
Complexity and Infinite Games
on Finite Graphs

Paul William Hunter

University of Cambridge
Computer Laboratory

Hughes Hall

July 2007

This dissertation is submitted for the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of work done in collab-
oration except where specifically indicated in the text.

This dissertation does not exceed the regulation length of60 000 words, including tables and footnotes.

Complexity and Infinite Games on Finite Graphs

Paul William Hunter

Summary

This dissertation investigates the interplay between complexity, infinite games, and finite graphs. We present a
general framework for considering two-player games on finite graphs which may have an infinite number of moves
and we consider the computational complexity of important related problems. Such games are becoming increasingly
important in the field of theoretical computer science, particularly as a tool for formal verification of non-terminating
systems. The framework introduced enables us to simultaneously consider problems on many types of games easily,
and this is demonstrated by establishing previously unknown complexity bounds on several types of games.

We also present a general framework which uses infinite gamesto define notions of structural complexity for
directed graphs. Many important graph parameters, from both a graph theoretic and algorithmic perspective, can
be defined in this system. By considering natural generalizations of these games to directed graphs, we obtain a
novel feature of digraph complexity: directed connectivity. We show that directed connectivity is an algorithmically
important measure of complexity by showing that when it is limited, many intractable problems can be efficiently
solved. Whether it is structurally an important measure is yet to be seen, however this dissertation makes a preliminary
investigation in this direction.

We conclude that infinite games on finite graphs play an important role in the area of complexity in theoretical
computer science.

Acknowledgements

A body of work this large can rarely be completed without the assistance and support of many others. Any effort
to try and acknowledge all of them would undoubtedly result in one or two being left out, so I am only able to thank
those that feature most prominently in my mind at the moment.

The three people I am most indebted to fit nicely into the categories of my past, my present, and my future. Starting
with my future (it always pays to look forwards), I am particularly grateful to Stephan Kreutzer. Working with you for
a year in Berlin was a fantastic experience and I am looking forward to spending the next few years in the same city
again. Thank you for all your support and guidance.

To Sarah, with your constant encouragement (some would say nagging), I am forever indebted. Without your care
and support I might never have finished. And I would certainlynot be where or who I am today without you.

Finally, the submission of this thesis ends my formal association with the person to whom I, and this dissertation,
owe the most gratitude: my supervisor Anuj Dawar. Thank you for giving me the opportunity to work with you and
for setting me on the path to my future. You have been an inspiration as a supervisor, I can only hope that when it is
my turn to supervise PhD students I can live up to the example you have set me.

Contents

1 Introduction 1
Notation and Conventions 4

1.1.1 Sets and sequences 4
1.1.2 Graphs 4
1.1.3 Complexity 7

Collaborations 7

2 Infinite games 8
2.1 Preliminaries 9

2.1.1 Arenas 9
2.1.2 Games 10
2.1.3 Strategies 11
2.1.4 Simulations 12

2.2 Winning condition presentations 14
2.2.1 Examples 15
2.2.2 Translations 18
2.2.3 Extendibility 22

2.3 Complexity results 23
2.3.1 PSPACE-completeness .25
2.3.2 Complexity of union-closed games 29

2.4 Infinite tree automata 30

3 Strategy Improvement for Parity Games 34
3.1 The strategy improvement algorithm 34
3.2 A combinatorial perspective 37
3.3 Improving the known complexity bounds 40

4 Complexity measures for digraphs 43
4.1 Tree-width 44

4.1.1 Structural importance of tree-width 45
4.1.2 Algorithmic importance of tree-width 46
4.1.3 Extending tree-width to other structures 47

4.2 Directed tree-width 48
4.3 Beyond directed tree-width 49

iv

CONTENTS v

5 Graph searching games 51
5.1 Definitions 51

5.1.1 Strategies 53
5.1.2 Simulations 56

5.2 Examples 58
5.2.1 Cops and visible robber 58
5.2.2 Cops and invisible robber 60
5.2.3 Cave searching 60
5.2.4 Detectives and robber 61
5.2.5 Cops and inert robber 61
5.2.6 Cops and robber games 62

5.3 Complexity measures 62
5.3.1 Example: Cops and visible robber 63
5.3.2 Example: Cops and invisible robber 65
5.3.3 Example: Cops and inert robber 66
5.3.4 Example: Other resource measures 66
5.3.5 Monotonicity 67

5.4 Robustness results 68
5.4.1 Subgraphs 68
5.4.2 Connected components 69
5.4.3 Lexicographic product 72

5.5 Complexity results 74

6 DAG-width 76
6.1 Cops and visible robber game 77

6.1.1 Monotonicity 79
6.2 DAG-decompositions and DAG-width 80
6.3 Algorithmic aspects of DAG-width 87

6.3.1 Computing DAG-width and decompositions 88
6.3.2 Algorithms on graphs of bounded DAG-width 88
6.3.3 Parity Games on Graphs of Bounded DAG-Width 89

6.4 Relation to other graph connectivity measures 91
6.4.1 Undirected tree-width 91
6.4.2 Directed tree-width 92
6.4.3 Directed path-width 92

7 Kelly-width 94
7.1 Games, orderings andk-DAGs . 95

7.1.1 Inert robber game 95
7.1.2 Elimination orderings 96
7.1.3 Partialk-trees and partialk-DAGs . 97
7.1.4 Equivalence results 98

7.2 Kelly-decompositions and Kelly-width 99
7.3 Algorithmic aspects of Kelly-width 102

7.3.1 Computing Kelly-decompositions 102
7.3.2 Algorithms on graphs of small Kelly-width 104
7.3.3 Asymmetric matrix factorization 105

7.4 Comparing Kelly-width and DAG-width 107

CONTENTS vi

8 Havens, Brambles and Minors 112
8.1 Havens and brambles 112
8.2 Directed minors 116

8.2.1 What makes a good minor relation? 118
8.2.2 Directed minor relations 119
8.2.3 Preservation results 124
8.2.4 Algorithmic results 124
8.2.5 Well-quasi order results 125

9 Conclusion and Future work 127
9.1 Summary of results 127
9.2 Future work 129
9.3 Conclusion 129

References 130

Chapter 1

Introduction

The aim of this dissertation is to investigate the interplaybetween infinite games, finite graphs, and complexity. In
particular, we focus on two facets: the computational complexity of infinite games on finite graphs, and the use of
infinite games to define the structural complexity of finite graphs. To present the motivation behind this investigation,
we consider the three fundamental concepts of games, graphsand complexity.

What is a game?

Ask anyone what a game is and most people will respond with an example: chess, bridge, cricket, and so on. Almost
everyoneunderstandswhat a game is, but few people can immediately give a precise definition. Loosely speaking,
a game involves interactions between a number of players (possibly only one) with some possible outcomes, though
the outcome is not always the primary concern. The importance of games in many scientific fields arises from their
usefulness as an informal description of systems with complex interactions; as most people understand games, a
description in terms of a game can often provide a good intuition of the system. The prevalence of this application
motivates the formal study of games, which results in the useof games to provide formal definitions. Such definitions
can sometimes provide interpretations of concepts where traditional approaches are cumbersome or less than adequate.
For example, the semantics of Hintikka’s Independence Friendly logic [HS96] are readily expressed using games of
imperfect information, but the traditional Tarski-style approaches are unwieldy.

Games in computer science

Mathematical games are playing an increasingly important role in computer science, both as informal descriptions and
formal definitions. For example, tree-width, an algorithmically important graph parameter which we see frequently in
this dissertation, can be intuitively presented as a game inwhich a number of cops attempt to capture a robber on a
graph. Examples where games can provide formal definitions include interactive protocols and game semantics. An
important example of an application of games, which motivates the games we consider, is the following game that
arises when verifying if a system satisfies certain requirements.

Starting with the simple case of checking if a formula of propositional logic is satisfied by a truth assignment,
consider the following game played by two players, Verifier and Falsifier, “on” the formula. The players recursively
choose subformulas with Verifier choosing disjuncts and Falsifier choosing conjuncts until a literal is reached. If the
truth value of that literal istrue then Verifier wins, otherwise Falsifier wins. The formula is satisfiable if, and only
if, Verifier has a strategy to always win. This game is easily extended to the verification of first order formulas, with
Verifier choosing elements bounded by existential quantifiers and Falsifier choosing elements bounded by universal
quantifiers. Verifying a first order logic formula is very useful for checking properties of a static system, but often in
computer science we are also interested in formally verifying properties ofreactive systems, systems which interact
with the environment and change over time. Requirements forsuch systems are often specified in richer logics such

1

CHAPTER 1. INTRODUCTION 2

as Linear Time Logic (LTL), Computation Tree Logic (CTL) or the modalµ-calculus. This motivates the following
extension of the Verifier-Falsifier game for verifying if a reactive system satisfies a given set of requirements. The
game is played by two players, System and Environment, on thestate space of the reactive system. The current state
of the system changes, either as a consequence of some move effected by Environment, or some response by System.
System takes the role of Verifier, trying to keep the system ina state which satisfies the requirements to be verified.
Environment endeavours to demonstrate the system does not satisfy the requirements by trying to move the system
into a state which does not satisfy the requirements.

The natural abstraction of these games is a game where two players move a token around a finite directed graph
for a possibly infinite number of moves with the winner determined by some pre-defined condition. This abstrac-
tion encompasses many two-player, turn-based, zero-sum games of perfect information, and such games are found
throughout computer science: in addition to the games associated with formal verification of reactive systems, ex-
amples of games which can be specified in this manner include Ehrenfeucht-Fraı̈ssé games and the cops and robber
game which characterizes tree-width. Unsurprisingly, these games have been extensively researched, particularly in
the area of formal verification: see for example [BL69, Mul63, EJ88, Mos91, EJ91, IK02, DJW97]. Two important
questions regarding the complexity of such games are left unresolved in the literature. These are the exact complexity
of decidingMuller gamesand the exact complexity of decidingparity games. One of the goals of this dissertation is
to address these questions with an investigation of the computational complexity of deciding the winner of these types
of games.

What is a graph?

Graphs are some of the most important structures in discretemathematics. Their ubiquity can be attributed to two
observations. First, from a theoretical perspective, graphs are mathematically elegant. Even though a graph is a simple
structure, consisting only of a set of vertices and a relation between pairs of vertices, graph theory is a rich and varied
subject. This is partly due the fact that, in addition to being relational structures, graphs can also be seen as topological
spaces, combinatorial objects, and many other mathematical structures. This leads to the second observation regarding
the importance of graphs: many concepts can be abstractly represented by graphs, making them very useful from a
practical viewpoint. From an algorithmic point of view, many problems can be abstracted to problems on graphs,
making the study of graph algorithms a particularly fruitful line of research.

In computer science, many structures are more readily represented bydirected graphs, for example: transition sys-
tems, communications networks, or the formal verification game we saw above. This means that the study of directed
graphs and algorithms for directed graphs is particularly important to computer science. However, the increased de-
scriptive power of directed graphs comes at a cost: the loss of symmetry makes the mathematical theory more intricate.
In this dissertation we explore both the algorithmic and mathematical aspects of directed graphs.

What is complexity?

Just as the definition of a game is difficult to pin down, the quality of “being complex” is best described by examples
and synonyms. From an algorithmic perspective, a problem ismore complex than another problem if the latter is easier
to compute than the former. From a structural point of view, one structure is more complex than another if the first
structure contains more intricacies. These are the two kinds of complexity relevant to this dissertation:computational
complexityandstructural complexity.

In the theory of algorithms, the notion of computational complexity is well defined. In model theory however,
being structurally complex is very much a subjective notion, depending largely on the application one has in mind.
For example, a graph with a large number of edges could be considered more complex than a graph with fewer edges.
On the other hand, a graph with a small automorphism group could be considered more complex than a graph with
a large automorphism group, as the second graph (which may well have more edges) contains a lot of repetition. As
we are primarily interested in algorithmic applications inthis dissertation, we focus on the structural aspects of graphs
which influence the difficulty of solving problems. In Section 1.1.2 below, we loosely define this notion of graph
structure by describing the fundamental concepts important in such a theory.

CHAPTER 1. INTRODUCTION 3

Having established what constitutes “structure”, we turn to the problem of defining structural complexity. The
most natural way is to define some sort of measure which gives an intuition for how “complex” a structure is. In
Chapter 4, we discuss those properties that a good measure ofstructural complexity should have. But how do we find
such measures in the first place? Also in Chapter 4 we present the notion of tree-width and argue that it is a good
measure of complexity for undirected graphs. As we remarkedabove, tree-width has a characterization in terms of a
two-player game, so it seems that investigating similar games would yield useful measures for structural complexity.
Indeed this has been an active area of research for the past few years, for example: [KP86, LaP93, ST93, DKT97,
JRST01, FT03, FFN05, BDHK06, HK07]. This line of research has recently started to trend away from showing
game-theoretic characterizations of established structural complexity measures to defining important parameters from
the definition of the game, an example of the transition from the use of games as an informal description to their use as
a formal definition. Despite this activity, very little research has considered games on directed graphs. This is perhaps
partly due to the lack, for some time, of a reasonable measureof structural complexity for directed graphs.
The second major goal of this dissertation is to use infinite games to define a notion of structural complexity for
directed graphs which is algorithmically useful.

Organization of the thesis

In the remainder of this chapter we define the conventions we use throughout. Chapters 2 and 3 are primarily concerned
with the analysis of the complexity of deciding the winner ofinfinite games on finite graphs. From Chapter 4 to
Chapter 8 we investigate graph complexity measures defined by infinite games.

In Chapter 2 we formally define the games we are interested in.We introduce the notion of awinning condition type
and we establish a framework in which the expressiveness andsuccinctness of different types of winning conditions
can be compared. We show that the problem of deciding the winner in Muller games is PSPACE-complete, and use
this to show the non-emptiness and model-checking problemsfor Muller tree automata are also PSPACE-complete.

In Chapter 3 we analyse an algorithm for deciding parity games, the strategy improvement algorithm of [VJ00a].
We present the algorithm from a combinatorial perspective,showing how it relates to finding a global minimum on an
acyclic unique sink oriented hypercube. We combine this with results from combinatorics to improve the bounds on
the running time of the algorithm.

In Chapter 4 we discuss the problem of finding a reasonable notion of complexity for directed graphs. We present
the definition oftree-width, arguably one of the most practical measures of complexity for undirected graphs, and we
discuss the problem of extending the concept to directed graphs.

Building on the games defined in Chapter 2, in Chapter 5 we define thegraph searching game. We show how we
can use graph searching games to define robust measures of complexity for both undirected and directed graphs. This
framework is general enough to include many examples from the literature, including tree-width.

In Chapters 6 and 7 we introduce two new measures of complexity for directed graphs:DAG-widthandKelly-width.
Both arise from the work in Chapter 5, and both are generalizations of tree-width to directed graphs. While DAG-
width is arguably the more natural generalization of the definition of tree-width, Kelly-width is equivalent to natural
generalizations of other graph parameters equivalent to tree-width on undirected graphs, which we also introduce in
Chapter 7. We show each measure is useful algorithmically byproviding an algorithm for deciding parity games which
runs in polynomial time on the class of directed graphs of bounded complexity. We compare both measures with other
parameters defined in the literature such as tree-width, directed tree-width and directed path-width and show that these
measures are markedly different to those already defined. Finally, in Chapter 7 we compare Kelly-width and DAG-
width. We show that the two measures are closely related, butwe also show that there are graphs on which the two
measures differ.

In Chapter 8 we present some preliminary work towards a graphstructure theory for directed graphs based on DAG-
width and Kelly-width. We define generalizations of havens and brambles which seem to be appropriate structural
features present in graphs of high complexity and absent in graphs of low complexity. We also consider the problem
of generalizing the minor relation to directed graphs.

We conclude the dissertation in Chapter 9 by summarizing theresults presented. We discuss the contribution made

CHAPTER 1. INTRODUCTION 4

towards the stated research goals, and consider directionsof future research arising from this body of work.

Notation and Conventions

We assume the reader is familiar with basic complexity theory, graph theory and discrete mathematics. We generally
adopt the following conventions for naming objects.

• For elementary objects, or objects we wish to consider elementary, for example vertices or variables:a, b, c, . . .

• For sets of elementary objects:A, B, C, . . .

• For structures comprising several sets, including graphs and families of sets:A,B, C, . . .
• For more complex structures:A, B, C, . . .

• For sequences and simple functions:α, β, γ, . . .

• For more complex functions:A, B, C, . . .

1.1.1 Sets and sequences

All sets and sequences we consider in this dissertation are countable. We use bothN andω to denote the natural
numbers, using the latter when we require the linear order. We also assume that0 is a natural number.

Let A be a set. We denote byP(A) the set of subsets ofA. For a natural numberk, [A]k denotes the set of subsets
of A of sizek, and[A]≤k denotes the set of subsets ofA of size≤ k. Given two setsA andB, A∪̇B denotes their
disjoint unionandA 4 B denotes theirsymmetric difference. That is,

A 4 B := (A \B) ∪ (B \A).

For readability, we generally drop innermost parentheses or brackets when the intention is clear, particularly with
functions. For example iff : P(A)→ B, anda ∈ A, we writef(a) for f({a}).

We write sequences as wordsa1a2 · · · , using0 as the first index when the first element of the sequence is especially
significant. For a sequenceπ, |π| denotes the length ofπ (|π| = ω if π is infinite). We denote sequence concatenation
by ·. That is, ifπ = a1a2 · · ·an is a finite sequence andπ′ = b1b2 · · · is a (possibly infinite) sequence, thenπ · π′

is the sequencea1a2 · · ·anb1b2 · · · . If π = a1a2 · · · an is a finite sequence,πω is the infinite sequenceπ · π · π · · · .
Given a setA, the setA∗ denotes the set of all finite sequences of elements ofA, and the setAω denotes the set of
all infinite sequences. We say a reflexive and transitive relation ≤ on A is a well-quasi orderingif for any infinite
sequencea1a2 · · · ∈ Aω , there exists indicesi < j such thatxi ≤ xj .

Let π = a1a2 · · · andπ′ = b1b2 · · · be sequences of elements ofA. We writeπ � π′ if π is aprefixof π′, that is,
if there exists a sequenceπ′′ such thatπ′ = π · π′′. We writeπ ≤ π′ if π is asubsequenceof π′, that is, there exists a
sequence of natural numbersn1 < n2 < · · · such thatai = bni

for all i ≤ |π|.

1.1.2 Graphs

The notation we use for the graph theoretical aspects of thisdissertation generally follow Diestel [Die05], however
rather than regarding directed graphs as undirected graphswith two mapsHead andTail from edges to vertices, we
view directed graphs as relational structures. That is, adirected graph, or digraph, G consists of a set ofvertices,
denotedV (G), and anedge relation, E(G) ⊆ V (G)×V (G). We use the definition in [Die05] for anundirected graph,
that isE(G) is a subset of[V (G)]2. For an edgee = (u, v) in a directed graph, theheadof e is v and thetail is u, and
we saye goesfromu to v. To avoid ambiguities, we assume that the vertex and edge sets are disjoint. Theelementsof
a graphG, is the set defined as

Elts(G) := V (G) ∪ E(G).

CHAPTER 1. INTRODUCTION 5

We note that we could either adopt the policy of Diestel and view a directed graph as an undirected graph with
some additional structural information, or alternativelywe could view an undirected graph as a directed graph where
the edge relation is symmetric and irreflexive. We reserve those interpretations for the following two maps between
directed and undirected graphs. LetD be a directed graph. Theunderlying undirected graph ofD is the undirected
graphD where:

• V (D) = V (D), and

• E(D) =
{
{u, v} : (u, v) ∈ E(D)}.

Let G be an undirected graph. Thebidirected graph ofG is the directed graph
←→G where:

• V (
←→G) = V (G), and

• E(
←→G) =

{
(u, v), (v, u) : {u, v} ∈ E(G)}.

We extend the definition of bidirection to parts of undirected graphs. For example abidirected cycleis a subgraph
of a directed graph which is a bidirected graph of a cycle. Regarding the pair of edges{(u, v), (v, u)} arising from
bidirecting an undirected edge, we call such a pairanti-parallel. For clarity when illustrating directed graphs, we
use undirected edges to represent pairs of anti-parallel edges. For the remaining definitions, we use ordered pairs to
describe edges in undirected graphs.

Let G be an undirected (directed) graph. A(directed) pathin G is a sequence of verticesπ = v1v2 · · · such that
for all i, 1 ≤ i < |π|, (vi, vi+1) ∈ E(G). For a subsetX ⊆ V (G), the set of verticesreachablefrom X is defined as:

ReachG(X) := {w ∈ V (G) : there is a (directed) path tow from somev ∈ X}.

For a subsetX ⊆ V (G) of the vertices, the subgraph ofG inducedby X is the undirected (directed) graphG[X]
defined as:

• V (G[X]) = X , and

• E(G[X]) = {(u, v) ∈ E(G) : u, v ∈ X}.
For convenience we writeG \X for the induced subgraphG[V (G) \X]. Similarly, for a setE of edges,G[E] is the
subgraph ofG with vertex set equal to the set of endpoints ofE, and edge set equal toE.

Let v ∈ V (D) be a vertex of a directed graphD. Thesuccessors ofv are the verticesw such that(v, w) ∈ E(D).
The predecessors ofv are the verticesu such that(u, v) ∈ E(D). The successors and predecessors ofv are the
verticesadjacent tov. We sayv is aroot (ofD) if it has no predecessors, and aleaf (ofD) if it has no successors. The
outgoing edges ofv are all the edges fromv to some successor ofv, and theincoming edges ofv are all the edges from
a predecessor ofv to v. Theoutdegree ofv, dout(v) is the number of outgoing edges ofv and theindegree ofv, din(v)
is the number of incoming edges ofv. Given a subsetV ⊆ V (G) of vertices, theout-neighbourhood ofV , Nout(V) is
the set of successors of vertices ofV not contained inV .

If D is a directed acyclic graph (DAG), we write�D for the reflexive, transitive closure of the edge relation. That
is v �D w if, and only if,w ∈ ReachD(v). If v �D w, we sayv is aancestorof w andw is adescendantof v.

We denote byDop the directed graph obtained by reversing the directions of the edges ofD. That is,Dop is the
directed graph defined as:

• V (Dop) = V (D), and

• E(Dop) = (E(D))−1 = {(v, u) : (u, v) ∈ E(D)}.
In this dissertation we considertransition systemswith a number of transition relations. That is, a transitionsystem

is a tuple(S, sI , E1, E2 . . .) whereS is the set ofstates, sI ∈ S is theinitial state, andEi ⊆ S × S are the transition
relations. We observe that a transition system with one transition relation is equivalent to a directed graph with an
identified vertex.

CHAPTER 1. INTRODUCTION 6

•

• •

FF

11
11

11
1

//
• •

•

• •

•

• •

FF

11
11

11
1

//

FF

11
11

11
11

11
11

11
1

//

�����������

II

;;
;;

;;
;;

;;
;

YYYYYYYYYYY
,,

�����������

AA

**
**

**
**

**
*

eeeeeeeeeee
22

qqq MMM

G H G • H

Figure 1.1: The lexicographic product of graphsG andH

Structural relations

As we indicated earlier, the notion ofgraph structureis very much a qualitative concept. Just as the “structure” of
universal algebra is best characterized by subalgebras, homomorphisms and products, the particular graph structure
theory we are interested in is perhaps best characterized bythe following “fundamental” relations: subgraphs, con-
nected components and graph composition. As these conceptsare frequently referenced, we include their definitions.
First we have the subgraph relation.

Definition 1.1 (Subgraph). Let G andG′ be directed (undirected) graphs. We sayG is asubgraphof G′ if V (G) ⊆
V (G′) andE(G) ⊆ E(G′).
The next definition describes the building blocks of a graph,theconnected components.

Definition 1.2 (Connected components). Let G be an undirected graph. We sayG is connectedif for all v, w ∈ V (G),
w ∈ ReachG(v). A connected component ofG is a maximal connected subgraph.

It is easy to see that an undirected graph is the union of its connected components. That is, ifG1, . . . ,Gm are
the connected components ofG, thenV (G) =

⋃m
i=1 V (Gi) andE(G) =

⋃m
i=1 E(Gi). From the maximality of a

connected component, it follows that a connected componentis an induced subgraph. Thus we often view a connected
component as a set of vertices rather than a graph.

The final fundamental relation islexicographic product, also known asgraph composition.

Definition 1.3 (Lexicographic product). Let G andH be directed (undirected) graphs. Thelexicographic product of
G andH is the directed (undirected) graph,G • H, defined as follows:

• V (G • H) = V (G) × V (H), and

•
(
(v, w), (v′, w′)

)
∈ E(G • H) if, and only if, (v, v′) ∈ E(G) or v = v′ and(w, w′) ∈ E(H).

Intuitively, the graphG•H arises from replacing vertices inG with copies ofH, hence the name graph composition.
Figure 1.1 illustrates an example of the lexicographic product of two graphs.

For directed graphs we have three more basic structural concepts: weakly connected components, strongly con-
nected components and directed union. The first two are a refinement of connected components.

Definition 1.4 (Weakly/Strongly connected components). LetG be a directed graph. We sayG is weakly connectedif
G is connected. We sayG is strongly connectedif for all v, w ∈ V (G), w ∈ ReachG(v) andv ∈ ReachG(w). A weakly
(strongly) connected component ofG is a maximal weakly (strongly) connected subgraph.

We observe that a directed graph is the union of its weakly connected components. The union of the strongly
connected components may not include all the edges of the graph. However, it is easy to see that if there is an edge
from one strongly connected component to another, then there are no edges in the reverse direction. This leads to the
third structural relation specific to directed graphs.

CHAPTER 1. INTRODUCTION 7

Definition 1.5 (Directed union). Let G, G1, andG2 be directed graphs. We sayG is adirected union ofG1 andG2 if:

• V (G) = V (G1) ∪ V (G2), and

• E(G) ⊆ E(G1) ∪ E(G2) ∪ (V (G1)× V (G2)).

It follows that a directed graph is a directed union of its strongly connected components.

1.1.3 Complexity

The computational complexity definitions of this dissertation follow [GJ79]. We consider polynomial time algorithms
efficient, so we are primarily concerned with polynomial time reductions. We use standardbig-O notationto describe
asymptotically bounded classes of functions, particularly for describing complexity bounds.

Collaborations

The work in several chapters of this dissertation arose through collaborative work with others and we conclude this in-
troduction by acknowledging these contributions. The workregarding winning conditions in Chapter 2 was joint work
with Anuj Dawar and was presented at the 30th International Symposium on Mathematical Foundations of Computer
Science [HD05]. Chapter 6 arose through collaboration withDietmar Berwanger, Anuj Dawar and Stephan Kreutzer,
and was presented at the 23rd International Symposium on Theoretical Aspects of Computer Science [BDHK06]. The
concept and nameDAG-widthwere also independently developed by Jan Obdržálek [Obd06]. Finally, the work in
Chapter 7 arose through collaboration with Stephan Kreutzer and was presented at the 18th ACM-SIAM Symposium
on Discrete Algorithms [HK07].

Chapter 2

Infinite games

In this chapter we formally define the games we use throughoutthis dissertation. The games we are interested in are
played on finite or infinite graphs (whose vertices representa state space) with two players moving a token along the
edges of the graph. The (possibly) infinite sequence of vertices that is visited constitutes a play of the game, with
the winner of a play being defined by some predetermined condition. As we discussed in the previous chapter, such
games are becoming increasingly important in computer science as a means for modelling reactive systems; providing
essential tools for the analysis, synthesis and verification of such systems.

It is known [Mar75] that under some fairly general assumptions, these games are determined. That is, for any
game one player has a winning strategy. Furthermore, under the conditions we consider below, the games we consider
are decidable: whichever player wins can be computed in finite time [BL69]. We are particularly interested in the
computational complexity of deciding which player wins in these games. Indeed, this forms one of the underlying
research themes of this dissertation.

As we are interested in the algorithmic aspects of these games, we need to restrict our attention to games that can
be described in a finite fashion. This does not mean that the graph on which the game is played is necessarily finite
as it is possible to finitely describe an infinite graph. Nor does having a finite game graph by itself guarantee that the
game can be finitely described. Even with two nodes in a graph,the number of distinct plays can be uncountable and
there are more possible winning conditions than one could possibly describe. Throughout this dissertation, we are
concerned withMuller gamesplayed on finite graphs. These are games in which the graph is finite and the winner of
a play is determined by the set of vertices of the graph that are visited infinitely often in the play (see Section 2.1 for
formal definitions). This category of games is wide enough toinclude most kinds of game winning conditions that are
considered in the literature, including Streett, Rabin, B¨uchi and parity games.

Since the complexity of a problem is measured as a function ofthe length of the description, the complexity of
deciding which player wins a game depends on how exactly the game is described. In general, a Muller game is
defined by a directed graphA, and a winning conditionF ⊆ P(V (A)) consisting of a set of subsets ofV (A). One
could specifyF by listing all its elements explicitly (we call this anexplicit presentation) but one could also adopt
a formalism which allows one to specifyF more succinctly. In this chapter we investigate the role thespecification
of the winning condition has in determining the complexity of deciding regular games. Examples of this line of
research can be found throughout the literature, for instance the complexity of deciding Rabin games is known to be
NP-complete [EJ88], for Streett games it is known to be co-NP-complete. The complexity of deciding parity games
is a central open question in the theory of regular games. It is known to be in NP∩ co-NP [EJ91] and conjectured by
some to be in PTIME. In Chapters 3, 6 and 7 we explore this problem in more detail.For Muller games, the exact
complexity has not been fully investigated. In Section 2.3 we show that the complexity of deciding Muller games is
PSPACE-complete for many types of presentation.

We also establish a framework in which the expressiveness and succinctness of different types of winning con-
ditions can be compared. We introduce a notion of polynomialtime translatabilitybetween formalisms which gives
rise to a notion of game complexity stronger than that implied by polynomial time reductions of the corresponding

8

CHAPTER 2. INFINITE GAMES 9

v1

��

..

��
v2

uullllll ii
))RRRRRR v3

uullllll ii
))RRRRRR

v4

))RRRRRR v5

))RRRRRR v6

nn

v7

55llllll
v8

55llllll

v9

[[

Figure 2.1: An example of an arena

decision problems. Informally, a specification is translatable into another if the representation of a game in the first
can be transformed into a representationof the same gamein the second.

The complexity results we establish for Muller games allow us to show two important problems related to Muller
automataare also PSPACE-complete: the non-emptiness problem and the model-checking problem on regular trees.

The chapter is organised as follows. In Section 2.1 we present the formal definitions of arenas, games and strategies
that we use throughout the remainder of the dissertation. InSection 2.2 we introduce the notion of awinning condition
type, a formalization for specifying winning conditions. We provide examples from the literature and we consider the
notion of translatability between condition types. In Section 2.3 we present some results regarding the complexity
of deciding the games we consider here, including the PSPACE-completeness result for Muller games, and a co-NP-
completeness result for two games we introduce. Finally, inSection 2.4 we show that the non-emptiness and model
checking problems for Muller tree automata are also PSPACE-complete.

2.1 Preliminaries

In this section we present the definitions of arenas, games and strategies that we use throughout the dissertation. The
definitions we use follow [GTW02]. In Section 2.1.4 we introduce a generalization of bisimulation appropriate for
arenas and games,game simulation, and we show how it can be used to translate plays and strategies from one arena
to another.

2.1.1 Arenas

Our first definition is a generalization of a transition system where two entities orplayerscontrol the transitions.

Definition 2.1 (Arena). An arenais a tupleA := (V, V0, V1, E, vI) where:

• (V, E) is a directed graph,

• V0, the set ofPlayer 0 vertices, andV1, the set ofPlayer 1 vertices, form a partition ofV , and

• vI ∈ V is theinitial vertex.

Viewing arenas as directed graphs with some additional structure, we define the notions ofsubarenaand in-
duced subarenain the obvious way. Figure 2.1 illustrates an arenaA with V0(A) = {v4, v5, v6} and V1(A) =
{v1, v2, v3, v7, v8, v9}.

Given an arena,A, we consider the following set of interactions between two players: Player 0 and Player 1.1 A
token, or pebble, is placed onvI(A). Whenever the pebble is on a vertexv ∈ V0(A), Player 0 chooses a successor of
v and moves the pebble to that vertex, and similarly when the pebble is on a vertexv ∈ V1(A), Player 1 chooses the

1For convenience we use the feminine pronoun for Player 0 and the masculine pronoun for Player 1

CHAPTER 2. INFINITE GAMES 10

move. This results in a (possibly infinite) sequence of vertices visited by the pebble. We call such a sequence aplay.
More formally,

Definition 2.2 (Play). Given an arenaA andv ∈ V (A), a play inA (from v) is a (possibly infinite) sequence of
verticesv1v2 · · · such thatv1 = v and for alli ≥ 1, (vi, vi+1) ∈ E(A). If v is not specified, we assume the play is
from vI(A). The set of all plays inA from vI(A) is denoted by Plays(A).

We observe that ifA′ is a subarena ofA then Plays(A′) ⊆ Plays(A).
As an example, the infinite sequencev1v4v7v5v8v6v9v4v7(v5v2)

ω is a play in the arena pictured in Figure 2.1, as
is the finite sequencev1v4v7v5v8v6v9v4.

When one of the players has no choice of move, we may assume that there is only one player as there is no
meaningful interaction between the players.

Definition 2.3 (Single-player arena). LetA = (V, V0, V1, E, vI) be an arena. We sayA is asingle-player arenaif for
somei ∈ {0, 1} and everyv ∈ Vi, dout(v) ≤ 1.

An important concept relating to arenas and the games we consider is the notion ofduality. In the dual situation,
we interchange the roles of Player 0 and Player 1. This gives us the following definition of adual arena.

Definition 2.4 (Dual arena). Let A = (V, V0, V1, E, vI) be an arena. Thedual arena ofA is the arena defined by
Ã := (V, V1, V0, E, vI).

We observe that for each arenaA, Plays(A) = Plays(Ã).

2.1.2 Games

Arenas and plays establish the interactions that we are concerned with. We now use these to define games by imposing
outcomes for plays. The games we are interested in are zero-sum games, that is, if one player wins then the other
player loses. We can therefore define a winning condition as aset of plays that are winning for one player, say
Player 0, working on the premise that if a play is not in that set then it is winning for Player 1.

Definition 2.5 (Game). A gameis a pairG := (A, Win) whereA is an arena andWin ⊆ Plays(A). Forπ ∈ Plays(A)
if π ∈ Win, we sayπ is winning for Player 0, otherwiseπ is winning for Player 1. A single-player gameis a game
(A, Win) whereA is a single player arena.

