annual Symposium on Foundatio@oofputer Scienceages
368-377,1991.

E. Allen Emerson, Charanjit S. Jutla, and A. PrasstthSOn model checking for the-calculus and its
fragments.Theoretical Computer Scienc258(1-2):491-522, 2001.

E. Allen Emerson and Chin-Laung Lei. Modalities foodel checking: Branching time strikes back.
In Proceedings of the 12th Annual ACM Symposium on Princifi@agramming Languagepages
84-96, 1985.

Fedor V. Fomin, Pierre Fraigniaud, and NicholassdisNondeterministic graph searching: From path-
width to treewidth. InProceedings of the 30th International Symposium on Mathieald-oundations
of Computer Scien¢&olume 3618 of.ecture Notes in Computer Scienpages 364—-375, 2005.

BIBLIOGRAPHY 132

[FGOO]

[FHTO04]

[FHWS0]

[FTO3]

[GIT79)]

[GKP98]

[GLO3]

[GLSO01]

[GMOB6]

[GTWO2]

[Hal76]
[HDO5]

[HKO7]

[HS96]

[HSLAW8S]

[1K02]

[JPZ06]

Fedor V. Fomin and Petr A. Golovach. Graph searchimg) iaterval completion.SIAM Journal of
Discrete Mathematicsl3:454-464, 2000. (electronic).

Fedor V. Fomin, Pinar Heggernes, and Jan Arne T@8leph searching, elimination trees, and a gener-
alization of bandwidthAlgorithmica 41(2):73-87, 2004.

Steven Fortune, John E. Hopcroft, and James WyTllee directed subgraph homeomorphism problem.
Theoretical Computer SciencE80.

Fedor V. Fomin and Dimitrios M. Thilikos. On the mopoicity of games generated by symmetric
submodular functiondDiscrete Applied Mathematic$31(2):323-335, 2003.

Michael R. Garey and David S. Johns@omputers and Intractability: A Guide to the Theory of NP-
CompletenessN. H. Freeman and Company, 1979.

Ronald L. Graham, Donald E. Knuth, and Oren Patdsh@ioncrete MathematicsAddison-Wesley,
1998.

John R. Gilbert and Joseph W. H. Liu. Elimination stures for unsymmetric sparse LU facto®1AM
Journal of Matrix Analysis and Application$4:334—-352, 1993.

Georg Gottlob, Nicola Leone, and Francesco SclarcBlobbers, marshals, and guards: Game theoretic
and logical characterizations of hypertree widthPhaceedings of the 20th Symposium on Principles of
Database Systempgages 195-201, 2001.

Martin Grohe and D. Marx. Constraint solving via ftmal edge covers. IRroceedings of the 17th
Symposium on Discrete Algorithppsages 289-298, 2006.

Erich Gradel, Wolfgang Thomas, and Thomas Wilkéiters. Automata Logics, and Infinite Games
volume 2500 ot ecture Notes in Computer Scien@pringer, 2002.

Rudolf Halin. S-functions for graphdournal of Geometry8(1-2):171-186, 1976.

Paul Hunter and Anuj Dawar. Complexity bounds foruksg games. IProceedings of the 30th Inter-
national Symposium on Mathematical Foundations of Comm&tincevolume 3618 ot ecture Notes
in Computer Scien¢@ages 495-506. Springer, 2005.

Paul Hunter and Stephan Kreutzer. Digraph measiebly decompositions, games, and orderings. In
Proceedings of the 18th ACM-SIAM Symposium on Discreteriftigos New York, NY, USA, 2007.
ACM Press.

Jaakko Hintikka and Gabriel Sandu. A revolution igit Nordic Journal of Philosophical Logijc
1(2):169-183, 1996.

Peter L. Hammer, Bruno Simeone, Thomas M. Liaplisnd Dominique de Werra. From linear separa-
bility to unimodality: A hierarchy of pseudo-boolean fuinects. SIAM Journal of Discrete Mathematics
1(2):174-184,1988.

Hajime Ishihara and Bakhadyr Khoussainov. Comgierf some infinite games played on finite graphs.
In Proceedings of the 28th International Workshop on Graplofétical Concepts in Computer Science
volume 2573 oLecture Notes in Computer Scien&pringer, 2002.