As we mentioned earlier, to consider algorithmic aspects ofthese games we need to assume that they can be finitely
presented. Muller games are an important example of a class of finitely presentable games. With a Muller game, if a
player cannot move then he or she loses, otherwise the outcome of an infinite play is dependent on the set of vertices
visited infinitely often.

Definition 2.6 (Muller game). A gameG = (A, Win) is aMuller gameif A is finite and there existsF ⊆ P(V (A))
such that for allπ ∈ Plays(A):

π ∈Win ⇐⇒
{

π is finite and ends with a vertex fromV1(A), or

π is infinite and{v : v occurs infinitely often inπ} ∈ F .

If G is a Muller game, witnessed byF ⊆ P(V (A)), we writeG = (A,F).

As an example, consider the arenaA pictured in Figure 2.1. LetF =
{
{v2, v5}

}
. ThenG = (A,F) is a Muller

game. The playv1v4v7v5v8v6v9v4v7(v5v2)
ω is winning for Player 0, but the playv1v4v7(v5v8v6v9v4v7)

ω is winning
for Player 1.

The games used in the literature in the study of logics and automata are generally Muller games. In these games,
the setF is often not explicitly given but is specified by means of acondition. Different types of condition lead to
various different types of games. We explore this in more detail in Section 2.2.

CHAPTER 2. INFINITE GAMES 11

An important subclass of Muller games are the games where only one player wins any infinite play. Games such
as Ehrenfeucht-Fraı̈ssé games (on finite structures) [EF99] and the graph searching games we consider in Chapter 5
are examples of these types of games.

Definition 2.7 (Simple game). A Muller gameG = (A,F) is asimple gameif eitherF = ∅, orF = P(V (A)).

Two other important subclasses of Muller games which we consider in this chapter are union-closed and upward-
closed games.

Definition 2.8 (Union-closed and Upward-closed games). A Muller gameG = (A,F) is union-closedif for all
X, Y ∈ F , X ∪ Y ∈ F . G is upward-closedif for all X ∈ F andY ⊇ X , Y ∈ F .

Remark.Union-closed games are often called Streett-Rabin games inthe literature, as Player 0’s winning set can be
specified by a set of Streett pairs (see Definition 2.38 below)and Player 1’s winning set can be specified by a set of
Rabin pairs (see Definition 2.37). However, to minimize confusion, we reserve the termStreett gamefor union-closed
games with a condition presented as a set of Streett pairs, and the termRabin gamefor the dual of a union-closed game
(see below) with a condition presented as a set of Rabin pairs.

We conclude this section by considering dual games and subgames. In Definition 2.4 we defined the dual of an
arena. The dual game is played on the dual arena, but we have tocomplement the winning condition in order to fully
interchange the roles of the players. That is,

Definition 2.9 (Dual game). Let G = (A, Win) be a game. The gamẽG := (Ã, Win) whereÃ is the dual arena of
A andWin = Plays(A) \Win is thedual game ofG.

Given a game on an arenaA we can define a restricted game on a subarenaA′ by restricting the winning condition
to valid plays in the subarena.

Definition 2.10 (Subgame). Let G = (A, Win) be a game, andA′ a subarena ofA. Thesubgame induced byA′ is
the gameG′ = (A′, Win′) whereWin′ = Win ∩ Plays(A′).

2.1.3 Strategies

As with most games we are less interested in outcomes of single plays in the game and more interested in the existence
of strategies that ensure one player wins against any choiceof moves from the other player.

Definition 2.11(Strategy). LetA = (V, V0, V1, E, vI) be an arena. Astrategy (for Playeri) in A is a partial function
σ : V ∗Vi → V such that ifσ(v1v2 · · · vn) = v′ then(vn, v′) ∈ E. A playπ = v1v2 · · · is consistentwith a strategyσ
if for all j < |π| such thatvj ∈ Vi, σ(v1v2 · · · vj) = vj+1.

Given a sequence of vertices visited, ending with a vertex inVi, a strategy for Playeri gives the vertex that Playeri
should then play to. We observe that given a strategyσ for Player 0 and a strategyτ for Player 1 from any vertex
v there is a unique maximal playπσ

τ from v consistent withσ andτ in the sense that any play consistent with both
strategies is a prefix ofπσ

τ . We call this play theplay (fromv) defined by strategiesσ andτ .
A useful class of strategies are those that can be defined froma fixed number of previously visited vertices.

Definition 2.12(Strategy memory). If a strategyσ has the property that for some fixedm, σ(w) = σ(w′) if w andw′

agree on their lastm letters, then we say that the strategy requiresfinite memory(of sizem− 1). If m = 1, we say the
strategy ismemorylessor positional.

Strategies extend to games in the obvious way.

Definition 2.13(Game strategies). Given a gameG = (A, Win), astrategy for Playeri in G is a strategy for Playeri
in A. A strategyσ for Playeri is winning if all plays consistent withσ are winning for Playeri. Playeri winsG if
Playeri has a winning strategy fromvI(A).

CHAPTER 2. INFINITE GAMES 12

We observe that for any playπ = v1v2 · · · vn in a Muller game, consistent with a winning strategyσ for Playeri,
if vn ∈ Vi(A) thenσ(π) is defined.
Earlier we alluded to the following important result of Büchi and Landweber [BL69].

Theorem 2.14([BL69]). Let G = (A,F) be a Muller game. One player has a winning strategy onG with finite
memory of size at most|V (A)|!.

An immediate corollary of this is that Muller games are decidable: we can check all possible strategies for both
players that use at most|V (A)|! memory, and see if the corresponding defined plays are winning. However, the com-
plexity bounds on such an algorithm are enormous. In [McN93]McNaughton provided an algorithm with considerably
better space and time bounds.

Theorem 2.15([McN93]). Let G = (A,F) be a Muller game withA = (V, V0, V1, E, vI). Whether Player 0 has a
winning strategy fromvI can be decided in timeO(|V |2|E||V |!) and spaceO(|V |2).

For union-closed games and their duals we can reduce the memory requirement for a winning strategy.

Theorem 2.16([Kla94]). LetG = (A,F) be a Muller game. IfF is closed under unions and Player 1 has a winning
strategy, then Player 1 has a memoryless winning strategy. Dually, if the complement ofF is closed under union and
Player 0 has a winning strategy, then Player 0 has a memoryless winning strategy.

Two useful tools for constructing decidability algorithmsareforce-setsandavoid-sets.

Definition 2.17 (Force-set and Avoid-set). Let A be an arena, andX, Y ⊆ V (A). The setForcei
X(Y) is the set of

vertices from which Playeri has a strategyσ such that any play consistent withσ reaches some vertex inY without
leavingX . The setAvoidi

X(Y) is the set of vertices from which Playeri has a strategyσ such that any play consistent
with σ that remains inX avoids all vertices inY .

We observe from the definitions thatForcei
X(Y) = X \ Avoid1−i

X (Y). We also observe that we may assume the
strategiesσ are memoryless: if Playeri can force the play fromv to some vertex ofY , the play tov is irrelevant.

Computing a force-set is an instance of the well-known alternating reachability problem, and in Algorithm 2.1
we present the standard algorithm for computing a force-set. Nerode, Remmel and Yakhnis [NRY96] provide an
implementation of this algorithm which runs in timeO(|E(A)|), giving us the following:

Lemma 2.18. LetA be an arena. For any setsX, Y ⊆ V (A), Force0
X(Y) can be computed in timeO(|E(A)|)

Algorithm 2.1 FORCE0
X(Y)

Returns: The set of verticesv ∈ V (A) such that Player 0 has a strategy to force a play fromv to some element ofY
without visiting a vertex outsideX .
let R = {v ∈ V0(A) ∩X : there existsw ∈ Y with (v, w) ∈ E(A)}.
let S = {v ∈ V1(A) ∩X : for all w with (v, w) ∈ E(A), w ∈ Y }.
if R ∪ S ⊆ Y then

return Y
else

return FORCE0
X(R ∪ S ∪ Y).

2.1.4 Simulations

One of the most important concepts in transition systems is the notion of bisimulation. Two transition systems are
bisimilar if each system can simulate the other. That is,

CHAPTER 2. INFINITE GAMES 13

Definition 2.19 (Bisimulation). Let T = (S, s0, E) andT ′ = (S′, s′0, E
′) be transition systems. We sayT andT ′

arebisimilar if there exists a relation∼⊆ S × S′ such that:

• s0 ∼ s′0,

• If (s, t) ∈ E ands ∼ s′ then there existst′ ∈ S′ such that(s′, t′) ∈ E′ andt ∼ t′, and

• If (s′, t′) ∈ E′ ands ∼ s′ then there existst ∈ S such that(s, t) ∈ E andt ∼ t′.

We now consider a generalization of bisimulation appropriate for arenas.

Definition 2.20 (Game simulation). Let A andA′ be arenas. Agame simulation fromA to A′ is a relationS⊆(
V0(A)× V0(A′)

)
∪

(
V1(A)× V1(A′)

)
such that:

(SIM-1) vI(A) S vI(A′),

(SIM-2) If (u, v) ∈ E(A), u ∈ V0(A) andu S u′, then there existsv′ ∈ V (A′) such that(u′, v′) ∈ E(A′) and
v S v′, and

(SIM-3) If (u′, v′) ∈ E(A′), u′ ∈ V1(A′) andu S u′, then there existsv ∈ V (A) such that(u, v) ∈ E(A) and
v S v′.

We writeA - A′ if there exists a game simulation fromA toA′.

We observe that- is reflexive and transitive and ifA - A′ thenÃ′ - Ã. In Proposition 2.28 we show that it is
also antisymmetric (up to bisimulation).

If A - A′, then Player 0 can simulate plays onA′ as plays onA: every move made by Player 1 onA′ can be
translated to a move onA, and for every response of Player 0 inA, there is a corresponding response onA′. Dually,
Player 1 can simulate a play onA as a play onA′. More precisely,

Lemma 2.21. LetA andA′ be arenas, and letS be a simulation fromA toA′. For any strategyσ for Player 0 in
A, and any strategyτ ′ for Player 1 inA′, there exists a strategyσ′ for Player 0 inA′ and a strategyτ for Player 1
in A such that ifπ = v0v1 · · · ∈ Plays(A) is a play fromv0 = vI(A) consistent withσ andτ andπ′ = v′0v

′
1 · · · ∈

Plays(A′) is a play fromv′0 = vI(A′) consistent withσ′ andτ ′, thenvi S v′i for all i, 0 ≤ i ≤ min{|π|, |π′|}.

Proof. We defineσ′ andτ as follows. Letπ = v0v1v2 · · · vn andπ′ = v′0v
′
1 · · · v′n and supposevi S v′i for all

i, 0 ≤ i ≤ n. Suppose first thatvn ∈ V0(A) (so v′n ∈ V0(A′)) andσ(π) = vn+1. Since(vn, vn+1) ∈ E(A)
andvn S v′n, from Condition (SIM-2) there existsv′n+1 such that(v′n, v′n+1) ∈ E(A′) andvn+1 S v′n+1. Define
σ′(π′) := v′n+1. Now supposevn ∈ V1(A) (sov′n ∈ V1(A′)). Let τ ′(π′) = v′n+1 and letvn+1 be the successor of
vn, such thatvn+1 S v′n+1 guaranteed by Condition (SIM-3). Defineτ(π) = vn+1. We observe that althoughσ′ and
τ are only defined for some plays, this definition is sufficient:asv0 S v′0, it follows by induction that for every play
π′ = v′0v

′
1 · · · v′n consistent withσ′ andτ ′ there is a playπ = v0v1 · · · vn (consistent withσ) such thatvi S v′i for all

i, 0 ≤ i ≤ n. Thus ifv′n ∈ V0(A′), σ(π′) is well-defined. ut

We observe that the strategiesσ′ andτ are independently derivable fromτ ′ andσ respectively. That is, we can
interchange the∀τ ′ and∃σ′ (or the∀σ and∃τ) quantifications to obtain:

Corollary 2.22. LetA andA′ be arenas, and letS be a game simulation fromA to A′. For every strategyσ for
Player 0 inA there exists a strategyσ′ for Player 0 inA′ such that for every playv′0v

′
1 · · · consistent withσ′ there

exists a playv0v1 · · · , consistent withσ such thatvi S v′i for all i. Dually, for every strategyτ ′ for Player 1 inA′ there
exists a strategyτ for Player 1 inA such that for every playv0v1 · · · consistent withτ there exists a playv0v1 · · · ,
consistent withτ ′ such thatvi S v′i for all i.

We call the strategies which we can derive in such a mannersimulated strategies.

CHAPTER 2. INFINITE GAMES 14

Definition 2.23 (Simulated search strategy). Let A, A′, S, σ, σ′, τ andτ ′ be as above. We callσ′ a S-simulated
strategy ofσ, andτ aS-simulated strategy ofτ ′.

We can use game simulations to translate winning strategiesfrom one game into winning strategies in another.
However, we require that a simulation respects the winning condition in some sense.

Definition 2.24(Faithful simulation). Let G = (A, Win) andG′ = (A′, Win′) be games. LetS be a game simulation
fromA toA′, and letS also denote the pointwise extension of the relation to plays: π S π′ if |π| = |π′| andvi S v′i
for all vi ∈ π andv′i ∈ π′. We sayS is (Win, Win′)-faithful if for all π ∈ Plays(A) and allπ′ ∈ Plays(A′) such that
π S π′:

π ∈Win =⇒ π′ ∈Win′.

The next result follows immediately from the definitions.

Proposition 2.25. Let G = (A, Win) and G
′ = (A′, Win′) be games. LetS be a (Win, Win′)-faithful game

simulation fromA to A′. If σ is a winning strategy for Player 0 inG then anyS-simulated strategy is a winning
strategy for Player 0 inG′. Dually, if τ ′ is a winning strategy for Player 1 inG′ then anyS-simulated strategy is a
winning strategy for Player 1 inG.

For simple games checking if a game simulation is faithful isrelatively easy. It follows from the definition of a
game simulation that all finite plays automatically satisfythe criterion. Thus it suffices to check the infinite plays. But
for simple games these are vacuously satisfied in two cases:

Lemma 2.26. LetG = (A,F) andG′ = (A′,F ′) be Muller games and letS be a simulation fromA toA′. If either
F = ∅ or F ′ = P(V (A′)) thenS is faithful.

Corollary 2.27. Let G = (A,F) and G′ = (A′,F ′) be Muller games such thatF = ∅ or F ′ = P(V (A′)). If
A - A′ and Player 0 winsG, then Player 0 winsG′. Dually, ifA - A′ and Player 1 winsG′, then Player 1 winsG.

We conclude this section by showing how game simulations relate to bisimulation.

Proposition 2.28. LetA = (V, V0, V1, E, vI) andA′ = (V ′, V ′
0 , V ′

1 , E′, v′I) be arenas. IfA - A′ andA′ - A then
the transition systems(V, vI , E) and(V ′, v′I , E

′) are bisimilar.

Proof. Let S be a game simulation fromA toA′ and letS′ be a game simulation fromA′ toA. It follows from the
definitions that the relationS ∪(S′)−1 is a bisimulation between the two transition systems. ut

2.2 Winning condition presentations

As we discussed above, if we are interested in investigatingthe complexity of the problem of deciding Muller games,
we need to consider the manner in which the winning conditionis presented. As we see in Section 2.2.1, for many
games that occur in the literature relating to logics and automata the winning condition can be expressed in a more
efficient manner than simply listing the elements ofF . To formally describe such specifications, we introduce the
concept of acondition type.

Definition 2.29(Condition type). A condition typeis a functionA which maps an arenaA to a pair(IA, |=A) where
IA is a set and|=A⊆ Plays(A) × IA is theacceptance relation. We call elements ofIA condition types(or simply,
conditions). A regular condition typemaps an arenaA to a pair(IA, |=A) whereIA is a set of conditions and
|=A⊆ P(V (A))× IA.

Remark.In the sequel we will generally regard the relation|=A as intrinsically defined, and associateA(A) with the
setIA. That is, we will useΩ ∈ A(A) to indicateΩ ∈ IA.

CHAPTER 2. INFINITE GAMES 15

A (regular) condition type defines a family of (Muller) gamesin the following manner. LetA be a condition type,A an
arena, andA(A) = (IA, |=A). ForΩ ∈ IA, the game(A, Ω) is the game(A, Win) whereWin = {π ∈ Plays(A) :
π |=A Ω}. We generally call a game where the winning condition is specified by a condition of typeA anA-game, for
example aparity gameis a game where the winning condition is specified by aparity condition(see Definition 2.41
below). We can now state precisely the decision problem we are interested in.

A-GAME

Instance: A gameG = (A, Ω) whereΩ ∈ A(A).
Problem: Does Player 0 have a winning strategy inG?

The exploration of the complexity of this problem is one of the main research problems that this dissertation
addresses.

Research aim. Investigate the complexity of decidingA-GAME for various (regular) condition typesA.

2.2.1 Examples

We now give some examples of regular condition types that occur in the literature. First we observe that an instance
Ω ∈ A(A) of a regular condition typeA defines a family of subsets ofV (A):

FΩ := {I ⊆ V (A) : I |=A Ω}.

We call this theset specified by the conditionΩ. In the examples below, we describe the set specified by a condition
to define the acceptance relation|=A.

General purpose condition types

The first examples we consider are general purpose formalisms in that they may be used to specify any family of sets.
The most straightforward presentation of the winning condition of a Muller game(A,F) is given by explicitly

listing all elements ofF . We call this anexplicit presentation. We can view such a formalism in our framework as
follows:

Definition 2.30 (Explicit condition type). An instance of theexplicit condition typeis a setF ⊆ P(V (A)). The set
specified by an instance is the set which defines the instance.

In the literature an explicit presentation is sometimes called aMuller condition. However, we reserve that term for
the more commonly used presentation for Muller games in terms of colours given next.

Definition 2.31(Muller condition type). An instance of theMuller condition typeis a pair(χ, C) where, for some set
C, χ : V (A) → C andC ⊆ P(C). The setF(χ,C) specified by a Muller condition(χ, C) is the set{I ⊆ V (A) :
χ(I) ∈ C}.

To distinguish Muller games from games with a winning condition specified by a Muller condition, we explicitly
state the nature of the presentation of the winning condition if it is critical.

From a more practical perspective, when considering applications of these types of games it may be the case that
there are vertices whose appearance in any infinite run is irrelevant. This leads to the definition of awin-set condition.

Definition 2.32(Win-set condition type). An instance of thewin-set condition typeis a pair(W,W) whereW ⊆ V (A)
andW ⊆ P(W). The setF(W,W) specified by a win-set condition(W,W) is the set{I ⊆ V (A) : W ∩ I ∈ W}.

Another way to describe a winning condition is as a boolean formula. Such a formalism is somewhat closer
in nature than the specifications we have so far considered tothe motivating problem of verifying reactive systems:
requirements of such systems are more readily expressed as logical formulas. Winning conditions of this kind were
considered by Emerson and Lei [EL85].

CHAPTER 2. INFINITE GAMES 16

Definition 2.33 (Emerson-Lei condition type). An instance of theEmerson-Lei condition typeis a boolean formula
ϕ with variables from the setV (A). The setFϕ specified by an Emerson-Lei conditionϕ is the collection of sets
I ⊆ V (A) such that the truth assignment that maps each element ofI to true and each element ofV (A) \ I to false

satisfiesϕ.

A boolean formula can contain a lot of repetition, so it may bemore efficient to considerboolean circuitsrather
than formulas. This motivates one of the most succinct typesof winning condition we consider.

Definition 2.34 (Circuit condition type). An instance of thecircuit condition typeis a boolean circuitC with input
nodes from the setV (A) and one output node. The setFC specified by a circuit conditionC is the collection of sets
I ⊆ V (A) such thatC outputstrue when each input corresponding to a vertex inI is set totrue and all other inputs
are set tofalse.

The final general purpose formalisms we consider are somewhat more exotic. In [Zie98], Zielonka introduced a
representation for a family of subsets of a setV , F ⊆ P(V), in terms of a labelled tree where the labels on the nodes
are subsets ofV .

Definition 2.35 (Zielonka tree and Zielonka DAG). Let V be a set andF ⊆ P(V). TheZielonka tree(also called a
split treeof the setF ,ZF ,V , is defined inductively as:

1. If V /∈ F thenZF ,V = ZF ,V , whereF = P(V) \ F .

2. If V ∈ F then the root ofZF ,V is labelled withV . Let M1, M2, . . . , Mk be the⊆-maximal sets inF , and let
F|Mi

= F ∩ P(Mi). The successors of the root are the subtreesZF|Mi
,Mi

, for 1 ≤ i ≤ k.

A Zielonka DAGis constructed as a Zielonka tree except nodes labelled by the same set are identified, making it a
directed acyclic graph. Nodes ofZF ,V labelled by elements ofF are called0-level nodes, and other nodes are1-level
nodes.

Zielonka trees are intimately related to Muller games. In particular they identify the size of memory required for a
winning strategy: the “amount” of branching of 0-level nodes indicates the maximum amount of memory required for
a winning strategy for Player 0, and similarly for 1-level nodes and Player 1 [DJW97]. For example, the 1-level nodes
of a Zielonka tree of a union-closed family of sets have at most one successor, indicating that if Player 1 has a winning
strategy then he has a memoryless winning strategy. Thus we also consider games where the winning condition is
specified as a Zielonka tree (or the more succinct Zielonka DAG).

Definition 2.36(Zielonka tree and Zielonka DAG condition types). An instance of theZielonka tree (DAG) condition
typeis a Zielonka tree (DAG)ZF ,V (A) for someF ⊆ P(V (A)). The set specified by an instance is the setF used to
define the instance.

Other condition types

We now consider formalisms that can only specify restrictedfamilies of sets such as union-closed or upward-closed
families. The first formalism we consider is a well-known specification, introduced by Rabin in [Rab72] as an accep-
tance condition for infinite automata.

Definition 2.37 (Rabin condition type). An instance of theRabin condition typeis a set of pairsΩ = {(Li, Ri) : 1 ≤
i ≤ m}. The setFΩ specified by a Rabin conditionΩ is the collection of setsI ⊆ V (A) such that there exists ani,
1 ≤ i ≤ m, such thatI ∩ Li 6= ∅ andI ∩Ri = ∅.

The remaining formalisms we consider can only be used to specify families of sets that are closed under union.
The first of these, the Streett condition type, introduced in[Str82], is similar to the Rabin condition type.

CHAPTER 2. INFINITE GAMES 17

Definition 2.38 (Streett condition type). An instance of theStreett condition typeis a set of pairsΩ = {(Li, Ri) :
1 ≤ i ≤ m}. The setFΩ specified by a Streett conditionΩ is the collection of setsI ⊆ V (A) such that for alli,
1 ≤ i ≤ m, eitherI ∩ Li 6= ∅ or I ∩Ri = ∅.

The Streett condition type is useful for describing fairness conditions such as those considered in [EL85]. An ex-
ample of a fairness condition for infinite computations is: “every process enabled infinitely often is executed infinitely
often”. Viewing vertices of an arena as states of an infinite computation system where some processes are executed
and some are enabled, this is equivalent to saying “for everyprocess, either the set of states which enable the process
is visited finitely often or the set of states which execute the process is visited infinitely often”, which we see is easily
interpreted as a Streett condition.

The Streett and Rabin condition types are dual in the following sense: for any setF ⊆ P(V (A)) which can be
specified by a Streett condition, there is a Rabin condition which specifiesP(V (A)) \ F , and conversely. Indeed, if
Ω = {(Li, Ri) : 1 ≤ i ≤ m} is a Streett condition, then for the Rabin conditionΩ̃ = {(Ri, Li) : 1 ≤ i ≤ m} we have
FΩ̃ = P(V (A)) \ FΩ. This implies that the dual of a Streett game can be expressedas a Rabin game, and conversely
the dual of a Rabin game can be expressed as a Streett game.

If we are interested in specifying union-closed families ofsets efficiently, we can consider the closure under union
of a given set. This motivates the following definition:

Definition 2.39 (Basis condition type). An instance of thebasis condition typeis a setB ⊆ P(V (A)). The set
FB specified by a basis conditionB is the collection of setsI ⊆ V (A) such that there areB1, . . . , Bn ∈ B with
I =

⋃
1≤i≤n Bi.

In a similar manner to the basis condition type, if we are interested in efficiently specifying an upward-closed
family of sets, we can explicitly list the⊆-minimal elements of the family. This gives us thesuperset condition type,
also called asuperset Muller conditionin [LTMN02].

Definition 2.40 (Superset condition type). An instance of thesuperset condition typeis a setM ⊆ P(V (A)). The
setFM specified by a superset conditionM is the set{I ⊆ V (A) : M ⊆ I for someM ∈ M}.

The final formalism we consider is one of the most important and interesting Muller condition types, theparity
condition type.

Definition 2.41 (Parity condition type). An instance of theparity condition typeis a functionχ : V (A) → P where
P ⊆ ω is a set ofpriorities. The setFχ specified by a parity conditionχ is the collection of setsI ⊆ V (A) such that
max{χ(v) : v ∈ I} is even.

Remark.We have technically defined here themax-parity condition. There is an equivalent formalism sometimes
considered where the parity of theminimumpriority visited infinitely often determines the winner, called themin-
parity condition. Throughout this dissertation we only consider the max-parity condition.

It is not difficult to show that the set specified by a parity condition is closed under union as is the complement of
the set specified. Therefore, from Theorem 2.16 we have the following:

Theorem 2.42(Memoryless determinacy of parity games [EJ91, Mos91]). Let G = (A, χ) be a parity game. The
player with a winning strategy has a winning strategy which is memoryless.

Indeed, any union-closed set with a union-closed complement can be specified by a parity condition, implying
that the parity condition is one of the most expressive conditions where memoryless strategies are sufficient for both
players. This result is very useful in the study of infinite games and automata: one approach to showing that Muller
automata are closed under complementation is to reduce the problem to a parity game, and utilise the fact that if
Player 1 has a winning strategy then he has a memoryless strategy to construct an automaton which accepts the
complementary language [EJ91].

One of the reasons why parity games are an interesting class of games to study is that the exact complexity of the
problem of deciding the winner remains elusive. In Chapter 3we discuss this and other reasons why parity games are
important in more detail.

CHAPTER 2. INFINITE GAMES 18

2.2.2 Translations

We now present a framework in which we can compare the expressiveness and succinctness of condition types by
considering transformations between games which keep the arena the same. More precisely, we define what it means
for a condition type to betranslatableto another condition type as follows.

Definition 2.43 (Translatable). Given two condition typesA andB, we say thatA is polynomially translatableto B

if for any arenaA, with A(A) = (IA
A

, |=A
A

) andB(A) = (IA
B

, |=A
B

), there is a functionf : IA
A
→ IA

B
such that for

all Ω ∈ IA
A

:

• f(Ω) is computed in time polynomial in|A|+ |Ω|, and

• For allπ ∈ Plays(A), π |=A
A

Ω ⇐⇒ π |=A
B

f(Ω).

As we are only interested in polynomial translations, we simply say A is translatableto B to mean that it is
polynomially translatable. Clearly, if condition typeA is translatable toB then the problem of deciding the winner
for games of typeA is reducible in polynomial time to the corresponding problem for games of typeB. That is,

Lemma 2.44. Let A andB be condition types such thatA is translatable toB. Then there is a polynomial time
reduction fromA-GAME to B-GAME.

If condition typeA is not translatable toB this may be for one of three reasons. EitherA is more expressive than
B in that there are setsF that can be expressed using conditions fromA but no condition fromB can specifyF ;
or there are some sets for which the representation of typeA is necessarily more succinct; or the translation, while
not size-increasing, can not be computed in polynomial time. We are primarily interested in the second situation.
Formally, we say

Definition 2.45(Succinctness). A is more succinctthanB if B is translatable toA butA is not translatable toB.

We now consider translations between some of the condition types we defined in Section 2.2.1.

Translations between general purpose condition types

It is straightforward to show that win-set conditions are more succinct than explicit presentations. To translate an
explicitly presented game(A,F) to a win-set condition, simply takeW = V (A) andW = F . To show that win-set
conditions are not translatable to explicit presentations, consider a game whereW = ∅ andW = {∅}. The setF(W,W)

specified by this condition consists of all subsets ofV (A) and thus an explicit presentation must be exponential in
length.

Proposition 2.46. The win-set condition type is more succinct than an explicitpresentation.

Similarly, there is a trivial translation from the Emerson-Lei condition type to the circuit condition type. However,
the question of whether there is a translation in the other direction is an important open problem in the field of circuit
complexity [Pap95].

Open problem 2.47. Is the circuit condition type more succinct than the Emerson-Lei condition type?

We now show, through the next theorems, that circuit presentations are more succinct than Zielonka DAG presen-
tations, which, along with Emerson-Lei presentations, aremore succinct than Muller presentations, which are in turn
more succinct than win-set presentations.

Theorem 2.48. The Muller condition type is more succinct than the win-set condition type.

Proof. Given a win-set game
(
A, (W,W)

)
, we construct a Muller condition describing the same set of subsets as

(W,W). For the set of colours we useC = W ∪ {c}, wherec is distinct from any element ofW . The colouring
functionχ : V (A)→ C is then defined as:

CHAPTER 2. INFINITE GAMES 19

• χ(w) = w for w ∈ W ,

• χ(v) = c for v /∈W .

The familyC of subsets ofC is the set
{
X, X ∪ {c} : X ∈ W

}
. For I ⊆ V , if I ⊆ W , thenχ(I) = I otherwise

χ(I) = {c} ∪ I. Either way,I ∩W is inW if, and only if,χ(I) ∈ C.
To show that there is no translation in the other direction, consider a Muller game onA, where half ofV (A),

Vr, is coloured red, the other half coloured blue, and the family of sets of colours isC =
{
{red}

}
. The familyF

described by this condition consists of the2|V (A)|/2−1 non-empty subsets ofVr. Now consider trying to describe this
family using a win-set condition. In general, for the setF ′ specified by the win-set condition(W,W), anyv /∈ W ,
andX ⊆ V (A) we have{v} ∪ X ∈ F ′ ⇔ X ∈ F ′. Observe that in our game no vertex has this latter property:if
v ∈ Vr, then{v} ∈ F , but ∅ /∈ F ; and if v /∈ Vr then{v} ∪ Vr /∈ F , but Vr ∈ F . Thus our win-set,W must be
equal toV (A), andW is the explicit listing of the2|V (A)|/2 − 1 subsets ofVr. Thus(W,W) cannot be produced in
polynomial time. ut

Theorem 2.49. The Zielonka DAG condition type is more succinct than the Muller condition type.

Proof. Given a Muller game consisting of an arenaA = (V, V0, V1, E, vI), a colouringχ : V → C and a familyC
of subsets ofC, we construct a Zielonka DAGZF ,V which describes the same set of subsets ofV (A) as the Muller
condition(χ, C). Consider the Zielonka DAGZC,C , whose nodes are labelled by sets of colours. If we replace a label
L ⊆ C in this tree with the set{v ∈ V : χ(v) ∈ L} then we obtain a Zielonka DAGZF ,V over the set of vertices. We
argue thatF is, in fact, the set specified by the Muller condition(χ, C) and then show thatZC,C can be constructed in
polynomial time. Since the translation fromZC,C toZF ,V involves an increase in size by at most a factor of|V |, this
establishes that Muller games are translatable to ZielonkaDAGs.

Let I ⊆ V be a set of vertices. IfI ∈ F then, by the definition of Zielonka DAGs,I is a subset of a labelX of a
0-level nodet of ZF ,V and is not contained in any of the labels of the 1-level successors oft. That is, for each 1-level
successoru of t, there is a vertexv ∈ I such thatχ(v) 6∈ χ(Lu) whereLu is the label ofu. Moreover,χ(I) ⊆ χ(X).
Now χ(X) is, by construction, the label of a 0-level node ofZC,C and we have established thatχ(I) is contained
in this label and is not contained in any of the labels of the 1-level successors of that node. Therefore,χ(I) ∈ C.
Similarly, by interchanging 0-level and 1-level nodes,χ(I) /∈ C if I /∈ F .

To show that we can constructZC,C in polynomial time, observe first that every subsetX ⊆ C has at most|C|
maximal subsets. Note further that the label of any node inZC,C is eitherC, some element ofC or a maximal (proper)
subset of an element ofC. Thus,ZC,C is no larger than1 + |C|+ |C||C|. This bound on the size of the DAG is easily
turned into a bound on the time required to construct it, using the inductive definition of Zielonka trees. Thus, we have
shown that the Muller condition type is translatable into the Zielonka DAG condition type.

To show there is no translation in the other direction, consider the familyF of subsets ofV (A) which consist of
2 or more elements. The Zielonka DAG which describes this family consists of|V (A)| + 1 nodes – one 0-level node
labelled byV (A), and|V (A)| 1-level nodes labelled by the singleton subsets ofV (A). However, to express this as a
Muller condition, each vertex must have a distinct colour since for any pair of vertices there is a set inF that contains
one but not the other. Thus,|C| = |F| = 2|V (A)| − |V (A)| − 1. It follows that the translation from Zielonka DAGs to
Muller conditions cannot be done in polynomial time. ut

To show the remaining results, we use the following observation:

Lemma 2.50. There is no translation from the Emerson-Lei condition typeto the Zielonka DAG condition type.

Proof. Let V (A) = V = {x1, . . . , x2k}, and consider the family of setsF described by the formula

ϕ :=
∨

1≤i≤k

(x2i−1 ∧ x2i).

Clearly |ϕ| = O(|V (A)|). Now consider the Zielonka DAGZF ,V describingF . As V ∈ F , the root ofZF ,V is a 0-
level node labelled byV . The maximal subsets ofV not inF are the2k subsets containing exactly one of{x2i−1, x2i}

CHAPTER 2. INFINITE GAMES 20

for 1 ≤ i ≤ k. ThusZF ,V must have at least this number of nodes, and is therefore not constructible in polynomial
time. ut
Theorem 2.51. The Emerson-Lei condition type is more succinct than the Muller condition type.

Proof. Given a Muller game consisting of an arenaA, a colouringχ : V (A)→ C and a familyC of subsets ofC, let
ϕ be the boolean formula defined as:

ϕ :=
∨

X∈C

(∧

c∈X

(∨

χ(v)=c

v
)
∧

∧

c/∈X

(∧

χ(v)=c

¬v
))

.

It is easy to see that a subsetI ⊆ V (A) satisfiesϕ if, and only if, there is some setX ∈ C such that for all colours
c ∈ X there is somev ∈ I such thatχ(v) = c and for all coloursc′ /∈ X there is nov ∈ I such thatχ(v) = c′. Since
ϕ can clearly be constructed in time polynomial in|C|+ |V (A)|, it follows that there is a translation from the Muller
condition type to the Emerson-Lei condition type.

For the reverse direction, we observe that as there is a translation from the Muller condition type to the Zielonka
DAG condition type, if there were a translation from the Emerson-Lei condition type to the Muller condition type, this
would contradict Lemma 2.50 as “translatability” is transitive. ut
Theorem 2.52. The circuit condition type is more succinct than the Zielonka DAG condition type.

Proof. Given a Zielonka DAG game(A,ZF ,V) whereV = V (A), we define, for each nodet in ZF ,V a boolean
circuit Ct. This circuit is defined by induction on the height oft. For convenience, we associate each circuit with its
output node. Suppose the label oft is X . We have the following cases:

(i) t is a 0-level (X ∈ F) leaf: In this case, letCt =
∧

x/∈X ¬x.

(ii) t is a 1-level (X /∈ F) leaf: In this case, letCt =
∨

x/∈X x.

(iii) t is a 0-level node withk successorst1, . . . , tk: In this case, letCt =
∧

x/∈X ¬x ∧
∧k

i=1 Cti
.

(iv) t is a 1-level node withk successorst1, . . . , tk: In this case, letCt =
∨

x/∈X x ∨∨k
i=1 Cti

.

We claim that the conditionF is specified by the circuitCr wherer is the root ofZF ,V . This formula has size at most
|V (A)||ZF ,V | and is constructed in polynomial time. To show its correctness we argue by induction on the height of
any nodet with labelX thatCt defines the restriction ofF to X . We consider the following cases:

(i) t is a 0-level leaf. In this case any subset ofX is inF . I ⊆ V (A) satisfiesCt if, and only if, no variable that is
not inX appears inI, that isI ⊆ X .

(ii) t is a 1-level leaf. In this case any subset ofX is not inF . HereI ⊆ V (A) satisfiesCt if, and only if, there is
some element inI which is not inX , that isI 6⊆ X .

(iii) t is a 0-level node withk successors labelled byX1, . . . , Xk. In this case any subset ofX is in F unless it is
a subset ofXi for somei, in which case whether it is inF is determined by nodes lower in the DAG. Here
I ⊆ V (A) satisfiesCt if, and only if,I is a subset ofX andI satisfiesCti

for all successors.

(iv) t is a 1-level node withk successors labelled byX1, . . . , Xk. In this case any subset ofX is not inF unless it is
a subset ofXi for somei. HereI ⊆ V satisfiesCt if, and only if, eitherI is not contained inX , or there is some
successorti such thatI satisfiesCti

.

We observe that as there is a translation from the Emerson-Lei condition type to the circuit condition type,
Lemma 2.50 implies there is no translation from the circuit condition type to the Zielonka DAG condition type. ut

Figure 2.2 summarizes the succinctness results we have so far shown, with the more succinct types towards the top.
The dashed edge indicates that there is a translation but it is not known whether there is a translation in the opposite
direction.

CHAPTER 2. INFINITE GAMES 21

CIRCUIT

UUUU
iiiiiiii

ZIELONKA DAG
UUUUUUUU EMERSON-LEI

iiiiiii

MULLER

WIN-SET

EXPLICIT

Figure 2.2: Summary of the succinctness results

Translations between union-closed condition types

Turning to union-closed condition types, we observe that the basis condition type is a succinct way of describing union-
closed sets. It is not even known if it is translatable to the circuit condition type, the most succinct type considered
above. In Section 2.3.2 we show that the problem of deciding basis games is co-NP-complete. It follows from the
NP-completeness of Rabin games [EJ88], and duality that theproblem of deciding Streett games is co-NP-complete.
The following result implies that we cannot use translatability to obtain upper or lower bounds on the complexity of
basis games based on the known bounds for Streett games.

Theorem 2.53.The basis and Streett condition types are incomparable withrespect to translatability. That is, neither
is translatable to the other.

Proof. To show there is no translation from Streett games to basis games, letV (A) = {x1, . . . , x2k}, and consider
the Streett game with winning condition described by the pairs

{
(Li, ∅) : 1 ≤ i ≤ k

}
, whereLi = {x2i−1, x2i}. Note

that the family of sets described by this condition isF =
{
X ⊆ V (A) : ∀i X 6⊆ V (A) \ Li

}
. Any basis forF must

include the minimal elements ofF . However, the minimal elements include

M =
{
{v1, . . . , vk} : vi ∈ {x2i−1, x2i}

}
,

and|M| = 2k. ThusF cannot be represented by a basis constructible in polynomial time.
To show there is no translation in the other direction, letV (A) = {x1, . . . , x2k}, and consider the familyF of sets

formed by closing
B =

{
{x2i−1, x2i} : 1 ≤ i ≤ k

}

under union. Note that this is the same construction as for the proof of Theorem 2.52. Observe thatF contains2k − 1
sets, each with an even number of elements. Any Streett condition which describes the same family must contain at
least this number of pairs in order to exclude the sets of odd cardinality. ThusF cannot be represented by a Streett
condition which is constructible in polynomial time. ut

It should be clear that the superset condition type is translatable to the basis condition type. We include the result
for completeness.

Proposition 2.54. The superset condition type is translatable to the basis condition type.

We conclude these results with the following two observations regarding translations between explicit presentations
and the basis and superset condition types.

Proposition 2.55. The superset condition type is more succinct than an explicit presentation of an upward-closed set.

Proof. Given an explicitly presented upward-closed game(A,F), the setF , viewed as a superset condition, clearly

describes the same set of subsets ofV (A). Conversely, for the superset game
(
A,

{
{v} : v ∈ V (A)

})
, the set

CHAPTER 2. INFINITE GAMES 22

described by the winning condition is of size2|V (A)| − 1, and therefore cannot be explicitly presented in polynomial
time. ut

Corollary 2.56. The basis condition type is more succinct than an explicit presentation of a union-closed set.

Proof. The fact that the basis condition type is not translatable toan explicit presentation follows from Proposition 2.55
and Proposition 2.54 as “translatable” is transitive. The other direction is straightforward, the explicit presentation
itself suffices as a basis. ut

2.2.3 Extendibility

We now introduce a property of condition types that allows usto make simplifying assumptions about the arena. We
say a regular condition type isextendibleif it can “ignore” a set of added vertices. More precisely,

Definition 2.57 (Extendible condition type). Let A be a regular condition type. We sayA is extendibleif for any
arenasA andA′ such thatV (A) ⊆ V (A′), and any instanceΩ ∈ A(A), there is an instanceΩ′ ∈ A(A′), computable
in time polynomial in|Ω|+ |V (A′)|, such thatFΩ′ = {I ⊆ V (A′) : I ∩ V (A) ∈ FΩ}.

We observe that if|V (A′)| − |V (A)| = m, then|FΩ′ | = 2m|FΩ|, so in particular, an explicit presentation is not
extendible. However, all the other condition types we have so far considered are extendible.

Proposition 2.58. The following condition types are extendible: Muller, circuit, Emerson-Lei, Zielonka tree/DAG,
win-set, parity, Rabin, Streett, basis, and superset.

Proof. Let us fix arenasA andA′ such thatV (A) ⊆ V (A′). We show for each condition type above how to compute
the required instanceΩ′ from a givenΩ. It follows from the definitions that for the circuit, Emerson-Lei, win-set,
Rabin, Streett and superset conditions takingΩ′ = Ω suffices. So let us consider the other condition types.

SupposeΩ = (χ, C) is a Muller condition instance withχ : V (A) → C. We defineΩ′ = (χ′, C′) as follows. Let
C′ = C ∪ {c} wherec is not an element ofC. We define

χ′(v) :=

{
χ(v) if v ∈ V (A)

c otherwise

and we defineC′ := C ∪ {I ∪ {c} : I ∈ C}. (χ′, C′) is clearly computable in time polynomial in|Ω| + |V (A′)|, and
for everyI ⊆ V (A′) we haveχ′(I) ∈ C′ if, and only if,χ(I ∩ V (A)) ∈ C. ThusΩ′ is as required.

Similarly, if Ω = (χ, P) is a parity condition, we letP′ = P ∪ {p} for some oddp < min{χ(v) : v ∈ V (A)}
and defineχ′(v) = p for v /∈ V (A), andχ(v) = v otherwise. For any setI ⊆ V (A′), if I ∩ V (A) 6= ∅ then
max{χ′(v) : v ∈ I} = max{χ(v) : v ∈ I ∩ V (A)}, soI ∈ FΩ′ if, and only if, I ∩ V (A) ∈ FΩ. Otherwise, if
I ∩ V (A) = ∅, thenmin{χ′(v) : v ∈ I} = p, and as∅ /∈ FΩ andp is odd, we haveI /∈ FΩ′ andI ∩ V (A) /∈ FΩ.
ThusΩ′ is as required.

Given a Zielonka structureZF ,V whereV = V (A), consider the Zielonka structureΩ′ = ZF ′,V ′ , whereV ′ =
V (A′), defined by addingV (A′) \ V (A) to each label. That is, ift is a node inZF ,V , labelled byX ⊆ V , thent is a
node inZF ′,V ′ labelled byX ∪ (V (A′)\V (A)). Now considerI ∈ F ′. From the definition of a Zielonka structure,I
is a subset of a label of a 0-level nodet and not a subset of a label of any of the successors oft. Supposet is labelled,
in ZF ,V , byX , soI ⊆ X∪(V ′ \V). ThusI∩V (A) ⊆ X . Now supposeI∩V (A) is a subset ofY , a label (inZF ,V)
of a successor oft. It follows thatI ⊆ Y ∪ (V ′ \ V), and soI is a subset of a label (inZF ′,V ′) of a successor oft,
contradicting the choice oft. SoI ∩V (A) ∈ F . Interchanging the roles of 0-level nodes and 1-level nodesestablishes
that if I /∈ F ′ thenI ∩ V (A) /∈ F . ThusΩ′ is as required.

Finally, given an instance of a basis condition typeΩ = B, we defineΩ′ = B′ as follows:

B′ = B ∪
{
{v} : v ∈ V (A′) \ V (A)

}
.

CHAPTER 2. INFINITE GAMES 23

SupposeI =
⋃n

i=1 Bi for setsB1, . . . , Bn ∈ B′, where for somem ≤ n, Bi ∈ B for i ≤ m. From the definition of
B′, it follows thatI ∩V (A) =

⋃m
i=1 Bi, soI ∩V (A) ∈ FΩ. Conversely, ifI∩V (A) ∈ FΩ, let I∩V (A) =

⋃m
i=1 Bi.

From the definition ofB′, there existsBm+1, . . . , Bn ∈ B′ such thatI \ V (A) =
⋃n

i=m+1 Bi. SoI =
⋃n

i=1 Bi for
B1, . . . , Bn ∈ B′ and henceI ∈ FΩ′ . ut

Given a game with a winning condition specified by an extendible condition type, we can add vertices to the arena
without significantly changing the size of the instance. This enables us to assume that the arena has a very simple
structure.

Theorem 2.59. Let A be an extendible regular condition type andG = (A, Ω) be a Muller game withΩ ∈ A(A).
Then there exists a Muller game(A′, Ω′) with Ω′ ∈ A(A′), computable in time polynomial in||G||, such that:

(i) A′ is a bipartite graph withE(A′) ⊆ (V0(A′)× V1(A′)) ∪ (V1(A′)× V0(A′)),

(ii) All vertices inV0(A′) have out-degree at most 2, and

(iii) Player 0 winsG if, and only if, she winsG′.

Proof. We constructA′ fromA in a series of stages by adding vertices and adding and replacing edges, soV (A) ⊆
V (A′). We observe that the resulting arena has size polynomial in|A|, so it can be constructed in polynomial time.
We then use the definition of extendible condition type to obtain the winning conditionΩ′ from Ω. Since the size of
A′ is polynomial in the size ofA, we can computeΩ′ in time polynomial in|Ω|+ |A|. It is clear from the definition of
extendible condition types that in the resulting game Player 0 wins fromvI(A) if, and only if, she wins fromvI(A′).
Thus it remains to show the first two conditions may be met withat most a polynomial increase in the size of the arena.

First we ensure all vertices inV0(A′) have out-degree at most 2. Ifv ∈ V0(A) has out-degreem > 2, we replace
them outgoing edges fromv with a binary branching tree, rooted atv, with m leaves – the successors ofv. We observe
that this requires adding at mostm vertices andm edges. Each of the newly added vertices are added toV1(A). After
repeating this for all vertices inV0(A), the resulting arenaA′ has at most|V (A)| + |E(A)| vertices, and2|E(A)|
edges, and every vertex inV0(A′) has out-degree at most 2.

Now suppose all vertices inA have out-degree at most 2. For each edgee = (u, v) ∈ E(A) such thatu, v ∈ V0(A)
(u, v ∈ V1(A)), add a vertexve to V1(A) (V0(A)) and replace the edgee with edges(u, ve) and (ve, v). After
repeating this for all edges inE(A), the resulting arenaA′ has at most|V (A)|+ |E(A)| vertices, and2|E(A)| edges,
andE(A′) ⊆ V0(A′)× V1(A′) ∪ V1(A′)× V0(A′). ut

2.3 Complexity results

In this section we consider the complexity of deciding whether Player 0 has a winning strategy in a Muller game
when the winning condition is specified using some of the formalisms we have considered. We show that the problem
of deciding Muller games in which the winning condition is specified by a win-set condition is PSPACE-complete.
It follows from our results on translatability that the decision problems for Muller games with winning condition
specified by a Muller condition, Zielonka DAG or an Emerson-Lei condition are all also PSPACE-complete. We also
show that the decision problems for basis and superset gamesare co-NP-complete.

We first consider some upper bounds. A well-known result is that simple games can be decided in linear time.

Theorem 2.60. LetG = (A,F) be a simple game. Whether Player 0 winsG can be decided in timeO(|E(A)|).

Proof. SupposeF = ∅, the case whenF = P(V (A)) is dual. LetW ⊆ V1(A) be the set of vertices inV1(A) with
no outgoing edges. We observe that Player 0 wins fromvI(A) if, and only if, Player 0 can force the play to a vertex
v ∈ W . Thus, Player 0 has a winning strategy if, and only if,vI(A) ∈ Force0

A(W). The required complexity bound
then follows from Lemma 2.18. ut

In [IK02], Ishihara and Khoussainov considered the following restriction on explicitly presented Muller games:

CHAPTER 2. INFINITE GAMES 24

Definition 2.61 (Fully Separated game). Let G = (A,F) be an explicitly presented Muller game. We sayG is fully
separatedif for eachX ∈ F there existsvX ∈ X such thatvX /∈ Y for all Y ∈ F , Y 6= X .

Khoussainov showed that the winner of a fully separated gamecan be decided in timeO(|V (A)|2|E(A)|). We now
prove a generalization of this result by showing that explicitly presented Muller games can be decided in polynomial
time if the winning condition is an anti-chain with respect to the subset relation.

Theorem 2.62. LetG = (A,F) be an explicitly presented Muller game such thatF is an anti-chain, that is,X 6⊆ Y
for all X, Y ∈ F . Whether Player 0 winsG can be decided in timeO(|F||V (A)|2|E(A)|).

Proof. Consider the algorithm ANTICHAIN(A,F) in Algorithm 2.2. We show that it is correct and returns in time
O(|F||V (A)|2|E(A)|).

Algorithm 2.2 ANTICHAIN(A,F)

Returns: true if, and only if, Player 0 has a winning strategy fromvI(A) in (A,F) whenF is an anti-chain.
for eachX ∈ F do

let NX = {v : Player 0 has a winning strategy fromv in the game(A, {X})}
let N = Force0

A(
⋃

X∈F NX)
if vI(A) ∈ N then

return true

else ifN = ∅ then
return false

else
let F ′ = {X ∈ F : X ∩N = ∅}
return ANTICHAIN(A \N,F ′)

We first show that ANTICHAIN(A,F) returnstrue if, and only if, Player 0 has a winning strategy inG = (A,F).
Let us supposeN has been computed as above. We consider three cases:

(i) vI(A) ∈ N . From the definition ofN , there existsv ∈ V (A) andX ∈ F such that Player 0 can force the play
to v from vI(A) and Player 0 has a winning strategy fromv which visits every vertex inX , and only vertices in
X , infinitely often. The winning strategy for Player 0 is then to force the play tov and play this strategy. Since
X ∈ F , this is a winning strategy.

(ii) N = ∅. In this case, for everyX ∈ F , Player 1 has a strategyτX from every vertex inA which can ensure either
not all vertices ofX are visited infinitely often, or some vertices not inX are visited infinitely often. The strategy
for Player 1 on(A,F) is as follows. Play anything until the play enters someX ∈ F , then play the strategyτX

until the play leavesX . Clearly if there is noX ∈ F such that the play remains forever inX , Player 1 wins the
play. So let us suppose the play remains indefinitely inX for someX ∈ F . From the definition ofτX , the set
I of vertices visited infinitely often is properly contained in X . SinceF is an anti-chain, it follows thatI /∈ F .
Thus Player 1 wins the play.

(iii) N 6= ∅ andvI(A) /∈ N . In this case, Player 1 can force the play to remain inA \N and it follows from case (i)
above that Player 0 has a winning strategy from every vertex in N . Clearly, if Player 0 has a winning strategy in
(A \ N,F ′) then she has a winning strategy in the larger game: if Player 1chooses to keep the play inA \ N
then Player 0 can play her winning strategy on the subgame, otherwise if Player 1 chooses to move to a vertex in
N , Player 0 can play her winning strategy fromN . Conversely, if Player 1 has a winning strategy in(A\N,F ′)
then, as he can force the play to remain inA \N , he can play his winning strategy on the subgame.

Thus, ANTICHAIN(A,F) returnstrue if, and only if, Player 0 has a winning strategy inG = (A,F).
To show the algorithm returns in timeO(|F||V (A)|2|E(A)|), we require the following result from [IK02]:

CHAPTER 2. INFINITE GAMES 25

Lemma 2.63([IK02]) . Let G = (A,F) be an explicitly presented Muller game withF = {X}. Whether Player 0
has a winning strategy from a vertexv ∈ V (A) can be decided in timeO(|V (A)||E(A)|).

It follows that at each stage of the recursion, it takesO(|F||V (A)||E(A)|) time to computeN . Furthermore, since
|N | ≥ 1 whenever ANTICHAIN(A,F) is recursively called, it follows that the algorithm has recursion depth at most
|V (A)|. Thus the algorithm runs in timeO(|F||V (A)|2|E(A)|) as required. ut

2.3.1 PSPACE-completeness

As we saw in Theorem 2.15, McNaughton [McN93] presented an algorithm for deciding Muller games in space
O(|V (A)|2). In fact, the games he considered were win-set games. However, the algorithm is easily adapted to the
case where the winning condition is presented explicitly, or as a Muller condition, a Zielonka DAG, an Emerson-Lei
condition, or a circuit condition without significant increase in the space requirements. Thus, each of these classes of
games is decidable in PSPACE.

We now show corresponding lower bounds. By the results of theprevious section, it suffices to establish the
hardness result for the win-set condition type.

Theorem 2.64. Deciding win-set games isPSPACE-complete.

Proof. By the above comments, we only need to show PSPACE-hardness. For this, we reduce the problem of QSAT
(satisfiability of a quantified boolean formula [QBF]) to theproblem of deciding the winner of a win-set game.

We assume, without loss of generality a QBF,Φ = Qk−1xk−1 . . . ∀x1∃x0ϕ is given in which quantifiers are
strictly alternating andϕ is in disjunctive normal form with 3 literals per clause. We then define a win-set game
GΦ = (A, Ω), whereΩ = (W,W), as follows:

• V0(A) = {ϕ} ∪ {x,¬x : for all variablesx},

• V1(A) = {C0, . . . , Cm−1}, the set of clauses inϕ,

• E(A) given by:

– (ϕ, Cj) ∈ E(A) for 0 ≤ j < m;

– If Cj = (l0 ∧ l1 ∧ l2), then(Cj , l0), (Cj , l1), (Cj , l2) ∈ E(A);

– (xi, xi−1), (xi,¬xi−1) ∈ E(A) for 0 < i < k;

– (¬xi, xi−1), (¬xi,¬xi−1) ∈ E(A) for 0 < i < k; and

– (x0, ϕ), (¬x0, ϕ) ∈ E(A),

• vI(A) = ϕ,

• W = V0(A) \ {ϕ}, andW is

W =
{
Si, Si ∪ {xi}, Si ∪ {¬xi} : 0 ≤ i < k, i even

}

whereS0 = ∅ and fori > 0, Si = {xj ,¬xj : 0 ≤ j < i}.
Figure 2.3 illustrates how the arena ofGΦ would look if ϕ contained the clauses(x0 ∧ xk−1 ∧ ¬xk) and(¬x0 ∧

xk−1 ∧ xk).
Note that as this is a win-set game, we are only interested in vertices ofW that are visited infinitely often. Observe

that the winning condition ensures that Player 0 can win if, and only if, the minimumi such that at most one ofxi and
¬xi is visited infinitely often is even. The idea behind the strategy for Player 0 is to perpetually verifyϕ. The choice
of strategies by both players then dictates the choices of the truth values for each of the variables, and the winning
condition guarantees a winning strategy for Player 0 if, andonly if, Φ is true. To formally show that Player 0 has a
winning strategy if, and only if,Φ is true, we proceed by induction onk, the number of quantifiers ofΦ.

CHAPTER 2. INFINITE GAMES 26

x0

zz

¬x0

}}
ϕ //

**

x0 ∧ xk−1 ∧ ¬xk

55

))

++

...
...

...
xk−1 ¬xk−1

¬x0 ∧ xk−1 ∧ xk //

55

77

xk

OO ;;xxxxxxxxxx
¬xk

OOccFFFFFFFFFF

Figure 2.3: Arena ofGΦ for ϕ = (x0 ∧ xk−1 ∧ ¬xk) ∨ . . . ∨ (¬x0 ∧ xk−1 ∧ xk)

Base case:k = 1 By the idempotence of∧ and∨ and assumingΦ is closed,Φ is logically equivalent to one of the
following forms.

• Φ = ∃x0.x0 or ∃x0.¬x0. In this case the arena consists of four vertices,{ϕ, C0, x0,¬x0}. Player 0 wins by
always returning toϕ from whichever ofx0 and¬x0 Player 1 is forced to play to, andΦ is clearly true.

• Φ = ∃x0.(x0 ∨¬x0). HereΦ is also true. The arena consists of five vertices{ϕ, C0, C1, x0,¬x0} and Player 0
has the only choice (atϕ andx0). A winning strategy is to always play fromϕ to C0, and to return immediately
to ϕ from x0.

• Φ = ∃x0.(x0 ∧ ¬x0). HereΦ is false. The arena consists of four vertices{ϕ, C0, x0,¬x0} and Player 1 can
force the play to visit bothx0 and¬x0 infinitely often by alternately choosing each fromC0. Note that this
strategy requires memory to remember which vertex was visited last time.

Note that ifx0 does not appear inϕ, we can add the clause(x0 ∧ ¬x0) without changing the truth value ofΦ.
Inductive case: The inductive hypothesis asserts that ifΦ hask − 1 quantifiers and is closed, then Player 0 has a
winning strategy if, and only if,Φ is true. To show that this implies the case fork quantifiers, we use the following
lemma which shows how subgames correspond to restricted subformulas. First we introduce some notation. Ifx is
free inϕ andv is eithertrue or false, we writeϕ[x 7→ v] to denote the formula obtained by substitutingv for x in ϕ
and simplifying. Note that ifϕ[x 7→ true] simplifies totrue thenϕ must have at least one clause containing the single
literal x, and if it simplifies tofalse, then all clauses contain¬x. The crucial lemma can now be stated as

Lemma 2.65. If Φ = Qxϕ (Q ∈ {∃, ∀}) and ϕ[x 7→ true] does not simplify totrue or false, thenGϕ[x 7→true] is
isomorphic to the subgame ofGΦ = (A, Ω) induced by the set Avoid1Avoid0

A
(¬x)(x). Dually, if ϕ[x 7→ false] does not

simplify totrue or false, thenGϕ[x 7→false] is isomorphic to the subgame ofGΦ induced by the set Avoid1Avoid0
A

(x)(¬x).

Proof. ϕ[x 7→ true] consists of the clauses ofϕ that do not contain¬x, with all occurrences ofx removed. The
assumption thatϕ[x 7→ true] does not simplify totrue or false implies that there is at least one such clause. The arena
for the gameGϕ[x 7→true] thus consists of vertices forϕ[x 7→ true], the clauses, and the variables (and their negations) of
ϕ, excludingx and¬x. The edges are the same as those forGΦ restricted to this vertex set. We show that the subarena
of GΦ induced byAvoid1

Avoid0
A

(¬x)(x) is identical. As the winning condition only depends on vertices corresponding
to variables, it follows that the winning conditions are also identical.

In GΦ = (A, Ω), the setAvoid0
A(¬x) consists of the vertices from which Player 0 can avoid¬x. As Player 1

chooses the play from vertices corresponding to clauses, the set of vertices from which Player 1 can reach¬x is

CHAPTER 2. INFINITE GAMES 27

{¬x} ∪ {C : ¬x ∈ C}. As there is at least one clause that does not contain¬x, Player 0 can play to that clause to
avoid¬x from ϕ. The only other vertex from which it is possible to reach¬x is x (asx is the outermost variable in
Φ), and from there Player 0 can play to eithery (for the next outermost variabley) or ϕ (if no such variable exists).
Thus

Avoid0
A(¬x) = V (A) \

(
{¬x} ∪ {C : ¬x ∈ C}

)
.

Next we considerAvoid1
V ′(x) for V ′ = Avoid0

A(¬x). As ϕ does not contain a clause containingx by itself, Player 0
cannot force the play tox from ϕ, as Player 1 can always choose to play to another literal. Furthermore, asx is the
outermost variable inΦ, the only edges tox are from vertices associated with clauses. Thusx is the only vertex from
which Player 0 can force the play to visitx, so

Avoid1
V ′(x) = V ′ \ {x}.

ThusAvoid1
Avoid0

A
(¬x)(x) = V (A) \

(
{x,¬x} ∪ {C : ¬x ∈ C}

)
, which is precisely the vertex set ofGϕ[x 7→true]. The

edges for both arenas are those ofGΦ restricted to these vertices, as are the winning conditions. Thus the two games
are identical. a

To complete the inductive step, we consider two cases.

• Φ = ∃xk−1.ϕ. If Φ is true, then there is a truth valuev such thatϕ[xk−1 7→ v] is true. Assume thatv = true,
the case forv = false being similar. The winning strategy for Player 0 is then to avoid ¬xk−1 and try to play
to xk−1, playing through each vertex inSk−1 when the latter vertex is reached. Note that to play through each
vertex inSk−1 requires at least two visits toxk−1 – Player 0 must remember (the parity of) the number of times
she has visited that vertex. Ifϕ[xk−1 7→ v] simplifies totrue, then Player 0 can force the play to visitxk−1, by
playing to the clause that only containsxk−1. Otherwise Player 1 can play to avoidxk−1, restricting the play
to Avoid1

Avoid0
A

(¬xk−1)
(xk−1). From the above lemma, this subgame is equivalent toGϕ[xk−1 7→true], and from

the inductive hypothesis, Player 0 has a winning strategy onthis game. Thus the strategy of Player 0 is to play
her winning strategy on the smaller game. IfΦ is false, then Player 1 plays a strategy similar to the strategy of
Player 0 in the case below.

• Φ = ∀xk−1.ϕ. In this case, ifΦ is true, then for both choices of truth valuev ∈ {true, false}, ϕ[xk−1 7→ v] is
true. The winning strategy for Player 0 is to alternately attempt to play to each ofxk−1 and¬xk−1 (and then
through all vertices inSk−1), avoiding the other at the same time. If, at any point, Player 1 plays to avoid the
vertex Player 0 is attempting to reach, Player 0 plays her winning strategy on the reduced game (which exists
from the lemma and the inductive hypothesis). Again, ifΦ is false, Player 1 plays a strategy similar to the
strategy of Player 0 in the previous case. Note that in this case Player 0 cannot force the play to visit bothxk−1

and¬xk−1.
ut

From our work on translatability in Section 2.2 and our observation regarding the PSPACE solvability of these
games, we obtain completeness results for Muller games whenthe winning condition is presented as a Muller condi-
tion, Zielonka DAG, Emerson-Lei condition or a circuit condition.

Corollary 2.66. The following problems arePSPACE-complete: Deciding Muller games with winning condition spec-
ified by a Muller condition, deciding Zielonka DAG games, deciding Emerson-Lei games, and deciding circuit games.

It can be verified that an explicit presentation of the winning condition constructed in the proof of Theorem 2.64
would be exponentially larger than the presentation using awin-set. Thus, the proof cannot be used to provide a
PSPACE-hardness result for the explicitly presented games. The exact complexity of deciding the winner of such
games remains open. Indeed, it is conceivable (though it appears unlikely) that the problem is in PTIME.

Open problem 2.67.Determine the precise complexity of deciding explicitly presented Muller games.

CHAPTER 2. INFINITE GAMES 28

Bounded tree-width arenas

In Chapter 4 we present a graph parameter known astree-width. Tree-width is a measure of how closely a graph
resembles a tree. It has proved useful in the design of algorithms as many problems that are intractable on general
graphs are known to have polynomial time solutions when restricted to graphs of bounded tree-width. In the context of
Muller games, Obdrz̆álek [Obd03] exhibited a polynomial-time algorithm for deciding the winner in parity games on
arenas of bounded tree-width. We show that this is not the case for Muller games (and neither, therefore, for Zielonka
DAG games, Emerson-Lei games, and circuit games). The proofof Theorem 2.64 can be modified so that the arenas
constructed all have tree-width two provided we allow ourselves to specify the winning condition as a Muller condition
rather than a win-set.

Theorem 2.68.Deciding Muller games specified by a Muller condition on arenas of tree-width 2 isPSPACE-complete.

Proof. Membership of PSPACEfollows from the fact that deciding general Muller games specified by a Muller condi-
tion is in PSPACE.

The construction to show PSPACE-hardness is similar to that of Theorem 2.64. The reduction is also from QSAT,
and the proof that it is in fact a reduction is similar. Given aQBF Φ = Qk−1xk−1 . . . ∀x1∃x0ϕ whereϕ is in DNF
with three literals per clause, the Muller game we constructis:

• V1(A) = D whereD is the set of clauses.

• V0(A) = {ϕ} ∪
(
D × {1, 2, 3} × {x,¬x : x is a variable}

)
.

• We have the following edges inE(A) for all c ∈ D:

– (ϕ, c),

–
(
c, (c, n, l)

)
if l is then-th literal in c,

–
(
(c, n, xi), (c, n, xi−1)

)
if the n-th literal of c is xi (i > 0)

–
(
(c, n, x0), ϕ

)
if the n-th literal of c is x0

–
(
(c, n, xi), (c, n,¬xi)

)
for all i less than the index of then-th literal of c

–
(
(c, n,¬xi), (c, n, xi−1)

)
for all i less than or equal to the index of then-th literal of c

–
(
(c, n,¬x0), ϕ

)
for all n.

• C = {ϕ} ∪ {x,¬x : x is a variable} is the set of colours,

• χ : V (A)→ C defined as:

– χ(ϕ) = χ(c) = ϕ for all c ∈ D

– χ
(
(c, n, l)

)
= l.

• C =
{
Si, Si ∪ {xi}, Si ∪ {¬xi} : 0 ≤ i < k, i even

}
whereS0 = {ϕ} and fori > 0, Si = {ϕ} ∪ {xj ,¬xj :

0 ≤ j < i}.

Figure 2.4 illustrates how this arena differs from that of Theorem 2.64.
The resulting arena has tree-width 2, and the proof that Player 0 has a winning strategy if, and only if,Φ is true is

similar to that of Theorem 2.64. ut

CHAPTER 2. INFINITE GAMES 29

x0 ∧ xk−1 ∧ xk //

$$HHHHHHHHH
H

��6
66

66
66

66
66

66
66

66
6

x0

BECDGF

��
ϕ

::vvvvvvvvvv
...

xk−1 // · · · // x0 // ¬x0

BC

EDGF

��

xk // xk−1 // ¬xk−1 // · · · // ¬x0

BC

EDGF

��

Figure 2.4: Arena with bounded tree-width

2.3.2 Complexity of union-closed games

We now turn our attention to Muller games where the winning conditionF is a union-closed set. Among games studied
in the literature, Streett games and parity games are examples of condition types that can only specify union-closed
games. Union-closed games were also studied as a class in [IK02]. One consideration that makes them an interesting
case to study is that they admit memoryless strategies for Player 1 [Kla94]. That is, on a game with a union-closed
winning condition, if Player 1 has a winning strategy then hehas a strategy which is a function only of the current
position. One consequence of this fact is that, for explicitly presented union-closed games, the problem of deciding
whether Player 0 wins such a game is in co-NP. This is because once a memoryless strategy for Player 1 is fixed, the
problem of deciding whether Player 0 wins against that fixed strategy is in PTIME. Indeed, it is a version of a simple
game. Thus, to decide whether Player 1 has a winning strategywe can nondeterministically guess such a strategy and
then verify that Player 0 cannot defeat it. Hence, determining whether Player 1 wins is in NP and therefore deciding
whether Player 0 wins is in co-NP. In this section, we aim to establish a corresponding lower bound for two condition
types that can only represent union-closed games, namely the basis and superset condition types.

We saw with Theorem 2.53 that we cannot use the known complexity bounds on Streett games to easily establish
similar bounds for basis games. Nevertheless, deciding basis games is still in co-NP.

Proposition 2.69. Deciding basis games is inco-NP.

Proof. From the comments above, it suffices to show that if we fix a memoryless strategy for Player 1 then we can
decide the resulting single player basis game in polynomialtime.

The algorithm is as follows. LetB be the basis for the winning condition. Initially letB0 = B, and repeat the
following:

1. LetXi =
⋃

B∈Bi
B.