Marcin Jurdzihski, Mike Paterson, and Uri ZwickdAterministic subexponential algorithm for solving
parity games. IrProceedings of the 17th ACM-SIAM Symposium on Discreteriftigos pages 117—
123, 2006.

BIBLIOGRAPHY 133

[JRSTO1]

[JRSTO2]

[JurQ0]

[Kla94]

[KOO07]
[KP86]

[LaP93]

[Liu90]

[LTMNO2]

[Mar75]
[McN66]

[McNO3]

[Mos91]

[MS99]

[MTVO07]

[Mul63]

[NRY96]

[Obd03]

Thor Johnson, Neil Robertson, Paul D. Seymour,Rofiin Thomas. Directed tree-widtdournal of
Combinatorial Theory (Series B32(1):138-154, 2001.

Thor Johnson, Neil Robertson, Paul D. Seymour,Raiin Thomas. Addendum to “Directed tree-
width”, 2002. www.math.gatech.edu/~thomas/PAP/diradd.pdf.

Marcin Jurdzifski. Small progress measures fbiisg parity games. IfProceedings of the 17th Annual
Symposium on Theoretical Aspects of Computer Scietobeme 1770 ofecture Notes in Computer
Sciencepages 290-301, 2000.

Nils Klarlund. Progress measures, immediate drieacy, and a subset construction for tree automata.
Annals of Pure and Applied Logi69(2-3):243—-268, 1994.

Stephan Kreutzer and Sebastian Ordyniak. Persamahwunication, April 2007.

Lefteris M. Kirousis and Christos H. Papadimitrio&earching and pebblingTheoretical Computer
Science47(3):205-218, 1986.

Andrea S. LaPaugh. Recontamination does not hedpacch a graphlournal of the ACM40(2):224—
245, 1993.

Joseph W. H. Liu. The role of elimination trees in spafactorizationSIAM Journal of Matrix Analysis
and Applications11(1):134-172, 1990.

Salvatore La Torre, Aniello Murano, and Margheriapoli. Weak Muller acceptance conditions for
tree automata. IProceedings of the 3rd International Workshop on VerifmatiModel Checking and
Abstract Interpretationvolume 2294 ol ecture Notes in Computer Sciengages 240-254. Springer,
2002.

Donald A. Martin. Borel determinacynnals of Mathemati¢402:363-375, 1975.

Robert McNaughton. Testing and generating infisigguences by a finite automatdnformation and
Control, 9(5):521-530, 1966.

Robert McNaughton. Infinite games played on finitaghrs. Annals of Pure and Applied Logic
65(2):149-184, 1993.

Andrzej Wlodzimierz Mostowski. Games with forbeli positions. Technical Report 78, Instytut
Matematyki, Uniwersytet Gdahski, Poland, 1991.

Yishay Mansour and Satinder P. Singh. On the complefipolicy iteration. InUAI '99: Proceedings
of the Fifteenth Conference on Uncertainty in Artificialdtigence, Stockholm, Sweden, July 30-August
1, 1999 pages 401-408, 1999.

Daniel Meister, Jan Arne Telle, and Martin VatsteellCharacterization and recognition of digraphs of
bounded kelly-width. To appear in proceedings of WG, 2007.

David E. Muller. Infinite sequences and finite maasn InProceedings of the 4th IEEE Symposium on
Switching Circuit Theory and Logical Desigpages 3—-16, 1963.

Anil Nerode, Jeffery B. Remmel, and Alexander YalhirMicNaughton games and extracting strategies
for concurrent program#nnals of Pure and Applied LogiZ8(1-3):203-242, 1996.

Jan Obdrzéalek. Fast mu-calculus model checkingmntree-width is bounded. Proceedings of 15th
International Conference on Computer Aided Verificatiemlume 2725 ol ecture Notes in Computer
Sciencepages 80-92. Springer, 2003.

BIBLIOGRAPHY 134

[Obd06]

[Pap95]
[Par78]

[Rab72]

[Ros70]

[RS82]

[RS83]

[RS84]

[RS95]

[RS04]

[RT75]

[RT78]

[Saf05]

[SS05]

[ST93]

[Str82]

[SWO1]

[Tho02]

Jan Obdrzalek. DAG-width: Connectivity meastoe directed graphs. IfProceedings of the 17th
ACM-SIAM Symposium on Discrete Algorithrmpages 814-821, 2006.