2. PartitionXi into strongly connected components (SCCs).

3. Remove any element ofBi which is not wholly contained in a SCC to obtainBi+1,

until Bi = Bi−1, at which point, letX = Xi. This takes at mostO
(
|B|(|V (A)| + |E(A)|)

)
time using a standard

SCC-partitioning algorithm. At this point, every SCC ofX is a union of basis elements – allx in X are members
of basis elements, and any basis elements not contained in any SCC ofX is removed at step 3. Furthermore, any
strongly connected set ofV (A) which is a union of basis elements is a subset (of an SCC) ofX , because the algorithm
preserves such sets. Thus, Player 0 can win from any node fromwhich she can reachX (play to X and then visit
every node within an SCC ofX forever); and Player 0 cannot win if she cannot reachX (there is no union of basis
elements for which Player 0 can visit every vertex infinitelyoften). Thus the set of nodes from which Player 0 wins
can be computed inO

(
|B|(|V |+ |E|) + |E|

)
time. ut

CHAPTER 2. INFINITE GAMES 30

We now obtain the lower bounds we seek on superset games.

Theorem 2.70. Deciding superset games isco-NP-complete.

Proof. Membership of co-NP follows from Propositions 2.54 and 2.69. To show co-NP-hardness, we use a reduction
from validity of DNF formulas.

Given a formulaϕ(x0, x1, . . . , xk−1) in DNF, consider the superset game defined as follows:

• for every variablexi we include three vertices,xi,¬xi ∈ V0(A) andx′
i ∈ V1(A);

• for eachi we have the edges(x′
i, xi), (x

′
i,¬xi), (xi, x

′
i+1), (¬xi, x

′
i+1), where addition is taken modulok;

• vI(A) = x0; and

• the winning condition is specified by the set

M =
{
{li ∈ V0(A) : li is a literal ofC} for every clauseC of ϕ

}
,

As the superset condition is closed under union, if Player 1 has a winning strategy he has a memoryless winning
strategy. Note that any memoryless strategy for Player 1 effectively chooses a truth value for each variable. The set of
vertices visited infinitely often is a superset of an elementofM if, and only if, the truth assignment chosen by Player 1
makes one clause ofϕ (and henceϕ) true. Thus Player 0 wins this game if, and only if, there is notruth assignment
which makesϕ false. ut

Corollary 2.71. Deciding basis games isco-NP-complete.

We note in conclusion that the exact complexity of deciding union-closed games when they are explicitly presented
remains an open problem. It is clearly in co-NP but the above arguments do not establish lower bounds for it.

Open problem 2.72.Determine the precise complexity of deciding explicitly presented union-closed games.

2.4 Infinite tree automata

One of the original motivations for studying Muller and related games was to establish decidability results for problems
such as non-emptiness and model checking for infinite tree automata [McN66]. A reduction to non-emptiness of
infinite tree automata is used in some of the most effective algorithms for deciding satisfiability of formulas in logics
such asS2S, µ-calculus, CTL∗, and other logics useful for reasoning about non-terminating, branching computation.
Furthermore, determining if a structure satisfies a formulain any of these logics reduces to determining if a certain
automaton accepts a particular tree. In this section we showthat the non-emptiness and model-checking problems (for
regular trees) are PSPACE-complete for Muller automata. We first present the definitions of infinite trees and infinite
tree automata.

Definition 2.73 (Infinite tree). For k ∈ N, let [k] = {1, 2, . . . , k}. An infinite, k-ary branching tree labelled by
elements ofΣ is a functiont : [k]∗ → Σ. Nodesof an infinite tree are elements of its domain, theroot of an infinite
tree is the empty string.

Definition 2.74 (Regular tree). A subtreeof treet rooted atu ∈ [k]∗ is the treetu defined astu(v) = t(u · v) for
all v ∈ [k]∗. A tree t is regular if it has finitely many distinct subtrees, or equivalently, if there are finitely many
equivalence classes under the equivalence relation

u ∼ v ⇐⇒ t(u · w) = t(v · w) ∀w ∈ [k]∗.

CHAPTER 2. INFINITE GAMES 31

Note that if a tree is regular it can be represented by a finite transition system, with the equivalence classes of
the above equivalence relation as states, the equivalence class containing the root as the initial vertex, andk distinct
transition relations.

Definition 2.75 (Infinite tree automaton). An infinite (Muller) (k-ary) tree automaton is a tupleA = (Q, Σ, δ, q0,F)
where

• Q is a finite set of states

• Σ is a finite alphabet

• δ ⊆ Q× Σ×Qk is a transition relation

• q0 is the initial state

• F ⊆ P(Q) is the acceptance condition.

Given an infinite,k-ary branching treet labelled by elements ofΣ, a run ofA on t is an infinite,k-ary branching
treer labelled by elements ofQ satisfying the following two conditions.

• The root ofr is labelled byq0 (r(ε) = q0).

• For all w ∈ [k]∗, if r(w) = q, r(w · 1) = q1, r(w · 2) = q2, . . . , r(w · k) = qk, and t(w) = a, then
(q, a, q1, q2, . . . , qk) ∈ δ.

We say a runr is successful if for every (infinite) path, the setI of states visited infinitely often is an element ofF .
We sayA acceptst if there is a successful run ofA on t. Given an automatonA, thelanguageof A is the set of trees

L(A) := {t : A acceptst}.

Two important decision problems in automata theory are non-emptiness and model-checking.

NON-EMPTINESS OFMULLER TREE AUTOMATA

Instance: A Muller automatonA
Problem: IsL(A) 6= ∅?

MODEL-CHECKING FORMULLER TREE AUTOMATA

Instance: A Muller automatonA, and a regular infinite treet
Problem: Is t ∈ L(A)?

The close connection between automata and games can be established by considering the game where the moves
of Player 0 consist of choosing a transition inδ to make from a current state, and the moves of Player 1 consistof
choosing which branch of the tree to descend. With this translation in mind, the non-emptiness problem reduces to the
problem of finding the winner in the win-set game

(
A, (W,W)

)
with

• V0(A) = W = Q,

• V1(A) = Qk,

• W = F ,

• edges fromV0(A) to V1(A) determined byδ: an edge fromq to (q1, q2, . . . , qk) if there isa ∈ Σ such that
(q, a, q1, . . . qk) ∈ δ, and

• edges fromV1(A) to V0(A) being projections: an edge from(q1, . . . , qk) to qi for all i ∈ [k].

CHAPTER 2. INFINITE GAMES 32

Clearly if Player 0 has a winning strategy in this game, it is possible to construct a tree which the automaton accepts.
Conversely, if Player 1 has a winning strategy, no such tree exists.

By adapting the proof of Theorem 2.64 we are able to show that the non-emptiness problem for Muller automata as
well as the problem of determining whether a given automatonaccepts a given regular tree are both PSPACE-complete.

Theorem 2.76. The non-emptiness problem for Muller tree automata isPSPACE-complete.

Proof. Membership in PSPACEis established by the above polynomial time reduction from the non-emptiness problem
of Muller automata to win-set games. Here we show PSPACEhardness through a reduction from QSAT (satisfiability
of a quantified boolean formula [QBF]).

Given a QBFΦ = Qk−1xk−1 . . . ∀x1∃x0ϕ, whereϕ is in disjunctive normal form with 3 literals per clause, we
construct the following Muller automatonAΦ = (Q, Σ, qI , δ,F) that accepts infinite ternary trees:

• Q = {qϕ} ∪ {qx, q¬x : for all variablesx}

• Σ = {a} 2

• qI = qϕ

• δ ⊆ Q×Q3 given by:

– for each clause(l0 ∧ l1 ∧ l2) ∈ ϕ, (qϕ, ql0 , ql1 , ql2) ∈ δ;

– (qxi
, qxi−1

, qxi−1
, qxi−1

) ∈ δ for 0 < i < k;

– (q¬xi
, qxi−1

, qxi−1
, qxi−1

) ∈ δ for 0 < i < k;

– (qx0
, qϕ, qϕ, qϕ) ∈ δ; and

– (q¬x0
, qϕ, qϕ, qϕ) ∈ δ.

• F =
{
Si, Si ∪ {qxi

}, Si ∪ {q¬xi
} : 0 ≤ i < k, i even

}
whereSi = {qϕ} ∪ {qxj

, q¬xj
: 0 ≤ j < i}.

Now by using the reduction to win-set games outlined above, asking if AΦ accepts any tree is equivalent to asking if
Player 0 has a winning strategy (fromqϕ) on the win-set game used in Theorem 2.64. ut

The model checking problem also reduces to deciding which player wins an infinite game. However, depending
on how the tree is presented, the resulting arena may be of infinite size. If the tree is presented as a finite transition
system, a game with finite arena can be constructed, and we canapply Theorem 2.76 to obtain the following corollary.

Corollary 2.77. Given a regular, infinite,k-ary branching treet (represented as a transition system) and a Muller
automatonA = (Q, Σ, δ, qI ,F), asking ifA acceptst is PSPACE-complete.

Proof. PSPACEhardness follows from the proof of Theorem 2.76, as the automata constructed there accept at most
one tree – the ternary branching tree with all nodes labelledby a.

To show that the problem is in PSPACE, we reduce it to the problem of deciding a Muller game. Let(S, s0, t1, . . . , tk)
denote the transition system representing the treet. The required Muller game,

(
A, (χ, C)

)
, is given by the following.

• V0(A) = Q× S.

• V1(A) = Q× S ×Qk.

• There is an edge from(q, s) ∈ V0(A) to (q, s, q1, . . . qk) ∈ V1(A) whenever(q, a, q1, . . . , qk) ∈ δ wherea is
the label ofs.

• There is an edge from(q, s, q1, . . . , qk) ∈ V1(A) to (qi, ti(s)) ∈ V0(A) for 1 ≤ i ≤ k.

2asΣ is a singleton, for ease of reading we omita from the description ofδ

CHAPTER 2. INFINITE GAMES 33

• vI(A) = (qI , s0),

• Q is the set of colours,

• χ : V (A)→ Q is defined by taking the first component of the vertex.

• C = F .

It is clear from the definitions that Player 0 has a winning strategy from(qI , s0) in this game if, and only if,A accepts
t. ut

Chapter 3

Strategy Improvement for Parity Games

In Chapter 2 we introduced parity games and briefly remarked on the significance of determining the complexity of
deciding them. One factor contributing to the importance ofthe analysis of parity games is that deciding the winner of
a parity game is polynomial-time equivalent to the model-checking problem of modalµ-calculus, a highly expressive
fragment of monadic second order logic [EJS01]. Indeed, themodalµ-calculus is the bisimulation invariant fragment
of monadic second order logic, and therefore includes logics useful for verification such as the branching time temporal
logic CTL∗ [Dam94].

Another interesting aspect of parity games is that the complexity of deciding the winner remains tantalizingly
elusive. In Section 2.3 we observed that when we can restrictone player to memoryless strategies we can nondeter-
ministically guess the strategy and if we can check in polynomial time if that strategy is winning, we have demonstrated
an NP algorithm (if Player 0 has a memoryless winning strategy) or a co-NP algorithm (if Player 1 has a memoryless
strategy). So, from Theorem 2.42 we obtain the following corollary:

Corollary 3.1. Deciding the winner of a parity game is inNP∩ co-NP.

It is believed by some that parity games are decidable in polynomial time, however the problem has so far resisted
attempts to find tractable algorithms, giving us the following well-researched open problem:

Open problem 3.2. Determine the exact complexity of deciding parity games.

In this chapter, we analyse one of the best candidates for a tractable algorithm for parity games: the strategy
improvement algorithm. In Chapters 6 and 7 we define a large class (indeed, the largest class so far known) of graphs
on which parity games can be solved in polynomial time.

Currently, the best known algorithm for deciding a parity game on general arenas runs in timenO(
√

n/ log n) where
n is the number of vertices of the arena [JPZ06]. If the number of priorities, p, is small compared to the size of the

arena, sayp = o(
√

n/ logn), we can slightly improve on this with an algorithm that runs in timeO
(
dm·

(
n

bp/2c

)bp/2c
)

wherem is the number of edges of the arena [Jur00]. However, in [VJ00a], Vöge and Jurdziński introduced a strategy
improvement algorithm which appears to do quite well in practice, even when the number of priorities is large. To
date, the best known upper bound for its running time isO

(
mn

∏
v∈V0(A) dout(v)

)
, which is in general exponential in

the number of vertices. However, no family of examples has yet been found that runs in worse than linear time. In
this chapter we analyse the structure of this algorithm and use combinatorial results to improve the known upper and
lower bounds. The analysis we use is primarily taken from [VJ00b].

3.1 The strategy improvement algorithm

The idea behind the strategy improvement algorithm is to define a measure dependent on the strategy of Player 0.
Then, starting with an arbitrary strategy for Player 0, to make local adjustments based on this measure to obtain a new

34

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 35

strategy which is in some sense improved. This process is then repeated until no further improvements can be made.
At this point, with a judicious choice of measure, the strategy is the optimal play for Player 0, and the winning sets for
each player can easily be computed. This procedure is readily extended to any strategy that requires finite memory, so
from Theorem 2.14 we see that it can be used for games other than parity games. However, with parity games we can
restrict ourselves to memoryless strategies and then at each stage both the measure and the local improvements can be
efficiently computed.

In order to fully describe the algorithm, we need to introduce some concepts. Using the notation of Chapter 2, let
us fix a parity gameG = (A, χ) whereχ : V (A)→ P. For convenience we assume no vertex inA has out-degree0.
For the remainder of this chapter, we assume all strategies are positional.

To be able to evaluate strategies, we first identify the characteristics of a play which are important. Aplay profile
is a triple(l, P, e) wherel ∈ P, P ⊆ P ande ∈ ω. Given an infinite playπ = v1v2 · · · in G, we associate withπ a
play profile,Θ(π) := (l, P, e), as follows. We definel to be the maximum priority occurring infinitely often inχ(π),
so the parity ofl determines the winner of the play. We defineP to be the set of priorities greater thanl that occur in
χ(π), ande to be the minimal index such thatχ(ve) = l andχ(ve′) ≤ l for all e′ ≥ e. A valuationis a mapping from
each vertexv ∈ V (A) to a play profile of an infinite play fromv.

We next define an ordering that compares play profiles by how beneficial they are to each player. We begin by
defining a useful linear order on the set of priorities. Thereward order,v, is defined as follows: fori, j ∈ P, i v j if
either

(i) i is odd andj is even, or
(ii) i andj are even andi ≤ j, or

(iii) i andj are odd andi ≥ j.

Intuitively, i v j if j is “better” for Player 0 thani. We extendv to play profiles by defining(l, P, e) @ (m, Q, f) if
either

(i) l @ m; or
(ii) l = m andmax≤(P 4 Q) is odd and inP , or even and inQ; or

(iii) l = m, P = Q, and eitherl is odd ande < f , or l is even ande > f .

The measure we use to implement the strategy improvement algorithm is a valuation that gives thev-minimal
play profile amongst all plays consistent with the current strategy for Player 0. More precisely, letσ be a strategy for
Player 0, and forv ∈ V (A) let Playsσ(v) be the set of all infinite plays starting fromv consistent withσ. We define
the valuationϕσ by:

ϕσ(v) := minv{Θ(π) : π ∈ Playsσ(v)}.
The next proposition, taken from [VJ00b], helps give an intuitive understanding ofϕσ. Given a strategyσ for

Player 0 and a strategyτ for Player 1, we observe there is precisely one infinite playπστ (v) consistent withσ andτ
from each vertexv ∈ V (A). We writeΘστ for the valuation defined by:

Θστ (v) := Θ
(
πστ (v)

)
.

If we further extendv to a partial order on valuations,E, in a pointwise manner then Proposition 5.1 of [VJ00b] can
be stated as:

Proposition 3.3. The set{Θστ : τ is a strategy for Player 1} has aE-minimal element and it is equal toϕσ.

Intuitively, this means thatϕσ is equivalent to the valuation defined byσ and the best counter-strategy for Player 1
againstσ. Consequently,ϕσ can be efficiently computed by fixing the strategy of Player 0 and considering the
strategies of Player 1 in the resulting single player game.

After computingϕσ, the algorithm makes localimprovementsto the strategyσ by switching (if necessary)σ(v)
to the successor ofv with thev-maximalϕσ value. The resulting strategyσ′ is improved in the sense thatϕσ E ϕσ′ .
This is then repeated until no further improvements can be made. At this point the strategyσ is optimal for Player 0,

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 36

a0 : 1

��

//

��
b0 : 3

uujjjjjj jj
**TTTTTTT c0 : 6

ttjjjjjjj ii
))TTTTTT

a : 0
))TTTTTT b : 0

**TTTTTTT c : 0

oo

a1 : 2

44jjjjjjj
b1 : 5

55jjjjjj

c1 : 4

__

Figure 3.1: A parity game

that is, Player 0 can win from a vertexv ∈ V (A) against any strategy for Player 1 if, and only if, she can win playing
σ from v against any strategy. We can then compute the winning sets byfixing Player 0’s strategy and finding the
winning sets for Player 1 in the single player game. Algorithm 3.1 provides a detailed description of the critical part
of the strategy improvement algorithm.

Algorithm 3.1 Strategy optimization
Returns: An optimal strategy for Player 0

selecta strategyσ for Player 0 at random
repeat

let σ = σ′ {Store current strategy}
Computeϕσ

for eachv ∈ V0 do {Improveσ locally according toϕσ}
selectw such that(v, w) ∈ E(A) and

ϕσ(w) = maxv{ϕσ(v′) : (v, v′) ∈ E(A)}
if ϕσ

(
σ(v)

)
@ ϕσ(w) then

let σ′(v) = w
until σ = σ′

return σ

As an example, let us consider the parity game pictured in Figure 3.1. Letσ be the strategy for Player 0 defined
by σ(a) = a0, σ(b) = b0 andσ(c) = c1. We will computeϕσ for the verticesa0, b0 andb1. Againstσ, Player 1
has a choice of strategies ata0: either he can play toc, resulting in an infinite play with maximum priority4, or he
can play toa, resulting in an infinite play with maximum priority1. As 1 @ 4, the latter is thev-minimal choice
and soϕσ(a0) = (1, ∅, 0). At b0, Player 1’s choice appears to depend on the strategy ata0: if he plays toa and
the strategy ata0 is to play toa then the resulting play has maximum priority1, otherwise if the strategy ata0 is to
play toc the resulting play has maximum priority4. However3 @ 1, so thev-minimal play in either case is going
to be to play tob, resulting inϕσ(b0) = (3, ∅, 0). The valuation atb1 is only dependent on the choice of strategy at
a0, soϕσ(b1) = (1, {4, 5}, 4). Turning to the subsequent, improved strategyσ′, we have(3, ∅, 0) @ (1, {4, 5}, 4).
Therefore, switchingσ atb will be an improvement for Player 0, and henceσ′(b) = b1.

Using ijk as shorthand for the strategy which mapsa to ai, b to bj, andc to ck, the full table of relevant valuations
and subsequent strategies for each strategy is presented inTable 3.1. Also included in this table is thevector of
improving directions (VID), indicating which elements ofσ had improvements. Not only does this help identify110
as the optimal strategy, but it is worth observing that each entry in the VID column is unique. As we see in the next
section, this is not a coincidence.

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 37

σ i ϕσ(ai) ϕσ(bi) ϕσ(ci) σ′ VID

000
0 (3, {6}, 4) (3, ∅, 0) (3, {6}, 2)

011 011
1 (3, ∅, 2) (3, {5, 6}, 4) (3, {4, 6}, 6)

001
0 (1, ∅, 0) (3, ∅, 0) (3, {6}, 2)

011 010
1 (3, ∅, 2) (1, {4, 5}, 4) (1, {4}, 2)

010
0 (1, ∅, 0) (1, {3}, 2) (6, ∅, 0)

110 100
1 (6, ∅, 4) (6, ∅, 2) (1, {4}, 2)

011
0 (1, ∅, 0) (1, {3, 4, 5}, 6) (1, {4, 5, 6}, 6)

010 001
1 (1, {2, 4, 5}, 6) (1, {4, 5}, 4) (1, {4}, 2)

100
0 (3, ∅, 4) (3, ∅, 0) (3, {6}, 2)

010 110
1 (3, ∅, 2) (3, {5, 6}, 4) (3, {4}, 4)

101
0 (3, ∅, 4) (3, ∅, 0) (3, {6}, 2)

000 101
1 (3, ∅, 2) (3, {4, 5}, 6) (3, {4}, 4)

110
0 (6, ∅, 6) (6, ∅, 6) (6, ∅, 0)

110 000
1 (6, ∅, 4) (6, ∅, 2) (6, ∅, 6)

111
0 (5, ∅, 4) (5, ∅, 2) (5, {6}, 2)

000 111
1 (5, ∅, 2) (5, ∅, 0) (5, ∅, 4)

Table 3.1: Table of valuations, next strategy and improvement vectors for all strategies

3.2 A combinatorial perspective

In this section we show how the strategy improvement algorithm can be viewed as an optimization problem on a
well-studied combinatorial structure. We will introduce the concepts ofacyclic unique sink oriented hypercubesand
thebottom-antipodal sink-finding algorithmand we will prove the following result:

Theorem 3.4. The strategy improvement algorithm is a bottom-antipodal sink-finding algorithm on an acyclic unique
sink orientation of the strategy hypercube.

Although this result appears in [BSV03], we present an alternative proof that utilises results from [VJ00b].
First we recall some definitions relating to hypercubes. Ad-dimensional hypercubeis an undirected graphHd

such thatV (Hd) = {0, 1}d, and there is an edge between(a1, . . . , ad) and(b1, . . . , bd) if for somei ≤ d, ai 6= bi

andaj = bj for all j 6= i. We callai the i-th componentof a vertex(a1, . . . , ad) in a d-dimensional hypercube.
A subcubeis a subgraph induced by a set of vertices which agree on some set of components. We observe that a
subcube of ad-dimensional hypercube is ad′-dimensional hypercube for somed′ ≤ d, and we can specify a subcube
by a single vertex together with a set of adjacent edges. Given a setI ⊆ {1, . . . , d} of natural numbers and a vertex
v = (a1, . . . , ad) of a d-dimensional hypercube, we denote by SwitchI(v) the vertexv′ = (b1, . . . , bd) obtained by
switching the components inI of v. That is,bi = ai if, and only if, i /∈ I. Given a vertexv in a d-dimensional
hypercube, the vertexantipodalto v is the vertex Switch{1,...,d}(v).

Given a parity game(A, χ), we assume that every vertex inV0(A) has out-degree two. From Theorem 2.59,
we can always transform a parity game into one for which everyvertex inV0(A) has out-degree at most two. We
can assume there are no vertices of out-degree0, as we can use force-sets to determine if either player can force the
play to one of these vertices. We can also change any vertex inV0(A) with out-degree1 to be a vertex inV1(A) as
this does not affect the outcome of the game. As this can all bedone in polynomial time, this assumption is not too
restrictive. If we fix an order onV0(A) = {v1, . . . , vd}, and writev0

i andv1
i for the two successors ofvi ∈ V0(A), then

each vector(b1, . . . , bd) ∈ {0, 1}n defines a strategy for Player 0 by mappingvi to vbi

i , and conversely each strategy
defines a unique vector. Therefore, the space of all Player 0’s strategies is equivalent to vertex set of thed-dimensional
hypercube. For convenience, we will simply refer to the strategy space as thestrategy hypercube. We now introduce
some additional concepts to help establish Theorem 3.4.

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 38

• //

��

•
��

• //

��

• • //

��

• • // •
��• // • • // •

OO

• •oo

OO

•

OO

•oo

Figure 3.2: AUSOs of the2-cube (l) and the orientations which are not AUSOs (r)

An orientationof ad-dimensional hypercube is a directed graph with ad-dimensional hypercube as an underlying
undirected graph and at most one edge between any pair of vertices. We say an orientation is anacyclic unique sink
orientation (AUSO)if it is acyclic and every subgraph induced by a subcube has a unique sink (or, equivalently, a
unique source). Figure 3.2 shows the two AUSOs for the2-cube (left), together with the two orientations of the2-cube
which are not AUSOs (right).

Acyclic unique sink orientations of hypercubes are very important combinatorial structures, particularly as a gen-
eralization of linear programming optimization problems.For example, apseudo-boolean function (PBF)is a function
from a hypercube toR, and a common optimization problem is to find the vertex whichattains the maximum (or min-
imum) value of a PBF. In [HSLdW88], a hierarchy of classes of PBFs was introduced, and one of these classes was
thecompletely unimodal pseudo-boolean functions: functions such that every subcube has a unique local minimum.
Clearly, a completely unimodal PBF induces an AUSO, and conversely any function toR which respects an AUSO
will be completely unimodal.

One useful concept associated with AUSOs is thevector of improving directions. Let VID : {0, 1}n → {0, 1}n
be the function that maps each vertex of a hypercube with an AUSO to the vector which indicates which edges are
outgoing from that vertex. That is, if there is an edge fromv to v′ wherev andv′ differ in the i-th component, then
thei-th component of VID(v) is 1 and thei-th component of VID(v′) is 0.

An important class of problems for AUSOs and similar structures arepolynomial local searchproblems (PLS).
These are optimization problems where the cost of a solutionand “neighbouring” solutions can be efficiently com-
puted, with the overall goal being to find a locally optimal solution – one which is better than all its neighbours. For
example, if computing the directions of edges incident witha vertex can be done in polynomial time, then finding the
unique global sink of an acyclic unique sink oriented hypercube is a problem in PLS. Clearly, given a hypercube we
could iterate through all vertices to find the sink, but as is usually the case for interesting problems in PLS, iterating
through all possible solutions is considered infeasible. For the sink-finding problem a more interesting question is:
can we find the global sink in time polynomial in the dimensionof the hypercube? In fact, for acyclic unique sink
oriented hypercubes, this is an important open problem.

Open problem 3.5. Given ann-dimensional hypercube with an AUSO, is there a polynomialp such that the global
sink can be found with at mostp(n) vertex queries?

One reason for the importance of this question is that there are interesting structural results for AUSOs that suggest
this question can be answered in the affirmative. Firstly, ann-dimensional hypercube with an AUSO satisfies the
Hirsch conjecture [WH88], which means that from each vertexthere is a directed path of length at mostn to the global
sink. Secondly, we have the following observation from Williamson Hoke [WH88] which shows that the vector of
improving direction takes a very special form:

Theorem 3.6([WH88]). VID is a bijection.

However, despite these results, an efficient sink-finding algorithm on hypercubes with AUSOs remains elusive.
The connection between AUSOs and the strategy improvement algorithm is summarized in the following theorem:

Theorem 3.7. The valuationϕσ induces an AUSO on the strategy hypercube.

In order to prove this, we must first indicate howϕσ induces an orientation. Let< be any linear ordering on the
set of Player 0’s strategies. We extendE to a partial order on strategies by sayingσ C σ′ if either

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 39

(i) ϕσ C ϕσ′ , or
(ii) ϕσ = ϕσ′ andσ < σ′.

This gives us an orientation on the strategy hypercube, as wesee with the following result:

Lemma 3.8. Let σ andσ′ be strategies for Player 0 such thatσ(v) = σ′(v) for all but onev ∈ V0(A). Then either
σ C σ′, or σ′ C σ.

The proof of this result follows directly from the followingtwo results from [VJ00b].

Lemma 5.7 of [VJ00b]. Let I ⊆ {1, . . . , d} be a set of natural numbers, and letσ be a strategy for Player 0. If, for
eachi ∈ I, ϕσ

(
σ(vi)

)
@ ϕσ(v′i) wherev′i is the successor ofvi not equal toσ(vi), thenσ E SwitchI(σ).

Claim 7.2 of [VJ00b]. Let I ⊆ {1, . . . , d} be a set of natural numbers, and letσ be a strategy for Player 0. If, for
eachi ∈ I, ϕσ

(
σ(vi)

)
6@ ϕσ(v′i) wherev′i is the successor ofvi not equal toσ(vi), then SwitchI(σ) E σ.

The orientation is then obtained by adding an edge fromσ to σ′ if σ(v) = σ′(v) for all but onev ∈ V0(A) andσ C σ′.
We now need to show that this orientation is an AUSO. To do this, we use the fact that the strategy improvement
algorithm terminates.

Theorem 3.1 of [VJ00b]. The strategy improvement algorithm correctly computes thewinner of a parity game.

SinceE is a partial order it is clear that this orientation is acyclic. In order to show that it is an AUSO, we use the
following result about unique sink orientations.

Proposition 3.9([WH88]). A hypercube orientation is a unique sink orientation if, andonly if, every2-dimensional
subcube has a unique sink.

Next we observe that every subcube of the strategy hypercubeinduces a subgame of the original parity game: by
definition, there is a setV ⊆ V0(A) on which all strategies of the subcube agree. The induced subgame is obtained by
fixing Player 0’s choices onV to agree with all the strategies of the subcube. Furthermore, in these subgamesϕσ takes
the same values as in the original parity game. Thus the resulting strategy hypercube of the subgame is a subcube
of the strategy hypercube of the original game. Therefore, if any 2-dimensional subcube of the strategy hypercube
does not have a unique sink, we can produce a parity game with a2-dimensional strategy hypercube with the same
orientation. The only acyclic orientation of a2-cube without a unique sink is one with antipodal sinks and sources (see
Figure 3.2). In Lemma 3.10 we describe how the strategy improvement algorithm works on an oriented hypercube,
and from this we see that if the algorithm begins at a source ofthis 2-dimensional hypercube, then the subsequent
strategy will always be the other source. Thus, on this orientation, the algorithm never terminates. Since Theorem 3.1
of [VJ00b] ensures that the strategy improvement algorithmalways terminates, every2-dimensional subcube has a
unique sink, and we have therefore shown that the orientation defined byC is an AUSO. This completes the proof of
Theorem 3.7.

Returning to the example parity game from the previous section, we can read the orientation of the strategy hyper-
cube directly from Table 3.1. For example, consider the strategyσ = {001}. Sinceϕσ(a1) @ ϕσ(a0), it follows that
101 E 001, thus there is an edge from101 to 001. Figure 3.3 shows the resulting oriented strategy hypercube.

Having established that the set of strategies for Player 0 forms a hypercube oriented byC, we can investigate how
the strategy improvement algorithm operates on this cube. From Algorithm 3.1, we see that a strategyσ switches at
each point whereϕσ

(
σ(v)

)
is notv-maximal. If this is adjusted so that when there is a choice ofstrategies with

v-maximalϕσ values, we choose the<-largest strategy, then from Lemma 3.8 we see that we are switchingσ at the
vertices corresponding to the outgoing edges in the strategy hypercube. That is,

Lemma 3.10. Let σ be a strategy for Player 0 andCσ be the subcube of the oriented strategy hypercube defined by
σ and the outgoing edges fromσ. Then the subsequent strategyσ′ in the strategy improvement algorithm is the vertex
antipodal toσ onCσ.

This is a well-known sink-finding procedure for AUSO hypercubes called BOTTOM-ANTIPODAL [SS05], de-
scribed in Algorithm 3.2. It is clear that on an AUSO hypercube, BOTTOM-ANTIPODAL terminates with the global

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 40

110 111

��

�����
�

oo

100

??����

��

101oo

��

010

OO

011oo

000 //

??����
001

??����

Figure 3.3: Oriented strategy hypercube for the parity gamein Figure 3.1

Algorithm 3.2 BOTTOM-ANTIPODAL

Returns: Global sink of an AUSO hypercube
selecta vertexv at random
repeat

Compute VID(v)
let v = v ⊕ VID(v) {XOR v and VID(v)}

until VID(v) = 0

return v

sink: at each stage we are jumping from the unique source of the subcube defined by the improving directions to
some other vertex in that subcube, so we are always reducing the minimal distance to the global sink. Combining
Lemma 3.10 with Theorem 3.7 gives us the main result:

Theorem 3.4. The strategy improvement algorithm is a bottom-antipodal sink-finding algorithm on an acyclic unique
sink orientation of the strategy hypercube.

3.3 Improving the known complexity bounds

The upper bound ofO
(
mn

∏
v∈V0

dout(v)
)

for the running time of the strategy improvement algorithm arises from
the observations that it takesO(mn) time to computeϕσ and there are

(∏
v∈V0(A) dout(v)

)
different strategies for

Player 0 [VJ00a]. The results of Section 3.2 enable us to improve the trivial upper bound obtained by naı̈vely running
through all possible strategies. Mansour and Singh [MS99] showed that a BOTTOM-ANTIPODAL sink-finding algo-
rithm will visit at mostO

(
2d

d

)
vertices of ad-dimensional hypercube. However, we can improve this upperbound

further by using results from combinatorics. Instead of using the BOTTOM-ANTIPODAL algorithm, we can use other
sink-finding algorithms such as the FIBONACCI SEE-SAW of Szabó and Welzl [SW01], described in Algorithm 3.3.
This algorithm utilises structural results of AUSOs such asTheorem 3.6 and has the best-known running time upper
bound,O(1.61d), amongst sink-finding algorithms.

These results give us the following improved upper bounds for the strategy improvement algorithm:

Proposition 3.11. Assuming each vertex inV0(A) has out-degree two:

(i) The strategy improvement algorithm runs in timeO(mn · 2n0/n0).

(ii) The Fibonacci strategy improvement algorithm runs in timeO(mn · 1.61n0).

Wherem = |E(A)|, n = |V (A)| andn0 = |V0(A)|.

Turning to lower bounds, natural questions to consider are completeness results. In particular, is strategy improve-
ment or finding the sink of an AUSO hypercube PLS-complete? Björklund et al. [BSV03] show that this is not the
case.

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 41

Algorithm 3.3 FIBONACCI SEE-SAW

Returns: Global sink of an AUSO hypercube
selecta vertexm at random
let w be the vertex antipodal tom
let Cm = {m} andCw = {w} {Antipodali-dimensional subcubes}
for i = 0 to n do

Compute VID(m) = (m0, m1, . . .) and VID(w) = (w0, w1, . . .)
let d = min{j : mj 6= wj}
let C′

m be thei-dimensional subcube parallel toCm in directiond from m
let C′

w be thei-dimensional subcube parallel toCw in directiond from w
if md = 1 then {m is the minimal vertex of an(i + 1)-dimensional subcube}

Computew = FIBONACCI SEE-SAW(C′
w)

else {w is the minimal vertex of an(i + 1)-dimensional subcube}
Computem = FIBONACCI SEE-SAW(C′

m)
let Cm = Cm ∪ C′

m andCw = Cw ∪ C′
w

return m

Theorem 3.12([BSV03]). The problem of finding optimal strategies in parity games is not PLS-complete with respect
to tight PLS-reductions.

Because PLS-complete problems have exponentially long improvement paths [Yan97], the fact that strategy improve-
ment is not PLS-complete gives further support to the hypothesis that it may only require polynomially many itera-
tions.

However, we can also ask if there are examples of parity gameswhich require an exponential number of strate-
gies to be considered by the strategy improvement algorithm. As a first step towards this, Schurr and Szabó [SS05]
generated a family of oriented hypercubes for which BOTTOM-ANTIPODAL visits 2d/2 vertices. It remains an open
problem whether there is a family of parity games with these hypercubes as their strategy hypercubes. In fact, this can
be generalized to a more interesting open problem:

Open problem 3.13. Given a hypercube with an AUSO, can a parity game be constructed in polynomial time with
that hypercube as its strategy hypercube?

A positive answer to this question would not only give an exponential worst case for the strategy improvement algo-
rithm, but it would also relate Open Problems 3.2 and 3.5: a polynomial time algorithm for finding the sink on an
AUSO would give a polynomial time algorithm for solving parity games and vice versa. On the other hand a nega-
tive answer to this question would give a smaller class of AUSOs for which finding a polynomial time sink-finding
procedure is an interesting and important problem.

This leads to another interesting question: Can we classifythe AUSO hypercubes that correspond to parity games?
As we mentioned previously, Hammer et al. [HSLdW88] introduced a hierarchy of pseudo-boolean functions including
completely unimodal functions. It seems plausible that theclass of PBFs corresponding to parity games might lie
within one of the more restrictive families they considered. For example, viewing ad-dimensional hypercubeHd as a
polytope inRd, a PBFϕ onHd is linearly separableif for all r ∈ R there exists a hyperplane separating the vertices
v with ϕ(v) ≥ r from the verticesv′ with ϕ(v′) < r. It is easily seen that a divide-and-conquer algorithm can find the
sink of a linearly separable hypercube in time linear in the dimension, so if the hypercube orientations associated with
parity games are linearly separable then the strategy improvement algorithm would run in polynomial time. However,
as the next result shows, the hierarchy of [HSLdW88] is not fine enough to separate parity games and completely
unimodal functions. We say a pseudo-boolean functionf : {0, 1}n → R is pseudomodularif for all v, w ∈ {0, 1}n:

(i) min{f(v), f(w)} ≤ max{f(v ∧ w), f(v ∨ w)}, and
(ii) min{f(v ∧ w), f(v ∨ w)} ≤ max{f(v), f(w)}.

CHAPTER 3. STRATEGY IMPROVEMENT FOR PARITY GAMES 42

In [HSLdW88], the class of pseudomodular functions was the least restrictive class of PBFs included in completely
unimodal functions. However,

Proposition 3.14. There exists a parity game with an oriented strategy hypercube that cannot be induced by a pseu-
domodular function.

Proof. Consider the parity game from Figure 3.1. Its oriented strategy hypercube can be seen in Figure 3.3. We see
that

111C 000C 001C 110.

Now takingv = 001andw = 110we see that there is no functionf : {0, 1}3 → R that can simultaneously respectC
and satisfy both pseudomodular axioms above. ut

This result is not surprising, there is no obvious reason whythe joins and meets of strategies should satisfy the
pseudomodular conditions. However, it does imply for instance that there are strategy hypercubes which are not
linearly separable.

Chapter 4

Complexity measures for digraphs

In the last few chapters we examined the computational complexity of some graph-based games. We saw how the
winning condition influences the difficulty of the problem offinding a winner of such games. We now turn our
attention to the other aspect of such games, the arena. The aim of the next few chapters is to investigate measures
of graph complexity, in particular measures for directed graphs. As we will see, such metrics give insight into the
structure theory of graphs and help identify those characteristics that act as a barrier to finding efficient solutions
of various important problems (for example, finding the winner of a parity game, or finding a Hamiltonian path).
Consistent with the overall theme of this dissertation, thecomplexity measures we define will be based on games.

So what makes a good complexity measure? First we have to consider what it is we are aiming to measure. This
of course depends largely on the application one has in mind.For instance, a group theorist may be interested in graph
automorphisms and so a useful measure might reflect the size of the automorphism group. A topologist might be
interested in a measure that indicates how many edges must cross in a drawing of the graph on a surface, or how many
paths there are between any pair of vertices. We are interested in algorithmic aspects, so a practical measure might
indicate the difference between tractable and intractableinstances of many NP-complete problems. A good measure
of complexity may even encompass more than one such aim. So one desirable property issoundness: the measure
can be defined in equivalent ways for different applications. Another desirable property isrobustness: the measure
should be “well-behaved”. For example, if we simplify the graph, then the measure should not increase. Again, the
concept of simplification is dependent on the application. For the group theorist, a simple graph is one in which all
vertices have similar structure, for example, a clique. Forthe topologist a simple graph might be an acyclic graph.
From the algorithmic perspective, simplifying would include operations that likely reduce the complexity of many
problems, for instance taking subgraphs. In this case simple graphs would be a class on which many NP-complete
problems have polynomial time solutions – again, acyclic graphs are a good example. Dually, if we complicate the
graph the measure should not decrease, and if this complication is in some way uniform, we would expect the measure
to increase uniformly. One final desirable feature, particularly for algorithmic purposes, is that the measure should
somehow encompass large classes of graphs. For example, acyclicity is a sound and robust measure, but it only takes
two values, a graph is either acyclic or it is not. So althoughacyclicity provides a boundary between tractable and
intractable instances of many NP-complete problems, we cannot use it to find larger classes of graphs which may
admit efficient solutions. This suggests that a generalization of acyclicity, perhaps indicating how acyclic a graph is,
would be an ideal candidate for a good complexity measure. This is precisely the type of measure we consider in this
and the following chapters.

In this chapter we introduce an important and well-known measure for undirected graphs called tree-width. We
show how it matches the criteria outlined above, and we discuss the problem with its extension to directed graphs,
providing motivation for subsequent chapters.

43

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 44

4.1 Tree-width

Tree-width can be seen as a measure of graph complexity for both topological and algorithmic purposes. That it serves
both purposes is not surprising as it is often the complexityof the structure of the graph that makes problems difficult
to solve; many NP-complete problems can be solved in polynomial time on the topologically simple class of acyclic
graphs. As the name suggests, the tree-width of a graph indicates how close that graph is to being a tree. For example,
trees have tree-width1, simple cycles have tree-width2, and highly connected graphs such as cliques have tree-width
one less than the number of vertices in the graph.

Although Robertson and Seymour coined the name tree-width [RS84], the parameter had been around for many
years prior to this, testament to the importance of tree-width as a measure of graph complexity. Rose and Tarjan [RT75]
considered a symbolic approach to Gaussian elimination on matrices which amounts to vertex elimination on graphs.
They introduced several parameters which reflect how “difficult” it is to perform a sequence of eliminations: for ex-
ample thewidthof an elimination reflects the maximum number of operations required at any stage of the elimination.
The minimum width over all vertex eliminations is a graph measure equivalent to tree-width. Halin [Hal76] considered
S-functions: mappings from graphs to integers satisfying certain formal conditions, a class of functions which includes
graph parameters such as the chromatic number, the vertex-connectivity and the homomorphism-degree. Halin showed
that there is a maximal S-function under the natural point-wise partial ordering of S-functions, and this function turns
out to be the tree-width of the graph. Arnborg [Arn85] was oneof the first to show the algorithmic importance of
tree-width, by finding efficient solutions to many NP-complete problems on partialk-trees, a characterization of the
class of graphs with tree-width bounded byk. We will revisit some of these alternative characterizations of tree-width
in Chapter 7.

To formally define tree-width, we must first introduce the notion of a tree decomposition. A tree decomposition
of a graphG is an arrangement of subgraphs ofG in a tree-like manner so that all paths in the graph respect this
arrangement. More precisely,

Definition 4.1 (Tree decompositions and tree-width). Let G be an undirected graph. Atree decompositionof G is a
pair (T ,X) whereT is a tree andX = (Xt)t∈V (T) is a family of subsets ofV (G) such that:

(T1) X is a cover ofV (G), that is,
⋃

X∈X X = V (G),

(T2) For each vertexv ∈ V (G) the subgraph ofT induced by the set{t : v ∈ Xt} is a connected subtree, and

(T3) For each edge{u, v} ∈ E(G) there existst ∈ V (T) such that{u, v} ⊆ Xt.

Thewidth of a decomposition(T ,X) is max{|Xt| : t ∈ V (T)} − 1. Thetree-widthof a graphG, Tree-width(G) is
the minimum width over all tree decompositions ofG.

To see how this definition corresponds with our informal description above, letG be an undirected graph and
(T ,X) be a pair such thatT is a tree andX = (Xt)t∈V (T) is a cover ofV (G). For an arc1 e = {s, t} ∈ E(T), we
observe that the removal ofe from T gives two subtrees: one,Ts, containing the nodes, the other,Tt containing the
nodet. Let Vs =

⋃
t′∈Ts

Xt′ andVt =
⋃

t′∈Tt
Xt′ . We define the following condition:

(T4) For each arc{s, t} ∈ E(T), every path fromVs to Vt contains at least one vertex inXs ∩Xt.

Condition (T4) can be used as an alternative to conditions (T2) and (T3) as we see in the following lemma.

Lemma 4.2. LetG be an undirected graph, and(T ,X) a pair such thatT is a tree andX = (Xt)t∈V (T) is a cover
of V (G). Then (T4) holds if, and only if, both (T2) and (T3) hold.

Proof. Suppose (T4) holds. For each vertexv ∈ V (G), let T [v] be the subgraph ofT induced by the set{t ∈ V (T) :
v ∈ Xt}. SupposeT [v] is not connected. LetC1 andC2 be two distinct components ofT [v]. SinceT is a tree, there
is a unique path inT from C1 to C2. Let (s, s′) be the first arc in that path. SinceC1 andC2 are distinct components,

1To assist with descriptions, we use the termsnodesandarcswhen referring toT , and the termsverticesandedgesfor G.

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 45

we haves ∈ C1 ands′ /∈ V (T [v]), sov ∈ Xs ⊆ Vs, butv /∈ Xs′ , sov /∈ Xs ∩Xs′ . However,C2 ⊆ Ts′ , sov ∈ Vs′ .
As the path (of length0) from v to itself does not go throughXs∩Xs′ we have a contradiction. Thus (T2) holds. Now
let e = {u, v} be an edge ofG and supposeT [u] andT [v] have no nodes in common. Let(s, s′) be the first arc in the
unique path fromT [u] to T [v] in T . We observe thatu ∈ Ts, u /∈ Ts′ , v /∈ Ts andv ∈ Ts′ . But then no vertex on the
(length1) path fromu to v alonge is contained inXs ∩Xs′ , a contradiction. Therefore, (T3) holds.

Now suppose (T2) and (T3) hold. Let{s, s′} be an arc ofT . Let (v1, . . . , vn) be a path fromv1 ∈ Vs to vn ∈ Vs′ .
We show that there must be somei such thatvi ∈ Xs ∩ Xs′ . If vi ∈ Vs ∩ Vs′ for any i, 1 ≤ i ≤ n, then it follows
from (T2) thatvi ∈ Xs∩Xs′ and we are done. So assume that there is noi such thatvi ∈ Vs ∩Vs′ . Sincev1 ∈ Vs and
vn ∈ Vs′ , it follows that there is somej, 1 < j ≤ n such thatvi ∈ Vs for all 1 ≤ i < j, andvj ∈ Vs′ . But there is an
edge fromvj−1 to vj so from (T3) there existst ∈ V (T) such that{vj−1, vj} ⊆ Xt. Now V (Ts) ∪ V (Ts′) = V (T),
so eithert ∈ V (Ts) or t ∈ V (Ts′). In the first case it follows thatvj ∈ Vs, and in the second it follows thatvj−1 ∈ Vs′ ,
both of which are contradictions. Therefore (T4) holds. ut

Path-width

Path-width, also introduced by Robertson and Seymour [RS83], is a measure of complexity for undirected graphs
closely related to tree-width. Just as tree-width indicates how close a graph is to being a tree, path-width indicates how
close a graph is to being a path. Indeed, a path decompositionis a tree decomposition in which the underlying tree is
a path. More precisely,

Definition 4.3 (Path decomposition and path-width). Let G be an undirected graph. Apath decompositionof G is a
sequenceX1, . . . , Xn of subsets ofV (G) such that:

(P1)
⋃n

i=1 Xi = V (G),

(P2) If i ≤ j ≤ k thenXi ∩Xk ⊆ Xj , and

(P3) For eache = {u, v} ∈ E(G), there existsi ≤ n such that{u, v} ⊆ Xi.

Thewidth of a path decomposition,X1, . . . , Xn, is max{|Xi| : 1 ≤ i ≤ k} − 1. Thepath-widthof G is the smallest
width of any path decomposition ofG.

It is worth observing that ifX1, . . . , Xn is a path decomposition of a graphG, then so isXn, . . . , X1. Thus a path
decomposition is not completely dependent on the linear order imposed by the fact that it is a sequence.

Because a path decomposition is also a tree decomposition, path-width is a weaker notion of graph complexity
than tree-width. That is, if a graph has path-widthk, then the graph has tree-width≤ k. The difference between
the two can be arbitrarily large: the class of trees has tree-width 1, but unbounded path-width. However, as argued
in [DK05], path-width can be seen as a first approximation of tree-width, and many interesting structural results can
be established with the measure. For example, we have the following result of Bienstock, Robertson, Seymour and
Thomas:

Theorem 4.4([BRST91]). For every forestT , every graph of path-width≥ |V (T)|−1 has a minor isomorphic toT .

4.1.1 Structural importance of tree-width

Lemma 4.2 gives us a good insight into what graph properties tree-width measures. If we take the given definition of
a tree decomposition, we see that tree-width is essentiallya measure indicating how much structure we need to ignore
before the graph becomes acyclic. In this way, tree-width measures the cyclicity of a graph. On the other hand, if
we define tree decompositions using (T1) and (T4) we see that tree-width measures how well separate parts of the
graph are linked. In other words, tree-width also measures the connectedness of a graph. Lemma 4.2 asserts that
on undirected graphs cyclicity and connectedness generalize to the same measure. As we will see, this distinction is
important, because on directed graphs cyclicity and connectedness are significantly different, giving us a variety of
complexity measures to consider.

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 46

In Chapter 1, we indicated that the concept of “graph structure” that we are interested in investigating is algorith-
mically motivated. As we have suggested, cyclicity and connectedness are important algorithmic structural properties,
so this suggests that tree-width is a useful measure for graph structure.

An important relation for the theory of graph structure thatwe are investigating is theminor relation. Intuitively the
minor relation relates two graphs if one is structurally “more complex” than the other. We formally define the concept
in Chapter 8. It is not surprising that tree-width and the minor relation are closely connected. Indeed, tree-width was
an important tool in the proof by Robertson and Seymour [RS04] of the Graph Minor Theorem (see Theorem 8.42),
described by Diestel as “among the deepest results mathematics has to offer” [Die05]. In addition many other structural
measures have been shown to be intimately related to tree-width. For instance afeedback vertex setis a set of vertices
whose removal result in an acyclic graph. It is easy to show that if a graph has a feedback vertex set of sizek, then it
has tree-width at mostk + 1. Two other important structural measures are havens and brambles.

Definition 4.5 (Haven). LetG be an undirected graph andk ∈ N. A haven of orderk in G is a functionβ : [V (G)]<k →
P(V (G)) such that for allX ⊆ V (G) with |X | < k:

(H1) β(X) is a non-empty connected component ofG \X , and

(H2) If Y ⊆ X , thenβ(Y) ⊇ β(X).

Definition 4.6 (Bramble). LetG be an undirected graph. Abramblein G is a setB of connected subsets ofV (G) such
that for all pairsB, B′ ∈ B eitherB ∩B′ 6= ∅, or there exists{u, v} ∈ E(G) with u ∈ B andv ∈ B′. Thewidth of a
brambleB is the minimum size of a set which has a non-empty intersection with every element ofB.

Seymour and Thomas [ST93] demonstrated the relation between havens, brambles and tree-width with the follow-
ing theorem:

Theorem 4.7([ST93]). LetG be an undirected graph. The following are equivalent:

1. G has tree-width≥ k − 1

2. G has a haven of orderk.

3. G has a bramble of widthk.

This theorem asserts that the smallest width of all tree decompositions is always equal to the largest width of all
brambles. Since the width of tree decompositions is a maximizing measure and the width of brambles is a minimizing
measure, Theorem 4.7 is a minimax theorem. We explore this aspect of tree-width further in Chapter 8.

The importance of tree-width as a measure of structural complexity suggests that tree-width is robust under various
structural transformations, particularly those, such as taking subgraphs, which may affect the complexity of problems.
Indeed, this can be verified by examining the definition of tree decompositions, but is perhaps best illustrated by
Theorem 5.37, which we present in the next chapter.

4.1.2 Algorithmic importance of tree-width

The nature of tree decompositions further supports the algorithmic significance of tree-width, as the structure of a
decomposition lends itself well to dynamic programming techniques [Bod88]. When we restrict to a class of graphs of
bounded tree-width, we bound the size of the tree decompositions and many algorithms based on dynamic program-
ming will run in polynomial time. Thus restricting to classes of graphs of bounded tree-width can provide large classes
of tractable instances for many NP-complete problems. Thiswas best illustrated by Arnborg and Proskurowski [AP89],
when they provided efficient algorithms for many well-knownNP-complete problems on graphs of bounded tree-
width. This was further extended by Courcelle’s elegant characterization of a large class of problems which can be
efficiently solved with dynamic programming:

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 47

Theorem 4.8([Cou90]). Any problem which can be formulated in Monadic Second Order logic can be solved in
linear time on any class of graphs of bounded tree-width.

Of course the applicability of these results depends largely on the complexity of the following decision problem:

TREE-WIDTH

Instance: An undirected graphG, and a natural numberk
Problem: Is the tree-width ofG at mostk?

While this problem is NP-complete [ACP87], for a fixed valuek determining if a graph has tree-widthk and
indeed, computing a tree decomposition of widthk if one exists, can be performed in linear time [Bod96]. This means
that finding the tree-width of a graph is fixed parameter tractable, and so it is not surprising that tree-width has also
played a major role in advancing the field of parameterized complexity.

As we mentioned earlier many important graph parameters areclosely related to tree-width, so a common tech-
nique for finding fixed parameter tractable algorithms for parameterized problems is to use tree-width to separate
instances into those which can be trivially solved and thosewhich can be solved using bounded tree-width techniques.
For example, consider the parameterized problem of finding afeedback vertex set of sizek. We can use the fixed
parameter tractable algorithm for computing tree-width tocompute a tree decomposition of widthk + 1. If no such
decomposition exists then there cannot be a feedback vertexset of sizek. Otherwise, since the feedback vertex set
problem can be formulated in MSO, Courcelle’s theorem implies there exists an algorithm to solve the problem in
linear time, giving us a fixed parameter tractable algorithmfor finding a feedback vertex set of sizek.

4.1.3 Extending tree-width to other structures

The above discussion indicates that tree-width is a practical, sound and robust complexity measure for undirected
graphs. We now consider other structures such as directed graphs or hypergraphs. One key to the success of tree-width
is that tree decompositions are readily extendable to arbitrary relational structures. If, in Definition 4.1, we replace
“vertices” with “elements of the universe”, and condition (T3) with:

(T3′) For each relationR and each tuple(a1, a2, . . .) in the interpretation ofR there existst ∈ V (T) such that
{a1, a2, . . .} ⊆ Xt,

then we obtain a definition of tree-width for general relational structures. Consequently, we can benefit from the
algorithmic advantages of tree-width, such as a structure well-suited to dynamic programming, and obtain large classes
of tractable instances of problems outside graph problems.But how good is tree-width as a measure of complexity on
these structures? It is easy to see that the tree-width of a structure is precisely the tree-width of the Gaifman graph of
that structure: the graph with vertex set equal to the universe of the structure and an edge between any two elements
that occur in a tuple of a relation. The main drawback of this approach is that by considering the Gaifman graph,
we lose information about the structure, and in some cases this information loss may be crucial. For example, the
Gaifman graph of a directed graph is the undirected graph obtained by ignoring the orientation of the edges, so the
tree-width of a directed graph is the tree-width of the underlying undirected graph. This means that directed acyclic
graphs (DAGs) can have arbitrary tree-width as any graph canbe the underlying graph of a DAG. However, many
interesting problems based on directed graphs are greatly simplified when restricted to DAGs, so we would expect
DAGs to have low complexity. This suggests that tree-width is not a good complexity measure of directed graphs,
especially for algorithmic purposes.

This leads to the following research problem, the investigation of which forms the core of the remaining chapters.

Research aim.Find a complexity measure for directed graphs which generalizes tree-width.

Before we give an overview of the current status of this problem, we discuss what exactly “generalizes tree-width”
entails. First, we are interested in measures which generalize tree-width as a measure. This has two aspects. As
tree-width is defined for directed graphs, we are not interested in measures that may be “worse than” tree-width. In

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 48

other words, we are searching for measures that are bounded above by tree-width. On the other hand, we can view
undirected graphs as directed graphs by interpreting an undirected edge as a pair of anti-parallel edges – recall the
definition of bidirection in Section 1.1.2. So we can look fora measure which matches tree-width on undirected
graphs by using this transformation to directed graphs.

The second property of tree-width we are interested in generalizing is the structural aspect. Many structural proper-
ties of graphs have natural extensions to directed graphs, for example acyclicity or connectivity. A good generalization
of tree-width to directed graphs would reflect the behaviourof tree-width with regard to these properties. In particular
we expect structurally simple directed graphs such as DAGs and directed cycles to have low complexity, but struc-
turally complex directed graphs such as cliques to have highcomplexity, just as trees and cycles have small tree-width
and cliques have large tree-width. Similarly, we expect that a reasonable measure would be robust under the structural
relations for directed graphs we considered in Section 1.1.2. For example, we expect that the measure would not in-
crease under the taking of subgraphs, or that it would be possible to compute the measure on a graph from its strongly
or weakly connected components, or more generally from a pair of subgraphs which comprise a directed union. This
last property was considered in [JRST01] as an important property for the generalization of tree-width to directed
graphs.

Finally, we are also interested in generalizing tree-widthin the algorithmic sense. We are particularly interested
in being able to find efficient algorithms for interesting problems on directed graphs of bounded complexity. Having
some sort of decomposition which generalizes tree decompositions might be one way to achieve this.

4.2 Directed tree-width

In [JRST01], Johnson, Robertson, Seymour and Thomas introduced an extension of tree-width to directed graphs
known as directed tree-width. Informally, directed tree-width is based on a decomposition, known as an arboreal
decomposition, which is defined by generalizing Condition (T4). Formally, to define directed tree-width, we require
the following definition:

Definition 4.9 (Z-normal). Given two disjoint subsetsZ andS of vertices of a digraphG, we sayS is Z-normal if
for every directed path,v1 · · · vn, in G such thatv1, vn ∈ S, eithervi ∈ S for all 1 ≤ i ≤ n, or there existsj ≤ n such
thatvj ∈ Z.

Also, given a directed treeT with edges oriented away from a unique vertexr ∈ V (T) (called theroot), we write
t > e for t ∈ V (T) ande ∈ E(T) if e occurs on the unique directed path fromr to t, ande ∼ t if e is incident witht.
The following concepts were introduced in [JRST01].

Definition 4.10(Arboreal decompositions [JRST02]). An arboreal decompositionof a digraphG is a tuple(T ,B,W)
whereT is a directed tree with a unique root, andB = (Bt)t∈V (T) andW = (We)e∈E(T) are families of subsets of
V (G) that satisfy:

(R1) B is a partition ofV (G) into non-empty sets, and

(R2) If e ∈ E(T), thenB≥e :=
⋃{Bt|t > e} is We-normal.

Thewidth of an arboreal decomposition(T ,B,W) is the minimumk such that for allt ∈ V (T), |Bt ∪
⋃

e∼t We| ≤
k + 1. Thedirected tree-widthof a digraphG, dtw(G), is the minimal width of all its arboreal decompositions.

It follows from this definition that directed tree-width does generalize tree-width as a measure in the sense de-
scribed above.

Towards showing that directed tree-width is also a structural generalization, Johnson et al. considered the natural
generalization of havens (using strongly connected components rather than connected components) and proved the
following analogue of Theorem 4.7:

Theorem 4.11([JRST01]). LetG be a directed graph.

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 49

1. If G has a haven of orderk thenG has directed tree-width≥ k − 1.

2. If G has no haven of orderk thenG has directed tree-width≤ 3k − 2.

Johnson et al. conjectured that the bound in the second item could be reduced to≤ k− 1, showing an equivalence
between havens and directed tree-width. However Adler [Adl05] has shown that this is not the case. Safari [Saf05]
showed that natural generalization of brambles (using strongly connected sets rather than connected sets), can also be
related to havens and directed tree-width.

Theorem 4.12([Saf05]). For a directed graphG let H(G) be the largest order of a haven inG, andB(G) the largest
width of any bramble inG. Then

H(G) ≤ 2B(G) ≤ 2H(G),
and there exist graphs for which equality holds in either inequality.

Johnson et al. also demonstrated the algorithmic potentialof directed tree-width, firstly by providing a general
algorithm scheme for finding efficient algorithms on digraphs of bounded directed tree-width, and secondly by using
this scheme to produce an algorithm which solves the following problem in polynomial time on graphs of bounded
directed tree-width:

k-DISJOINT PATHS

Instance: A directed graphG, and a set ofk pairs of (not necessarily disjoint) vertices
{(s1, t1), . . . (sk, tk)}

Problem: Are therek vertex disjoint pathsP1, . . . , Pk in G such that for eachi, Pi is a
path fromsi to ti?

A corollary of this result is that many other important NP-complete problems, such as the Hamiltonian path and cycle
problems, can be solved efficiently on graphs of bounded directed tree-width.

Theorem 4.13([JRST01]). The following problems can be solved in polynomial time on any class of directed graphs
with bounded directed tree-width: Hamiltonian cycle, Hamiltonian path,k-Disjoint paths, Hamiltonian path with
prescribed endpoints, Even cycle through a given vertex.

In terms of parameterized complexity, directed tree-widthis also quite useful. Although there is no known algo-
rithm for computing the exact directed tree-width of a graphapart from a brute-force search, generalizing the approach
used to compute tree-width in fixed parameter linear time gives us a fixed parameter tractable algorithm for computing
an approximation of directed tree-width. This means that wecan use directed tree-width in a similar role as tree-width
for finding fixed parameter tractable algorithms for problems on directed graphs.

Johnson et al. conclude their paper by observing that several other more natural extensions of tree decompositions
to directed graphs are not appropriate as they are not robustunder simple graph operations. They highlight that one
of the major problems with defining a notion of tree-width fordirected graphs is that on directed graphs many other
structural measures are not as closely linked as they are in the undirected case, as we saw in Theorem 4.12.

4.3 Beyond directed tree-width

So with a seemingly appropriate complexity measure defined,why is the generalization of tree-width to directed graphs
still an interesting research problem? The answer is that directed tree-width does not seem to complete the whole
picture. For a start, unlike with tree-width the definition is awkward, as is the given algorithm scheme, and it is difficult
to gain an intuitive understanding. The structure of arboreal decompositions is not as flexible as tree decompositions,
which means we cannot provide alternative forms of the decomposition which may be useful algorithmically (see,
for example, Theorem 6.28). This makes it challenging to develop algorithms outside of those provided in [JRST01],
suggesting directed tree-width is not as practical as it first appears.

CHAPTER 4. COMPLEXITY MEASURES FOR DIGRAPHS 50

In addition, contrary to the claims made in [JRST01], directed tree-width is not robust under some very simple
graph operations. Adler [Adl05] has shown that directed tree-width may increase under the taking of butterfly minors
(see Definition 8.28), and it appears that this can be extended to showing that directed tree-width may increase under
the taking of subgraphs. However, it follows from Theorem 4.11, that this increase can only be by a constant factor,
as havens are robust under these operations. While this means that algorithmically directed tree-width is still a useful
measure of complexity, it lessens the importance of directed tree-width as a structural measure. This was further shown
by Adler, with the following result which shows that havens are distinct from directed tree-width.

Theorem 4.14([Adl05]). There exists a directed graphG with no haven of order4 and directed tree-width4.

This implies that we cannot reduce the bound in the second part of Theorem 4.11 to obtain an equivalence between
havens and directed tree-width.

Nevertheless, in the next chapter we show that Theorem 4.11 implies that directed tree-width at least approximates
a good complexity measure for directed graphs. But the picture is still not complete. The problem is that on directed
graphs there is a difference between connectivity and reachability – if there is a path fromu to v it does not necessarily
follow that u andv are in the same strongly connected component, and similarly, if u andv are in the same weakly
connected component, there may not be a path fromu to v. The tree-width of a directed graph can be seen as a measure
of its weak connectivity, as tree-width is a connectivity measure that, on directed graphs, ignores edge direction.
Likewise, the definitions of directed tree-width and its alternative characterizations suggest that directed tree-width
is a measure of the strong connectivity of a graph. So the question can be asked, “What, if anything, measures the
reachability, ordirected connectivity, of a directed graph?” In Chapters 6 and 7 we address this question, introducing
two distinct, but closely related measures which seem to indicate directed connectivity. As strong connectedness
implies reachability, and reachability implies weak connectedness, it is not surprising that these measures lie between
tree-width and directed tree-width. We argue that as these measures are closer to tree-width than directed tree-width
is, they are more practical as a complexity measure for directed graphs. In Chapter 8 we consider the structural
implications of the question, endeavouring to find generalizations of havens, brambles and minors that correspond to
our measures.

An interesting follow-up question is “Should a good complexity measure for directed graphs be invariant under
edge reversal?” As many important structural features suchas cycles or strongly connected sets are preserved under
reversing edges, it would seem that a good structural measure would be invariant under this operation. However,
from an algorithmic point of view edge direction is much morecritical. Consider the problem of trying to find a
path between two vertices when it is not easy to compute the edge relation, but it is relatively easy to compute the
successors of a vertex. Such a problem might arise for instance if we were considering the computations of a Turing
machine. On a tree where all edges are oriented away from a single vertex, finding such a path could involve a lot of
back-tracking, but with all edges oriented towards a singlevertex, the problem becomes significantly easier. Unlike
directed tree-width, the measures we introduce in Chapters6 and 7 are not invariant under the edge reversal operation,
providing further evidence that they are more suitable extensions of tree-width from a practical point of view.

Chapter 5

Graph searching games

With a view to finding good complexity measures for directed graphs, we now turn our attention to a means of
developing robust measures of graph complexity. We introduce a game played between two players, one controlling
a fugitive located on the graph, and the other controlling a set of searchers whose purpose is to locate the fugitive.
Such games are useful for describing problems such as tryingto locate a virus in a network, or locate someone in a
cave system. They can also be used to define measures of graph complexity: we obtain various complexity measures
by considering variants of the game and the resources required by the searchers to locate the fugitive. Indeed, the
tree-width of a graph can be characterized by the minimum number of searchers required to locate the fugitive in some
of the variants we consider.

We first define a very general form of the game which encompasses many games considered in the literature, for
example [ST93, KP86, BG04, DKT97, FFN05, GLS01, GM06]. Thisenables us to define some important concepts
we use throughout the next few chapters: plays, searches, strategies and monotonicity. After demonstrating how this
game includes other games considered in the literature, we introduce a general framework for developing measures of
graph complexity. In Section 5.4, we show how these measuresare robust under some basic graph operations such as
taking subgraphs. Finally, we conclude the chapter by considering the complexity of the problem of determining these
graph parameters.

5.1 Definitions

The definitions we present in this chapter are applicable to both directed and undirected graphs, though it is often
necessary to assume we are working within only one of these classes. Thus we use the termgraph to refer to a
structure with a single, binary edge relation which may or may not be symmetric.

We recall from Definition 2.7, the definition of asimple game. The game we are interested in is a simple game
played on an arena defined by the graph to be searched. That is,

Definition 5.1 (Graph searching game). A graph searching game typeis a functionΓ which maps a graphG to a triple
(Ls,Lf ,A) whereLs andLf are sets of subsets of Elts(G) andA is an arena which satisfy:

• ∅ ∈ Ls,

• ∅ /∈ Lf , andLf has a unique⊆-maximal elementRmax,

• V0(A) ⊆ Ls × Lf consists of pairs(X, R) whereX ∩R = ∅,

• V1(A) ⊆ Ls × Ls × Lf consists of triples of the form(X, X ′, R) whereX ∩R = ∅,

• vI(A) = (∅, Rmax),

51

CHAPTER 5. GRAPH SEARCHING GAMES 52

• If
(
(X, R), (X ′, X ′′, R′)

)
∈ E(A) thenX = X ′ andR = R′,

• If
(
(X, X ′, R), (X ′′, R′)

)
∈ E(A) thenX ′ = X ′′ and for allr′ ∈ R′ there isr ∈ R such thatr andr′ are in

the same (weakly) connected component ofG \ (X ∩X ′), and

• If S ⊆ R, then for allS′ such that
(
(X, X ′, S), (X ′, S′)

)
∈ E(A), there existsR′ ⊇ S′ such that

(
(X, X ′, R), (X ′, R′)

)
∈

E(A).

Given a graph searching game typeΓ, and a graphG, with Γ(G) = (Ls,Lf ,A) thegraph searching game onG
(defined byΓ(G)) is the simple gameGΓ

G := (A,F), whereF = ∅, so Player 1 wins all infinite plays. In a graph
searching game elements ofV0(A) are calledpositions (of the game), elements ofV1(A) are calledintermediate
positions, and we call Player 0 thesearchersand Player 1 thefugitive.

Intuitively, the game works as follows. A graph searching game onG is a game played by a number of co-
operating searchers against an omniscient fugitive. All entities occupy elements ofG, however, while the locations of
the searchers are known to everyone, the location of the fugitive is not necessarily known, so the fugitive “occupies”
a set of potential locations. When the game is at the position(X, R), X ∈ Ls represents the location of the searchers,
andR ∈ Lf represents the set of potential fugitive locations. The initial position,(∅, Rmax), thus indicates that at
the beginning there are no searchers onG and the fugitive may be anywhere onRmax. The searchers and fugitive
move aroundG, but, as indicated by the edge relation of the arena, only thefugitive is necessarily constrained by the
topology ofG.