Christos H. PapadimitrioComputational ComplexityAddison-Wesley, 1995.

T. D. Parsons. Pursuit-evasion in a graphilHeory and applications of graphgolume 642 olecture
Notes in Mathemati¢cpages 426—441. Springer, 1978.

Michael O. Rabin. Automata on infinite objects andrch’s problem American Mathematical Society
1972.

Donald J. Rose. Triangulated graphs and the elimoimarocessJournal of Mathematical Analysis and
Applications 32:597-609, 1970.

Arnold L. Rosenberg and Ivan Hal Sudborough. Bantiwahd pebbling.Computing 31:115-139,
1982.

Neil Robertson and Paul D. Seymour. Graph minors tliing a forest.Journal of Combinatorial
Theory (Series B35:39-61, 1983.

Neil Robertson and Paul D. Seymour. Graph minordRldnar tree-width.Journal of Combinatorial
Theory (Series B36:49-63, 1984.

Neil Robertson and Paul D. Seymour. Graph minors:Xltle disjoint path problemJournal of Com-
binatorial Theory (Series Bp3:65-110, 1995.

Neil Robertson and Paul D. Seymour. Graph minors X&gWér's conjecturelournal of Combinatorial
Theory (Series BP2:325-357, 2004.

Donald J. Rose and R. Endre Tarjan. Algorithmic atpetvertex elimination. IrfProceedings of the
seventh annual ACM Symposium on Theory of Compuytisges 245-254, 1975.

Donald J. Rose and R. Endre Tarjan. Algorithmic agpetvertex elimination on directed grapi®AM
Journal of Applied Mathematic84(1):176-197,1978.

Mohammad Ali Safari. D-width: A more natural meastor directed tree width. I®roceedings of
the 30th International Symposium on Mathematical Fourmtetiof Computer Scienceolume 3618 of
Lecture Notes in Computer Scienpages 745—-756. Springer, 2005.

Ingo Schurr and Tibor Szab6. Jumping doesn't helphstract cubes. IRroceedings of the 11th
International Integer Programming and Combinatorial Qpization Conferenggages 225-235, 2005.

Paul D. Seymour and Robin Thomas. Graph searchimaanin-max theorem for tree-widtdournal
of Combinatorial Theory (Series Bj8:22—-33, 1993.

Robert S. Streett. Propositional dynamic logicaafpging and converse is elementarily decidakbhéor-
mation and Contrql54(1-2):121-141,1982.

Tibor Szabb and Emo Welzl. Unique sink orientatiohgubes. InProceedings for the 42nd Annual
Symposium on Foundations of Computer Sciepages 547-555, 2001.

Robin Thomas. Directed tree-width. Slides from actiee at the Re-
gional NSF-CBMS Conference on Graph Structure and Decoitipos 2002.
www.math.gatech.edu/~thomas/SLIDE/CBMS/dirtrsl|.pdf.

BIBLIOGRAPHY 135

[VJ0Oa]

[VJOOb]

[WHSS]

[Yan97]

[Zie98]

Jens Voge and Marcin Jurdzihski. A discrete sgatimprovement algorithm for solving parity games.
In Proceedings of 12th International Conference on Compuiged\ Verification volume 1855 ot ec-
ture Notes in Computer Sciengeges 202—-215. Springer, 2000.

Jens Voge and Marcin Jurdzifski. A discrete sggtimprovement algorithm for solving parity games.
Technical Report 00-48, BRICS, 2000.

Kathy Williamson Hoke. Completely unimodal numbregs of a simple polytopeDiscrete Applied
Mathematics20:69-81, 1988.

M Yannakakis. Computational complexity. In Emilars and Jan K. Lenstra, editotsycal search in
combinatorial optimizationpages 19-55. Princeton University Press, 1997.

Wieslaw Zielonka. Infinite games on finitely colodrgraphs with applications to automata on infinite
trees.Theoretical Computer Scienc200:135-183, 1998.