From position(X, R), the searchers, if possible, choose a new set of locationsX ′. If this is not possible then the
fugitive has escaped and he wins. Otherwise, the game proceeds to the intermediate position(X, X ′, R). For ease of
later descriptions, we say the searchers onX \X ′ have beenremovedwhile the searchers onX∩X ′ remainstationary
and the searchers onX ′ \X will be placedafter the fugitive has completed his move.

The fugitive responds to the move of the searchers at each of his potential locations, but he is not permitted to pass
through any stationary searchers. However, he is omniscient and is aware of the impending occupation ofX ′ \ X
by the searchers that will be placed, and can modify his response accordingly. The final condition in the definition
of the arena of a graph searching game asserts that the responses of the fugitive at each of his potential locations are
somewhat independent: if the set of potential locations is increased, then so are the sets of his potential responses.
Some information about the response of the fugitive may be available to the searchers, resulting in a (visible) choice
for the fugitive about the next set,R′, of his potential locations. If he has no such choice and no possible location to
move to (R′ = ∅), then he has been captured and the searchers win. Otherwise, the game proceeds to the position
(X ′, R′). This whole process is represented in the graph searching game by moving the token from(X, R) to the
vertex(X, X ′, R), and then to(X ′, R′). If the fugitive can avoid capture forever, then again he hasescaped and he
wins.

From this we can see that an arena of a graph searching game onG can be described by defining the set of positions
and a set of legal transitions between positions, essentially “ignoring” non-terminal intermediate positions. It follows
that all plays ending with a move from the fugitive can be fully described as a sequence of positions:

(X0, R0)(X1, R1) · · · (Xn, Rn)

where(X0, R0) = (∅, Rmax) and for0 ≤ i < n and for allr′ ∈ Ri+1 there isr ∈ Ri such thatr andr′ are in the
same connected component ofG \ (Xi ∩Xi+1). We extend this to include plays that are winning for the searchers by
usingRn = ∅ to indicate that the play ended at(Xn−1, Xn, Rn−1). This motivates the following definition:

Definition 5.2 (Search). Let G
Γ
G be a graph searching game onG defined by(Ls,Lf ,A), and let(X1, R1) ∈ V0(A).

A proper search from(X1, R1) in GΓ
G is a (possibly infinite) sequence,(X1, R1)(X2, R2) · · · , such that for alli ≥ 1:

• (Xi, Ri) ∈ V0(A),

•
(
(Xi, Ri), (Xi, Xi+1, Ri)

)
∈ E(A), and

CHAPTER 5. GRAPH SEARCHING GAMES 53

•
(
(Xi, Xi+1, Ri), (Xi+1, Ri+1)

)
∈ E(A).

A complete search from(X1, R1) in GΓ
G is a finite sequence(X1, R1) · · · (Xn, Rn) such that

• (X1, R1) · · · (Xn−1, Rn−1) is a proper search from(X1, R1) in GΓ
G ,

•
(
(Xn−1, Rn−1), (Xn−1, Xn, Rn−1)

)
∈ E(A),

• (Xn−1, Xn, Rn−1)
)
∈ V1(A) has no outgoing edges, and

• Rn = ∅.

A searchin GΓ
G is a sequence which is either a proper or a complete search. A searchπ can beextendedto a search

π′, if π is a prefix ofπ′. A search fromvI(A) is winning for the searchersif it can be extended to a complete search,
otherwise it iswinning for the fugitive.

In the sequel we will generally adopt this representation ofplays as we are primarily concerned with the game
from the perspective of the searchers.

Variants of graph searching games are obtained by restricting the moves available to the searchers and the fugitive,
in other words, by placing restrictions on the arena on whichthe game is played. Before we consider some examples,
we introduce some definitions and results relating to strategies.

5.1.1 Strategies

Since a graph searching game is a simple game, it follows thatthe winner is determined by reachability, and therefore if
either the fugitive or the searchers have a winning strategy, they have a memoryless strategy. However, in this chapter
we are interested inresource boundedwinning strategies, and in this case memoryless strategies, indeed, even finite
memory strategies may no longer be sufficient. However, to ensure that computing such strategies remains decidable,
we impose restrictions on the resource measures we considerso that searches consistent with strategies are only ever
simple paths in the arena. This motivates the definition of ahistory-dependent strategy.

Definition 5.3 (History-dependent strategy). Let G be a graph, andGΓ
G a graph searching game onG defined by

(Ls,Lf ,A). Given a setΣ, ahistory-dependent strategy for the searchersis a partial functionσ : Σ∗ × Ls × Lf →
Σ× Ls such that:

• σ(ε, X0, R0) is defined for the empty wordε, and(X0, R0) = vI(A),

• If σ(w, X, R) = (a, X ′) for (X, R) ∈ V0(A), then

– (X, X ′, R) ∈ V1(A),

– there is an edge inE(A) from (X, R) to (X, X ′, R), and

– if there is an edge inE(A) from (X, X ′, R) to (X ′, R′) ∈ V0(A) thenσ(w · a, X ′, R′) is defined.

We say a searchπ = (X0, R0)(X1, R1) · · · is consistentwith σ if there exists a wordw = a1a2 · · · ∈ Σ∗ ∪ Σω such
that for alli ≥ 0, Xi+1 = σ(a1 · · ·ai, Xi, Ri). We callw thehistory consistentwith π.

Remark. In the sequel we will usually define history-dependent strategies inductively, often omitting the associated
history when it is clear from the context what the play to a given position should be.

Nevertheless, we show in Section 5.3 that the resource bounded strategies we are primarily concerned with are
equivalent to winning strategies in a graph searching game.For this reason, we reserve the definition ofstrategiesfor
positional strategies.

CHAPTER 5. GRAPH SEARCHING GAMES 54

Definition 5.4 (Strategy). Let G be a graph, andGΓ
G a graph searching game onG defined by(Ls,Lf ,A). A strategy

for the searchersis a partial function,σ : Ls × Lf → Ls, such that ifσ(X, R) is defined there is an edge inE(A)
from (X, R) to (X, σ(X, R), R). If π = (X0, R0)(X1, R1) · · · is a search inGΓ

G , we sayπ is consistentwith σ if for
all i ≥ 0, Xi+1 = σ(Xi, Ri). We sayσ is winning (for the searchers)if every search fromvI(A) consistent withσ is
winning for the searchers.

A strategy for the fugitiveis a partial functionρ : Ls × Ls × Lf such that if(X, X ′, R) ∈ V1(A), there is an
edge inE(A) from (X, X ′, R) to (X ′, ρ(X, X ′, R)). If π = (X0, R0)(X1, R1) · · · is a search inGΓ

G , we sayπ is
consistentwith ρ if for all i ≥ 0, Ri+1 = σ(Xi, Xi+1, Ri). We sayρ is winning (for the fugitive)if every search from
vI(A) consistent withρ is winning for the fugitive.

Given a strategyσ for the searchers and a strategyρ for the fugitive, the unique maximal search consistent withσ
andρ is thesearch defined byσ andρ

We now use strategies to define a structure that will prove useful in the next few chapters. Given a strategyσ for
the searchers in a graph searching gameGΓ

G defined by(Ls,Lf ,A), we see thatσ induces a subgraph ofA in the
following way. LetV ⊆ V (A) be the set of positions and intermediate positions reached by some play fromvI(A)
consistent withσ. Considering for the moment positional strategies, it follows that from each position(X, R) ∈ V
there is precisely one successor(X, X ′, R) ∈ V , namely the element ofV1(A) with X ′ = σ(X, R). The structure
we are interested in is a slight variation of this subgraph where, just as with our policy for describing searches, the
intermediate positions are ignored.

Definition 5.5 (Strategy digraph). LetG be a graph andGΓ
G a graph searching game onG defined by(Ls,Lf ,A). Let

σ be a strategy for the searchers. Thestrategy digraph defined byσ,Dσ, is the directed graph defined as:

• V (Dσ) is the set of all pairs(X, R), including “positions” of the form(X, ∅), such that there is some search in
GΓ

G , (X0, R0)(X1, R1) · · · , fromvI(A) = (X0, R0) and consistent withσ, with (X, R) = (Xi, Ri) for somei.

• There is an edge from(X, R) to (X ′, R′) in E(Dσ) if X ′ = σ(X, R) and either there is an edge from(X, X ′, R)
to (X ′, R′) in E(A), or there are no edges from(X, X ′, R) in E(A) andR′ = ∅.

Remark.Sometimes it may be convenient to assume that nodes of the form (X ′, ∅) of a strategy digraph are duplicated
so that each such position actually corresponds to a vertex(X, X ′, R) in V1(A). When this is the case, we see that
every leaf of the form(X, ∅) has a unique predecessor: if(X ′, ∅) is associated with(X, X ′, R) then(X, R) is the
unique predecessor of(X ′, ∅). We observe that after these duplications, we still have|V (Dσ)| ≤ |V (A)|.

An observation that will prove useful concerns the form the strategy digraph takes for winning strategies.

Lemma 5.6. LetG be a graph andGΓ
G a graph searching game onG defined by(Ls,Lf ,A). If σ is a winning strategy

for the searchers thenDσ is a directed acyclic graph and all leaves ofDσ are of the form(X, ∅).

Proof. We observe that from the definition, there is a path fromvI(A) = (X0, R0) to every node(X, R) ∈ V (Dσ).
We also observe that every path(X0, R0)(X1, R1) · · · inDσ fromvI(A) corresponds to a search inGΓ

G consistent with
σ, and if(X, R) is a leaf then there is no search consistent withσ extending any consistent search which ends at(X, R).
Sinceσ is a winning strategy for the searchers, all searches consistent withσ can be extended to a complete search.
Thus, if(X, R) is a leaf, it follows that all searches from(X0, R0) which end at(X, R) must be complete, soR = ∅. To
show acyclicity, it suffices to show that ifDσ is not acyclic, thenσ is not a winning strategy for the searchers. Suppose
(Y1, S1) · · · (Ym, Sm) is a cycle inDσ. By our earlier observation,π = (Y1, S1) · · · (Ym, Sm)(Y1, S1) is a search
from (Y1, S1) consistent withσ. Now from the definition ofV (Dσ), there exists a searchπ′ = (X0, R0) · · · (Xk, Rk),
where(Xk, Rk) = (Y1, S1) consistent withσ from (X0, R0) = vI(A). Therefore, the infinite search

π′ · π · π · · · = (X0, R0) · · · (Y1, S1) · · · (Ym, Sm), (Y1, S1) · · ·

is a search fromvI(A) consistent withσ. As this cannot possibly be extended to a finite search and thefugitive wins
all infinite plays, it follows thatσ is not a winning strategy for the searchers. ut

CHAPTER 5. GRAPH SEARCHING GAMES 55

Definition 5.7 (Strategy DAG). Let G be a graph andGΓ
G a graph searching game onG. If σ is a winning strategy for

the searchers then we callDσ thestrategy DAGdefined byσ.

One important property of plays, searches and strategies that we are interested in is the concept of monotonicity.
In particular, we concentrate on two types of monotonicity:fugitive-monotonicity, where the set of potential fugitive
locations is always non-increasing, and searcher-monotonicity, where no location vacated by a searcher is ever re-
occupied.

Definition 5.8 (Fugitive and Searcher Monotonicity). LetG be a graph and letπ = (X0, R0)(X1, R1) · · · be a search
in a graph searching game onG. We sayπ is

• fugitive-monotoneif Ri ⊇ Ri+1 for all i ≥ 0, and

• searcher-monotoneif Xi ∩Xk ⊆ Xj for 0 ≤ i ≤ j ≤ k.

A strategy,σ, for the searchers in a graph searching game onG is fugitive-monotone(searcher-monotone) if every
search consistent withσ is fugitive-monotone (searcher-monotone).

Our next result concerning strategies in the general graph searching game is a useful observation regarding mono-
tone strategies. We show that, under some simple assumptions, a searcher-monotone winning strategy must also be
fugitive-monotone. Let us say that a graph searching gamepermits idling if the fugitive is able to remain at any
location which is not about to be occupied by a searcher. Furthermore, let us say that a graph searching game isva-
cating sensitiveif, whenever some location becomes available to the fugitive, there must be some location, previously
occupied by a searcher, that the fugitive can now occupy. More precisely,

Definition 5.9 (Permits idling). Let G be a graph andGΓ
G a graph searching game onG defined by(Ls,Lf ,A). We

sayGΓ
G permits idlingif for all (X, X ′, R) ∈ V1(A) and allr ∈ R \X ′, there existsR′ ⊆ Elts(G) such thatr ∈ R′

and there is an edge inE(A) from (X, X ′, R) to (X ′, R′).

Definition 5.10 (Vacating sensitive). Let G be a graph andGΓ
G a graph searching game onG defined by(Ls,Lf ,A).

We say thatGΓ
G is vacating sensitiveif, whenever there is an edge inE(A) from (X, X ′, R) to (X ′, R′) with R′ 6⊆ R,

thenX ∩R′ 6= ∅.
Lemma 5.11. LetG be a graph andGΓ

G a graph searching game onG which permits idling and is vacating sensitive.
If σ is a searcher-monotone winning strategy for the searchers on GΓ

G , thenσ is fugitive-monotone.

Proof. Supposeπ = (X0, R0)(X1, R1) · · · is a search consistent withσ which is not fugitive-monotone. Leti be the
least index such thatRi 6⊇ Ri+1. SinceGΓ

G is vacating sensitive, there existsr ∈ Xi ∩Ri+1. But then, asGΓ
G permits

idling, the fugitive can always choose a response which includesr until it is occupied by a searcher. That is, there is
a searchπ′ = (X ′

0, R
′
0)(X

′
1, R

′
1) · · · , consistent withσ, which agrees withπ up to (Xi+1, Ri+1) and either there is

somek such thatr ∈ R′
j for all j with i + 1 ≤ j < k andr ∈ Xk, or r ∈ R′

j for all j ≥ i + 1. In the first case, we
haver ∈ X ′

i ∩X ′
k but asr ∈ R′

i+1, we also haver /∈ X ′
i+1, contradicting the fact thatσ is searcher-monotone. In the

second case, sinceR′
j 6= ∅ for all j, it follows thatπ′ is an infinite search, contradicting the fact thatσ is a winning

strategy for the searchers. ut

Remark.Earlier, we asserted that variations of graph searching games are obtained by imposing restrictions on the
arena. In this way, we see that questions relating to fugitive-monotone strategies can be viewed as questions in
a restricted version of the game: the game defined in the same way with the restriction that we do not allow the
searchers to make any move which enables the fugitive to makea non-monotone move (a move for which the set of
potential fugitive locations is not non-increasing). Thatis, if A is the arena of a graph searching game, letA′ be
the arena obtained by removing edges from(X, R) to (X, X ′, R) if there is an edge from(X, X ′, R) to (X ′, R′)
whereR′ 6⊆ R. Now a strategy for the searchers onA′ is a fugitive-monotone strategy for the searchers onA.
On the other hand, searcher-monotonicity is a more dynamic restriction – the moves available to the searchers are
dependent on the play to that point. Lemma 5.11 illustrates how, in some cases, the strategy restrictions imposed by
searcher-monotonicity can also be interpreted as restrictions on the game.

CHAPTER 5. GRAPH SEARCHING GAMES 56

5.1.2 Simulations

In Definition 2.20, we saw the idea of agame simulation. We now introduce a refinement of this suitable for graph
searching games.

Definition 5.12 (Searching simulation). Let GΓ
G be a graph searching game onG defined by(Ls,Lf ,A), andGΓ′

G′ be
a graph searching game onG′ defined by(L′s,L′f ,A′). A searching simulationfrom GΓ

G to GΓ′

G′ is a pair of relations
(Rs, Rf) such that:

• Rs ⊆ Ls × L′s, Rf ⊆ Lf × L′f , and

• The relationS onV (A) × V (A′) defined by

– (X, R) S (Y, R′) if (X, Y) ∈ Rs and(R, R′) ∈ Rf , and

– (X, X ′, R) S (Y, Y ′, R′) if (X, Y), (X ′, Y ′) ∈ Rs and(R, R′) ∈ Rf ,

is a game simulation fromA toA′.

As a searching simulation is a restricted game simulation, and searches correspond to plays in the arena, the next
result follows immediately from Lemma 2.21.

Lemma 5.13. Let GΓ
G be a graph searching game onG defined by(Ls,Lf ,A), andGΓ′

G′ be a graph searching game

on G′ defined by(L′s,L′f ,A′). Let (Rs, Rf) be a searching simulation fromGΓ
G to GΓ′

G′ with (∅, ∅) ∈ Rf . For all

searcher strategiesσ on GΓ
G and all fugitive strategiesρ′ on GΓ′

G′ , there exists a searcher strategyσ′ on GΓ′

G′ and
a fugitive strategyρ on GΓ

G such that ifπ(σ,ρ) = (X1, R1)(X2, R2) · · · is the search inGΓ
G defined byσ andρ, and

π(σ′,ρ′) = (X ′
1, R

′
1)(X

′
2, R

′
2) · · · is the search inGΓ

G defined byσ′ andρ′, then|π(σ,ρ)| = |π(σ′,ρ′)|, and(Xi, X
′
i) ∈ Rs

and(Ri, R
′
i) ∈ Rf for all i ≤ |π(σ,ρ)|.

As with game simulations, we observe that the definition of the strategyσ′ is independent of the choice ofρ. This
gives us the following analogue to Corollary 2.22:

Corollary 5.14. Let GΓ
G be a graph searching game onG, andGΓ′

G′ be a graph searching game onG′. Let (Rs, Rf)

be a searching simulation fromGΓ
G to GΓ′

G′ with (∅, ∅) ∈ Rf , and letσ be a strategy for the searchers onGΓ
G . Then

there exists a strategyσ′ for the searchers onGΓ′

G′ such that for every search(X ′
1, R

′
1)(X

′
2, R

′
2) · · · consistent withσ′

there exists a search(X1, R1)(X2, R2) · · · consistent withσ with (Xi, X
′
i) ∈ Rs and(Ri, R

′
i) ∈ Rf for all i ≥ 1.

As with game simulations, we call the strategies which we canderive from a simulationsimulated strategies.

Definition 5.15(Simulated search strategy). The strategyσ′ in Corollary 5.14 is called astrategy(Rs, Rf)-simulated
byσ.

This enables us to state the following consequence of Corollary 2.27.

Lemma 5.16. Let GΓ
G be a graph searching game onG andGΓ′

G′ a graph searching game onG′. Let (Rs, Rf) be a

searching simulation fromGΓ
G to GΓ′

G′ , and letσ be a strategy for the searchers onGΓ
G . If σ′ is a strategy(Rs, Rf)-

simulated byσ onGΓ′

G′ , then:

1. If σ is a winning strategy, thenσ′ is a winning strategy, and

2. If (X, X ′) ∈ Rs and(R, R′) ∈ Rf , then
(
σ(X, R), σ′(X ′, R′)

)
∈ Rs.

With some straightforward assumptions about the relationswhich comprise a searching simulation, we can show
that strategies simulated by monotone strategies are also monotone. First we recall two definitions regarding relations
of sets.

CHAPTER 5. GRAPH SEARCHING GAMES 57

Definition 5.17(Monotone and∩-compatible relation). Let X andY be sets, and letR ⊆ P(X)×P(Y) be a relation
between subsets ofX and subsets ofY . We sayR is monotoneif for all (A, A′), (B, B′) ∈ R with A ⊆ B, we have
A′ ⊆ B′. We sayR is ∩-compatibleif for all (A, A′), (B, B′) ∈ R, (A ∩B, A′ ∩B′) ∈ R.

Lemma 5.18. Let GΓ
G be a graph searching game onG andGΓ′

G′ a graph searching game onG′. Let (Rs, Rf) be a

searching simulation fromGΓ
G to GΓ′

G′ , and letσ is a strategy for the searchers onGΓ
G . If σ′ is a strategy(Rs, Rf)-

simulated byσ onGΓ′

G′ , then:

1. If Rf is monotone andσ is fugitive-monotone, thenσ′ is fugitive-monotone, and

2. If Rs is monotone and∩-compatible andσ is searcher-monotone, thenσ′ is searcher-monotone.

Proof. Let π′ = (X ′
1, R

′
1)(X

′
2, R

′
2) · · · be a search consistent withσ′. By the definition of simulated strategies, there

exists a search(X1, R1) · · · consistent withσ such that(Xi, X
′
i) ∈ Rs and(Ri, R

′
i) ∈ Rf for all i ≥ 1.

1: If σ is fugitive-monotone, thenRi ⊇ Ri+1 for all i ≥ 1, so if Rf is monotone, it follows thatR′
i ⊇ R′

i+1 for
all i ≥ 1. Thusπ′ is fugitive monotone, and asπ′ was arbitrary, it follows thatσ′ is fugitive-monotone.

2: If σ is searcher-monotone, then for alli ≤ j ≤ k, we haveXi ∩ Xk ⊆ Xj . If Rs is ∩-compatible, then
(Xi ∩ Xk, X ′

i ∩X ′
k) ∈ Rs, and so ifRs is also monotone, thenX ′

i ∩X ′
k ⊆ X ′

j . Thusπ′ is searcher-monotone, and
asπ′ was arbitrary, it follows thatσ′ is searcher-monotone. ut

We now introduce some concepts that will prove useful later when we establish robustness results for graph search-
ing games.

Definition 5.19 (Quasi-simulation family). A quasi-simulation familyis a partial functionR which assigns to a pair
of graphs(G,G′) a pair of relations(R′

s, R
′
f) with R′

s, R
′
f ⊆ P(Elts(G))× P(Elts(G′)).

Often it is easier to define a quasi-simulation family as a pair of partial functions(Rs, Rf), each of which takes a
pair of graphs(G,G′) to a relation fromP(Elts(G)) toP(Elts(G′))
Definition 5.20 (R-closure). Let R be a quasi-simulation family, andΓ a graph searching type. We sayΓ is R-
closedif for any pair of graphsG andG′ with R(G,G′) = (R′

s, R
′
f), Γ(G) = (Ls,Lf ,A) andΓ(G′) = (L′s,L′f ,A′);

(Rs, Rf) is a searching simulation fromGΓ
G′ to GΓ

G , whereRs = R′
s ∩ (L′s × Ls) andRf = R′

f ∩ (L′f × Lf).

To help gain an intuition, we provide an example ofR-closure. Consider the following property of graph searching
game types.

Definition 5.21(Respects restriction). Let Γ be a graph searching game type. We sayΓ respects restrictionif for any
graphsG andG′ such thatG is a subgraph ofG′, if Γ(G) = (Ls,Lf ,A) andΓ(G′) = (L′s,L′f ,A′), then

• If Rmax is the⊆-maximal element ofLf , andR′
max is the⊆-maximal element ofL′f , thenRmax = R′

max ∩
Elts(G).

• If there is an edge from(X, R) to (X, X ′, R) in E(A′) andv = (X ∩Elts(G), R∩Elts(G)) ∈ V (A), then there
is an edge fromv to (X ∩ Elts(G), X ′ ∩ Elts(G), R ∩ Elts(G)) in E(A), and

• If there is an edge from(Y, Y ′, S) to (Y ′, S′) in E(A) then for allX, X ′, R such that(X, X ′, R) ∈ V1(A′),
Y = X ∩ Elts(G), Y ′ = X ′ ∩ Elts(G), andS = R ∩ Elts(G), there existsR′ such thatS′ = R′ ∩ Elts(G) and
there is an edge from(X, X ′, R) to (X ′, R′) in E(A′).

Intuitively, if a graph searching game type respects restriction, then ifG is a subgraph ofG′, a strategy for the
searchers inG′ is also a strategy inG when we disregard the elements ofG′ which are not part ofG. In other words,
a restriction of a search strategy is a search strategy of a restriction. In Section 5.4 we introduce the dual notion,
restriction reflection, in which a search strategy of a graphcan be viewed as a search strategy in any larger graph. We
now show that this property corresponds to anR-closure for a quasi-simulation familyR of relations similar to the
superset relation.

CHAPTER 5. GRAPH SEARCHING GAMES 58

Definition 5.22 (⊃·). For each pair of graphs(G′,G), with G a subgraph ofG′, we define⊃· G′

G ⊆ P(Elts(G′)) ×
P(Elts(G)) as follows. ForA ⊆ Elts(G′) andB ⊆ Elts(G) we sayA ⊃· G′

G B if B = A ∩ Elts(G). Let⊃· denote the

function which assigns to each pair of graphs(G′,G), with G a subgraph ofG′, the pair of relations(⊃· G′

G ,⊃· G′

G).

Lemma 5.23. LetΓ be a graph searching game type. ThenΓ respects restriction if, and only if,Γ is⊃· -closed.

Proof. LetG andG′ be graphs. We observe that if neitherG is a subgraph ofG′ norG′ is a subgraph ofG then nothing
can be said about whetherΓ respects restriction or whetherΓ is⊃· -closed. Thus we assume without loss of generality
thatG is a subgraph ofG′. Let Γ(G) = (Ls,Lf ,A) andΓ(G′) = (L′s,L′f ,A′). For convenience we will drop the

subscript and superscript and use⊃· to denote the relation⊃· G′

G .
First let us assumeΓ respects restriction. From the definition of⊃· , we have Elts(G′) ⊃· Elts(G), thus we must show

that(⊃· ,⊃·) is a searching simulation fromGΓ
G′ to GΓ

G . In the definition ofR-closure, we assume⊃· is restricted to be a
relation on the appropriate sets, so it suffices to show that the relation defined by pointwise application of⊃· is a game
simulation fromA′ toA. For convenience we will also denote the pointwise relationby⊃· . Clearly, since∅∩Elts(G) =
∅, we have∅ ⊃· ∅. Furthermore, ifRmax is the⊆-maximal element ofLf andR′

max is the⊆-maximal element of
L′f , then asΓ respects restriction,Rmax = R′

max ∩ Elts(G). ThusR′
max ⊃· Rmax, and(∅, R′

max) ⊃· (∅, Rmax). Thus
(⊃· ,⊃·) satisfies (SIM-1). Now suppose there is an edge from(X, R) to (X, X ′, R) in A′ and(X, R) ⊃· (Y, S). From
the definition of⊃· , Y = X ∩ Elts(G) andS = R ∩ Elts(G), so by the definition of respecting restriction, there is an
edge from(Y, S) to (Y, X ′ ∩Elts(G), S) inA. Since clearlyX ′ ⊃· (X ′ ∩Elts(G)), it follows that (SIM-2) is satisfied.
Finally suppose there is an edge inA from (Y, Y ′, S) to (Y ′, S′) and(Y, Y ′, S) ⊃· (X, X ′, R). From the definition of
⊃· , we haveY = X ∩ Elts(G), Y ′ = X ′ ∩ Elts(G) andS = R ∩ Elts(G). Thus, asΓ respects restriction, there exists
R′ ∈ L′f such thatS′ = R′ ∩ Elts(G) and there is an edge inA from (X, X ′, R) to (X ′, R′). SinceX ′ ⊃· Y ′ and
R′ ⊃· S′, it follows that(X ′, R′) ⊃· (Y ′, S′), thus (SIM-3) is satisfied. Therefore,(⊃· ,⊃·) is a searching simulation
from GΓ

G′ to GΓ
G . SinceG andG′ were arbitrary, it follows thatΓ is⊃· -closed.

Now supposeΓ is⊃· -closed. Since the relation defined by pointwise application of⊃· is a game simulation from
A′ to A, vI(A) = (∅, Rmax), andvI(A′) = (∅, R′

max), it follows from (SIM-1) that∅ ⊃· ∅ andR′
max ⊃· Rmax.

From the definition of⊃· , it follows thatRmax = R′
max ∩ Elts(G). Now suppose there is an edge from(X, R) to

(X, X ′, R) in A′, and(Y, S) ∈ V (A) whereY = X ∩ Elts(G) andS = R ∩ Elts(G). From the definition of⊃· , it
follows thatX ⊃· Y andR ⊃· S, thus as(⊃· ,⊃·) is a game simulation, it follows from (SIM-2) that there exists v′

such that there is an edge from(Y, S) to v′ andv′ is related to(X, X ′, R) by the pointwise application of⊃· . By the
definition of graph searching games,v′ = (Y, Y ′, S) for someY ′ ∈ Ls, and by the definition of searching simulation
X ′ ⊃· Y ′. ThusY ′ = X ′ ∩ Elts(G). Finally suppose there is an edge from(Y, Y ′, S) to (Y ′, S′) andX, X ′, R are
such thatY = X ∩ Elts(G), Y ′ = X ′ ∩ Elts(G) andS = R ∩ Elts(G). From the definition of⊃· , X ⊃· Y , X ′ ⊃· Y ′

andR ⊃· S. Thus, from (SIM-3), there existsv ∈ V0(A′) such that there is an edge from(X, X ′, R) to v andv is
related to(Y ′, S′). From the definition of graph searching games,v = (X ′, R′) for someR′, and by the definition of
searching simulation,R′ ⊃· S′. ThusS′ = R′ ∩ Elts(G). Therefore, all conditions necessary for respecting restriction
are satisfied. SinceG andG′ were arbitrary, it follows thatΓ respects restriction. ut

5.2 Examples

We now look at some examples of graph searching game types which occur in the literature. Many of these examples
were introduced to provide an intuitive understanding of some of the graph parameters we discussed in the previous
chapter. We show how each of these games can be described using the framework we have introduced, thereby
motivating the use of graph searching games to formally define measures of graph complexity.

5.2.1 Cops and visible robber

Thecops and visible robber gamewas introduced in [ST93] to provide a characterization of tree-width. We can define
it as a graph searching game played on an undirected graphG, as follows.

CHAPTER 5. GRAPH SEARCHING GAMES 59

Definition 5.24(Cops and visible robber game). Let G be an undirected graph. Thecops and visible robber game on
G is a graph searching game onG defined by the triple(Ls,Lf ,A) where:

• Ls = P(V (G)), Lf = {R ⊆ V (G) : R is non-empty and connected} ∪ {V (G)},
• (X, R) ∈ V0(A) if R is a connected component ofG \X ,

• (X, X ′, R) ∈ V1(A) if (X, R) ∈ V0(A) andX ′ ∈ Ls,

•
(
(X, R), (X, X ′, R)

)
∈ E(A) for all (X, R) ∈ V0(A),

•
(
(X, X ′, R), (X ′, R′)

)
∈ E(A) if R ∪R′ is contained in a connected component ofG \ (X ∩X ′).

Intuitively, the cops (searchers) and robber (fugitive) occupy vertices of the graph. There is no constraint on the
cops, they can be removed and placed on any set of vertices. The robber is constrained to move along paths of any
length in the graph, provided he does not pass through a stationary cop. The robber’s location in the graph is known to
the cops, but because he is able to move infinitely fast, we view his set of potential locations as a connected component
of the subgraph obtained by removing vertices occupied by cops. A move consists of some cops being removed from
the graph, and announcing vertices that are about to be occupied. The robber is then able to move to any vertex he
can reach, and then cops are placed on the announced vertices. If the robber is located on a vertex which has become
occupied, then he is captured and the cops win. If he can avoidcapture forever, then he wins.

We observe that the cops and visible robber game permits idling: given an intermediate position(X, X ′, R) and
r ∈ R \X ′, let R′ be the connected component ofG \X ′ which containsr. ThenR ∪R′ is contained in a connected
component as they are connected sets with a non-empty intersection. Thus there is an edge from(X, X ′, R) to
(X ′, R′). Furthermore, the game is vacating sensitive: if it is possible to move from(X, X ′, R) to (X ′, R′) where
R′ 6⊆ R then there existsr ∈ R′ \ R such thatr is adjacent to some vertex inR. Now R ∪ {r} is connected, so if
r /∈ X , thenR is not a connected component ofG \X . Hencer ∈ X , soX ∩R′ 6= ∅. Thus we can apply Lemma 5.11
to obtain:

Lemma 5.25. A cop-monotone winning strategy in the cops and visible robber game is robber-monotone.

There are some interesting variants of the cops and visible robber game obtained by restricting the movements
of the cops. For example, cops are either removed or placed so(X, X ′, R) is an intermediate position only if either
X ′ ⊆ X , or X ⊆ X ′; at most one cop is moved, so(X, X ′, R) is an intermediate position only if|X ′ 4 X | ≤ 1;
or at most one cop is placed, so(X, X ′, R) is an intermediate position only if|X ′ \X | ≤ 1. Another variation is the
following parameterized class of games, in which we bound the number of cops trying to capture the robber:

Definition 5.26(k-cops and visible robber game). Let G be an undirected graph. Thek-cops and visible robber game
onG is defined as the cops and visible robber game, exceptLs = [V (G)]≤k.

In Section 5.3 we show that strategies in these games are equivalent to resource-bounded strategies in the unre-
stricted game, where the resource we are concerned with is the maximum number of cops occupying the graph at any
stage. While this may seem obvious, the observation is quiteuseful when we consider the complexity of the problem
of determining the existence of resource-bounded winning strategies.

We also show in Section 5.3 how this game, particularly this last variant, is closely connected to tree-width. So
it would seem that extending this game to directed graphs would be a useful way to generalize tree-width to directed
graphs. There are two obvious ways to extend this game: we could extend the informal description, constraining the
robber to move along directed paths of any length; or we couldextend the formal description, having positions(X, R)
whereR is a strongly connected component ofG\X , and a transition from(X, R) to (X ′, R′) if R∪R′ is contained in
a strongly connected component ofG \ (X ∩X ′). The game corresponding to the latter extension seems less intuitive:
it corresponds to restricting the robber to being able to move along directed paths to any vertex from which he has
a directed cop-free path back to his starting vertex. This game, which we call thestrongly connected visible robber
game, or more simply thestrong visible robber game, was considered in [JRST01], and later in this chapter we discuss
its relationship with directed tree-width. We investigatethe other, arguably more natural, generalization in Chapter 6.

CHAPTER 5. GRAPH SEARCHING GAMES 60

5.2.2 Cops and invisible robber

The cops and invisible robber game, also known as thenode searching game, or vertex decontaminationhas been
well-studied in the context of graph theory [KP86, BS91, LaP93]. In our framework, the definition is as follows.

Definition 5.27(Cops and invisible robber game). Let G be an undirected graph. Thecops and invisible robber game
onG is a graph searching game onG defined by the triple(Ls,Lf ,A) where:

• Ls = P(V (G)), Lf = P(V (G)) \ {∅},

• (X, R) ∈ V0(A) if R is a union of non-empty connected components ofG \X ,

• (X, X ′, R) ∈ V1(A) if (X, R) ∈ V0(A) andX ′ ∈ Ls,

•
(
(X, R), (X, X ′, R)

)
∈ E(A) for all (X, R) ∈ V0(A),

•
(
(X, X ′, R), (X ′, R′)

)
∈ E(A) if R′ = ReachG\(X∩X′)(R) \X ′.

The game is played on an undirected graphG in the same way as the cops and visible robber: the cops are free to
move anywhere onG, and the robber can run at great speed along cop-free paths inthe graph. In this game however,
the location of the robber is not known to the cops – they are only aware of the vertices the robber cannot be at: either
because those vertices are currently occupied by cops, or there is no possibility that the robber could not have reached
those vertices from when they were vacated by cops. So positions in this game are pairs(X, R) whereX, R ⊆ V (G)
andR is a union of connected components ofG \X , and a search in this game ending at(X, R) can be extended to a
search ending at(X ′, R′) if, and only if, R′ = ReachG\(X∩X′)(R). We observe that sinceR′ is uniquely determined
from X , X ′ andR, the robber has no choice from the intermediate position(X, X ′, R), so this game is effectively a
single player game.

In the literature, this game is often viewed as the problem oftrying to clean a contaminated graph. Vertices where
the robber could be are “contaminated”, vertices where the robber cannot be are “cleared”, and occupation of a vertex
by a cop “clears” that vertex.

5.2.3 Cave searching

The next game we consider is an example of a searching game motivated by a real-life problem. In [Bre67], in a
publication for the spelunking community, Breisch considered the problem of finding a lost person in a cave sys-
tem. In response to a question posed by some cavers about whether existing search techniques could be improved,
Parsons [Par78] reformulated the problem as a graph-theoretical problem and investigated games known asgraph
sweeping games. These can be defined as graph searching games as follows.

Definition 5.28 (Graph sweeping game). Let G be an undirected graph. Thegraph sweeping game onG is the graph
searching game onG defined by the triple(Ls,Lf ,A), where:

• X ∈ Ls if, and only if,X = V ∪E, whereV ⊆ V (G), E ⊆ E(G), |E| ≤ 1, and ifE = {e} thene ∩ V 6= ∅,

• Lf = P(Elts(G)) \ {∅},

• (X, R) ∈ V0(A) if, and only if,X ∩R = ∅,

• (X, X ′, R) ∈ V1(A) if, and only if, X = V ∪ E, X ′ = V ′ ∪ E′, with V, V ′ ⊆ V (G) andE, E′ ⊆ E(G), and
eitherE′ = ∅ andV ′ \ V = ∅, or if E′ =

{
{u, v}

}
with v ∈ V ′ thenu ∈ V .

• If (X, R) ∈ V0(A) and(X, X ′, R) ∈ V1(A) then
(
(X, R), (X, X ′, R)) ∈ E(A), and

• There is an edge from(X, X ′, R) to (X ′, R′) if, and only if,R′ consists of all elementsx ∈ Elts(G) \X ′ such
that if C is the connected component ofG \

(
X ′ ∩ (X ∪ E(G))

)
which containsx, thenC ∩R 6= ∅.

CHAPTER 5. GRAPH SEARCHING GAMES 61

In this game, the graph represents the cave system, with edges representing traversable paths. The fugitive, or lost
caver, is located somewhere in the cave system – representedin this game by having sets of elements ofG for the
locations of the fugitive. The searchers move through the graph by moving from one vertex to an adjacent vertex along
an edge connecting them.

5.2.4 Detectives and robber

The next game was introduced by Berwanger and Grädel [BG04]to define a measure of complexity for directed graphs
known asentanglement. We can present their definition in terms of graph searching games as follows.

Definition 5.29 (Detectives and robber game). Let G be a directed graph. Thedetectives and robber game onG is a
graph searching game defined by the triple(Ls,Lf ,A) where:

• Ls = P(V (G)), Lf =
{
{r} : r ∈ V (G)} ∪ {V (G)},

• V0(A) = {(∅, V (G))} ∪ {(X, {r}) : r /∈ X},

• V1(A) = {(∅, ∅, V (G))} ∪ {(X, X ′, {r}) : (X, {r}) ∈ V0(A) andX ′ ⊆ X ∪ {r}},

• If (X, R) ∈ V0(A) and(X, X ′, R) ∈ V1(A) then
(
(X, R), (X, X ′, R)

)
∈ E(A),

• There is an edge from(∅, ∅, V (G)) to (∅, {r}) for all r ∈ V (G),

• For all (r, r′) ∈ E(G) and(X, X ′, {r}) ∈ V1(A) with r′ /∈ X ′, there is an edge inE(A) from (X, X ′, {r}) to
(X ′, r′), and

• There are no other edges inE(A).

In this game, the detectives and robber occupy vertices in the graph. The robber has to move to a successor of his
current location and the detectives can only move to the lastposition of the robber or remain where they are.

5.2.5 Cops and inert robber

As with the cops and visible robber game defined in Definition 5.24, the final game we consider is also a game played
on an undirected graph closely related to tree-width. Introduced by Dendris, Kirousis and Thilikos [DKT97], thecops
and inert robber gamecan also be viewed as a graph searching game in the following manner.

Definition 5.30 (Cops and inert robber). Let G be an undirected graph. Thecops and inert robber game onG is the
graph searching game onG defined by the triple(Ls,Lf ,A), where:

• Ls = P(V (G)), Lf = P(V (G)) \ {∅},

• (X, R) ∈ V0(A) if R is a union of non-empty connected components ofG \X ,

• (X, X ′, R) ∈ V1(A) if (X, R) ∈ V0(A) andX ′ ∈ Ls,

•
(
(X, R), (X, X ′, R)

)
∈ E(A) for all (X, R) ∈ V0(A),

•
(
(X, X ′, R), (X ′, R′)

)
∈ E(A) if R′ =

(
R ∪ ReachG\(X∩X′)(R ∩X ′)

)
\X ′.

As with the cops and invisible robber game defined in Definition 5.27, in this game the cops and robber occupy
vertices of the graph, the cops are free to move anywhere in the graph, and the robber may run at great speed along
paths in the graph. Furthermore, the location of the robber is unknown to the cops. However we impose the restriction
that he is only able to move from his position if it is about to be occupied by a cop. Thus at position(X, R), X
represents the location of the cops andR represents the set of potential locations. Now if the cops move toX ′, then

CHAPTER 5. GRAPH SEARCHING GAMES 62

the resulting potential locations for the robber consist ofhis current set of locations together with any vertexv for
which there is a path from a vertex inR ∩X ′ to v, excluding any vertex now occupied by a cop. ThusR′, the new set
of potential locations, can be defined as:

R′ =
(
R ∪ReachG\(X∩X′)(R ∩X ′)

)
\X ′.

In the next section we see that this game is also closely connected to tree-width, suggesting that the generalization
of this game to directed graphs would be a practical way to develop complexity measures which extend tree-width. In
Chapter 7 we consider such a generalization.

5.2.6 Cops and robber games

Examples 5.2.1, 5.2.2, and 5.2.5 highlight one of the most important and simple variants of the graph searching game,
the cops and robber game. In this game the cops (searchers) and the robber (fugitive) only occupy vertices of graph,
with the robber being able to start at any vertex of the graph.

Definition 5.31(Cops and robber game). LetG be a graph andGΓ
G be a graph searching game onG defined by a triple

(Lc,Lr,A). We sayGΓ
G is a cops and robber gameif Lc ⊆ P(V (G)), Lr ⊆ P(V (G)) andV (G) ∈ Lr. We call

the searchers of a cops and robber game thecops, and the fugitive is called therobber. Likewise, searcher-monotone
searches and strategies arecop-monotoneand fugitive-monotone searches and strategies arerobber-monotone. A
graph searching game typeΓ is acops and robber game typeif for all graphsG, GΓ

G is a cops and robber game.

One advantage of the restriction of the searchers and fugitive to vertices of the graph is that the resulting games
are less dependent on the edges of the graph. In particular, it is often the case that the presence of multiple edges or
loops does not affect the game – the arena is the same as the arena for the graph searching game on the graph with all
loops removed and all multiple edges replaced with a single edge. In the sequel we assume all cops and robber games
are played on simple graphs, unless otherwise stated.

5.3 Complexity measures

Unlike the games we considered in Chapter 2, we are not solelyconcerned with which player wins a graph searching
game. In most of the examples above, it is clear that the searchers can always find the fugitive by (eventually)
occupying all of the graph, so as it stands the question is notinteresting – the searchers always have a winning
strategy. One exception to this is the parameterized class of games, thek-cops and visible robber games defined in
Definition 5.24. This suggests that it may be more fruitful toconsider resource-bounded strategies. For instance, for a
cops and robber game, we can ask “Givenk ∈ N, can the cops capture the robber while at any time occupying at most
k vertices?”. Consistent with viewing the cops as physical entities, this can be viewed as asking if there is a winning
strategy fork cops, defined more precisely as:

Definition 5.32(Winning strategy fork cops). Let GΓ
G be a cops and robber game,σ a strategy for the cops, andk ∈ N.

We say thatσ is a winning strategy fork copsif σ is a winning strategy, and for any search(X0, R0)(X1, R1) · · ·
consistent withσ, |Xi| ≤ k for all i.

From this we can derive a complexity measure, in this particular case, the minimum number of cops required to
capture the robber. In the following chapters this is the measure we are interested in, but for the remainder of this
chapter we consider a more general framework which encompasses many other important graph parameters. For this
we introduce the concept of aresource measurethat can be used to restrict plays and, by association, strategies in a
graph searching game. First, we introduce two partial orders on the class of sequences of sets.

Definition 5.33. Let π = X1X2 · · · andπ′ = Y1Y2 · · · be two (possibly infinite) sequences of sets. We writeπ′ ≤ π
if π′ is a subsequence ofπ. That is, there exists an increasing sequence of indicesn1 < n2 < · · · ≤ |π| such that
Yi = Xni

for all i ≤ |π′|. We writeπ′ ⊆ π if |π′| ≤ |π| and for alli ≤ |π′|, Yi ⊆ Xi.

CHAPTER 5. GRAPH SEARCHING GAMES 63

Definition 5.34 (Resource measure). A resource measureis a functionϕ which maps sequences of finite sets to
elements ofω ∪ {ω}, with ϕ(π) = ω only if π is infinite. We sayϕ is order-preserving (order-reversing)if for all
π, π′ ∈ dom(ϕ), π′ ≤ π ⇒ ϕ(π′) ≤ ϕ(π) (π′ ≤ π ⇒ ϕ(π′) ≥ ϕ(π)). We sayϕ is monotone (anti-monotone)if for
all π, π′ ∈ dom(ϕ), π′ ⊆ π ⇒ ϕ(π′) ≤ ϕ(π) (π′ ⊆ π ⇒ ϕ(π′) ≥ ϕ(π)).

The resource measure which motivated the above discussion is an example of a monotone, order-preserving re-
source measure:

Definition 5.35 (ϕmax). The resource measureϕmax is defined as follows. Ifπ = X1X2 · · · is a sequence of finite
sets, then

ϕmax(π) = max
i≥1
{|Xi|}.

A resource measureϕ defines a measure on a searchπ = (X0, R0)(X1, R1) · · · in the following way: letπ1 =
X0X1 · · · be the sequence of first components of elements ofπ, and defineϕ(π) := ϕ(π1). We only consider the
sequence of searcher locations because we are primarily interested in the resource usage of the searchers. It follows
that requiring a resource measure to be bounded imposes a restriction on the searches, and consequently, the strategies
available in a graph searching game. So asking if the searchers have a winning strategy is no longer a trivial problem.
Indeed, it would seem that interesting metrics for graphs could be derived from the “optimal” bounds of resource
measures for which the searchers still have a winning strategy. This leads to the following definition of a very general
measure of graph complexity defined by graph searching games.

Definition 5.36 (Graph searching width). Let Γ be a graph searching game type, andϕ an order-preserving (order-
reversing) resource measure. LetG be a graph. The(Γ, ϕ)-widthof G, w(Γ,ϕ)(G), is the minimum (maximum)k such
that inGΓ

G there exists a winning strategy for the searchers,σ, so that for any search,π, consistent withσ, we have
ϕ(π) ≤ k (ϕ(π) ≥ k). Likewise, if we restrict to fugitive-monotone or searcher-monotone winning strategies inGΓ

G ,
we obtain thefugitive-monotoneor searcher-monotone(Γ, ϕ)-width of G.

Remark.As we are interested in minimizing (maximizing) an order-preserving (order-reversing) measure, it suffices
to consider searches that are simple paths in the arena – any loops are only going to increase (decrease) the resource re-
quirements. Consequently, we only need to consider strategies that require finite memory to determine if the searchers
have a resource bounded winning strategy. Thus, the requirement that the resource measure is order-preserving (or
order-reversing) ensures that the restriction of searchesobtained by bounding the resource measure does not affect
the decidability of determining if the searchers have a winning strategy. In particular, the requirement maintains our
maxim that strategies with finite memory are sufficient, especially for the resource bounded game.

Many practical measures of graph complexity can be defined using this framework, as we see with the following
examples.

5.3.1 Example: Cops and visible robber

We recall the cops and visible robber game defined in Example 5.2.1. In [ST93] when this game was first considered,
Seymour and Thomas showed that it could be used to characterize tree-width by observing that the number of cops
required to capture the robber was equal to one more than the tree-width of the graph being searched. More precisely,
they proved:

Theorem 5.37([ST93]). LetG be an undirected graph. The following are equivalent:

1. G has tree-width≤ k − 1.

2. k cops have a cop-monotone winning strategy in the cops and visible robber game.

3. k cops have a robber-monotone winning strategy in the cops andvisible robber game.

4. k cops have a winning strategy in the cops and visible robber game.

CHAPTER 5. GRAPH SEARCHING GAMES 64

Recalling the definition ofϕmax in Definition 5.35, we can rephrase this theorem as:

Corollary 5.38. LetΓ be the cops and visible robber game type defined in Definition 5.24, and letG be an undirected
graph. Then

Tree-width(G) = w(Γ,ϕmax)(G).

We remarked in Example 5.2.1 that there were several variants of the cops and visible robber depending on various
restrictions placed on the movement of the cops. It is easy tosee informally that the number of cops required to catch
the robber in each of these games is the same. We now provide a formal proof of this often glossed-over point.

Proposition 5.39. LetΓ0 be the cops and visible robber game type defined in Definition 5.24. LetΓ1 be the cops and
visible robber game type where cops are either placed or removed. LetΓ2 be the cops and visible robber game type
where at most one cop is placed, and letΓ3 be the cops and visible robber game type where at most one cop is moved
at a time. LetG be an undirected graph. Then the following are equivalent:

(i) k cops have a winning strategy inGΓ0

G .

(ii) k cops have a winning strategy inGΓ1

G .

(iii) k cops have a winning strategy inGΓ2

G .

(iv) k cops have a winning strategy inGΓ3

G .

Proof. From the definitions provided in Example 5.2.1, it follows easily that a strategy for the searchers inG
Γ3

G is a
strategy inG

Γ2

G and also a strategy inGΓ1

G ; a strategy for the searchers inG
Γ2

G is a strategy inGΓ0

G ; and a strategy in
G

Γ1

G is also a strategy inGΓ0

G . Thus (iv)⇒(iii)⇒(i) and (iv)⇒(ii)⇒(i). We now show that (i)⇒(iv).
Supposek cops have a winning strategyσ in G

Γ0

G . Let Γ0(G) = (Lc,Lr,A), andΓ3(G) = (L′c,L′r,A′). Note
that by the definition ofΓ3, L′c = Lc, L′r = Lr, V0(A) = V0(A′) andV1(A) ⊇ V1(A′). We show how to define
a strategyσ′ for k cops such that for all(X, R) ∈ V0(A′), |σ′(X, R) 4 X | ≤ 1. The idea is that we replace each
move ofσ which involves moving more than one cop with a sequence of moves: removing one cop at a time fromX
until cops remain onX ∩ σ(X, R), and then adding cops one at a time until they occupyσ(X, R). More formally,
let Σ = V0(A). We define a history-dependent strategyσ′ as follows. Letσ′(ε, X0, R0) =

(
(X0, R0), ∅

)
where

(X0, R0) = vI(A). Now supposew ∈ Σ∗, w 6= ε, and the last symbol ofw is (X, R) ∈ V0(A). Defineσ′(w, X ′, R′)
as follows. IfX ∩ σ(X, R) ⊂ X ′ ⊆ X , let X ′′ = X ′ \ {v} for somev ∈ X ′ \ σ(X, R), and defineσ′(w, X ′, R′) :=(
(X, R), X ′′

)
. Otherwise, ifX ∩ σ(X, R) ⊆ X ′ ⊂ σ(X, R), let X ′′ = X ′ ∪ {v} for somev ∈ σ(X, R) \X ′, and

defineσ′(w, X ′, R′) :=
(
(X, R), X ′′

)
. Finally, if X ′ = σ(X, R) defineσ′(w, X ′, R′) =

(
(X ′, R′), X ′

)
. Clearlyσ′

is a strategy for at mostk cops which involves placing or removing at most one cop at each step. We now show that it
is a winning strategy.

Let π = (X ′
0, R

′
0)(X

′
1, R

′
1) · · · be a search consistent withσ′. Let w′ ∈ Σ∗ ∪ Σω be the history consistent with

π, and letw be the word obtained by replacing repeated symbols inw′ with single occurrences. We observe that these
repetitions arise where we have replaced a single multiple-cop move with a finite sequence of single-cop moves sow
is infinite if, and only if,w′ is infinite. We also observe that by the definition ofσ′, w is a subsequence ofπ. We make
the following claim:

Claim. The search defined byw is a search consistent withσ.

Proof of claim. Let w = (X1, R1)(X2, R2) · · · . From the definition ofσ′ we haveXi+1 = σ(Xi, Ri) for all i ≥ 1, so
it suffices to show that for alli ≥ 1 there is an edge inA from (Xi, Xi+1, Ri) to (Xi+1, Ri+1). That is, each possible
set of locations for the robber available after the sequenceof single-cop moves is available after a single multiple-cop
move. Letm andn be such that(Xi, Ri) = (X ′

m, R′
max) and (Xi+1, Ri+1) = (X ′

n, R′
n) and letq be such that

m ≤ q ≤ n andX ′
q = Xi ∩Xi+1. We prove by induction that for allj, with m ≤ j ≤ n, R′

j ∪R′
max is contained in a

connected component ofG \ (X ′
m ∩X ′

j). Clearly this is true forj = m. Now suppose for somej ≥ m, R′
j ∪R′

max is

CHAPTER 5. GRAPH SEARCHING GAMES 65

contained in a connected component ofG \ (X ′
m ∩X ′

j), and considerR′
j+1. By the definition of the cops and visible

robber game,R′
j ∪Rj+1 is contained in a connected component ofG \ (X ′

j ∩Xj+1). We consider the following two
cases. Ifj < q, thenXj+1 ⊆ Xj ⊆ Xm andRj ⊇ Rmax. Thus the connected componentR of G \ X ′

j+1 which
containsRmax is the only component contained in the same connected component ofG \ (X ′

j+1 ∩ X ′
j) asRj . Thus

R′
j+1 = R. SinceR ∪R′

max = R is a connected component ofG \X ′
j+1 = G \ (X ′

j+1 ∪X ′
m), our hypothesis holds

for j +1. Now supposej ≥ q. ThenX ′
m ∩Xj = Xi∩Xi+1, andX ′

j+1 ⊇ X ′
j . Thus ifR′

j+1 is in the same connected
component ofG \ (X ′

j ∩X ′
j+1) = G \X ′

j asR′
j , it follows thatR′

j ⊇ R′
j+1. By the inductive hypothesis,R′

j is in the
same connected component ofG\(X ′

m∩X ′
j) asR′

max. But asG \(X ′
m∩X ′

j) = G\(Xi∩Xi+1) = G\(X ′
m∩X ′

j+1),
it follows thatR′

j+1 is in the same connected component ofG \ (X ′
m ∩X ′

j+1) asR′
max. This completes the inductive

step and the proof of the claim. a

Next we observe that as there is always a move available to thecops,π is winning for the robber if, and only if,
it is infinite. But this is the case if, and only if,w is infinite. Asσ is a winning strategy, there are no infinite searches
consistent withσ, thusπ must be finite and therefore winning for the searchers. ut

Our final observation regarding the cops and visible robber game and the number of cops required to capture the
robber is a straightforward result which relates the game and the resource measure with the parameterized class of
games we also introduced in Example 5.2.1.

Lemma 5.40. LetG be an undirected graph. The cops have a winning strategy in thek-cops and visible robber game
if, and only if,k cops have a winning strategy in the cops and visible robber game.

Proof. Clearly a winning strategyσ for k cops in the cops and visible robber game is a winning strategyfor the cops
in thek-cops and robber game: since|σ(X, R)| ≤ k for all positions(X, R) in the cops and visible robber game, it
follows thatσ(X, R) ∈ [V (G)]≤k for all positions(X, R) in thek-cops and visible robber game.

For the converse, letσ be a winning strategy for the cops in thek-cops and robber game. Let us extendσ to a
strategy in the cops and visible robber game by definingσ(X, R) = ∅ for all X ⊆ V (G) with |X | > k. Then, since
|σ(X, R)| ≤ k for all positions(X, R), σ is a strategy fork cops. Since any search in the cops and visible robber
game consistent withσ is also a search in thek-cops and visible robber game consistent withσ, it follows thatσ is a
winning strategy in the cops and visible robber game. ut

Remark.This example shows that with the resource measureϕmax we can view resource bounded strategies as win-
ning strategies in a parameterized family of graph searching games. As such games are simple, if either the fugitive
or the searchers have a winning strategy, then they have a memoryless winning strategy. This justifies our use of
positional strategies in subsequent chapters.

Theorem 5.37 motivates the nomenclature used for Theorem 4.7: a haven is, as the name suggests, a characteriza-
tion of a winning strategy for the robber. Carrying this reasoning to the definition of haven used in [JRST01], we see
that Theorem 4.11 can be restated as the following characterization of directed tree-width in terms of graph searching
games. We recall the strongly connected visible robber gamedefined in Example 5.2.1.

Lemma 5.41. LetG be a digraph. EitherG has directed tree-width≤ 3k+1 or k cops do not have a winning strategy
in the strong visible robber game onG.

5.3.2 Example: Cops and invisible robber

We now consider the resource measureϕmax applied to the cops and invisible robber game. Kirousis and Papadim-
itriou [KP86] showed that the number of cops required to capture the robber in this game is equivalent to one more
than the path-width of the graph.

Theorem 5.42([KP86]). LetG be an undirected graph. The following are equivalent:

1. G has path-width≤ k − 1.

CHAPTER 5. GRAPH SEARCHING GAMES 66

2. k cops have a cop-monotone winning strategy in the cops and invisible robber game.

3. k cops have a robber-monotone winning strategy in the cops andinvisible robber game.

4. k cops have a winning strategy in the cops and invisible robbergame.

Together with Theorem 5.37, this theorem shows how we can view the relationship between path-width and tree-
width via graph searching games. As an example of the consequence of this, Fomin, Fraigniaud and Nisse [FFN05]
considered a parameterized family of cops and robber games where the robber is invisible, but the cops are allowedq
queries of the location of the robber during a search. The resulting family of measures corresponding to the number of
cops required in each game gives a parameterization which lies between path-width (q = 0) and tree-width (q = ∞).
Because such parameterized measures can be seen as a generalization of both path-width and tree-width, they are
particularly useful for investigating the structural complexity of graphs.

5.3.3 Example: Cops and inert robber

We again consider theϕmax resource measure, but this time with the cops and inert robber game. Dendris, Kirousis
and Thilikos [DKT97] showed that the number of cops requiredto capture an invisible, inert robber is another measure
equivalent to one more than tree-width.

Theorem 5.43([DKT97]). LetG be an undirected graph. The following are equivalent:

1. G has tree-width≤ k − 1.

2. k cops have a robber-monotone winning strategy in the cops andinert robber game.

3. k cops have a winning strategy in the cops and inert robber game.

Combining this with Theorem 5.37, we see that the number of cops required to capture a robber in the cops and
visible robber game is equal to the number of cops required tocapture a robber in the cops and inert robber game. In
Chapter 7, where we consider the generalization of the cops and inert robber game to directed graphs, we show that
this is not the case for the generalizations of the games to digraphs.

Dendris et al. also showed that the cop-monotone version of the cops and inert robber game may require more
cops than the robber-monotone version. In Chapter 7, we showthat the number of cops required in the cop-monotone
version of the natural extension of this game to directed graphs is equivalent to the extension of path-width to digraphs.

5.3.4 Example: Other resource measures

We now consider some graph parameters which can be characterized by the invisible and inert robber games, but with
other resource measures. In [FG00], Fomin and Golovach considered the following resource measure which intuitively
represents the “cost” of a search.

Definition 5.44(ϕcost). The resource measureϕcost is defined as follows. Ifπ = X1X2 · · · is a sequence of finite sets,
then

ϕcost(π) =
∑

i≥1

|Xi|.

In [FG00] it was shown that the minimum cost of a search in a cops and invisible robber game on a graphG is
equivalent to theprofile of G: the minimal number of edges of an interval supergraph ofG. In [FHT04] it was shown
that the minimum cost of a search in a cops and inert robber game onG is equivalent to the fill-in ofG: the minimum
number of edges which need to be added to makeG chordal. Summarizing these results in our framework:

Theorem 5.45([FG00, FHT04]). LetΓ0 be the cops and invisible robber game type defined in Definition 5.27 and let
Γ1 be the cops and inert robber game type defined in Definition 5.30. LetG be an undirected graph. Then

CHAPTER 5. GRAPH SEARCHING GAMES 67

1. The profile ofG is equal tow(Γ0,ϕcost)(G).

2. The fill-in ofG is equal tow(Γ1,ϕcost)(G).

In [RS82] Rosenberg and Sudborough considered a pebbling game which Fomin et al. [FHT04] observed can be
seen as a version of the cops and invisible robber game. Rosenberg and Sudborough showed that minimizing the
resource measure defined by the maximum life-time of a pebbleon the graph is equivalent to finding the bandwidth
of the graph: the minimum, over all linear layouts of the vertices of the graph, of the maximum distance between any
pair of adjacent vertices. Fomin et al. [FHT04] viewed this resource measure in the setting of graph searching games,
to define the following measure which indicates the “occupation time” of a search.

Definition 5.46(ϕot). Letπ = X1X2 · · · be a sequence of finite subsets of a setV . For eachi ≥ 1 letχi : V → {0, 1}
be the characteristic function ofXi, so thatχi(v) = 1 if, and only if,v ∈ Xi. Thenϕot is defined as follows:

ϕot(π) = max
v∈V

∑

i≥1

χi(v).

Remark. In order for this measure to be non-trivial, we assume that weare working with version of the cops and
robber game where at most one cop is moved at a time.

The result of Rosenberg and Sudborough can then be summarized thus:

Theorem 5.47([RS82]). Let Γ be the cops and invisible robber game type defined in Definition 5.27 where at most
one cop is moved at a time, and letG be an undirected graph. Then the bandwidth ofG is equal tow(Γ,ϕot)(G).

Fomin et al. [FHT04] used Theorem 5.47 to generate a generalization of bandwidth, calledtreespan, by considering
the resource measureϕot on the cops and inert robber game.

Theorem 5.48([FHT04]). LetΓ be the cops and inert robber game type defined in Definition 5.30 where at most one
cop is moved at a time, and letG be an undirected graph. Then the treespan ofG is equal tow(Γ,ϕot)(G).

5.3.5 Monotonicity

Theorems 5.37, 5.42 and 5.43 all indicate an interesting property of some of the graph searching games we have
considered: the restriction imposed by bounding the resources supercedes the restriction imposed by monotonicity.
This provides an explanation as to why measures like tree-width are good complexity measures from a practical
and structural perspective: winning strategies which are not necessarily monotone indicate the existence of various
structural properties such as havens or brambles (as we see in Chapter 8); on the other hand, monotone winning
strategies are very useful algorithmically. As we saw with Lemma 5.11, monotone strategies can be represented as
restrictions on the arena, so it is often easier to compute monotone winning strategies. Furthermore, as we see in the
next few chapters, monotone strategies often lend themselves to decompositions with properties that make them very
useful for practical purposes. Thus it is important to identify games where monotonicity is not too great a restriction,
as these games will provide measures that are good indicators of algorithmic and structural complexity. This leads
to the question, “For which graph searching game types and resource measures is monotonicity sufficient?” More
precisely,

Open problem 5.49. For which graph searching game typesΓ and resource measuresϕ does(Γ, ϕ)-width give a
bound on fugitive-monotone or searcher-monotone(G, ϕ)-width?

Remark.Allowing approximate equivalence gives some flexibility inthe above question: while it may not be the
case that a winning strategy implies the existence of a monotone winning strategy with the same resource bounds, it
might still be possible that the resource requirements for amonotone strategy can be deduced from those of a winning
strategy.

CHAPTER 5. GRAPH SEARCHING GAMES 68

5.4 Robustness results

We now use the framework we have developed to show that the complexity measures we have defined are well-behaved
under some simple graph operations, thus indicating their significance as a robust measure of graph complexity. In
particular we show that, under some reasonable assumptions, the width measure defined by a graph searching game
and a resource measure does not increase under the simplification operation of taking subgraphs. We also show that
the complexity measure we have defined can be determined fromthe connected components of the graph. Finally, we
consider the cops and robber game. We show that the restriction of having the searchers and the fugitive located on
vertices enables us to show that the width measure defined by the number of cops required in a cops and robber game
suitably increases under a graph operation which can be seenas a uniform complication, namely graph composition.

For convenience, we only consider width measures defined by order-preserving resource measures. Thus for each
of the following results, there is a dual result obtained by replacing order-preserving with order-reversing, monotone
with anti-monotone, and≤ with ≥.

5.4.1 Subgraphs

In Definition 5.21 we introduced a restriction on graph searching game types,respecting restriction, which asserted
that searching strategies in a graphG can be restricted to be searching strategies in subgraphs ofG. It turns out that
imposing this restriction on the graph searching game type and the monotonicity restriction on the resource measure
is sufficient to show that graph searching width is well-behaved with respect to subgraphs.

Theorem 5.50. Let Γ be a graph searching game type which respects restriction. Let ϕ be a monotone, order-
preserving resource measure. For any two graphsG,G′ such thatG′ is a subgraph ofG:

w(Γ,ϕ)(G′) ≤ w(Γ,ϕ)(G).

Proof. Let GΓ
G andGΓ

G′ be the graph searching games onG andG′ defined byΓ(G) andΓ(G′) respectively. SinceΓ
respects restriction, it follows from Lemma 5.23 that(⊃· ,⊃·) is a searching simulation fromGΓ

G to GΓ
G′ . Let σ be a

winning searcher strategy inGΓ
G such that for any searchπ consistent withσ, ϕ(π) ≤ w(Γ,ϕ)(G). Letσ′ be a searching

strategy inGΓ
G′ (⊃· ,⊃·)-simulated byσ. It follows from Lemma 5.16 thatσ′ is a winning strategy for the searchers.

Furthermore, by the definition ofσ′, for any searchπ′ = (X ′
0, R

′
0)(X

′
1, R

′
1) · · · consistent withσ′ there exists a search

π = (X0, R0)(X1, R1) · · · consistent withσ such thatXi ⊃· X ′
i for all i. Thus,X ′

i = Xi ∩ Elts(G′) ⊆ Xi. Sinceϕ
is monotone, it follows thatϕ(π′) ≤ ϕ(π) ≤ w(Γ,ϕ)(G), and this holds for any searchπ′. Thus, from the definition of
w(Γ,ϕ)(G′), we havew(Γ,ϕ)(G′) ≤ w(Γ,ϕ)(G) as required. ut

In Lemma 5.18 we observed properties sufficient for a simulation to respect fugitive and searcher-monotonicity.
We now show that⊃· satisfies these properties, implying that Theorem 5.50 can be extended to fugitive-monotone and
searcher-monotone width.

Lemma 5.51. LetG andG′ be graphs withG a subgraph ofG′. The relation⊃· G′

G is monotone and∩-compatible.

Proof. TakeX ′, Y ′ ⊆ Elts(G′) andX, Y ⊆ Elts(G) such thatX ′ ⊃· G′

G X andY ′ ⊃· G′

G Y . From the definition of⊃· , it

follows thatX = X ′∩Elts(G) andY = Y ′∩Elts(G). Thus, ifX ′ ⊆ Y ′, X = X ′∩Elts(G) ⊆ Y ′∩Elts(G) = Y , so⊃· G′

G

is monotone. Furthermore,(X ′∩Y ′)∩Elts(G) = (X ′∩Elts(G))∩(Y ′∩Elts(G)) = X∩Y , so(X ′∩Y ′) ⊃· G′

G (X∩Y),

and therefore⊃· G′

G is∩-compatible. ut

Corollary 5.52. Let Γ be a graph searching game type which respects restriction. Let ϕ be a monotone, order-
preserving resource measure. For any two graphsG,G′ such thatG′ is a subgraph ofG:

1. The fugitive-monotone(Γ, ϕ)-width ofG is at most the fugitive-monotone(Γ, ϕ)-width ofG′, and

2. The searcher-monotone(Γ, ϕ)-width ofG is at most the searcher-monotone(Γ, ϕ)-width ofG′.

CHAPTER 5. GRAPH SEARCHING GAMES 69

5.4.2 Connected components

We now show how the widths of the connected components of a graph can be used to compute the width of the graph.
First we need to introduce a notion which is dual to restriction respecting.

Definition 5.53 (Reflects restriction). Let Γ be a graph searching game type. We sayΓ reflects restrictionif for any
graphsG andG′ such thatG is a subgraph ofG′, Γ(G) = (Ls,Lf ,A), andΓ(G′) = (L′s,L′f ,A′), then

• If Rmax is the⊆-maximal element ofLf , andR′
max is the⊆-maximal element ofL′f , thenRmax = R′

max ∩
Elts(G).

• If there is an edge from(Y, S) to (Y, Y ′, S) in E(A) then for all(X, R) ∈ V0(A′) and(X, X ′, R) ∈ V1(A′)
such thatY = X ∩ Elts(G), S = R ∩ Elts(G) andY ′ = X ′ ∩ Elts(G), there is an edge inE(A′) from (X, R)
to (X, X ′, R), and

• If there is an edge from(X, X ′, R) to (X ′, R′) in E(A′) and(Y, Y ′, S) ∈ V (A) for Y = X ∩ Elts(G),Y ′ =
X ′ ∩ Elts(G) and S = R ∩ Elts(G), then eitherR′ ∩ Elts(G) = ∅ or there is an edge from(Y, Y ′, S) to
(Y ′, R′ ∩ Elts(G)) in E(A).

Just as respecting restriction can be viewed as⊃· -closure, it would appear that restriction reflection should also be
equivalent toR-closure for some quasi-simulation familyR similar to⊃· . However, the last condition in the definition
is problematic for the game simulation: the fugitive may be able to move in the larger graph (R′ 6= ∅), but because
R′ ∩ Elts(G) = ∅, there is no response on the smaller graph. Nevertheless, weare able to obtain a result, similar to
Lemma 5.13, sufficient for our purposes.

Lemma 5.54. Let Γ be a graph searching game type which reflects restriction andlet G and G′ be graphs such
that G is a subgraph ofG′. Let Γ(G) = (Ls,Lf ,A), Γ(G′) = (L′s,L′f ,A′), and take(X ′

0, R
′
0) ∈ V (A′) such

that X ′
0 ∩ Elts(G) = ∅ and R′

0 ∩ Elts(G) is either∅ or the⊆-maximal element ofLf . If σ is a winning strategy
for the searchers inGΓ

G , then there exists a strategỹσ for the searchers onGΓ
G′ such that any search from(X ′

0, R
′
0)

consistent with̃σ can be extended to a search(X ′
0, R

′
0)(X

′
1, R

′
1) · · · consistent with̃σ so that there existsn ≥ 0 with

R′
n ∩ Elts(G) = ∅, and for all i, 1 ≤ i ≤ n, X ′

i = σ(Xi−1, Ri−1) for some(Xi−1, Ri−1) ∈ V0(A).

Proof. For (X ′, R′) ∈ V (A′) with (X, R) ∈ V (A) whereX = X ′ ∩ Elts(G) and R = R′ ∩ Elts(G), define
σ̃(X ′, R′) := σ(X, R). From the second condition of restriction reflection, this is a well-defined (partial) strategy:
(X ′, σ(X ′, R′), R′) is a successor of(X ′, R′). We now show that̃σ is sufficiently defined to satisfy the requirements
of the lemma.

Let π′ = (X ′
0, R

′
0)(X

′
1, R

′
1) · · · (X ′

n, R′
n) be a search from(X ′

0, R
′
0) consistent with̃σ. For i ≥ 0, let Xi =

X ′
i ∩ Elts(G) andRi = R′

i ∩ Elts(G). By the definition of̃σ, X ′
i = σ(Xi−1, Ri−1) for all i such thatRi−1 6= ∅. Thus

if we taken to be the minimum index such thatRn = ∅, we are done. So suppose there is non such thatRn = ∅. We
claim:

Claim. π = (X0, R0)(X1, R1) · · · is a search fromvI(A) consistent withσ.

Proof of claim. We prove this by induction oni, the length ofπ consistent withσ. From the definition of(X ′
0, R

′
0),

and sinceR′
0 ∩ Elts(G) 6= ∅, (X0, R0) = vI(A), so the claim is true fori = 0. Now suppose(X0, R0) · · · (Xi, Ri) is

consistent withσ. From the definition ofσ′, Xi+1 = X ′
i+1 = σ(Xi, Ri). As (X ′

0, R
′
0) · · · (X ′

i+1, R
′
i+1) is consistent

with σ̃, andR′
i+1∩Elts(G) 6= ∅, it follows that there is an edge inE(A′) from (X ′

i, X
′
i+1, R

′
i) to (X ′

i+1, R
′
i+1). Thus,

from the third condition of restriction reflection, there isan edge from(Xi, Xi+1, Ri) to (Xi+1, Ri+1). Therefore,
(X0, R0) · · · (Xi+1, Ri+1) is consistent withσ asXi+1 = σ(Xi, Ri) and there is an edge from(Xi, Xi+1, Ri) to
(Xi+1, Ri+1). a

Now, sinceσ is a winning strategy for the searchers, every search fromvI(A) consistent withσ can be extended
to a complete search. However,Ri 6= ∅ for all i ≥ 0, soπ cannot be extended to a complete search. Thus there exists
n such thatRn = ∅, contradicting the assumption that there is no suchn. ut

CHAPTER 5. GRAPH SEARCHING GAMES 70

We also need to assume that our graph searching games satisfythe following property: if the searchers have a
winning strategy from(X, R) then the searchers can play the same strategy and win from(X, S) for anyS ⊆ R. To
be more precise, we require the graph searching game type to be(id,⊇)-closed where id is the quasi-simulation family
which assigns to each pair of graphs(G,G′) with G = G′ the identity relation, and⊇ is the quasi-simulation family
which assigns to each pair of graphs(G,G′) with G = G′ the superset relation. Given such a graph searching game
type, we can apply Lemma 5.13 to obtain the following:

Lemma 5.55. LetΓ be a graph searching type which is(id,⊇)-closed, and letG be a graph withΓ(G) = (Ls,Lf ,A).
For any(X1, R1), (X

′
1, R

′
1) ∈ V (A) with X1 = X ′

1 andR1 ⊇ R′
1 and any strategyσ for the searchers onGΓ

G , there
exists a strategy for the searchersσ′ onGΓ

G such that for every search(X ′
1, R

′
1)(X

′
2, R

′
2) · · · consistent withσ′, there

exists a search(X1, R1)(X2, R2) · · · consistent withσ with Xi = X ′
i andRi ⊇ R′

i for all i.

To compute the width of a graph from the widths of its connected components, we need to be able to combine
the widths of the components. To do this we require some sort of operation,⊕, onω which reflects how our resource
measure is computed. For example, if we are interested in thenumber of searchers required to capture a fugitive, then
the functionmax is the combining operation we are interested in, the number of searchers required in the whole graph
is at most the maximum number of any of its components. In fact, we can use any operation⊕ for which our resource
measure is “well-behaved”, in the following sense:

Definition 5.56 (⊕-morphism). Let ϕ be a resource measure and⊕ : ω × ω → ω an operation onω. We sayϕ is a
⊕-morphismif ϕ(π · π′) = ϕ(π) ⊕ ϕ(π′) for all sequencesπ andπ′.

Remark.We note that ifϕ is a⊕-morphism, then (on the image ofϕ) the operation⊕ is uniquely defined. That is,
for any resource measureϕ, there is at most one possible operation⊕ such thatϕ is a⊕-morphism. However, we
also observe that given any monoid structure(id,⊕) on ω and a functionf from finite sets toω, we can define a
⊕-morphismϕ⊕ as follows:

ϕ⊕(ε) = id,

ϕ⊕(X1 · · ·Xn) = f(X1)⊕ · · · ⊕ f(Xn), and

ϕ⊕(π) = ω if π is infinite.

We also note that ifϕ is a⊕-morphism, then, due to the associativity of concatenation,⊕ is necessarily associative.
That is, ifa = ϕ(πa), b = ϕ(πb), andc = ϕ(πc), then we have:

(a⊕ b)⊕ c =
(
ϕ(πa)⊕ ϕ(πb)

)
⊕ ϕ(πc)

= ϕ
(
(πa · πb) · πc

)

= ϕ
(
πa · (πb · πc)

)

= ϕ(πa)⊕
(
ϕ(πb)⊕ ϕ(πc)

)
= a⊕ (b⊕ c).

Our next observation is that if we combine the restrictions we have just introduced, then the combination of the
widths of the components of a graph provides an upper bound onthe width of the graph.

Lemma 5.57. Let Γ be a graph searching game type which reflects restriction andis (id,⊇)-closed. Letϕ be an
order-preserving⊕-morphism. IfG is a graph with (weakly) connected componentsG1,G2, . . . ,Gn, then:

w(Γ,ϕ)(G) ≤
n⊕

j=1

w(Γ,ϕ)(Gj).

Proof. Let Γ(G) = (Ls,Lf ,A) and for1 ≤ j ≤ n, let Γ(Gj) = (Lj
s,Lj

f ,Aj). For convenience, for each set
X ⊆ Elts(G), let Xj = X ∩ Elts(Gj). Note that sinceΓ reflects restriction, ifRmax is the⊆-maximal element ofLf ,

CHAPTER 5. GRAPH SEARCHING GAMES 71

thenRj
max is the⊆-maximal element ofLj

f . For eachj, 1 ≤ j ≤ n, let σj be a winning strategy for the searchers
such that for every searchπj in GΓ

Gj
consistent withσj , ϕ(πj) ≤ w(Γ,ϕ)(Gj). The idea is that the strategy defined

by playing each of the strategiesσj sequentially is a winning strategy which has a resource requirement of at most⊕n
j=1 w(Γ,ϕ)(Gj). Before we formally define the strategy, we make the following observation.

Claim. Let (X1, R1)(X2, R2) · · · be a search inGΓ
G . For anyj, 1 ≤ j ≤ n, if there existsn ≥ 0 such thatRj

n = ∅,
thenRj

i = ∅ for all i ≥ n.

Proof of claim. Fix j, and supposen is such thatRj
n = ∅. Suppose there existsi > n such thatRj

i 6= ∅. Let k

be the minimal index such thatRj
k 6= ∅, and taker′ ∈ Rj

k. From the definition of a graph searching game, there
existsr ∈ Rk−1 such thatr andr′ are in the same (weakly) connected component ofG \ (Xk−1 ∩ Xk). Thus, as
r′ ∈ Elts(Gj), it follows thatr ∈ Elts(Gj). Thusr ∈ Rj

k−1, contradicting the minimality ofk. ThereforeRj
i = ∅ for

all i ≥ n. a

We defineσ inductively as follows. IfG has one connected component, letσ = σ1. Clearly σ is a winning
strategy onG, and for any searchπ consistent withσ we haveϕ(π) ≤ w(Γ,ϕ)(G1). Now consider the subgraph
G′ =

⋃n
j=2 Gj . Let Γ(G′) = (L′s,L′f ,A′). Suppose there exists a winning strategyσ0 on GΓ

G′ such that for any
searchπ consistent withσ0 we haveϕ(π) ≤ ⊕n

j=2 w(Γ,ϕ)(Gj). Using the notation from Lemma 5.54, let̃σ0 be the
strategy onGΓ

G defined byσ0, and letσ̃1 be the strategy onGΓ
G defined byσ1. The strategyσ is as follows: from

(∅, Rmax), play σ̃1 until a position(X, R) is reached whereR ∩ V (G1) = ∅. That is, untilR′ ∩ V (G′) = ∅, let
σ(X ′, R′) = σ̃1(X

′, R′). From Lemma 5.54, we haveX ⊆ V (G1), soX ∩ V (G′) = ∅, and sinceR ⊆ V (G′),
R∩V (G′) ⊆ R′

max whereR′
max is the⊆-maximal element ofL′f . Thus(X, R′

max) is (id,⊇)-related to(X, R). Since
X ∩ V (G′) = ∅, it follows that σ̃0(X, R′

max) is defined. Letσ′
0 be a(id,⊇)-simulated strategy of̃σ0, which, from

Lemma , plays from(X, R) whenσ̃0 plays from(X, Rmax). For all subsequent positions(X ′, R′) reached, including
(X, R), defineσ(X ′, R′) = σ′

0(X
′, R′). From the earlier claim, asR′ ∩ V (G1) = ∅, it follows from the definition

of simulated strategies thatσ is well-defined for all subsequent positions. Asσ1 andσ′ are winning strategies, it also
follows thatσ is a winning strategy.

Let us now consider the resources required byσ. Let π = (X0, R0)(X1, R1) · · · be a search consistent withσ.
From the definition ofσ, it follows thatπ = π1 ·π′ whereπ1 is a search consistent with̃σ1 andπ′ is a search consistent
with σ′

0. Therefore, from Lemmas 5.54 and 5.55, it follows that the sequenceπ = X0X1 · · · is equal toπ1 · π′ where
π1 is the sequence of first components of a search consistent with σ1 andπ′ is the sequence of first components of a
search consistent withσ′. Thus

ϕ(π) = ϕ(π1 · π′) = ϕ(π1)⊕ ϕ(π′)

≤ w(Γ,ϕ)(G1)⊕
n⊕

j=2

w(Γ,ϕ)(Gj) =

n⊕

j=1

w(Γ,ϕ)(Gj).

As this holds for any play consistent withσ, andσ is a winning strategy, it follows thatw(Γ,ϕ)(G) ≤
⊕n

j=1 w(Γ,ϕ)(Gj).
ut

If we impose some further restrictions on the operation⊕, and suitable restrictions onΓ and ϕ, we can use
Theorem 5.50 to obtain equality in the above result.

Definition 5.58. Let⊕ : ω × ω → ω be an operation onω. We say⊕ is monotoneif for all a, b, c, d ∈ ω with a ≤ b
andc ≤ d, a⊕ c ≤ b⊕ d. We say⊕ is deflationaryif for all a ∈ ω, a ≥ a⊕ a.

Theorem 5.59.LetΓ be a graph searching game type which respects and reflects restriction and is(id,⊇)-closed. Let
⊕ : ω×ω → ω be an associative, monotone, and deflationary operation onω. Letϕ be a monotone, order-preserving

CHAPTER 5. GRAPH SEARCHING GAMES 72

⊕-morphism. IfG is a graph andG1,G2, . . . ,Gn are the (weakly) connected components ofG, then,

w(Γ,ϕ)(G) =

n⊕

j=1

w(Γ,ϕ)(Gj).

Proof. From Lemma 5.57, we havew(Γ,ϕ)(G) ≤
⊕n

j=1 w(Γ,ϕ)(Gj). For the reverse inequality, we observe that asGj

is a subgraph ofG for all j, we have from Theorem 5.50,w(Γ,ϕ)(Gj) ≤ w(Γ,ϕ)(G) for all j. Thus, as⊕ is deflationary
and monotone:

w(Γ,ϕ)(G) ≥
n⊕

j=1

w(Γ,ϕ)(G) ≥
n⊕

j=1

w(Γ,ϕ)(Gj).

ut

5.4.3 Lexicographic product

We now consider the cops and robber game with the resource measure that indicates the maximum number of cops
used by a strategy,ϕmax. We show that, under some simple assumptions, if we replace vertices in a graph with copies
of a complete graph withn vertices, the number of cops required to capture the robber increases by a factor ofn. We
recall from Section 1.1.2 the definition of the lexicographic product. We now introduce some useful relations between
a graph and its lexicographic factors. Although these definitions are quite technical, later in the section we introduce
some more intuitive properties which we show are sufficient to establish the robustness results we are interested in.

Definition 5.60 (MH, DH andPH). Let G andH be graphs and letG′ = G • H. We defineMG
H⊆ P(V (G)) ×

P(V (G′)) andDG
H,PG

H⊆ P(V (G′))× P(V (G)) as follows. IfA ⊆ V (G) andB ⊆ V (G′), then

• A MG
H B if B = A× V (H),

• B DG
H A if A = {u : (u, v) ∈ B for all v ∈ V (H)},

• B PG
H A if A = {u : (u, v) ∈ B for somev ∈ V (H)}.

The following results follow immediately from Lemma 5.16 and provide an idea of the results we are interested
in.

Lemma 5.61. LetG andH be graphs and letG′ = G •H. LetGΓ
G be a cops and robber game onG andG

Γ′

G′ be a cops

and robber game onG′. If (MG
H,MG

H) is a searching simulation fromGΓ
G to GΓ′

G′ andk cops have a winning strategy

onGΓ
G , thenk · |V (H)| cops have a winning strategy onGΓ′

G′ .

Proof. Let σ be a winning strategy for the cops onGΓ
G which uses at mostk cops. Letσ′ be a strategy for the cops

on GΓ′

G′ (MG
H,MG

H)-simulated byσ. From Lemma 5.16,σ′ is a winning strategy for the cops. From the definition of
MG

H, for each position(X ′, R′) of GΓ′

G′ we haveσ′(X ′, R′) = σ(X, R)× V (H) for some position(X, R) of GΓ
G . So

|σ′(X ′, R′)| ≤ k · |V (H)|, and thereforeσ′ is a winning strategy for at mostk · |V (H)| cops. ut

Lemma 5.62. LetG andH be graphs and letG′ = G •H. LetGΓ
G be a cops and robber game onG andGΓ′

G′ be a cops

and robber game onG′. If (DG
H,PG

H) is a searching simulation fromGΓ′

G′ to GΓ
G and the robber can defeatk − 1 cops

onGΓ
G , then the robber can defeatk · |V (H)| − 1 cops onGΓ′

G′ .

Proof. We consider the contrapositive: supposek · |V (H)| − 1 cops have a winning strategyσ′ onGΓ′

G′ . We show that
k − 1 cops have a winning strategy onGΓ

G . Let σ be a strategy(DG
H,PG

H)-simulated byσ′. From Lemma 5.16,σ is a
winning strategy for the cops. Suppose|σ(X, R)| ≥ k for some position(X, R). From the definition ofσ, there exists
a position(X ′, R′) of GΓ′

G′ such thatσ′(X ′, R′) DG
H σ(X, R). But then, as|σ(X, R)| ≥ k, |σ′(X ′, R′)| ≥ k · |V (H)|,

contradicting the assumption thatσ′ was a strategy fork · |V (H)| − 1 cops. Thusσ′ is a winning strategy fork − 1
cops. ut

CHAPTER 5. GRAPH SEARCHING GAMES 73

With these two results in mind, we introduce two quasi-simulation families which we use to define the restriction
on graph searching game types that we require for games to be well-behaved under lexicographic product.

Definition 5.63(Composition-expanding). Let M be the quasi-simulation family which assigns to each pair ofgraphs
(G,G′), whereG′ = G•K for some complete graphK, the pair of relations(MG

K,MG
K). LetD be the quasi-simulation

family which assigns to each pair of graphs(G′,G), whereG′ = G•K for some complete graphK, the pair of relations
(DG

K,PG
K). LetΓ be a cops and robber game type. We sayΓ is composition-expandingif it is M-closed andD-closed.

Using Lemmas 5.61 and 5.62, we obtain:

Theorem 5.64. Let Γ be a composition-expanding cops and robber game type. LetG be a graph, and letKn be the
complete graph onn vertices. Then

n · w(Γ,ϕmax)(G) = w(Γ,ϕmax)(G • Kn).

Proof. Let w(Γ,ϕmax)(G) = k andw(Γ,ϕmax)(G • Kn) = m. From Lemma 5.61, we havem ≤ n · k, so suppose
m = n · k − r. But if r ≥ 1, then by Lemma 5.62,w(Γ,ϕmax)(G) ≤ k − 1. Thusr = 0 and the result follows. ut

To help identify cops and robber game types which are composition-expanding, we now present an alternative
characterization of composition-expanding, similar to the definition of restriction respecting in Definition 5.21. Just
as with Lemma 5.23, the proof follows directly from the definitions, and is therefore omitted.

Lemma 5.65. Let Γ be a cops and robber game type such that for all graphsG and all complete graphsK, where
Γ(G) = (Lc,Lr,A), Γ(G • K) = (L′c,L′r,A′) and:

(I) If there is an edge inE(A) from (Y, S) to (Y, Y ′, S) and (X, R) ∈ V0(A′) for X = Y × V (K) and R =
S × V (K), then there is an edge inE(A′) from (X, R) to (X, X ′, R) whereX ′ = Y ′ × V (K);

(II) If there is an edge inE(A′) from (X, R) ∈ V0(A′) to (X, X ′, R) and(Y, S) ∈ V0(A) for Y = {u : (u, v) ∈
X for all v ∈ V (K)} andS = {u : (u, v) ∈ R for somev ∈ V (K)} , then there is an edge inE(A) from (Y, S)
to (Y, Y ′, S) whereY ′ = {u : (u, v) ∈ X ′ for all v ∈ V (K)};

(III) If there is an edge inE(A′) from (X, X ′, R) to (X ′, R′) and (Y, Y ′, S) ∈ V1(A) whereX = Y × V (K),
X ′ = Y ′ × V (K), andR = S × V (K); and thenR′ = S′ × V (K) for someS′ and there is an edge inE(A)
from (Y, Y ′, S) to (Y ′, S′)

(IV) If there is an edge inE(A) from (Y, Y ′, S) to (Y ′, S′) and (X, X ′, R) ∈ V1(A′) whereY = {u : (u, v) ∈
X for all v ∈ V (K)}, Y ′ = {u : (u, v) ∈ X ′ for all v ∈ V (K)}, andS = {u : (u, v) ∈ R for somev ∈
V (K)}, then there is an edge inE(A′) from (X, X ′, R) to (X ′, R′) for someR′ such thatS′ = {u : (u, v) ∈
R′ for somev ∈ V (K)},

thenΓ is composition-expanding.

We observed in Lemma 5.51 that the⊃· relation satisfied the necessary conditions for(⊃· ,⊃·)-simulation to respect
fugitive and searcher-monotonicity. We now show that the relationsM, D, andP also satisfy similar conditions
implying that Theorem 5.64 holds for robber-monotone and cop-monotone width.

Lemma 5.66. LetG be a graph andK a complete graph.

1. The relationMG
K is monotone and∩-compatible.

2. The relationDG
K is monotone and∩-compatible.

3. The relationPG
K is monotone.

CHAPTER 5. GRAPH SEARCHING GAMES 74

Proof. 1: TakeX, Y ⊆ V (G) andX ′, Y ′ ⊆ V (G • K) such thatX MG
K X ′ andY MG

K Y ′. By the definition ofMG
K,

it follows thatX ′ = X×V (K) andY ′ = Y ×V (K). So ifX ⊆ Y , X ′ ⊆ Y ′, and soMG
K is monotone. Furthermore,

since(X ∩ Y)× V (K) = (X × V (K)) ∩ (Y × V (K)), it follows thatMG
K is∩-compatible.

2: TakeX, Y ⊆ V (G) andX ′, Y ′ ⊆ V (G • K) such thatX ′ DG
K X andY ′ DG

K Y . By the definition ofDG
K, it

follows thatX = {u : (u, v) ∈ X ′ for all v ∈ V (K)} andY = {u : (u, v) ∈ Y ′ for all v ∈ V (K)}. Now if X ′ ⊆ Y ′,
it follows thatX = {u : (u, v) ∈ X ′ for all v ∈ V (K)} ⊆ {u : (u, v) ∈ Y ′ for all v ∈ V (K)} = Y . ThusDG

K is
monotone. Furthermore,{u : (u, v) ∈ X ′ ∩ Y ′ for all v ∈ V (K)} = {u : (u, v) ∈ X ′ for all v ∈ V (K)} ∩ {u :
(u, v) ∈ Y ′ for all v ∈ V (K)}, so(X ′ ∩ Y ′) DG

K X ∩ Y , and henceDG
K is∩-compatible.

3: TakeX, Y ⊆ V (G) andX ′, Y ′ ⊆ V (G • K) such thatX ′ PG
K X andY ′ PG

K Y . By the definition ofPG
K, it

follows thatX = {u : (u, v) ∈ X ′ for somev ∈ V (K)} andY = {u : (u, v) ∈ Y ′ for somev ∈ V (K)}. Now if
X ′ ⊆ Y ′, it follows thatX = {u : (u, v) ∈ X ′ for somev ∈ V (K)} ⊆ {u : (u, v) ∈ Y ′ for somev ∈ V (K)} = Y .
ThusPG

K is monotone. ut

Corollary 5.67. LetΓ be a composition-expanding cops and robber game type. LetG be a graph, and letKn be the
complete graph onn vertices. Then:

1. The robber-monotone(Γ, ϕmax)-width ofG • Kn is n times the robber-monotone(Γ, ϕmax)-width ofG.

2. The cop-monotone(Γ, ϕmax)-width ofG • Kn is n times the cop-monotone(Γ, ϕmax)-width ofG.

5.5 Complexity results

To conclude this chapter we consider the complexity of the problem of determining the(Γ, ϕ)-width of a graph. More
precisely, for a graph searching game typeΓ and an order-preserving resource measureϕ, we are interested in the
complexity of the following problem:

(Γ, ϕ)-WIDTH

Instance: A graphG andk ∈ ω
Problem: Is the(Γ, ϕ)-width of G at mostk?

Of course, the complexity of this problem is dependent on howdifficult it is to compute the arena ofGΓ
G and the

resource functionϕ. To have a sensible analysis, we assume that we can compute these in amortized constant time,
that is, we can compute a path of lengthn in the arena, or theϕ-value of a sequence ofn sets in timeO(n). In practice
computing edges of the arena and values ofϕ are more likely to require time polynomial in the size of the graph, but
as the bounds we obtain are generally exponential in the sizeof the graph, this assumption is not going to significantly
affect the overall complexity.

From Definition 5.1, we know that a graph searching gameGΓ
G defined by(Ls,Lf ,A) is a simple game, so it

might appear at first that determining if the searchers have awinning strategy can be decided in time linear in the size
of the arena, as per Theorem 2.60. However, for an arbitrary resource measureϕ, whether a vertex of the arena is
winning for the searchers in the resource-bounded game is dependent on the play to that vertex. So it could be the
case that for any strategy, all possible consistent plays have to be checked to ensure the resource measure is bounded.
Hence it may not be possible to do better than to iterate through all possible strategies and all consistent searches, or
equivalently, all possible plays in the arena. However, as we observed after Definition 5.36, we need only consider
plays that are simple paths in the arena, so this is at least decidable. Since every play can be characterized by a search,
and a search is a sequence of positions, there are at mostO(|V0(A)|!) plays that might have to be checked. NowV0(A)
consists of pairs of subsets of Elts(G), thus|V0(A)| = O(4|Elts(G)|) = O(4||G||), giving us the following bound:

Proposition 5.68. LetΓ be a graph searching game type andϕ an order-preserving resource measure.(Γ, ϕ)-WIDTH

can be decided in timeO(4n!).

CHAPTER 5. GRAPH SEARCHING GAMES 75

We can do considerably better by considering specific resource measures, in particular the measureϕmax. In
Lemma 5.40, we saw how the existence of a resource bounded winning strategy is equivalent to the existence of a
winning strategy in a game with a smaller arena: the parameterized game defined in Definition 5.26. We can use
Theorem 2.60 to decide if the cops have a winning strategy in this parameterized game in linear time, and therefore
determine if the cops have a resource bounded winning strategy in the original game. More precisely,

Proposition 5.69. LetΓ be the cops and visible robber game type defined in Definition 5.24. Then(Γ, ϕmax)-WIDTH

can be decided in timeO(n2k+4).

Proof. SupposeG, an undirected graph, andk ∈ ω are given. LetΓ′ be thek-cops and visible robber game type
defined in Definition 5.26, and supposeΓ′(G) = (Lc,Lr,A). From Lemma 5.40, we have thatk cops have a winning
strategy inGΓ

G if, and only if, the cops have a winning strategy inGΓ′

G . From Theorem 2.60, we can determine if the
cops have a winning strategy inGΓ′

G in time O(|E(A)|), so it suffices to find an upper bound on|E(A)|. From the
definition of the game, we observe that for eachX, X ′ ∈ Lc there are at most|V (G)| setsR such that(X, R) ∈ V0(A)
and(X, X ′, R) ∈ V1(A). Therefore, from the definition ofA we see that each element(X, X ′, R) of V1(A) has a
unique incoming edge (from(X, R)) and at most|V (G)| outgoing edges (to(X ′, R′)). Thus the number of edges
is at most(|V (G)| + 1)|V1(A)|. From the definition ofLc, we have|Lc| ≤ |V (G)|k+1, thus |V1(A)| is at most
|Lc||Lc||V (G)| ≤ |V (G)|2k+3. Therefore, the number of edges ofA is bounded byO(|V (G)|2k+4), and the result
follows. ut

The parameterized class of games we defined in Definition 5.26is easily extended to other graph searching game
types, so we can use a similar argument as above to decide(Γ, ϕmax)-WIDTH more efficiently than Proposition 5.68.
In the more general case, we may not be able to bound the size ofV1(A) as efficiently, nor the number of outgoing
edges from elements ofV1(A). However, we observe thatV1(A) ⊆ Ls×Ls×Lf , so|V1(A)| ≤ ||G||k · ||G||k ·2||G||, and
there are at most|Lf | ≤ 2||G|| outgoing edges from any element ofV1(A). This gives us the following improvement
for deciding(Γ, ϕmax)-WIDTH:

Proposition 5.70. LetΓ be a graph searching game type.(Γ, ϕmax)-WIDTH can be decided in timeO(n2k+24n).

We observe that all the algorithms we have so far considered are constructive: if the algorithm returns a positive
answer, then it is possible to extract a winning strategy forthe searchers.

We conclude the section by considering the complexity of determining the fugitive-monotoneand searcher-monotone
widths of a graph. As we observed following Lemma 5.11, the restriction to fugitive-monotone strategies can be en-
forced by removing edges from the arena. It therefore follows that the bounds we obtained for the general games are
applicable to the fugitive-monotone case.

Proposition 5.71. LetΓ be a graph searching game type.

(i) FUGITIVE-MONOTONE (Γ, ϕmax)-WIDTH can be decided in timeO(n2k+24n), and

(ii) If Γ is the cops and visible robber game type defined in Definition 5.24. ThenFUGITIVE-MONOTONE (Γ, ϕmax)-WIDTH

can be decided in timeO(n2k+4).

Unfortunately, for searcher-monotonestrategies the situation is not as straightforward. Indeed, just as with arbitrary
resource measures, the algorithm of Theorem 2.60 cannot, ingeneral, be used as the set of successors available from
(X, R) is dependent on the play to(X, R). Thus in the searcher-monotone case, we can in general do no better than
the bounds obtained for an arbitrary resource measure.

Proposition 5.72. LetΓ be a graph searching game type.SEARCHER-MONOTONE (Γ, ϕmax)-WIDTH can be decided
in timeO(4n!).

Chapter 6

Digraph measures: DAG-width

In Chapter 4 we discussed the problem of finding a measure of complexity for digraphs. We reviewed the definition
of tree-width, arguably one of the most suitable measures ofcomplexity for undirected graphs, and we considered
the problem of finding a suitable generalization of tree-width for directed graphs. In Chapter 5 we introduced graph
searching games, a useful tool for developing robust measures of graph complexity, and saw that several such games
can be used to characterize tree-width. In this chapter we introduce a complexity measure for directed graphs which
we argue is a more natural generalization of tree-width thandirected tree-width. We introduce a decomposition which,
unlike arboreal decompositions, is defined in a similar manner to tree decompositions. Just as tree decompositions
are decompositions based on trees, our decompositions are based on directed, acyclic graphs (DAGs), so we use the
nameDAG-decompositions. And just as tree decompositions give rise to tree-width, DAG-decompositions give rise to
a graph parameter which we callDAG-width.

We show that DAG-decompositions and DAG-width enjoy many properties similar to tree decompositions and
tree-width. For example, in Theorem 6.28, we show that we mayassume a DAG-decomposition satisfies certain
conditions similar to those of nice tree decompositions, introduced in [Bod97]. This normalized form is particularly
useful for designing dynamic programming algorithms whichrun efficiently on classes of directed graphs of bounded
DAG-width. We see this in Section 6.3.3 when we present such an algorithm for parity games. But perhaps the
strongest point in favour of DAG-width being a more natural generalization of tree-width is that it can be characterized
by a natural generalization of the cops and visible robber game, a graph searching game which we saw in Chapter 5
characterizes tree-width. As the generalized game is particularly dependent on directed paths in the graph, this suggests
that DAG-width is a good indicator of the directed connectivity of a digraph, a notion we discussed in Chapter 4.

The game characterization of DAG-width also provides support for the argument that DAG-width is a good mea-
sure of digraph complexity. For example, it is straightforward to show that DAG-width does not increase under the
taking of subgraphs, and that the DAG-width of a graph can be computed from the DAG-width of its strongly con-
nected components.

After we introduce DAG-width and its associated graph searching game, we consider the algorithmic benefits of
DAG-width. As a digraph measure, DAG-width lies between tree-width and directed tree-width. That is, classes of
graphs of bounded tree-width have bounded DAG-width and graphs of bounded DAG-width have bounded directed
tree-width. In particular this implies that algorithms which are efficient on graphs of bounded directed tree-width are
efficient on graphs of bounded DAG-width, so in particular Theorem 4.13 applies also to graphs of bounded DAG-
width. In this chapter we extend this algorithmic result andshow that parity games can be decided in polynomial
time on arenas of bounded DAG-width, something which is not currently known for graphs of bounded directed tree-
width. We also show that DAG-width, tree-width and directedtree-width are different measures by exhibiting a class
of digraphs with bounded DAG-width and unbounded tree-width and a class of digraphs with bounded directed tree-
width and unbounded DAG-width. This suggests that weak connectivity, directed connectivity and strong connectivity
are three very different properties of directed graphs.

The chapter is arranged as follows. In Section 6.1 we introduce the cops and visible robber game for directed

76

CHAPTER 6. DAG-WIDTH 77

graphs and we establish some results to help gain an understanding of the game. We then define DAG-decompositions
in Section 6.2, and show the equivalence between DAG-width and the number of cops required to capture the fugitive
with a monotone strategy. In Section 6.3 we discuss some algorithmic aspects of DAG-width. We also prove the
existence of a polynomial time algorithm for solving paritygames on arenas of bounded DAG-width, and in Section 6.4
we relate DAG-width to other measures of graph connectivity, in particular tree-width, directed tree-width and directed
path-width.

6.1 Cops and visible robber game

We recall from Chapter 5 the cops and visible robber game fromExample 5.2.1. In this game a number of cops and
a robber occupy vertices of an undirected graph and the objective of the cops is to capture the robber. The cops move
by removing some of their number from the graph and announcing a set of vertices to be occupied. Following this, the
robber can move at great speed along paths in the graph to avoid capture, however he is not permitted to pass through
any cop which remains on the graph. The cops then occupy the vertices that were announced, and if the robber is
located on one of these vertices then he is captured. The location of the robber in the graph is always known to the
cops. In Theorem 5.37 we saw that the minimum number of cops required to capture a robber on an undirected graph
is equal to one more than the tree-width of the graph.

We now consider the natural extension of this game to directed graphs, where the robber is constrained to move
along directed cop-free paths. More precisely,

Definition 6.1 (Cops and visible robber game). Let G be a directed graph. Thecops and visible robber game onG is
the cops and robber game defined by(Lc,Lr,A), where

• Lc = P(V (G)) andLr = P(V (G)) \ {∅},

• V0(A) consists of(∅, V (G)) together with pairs(X, R) ∈ Lc × Lr such thatR = ReachG\X(r) for some
r ∈ V (G),

• V1(A) consists of triples(X, X ′, R) ∈ V1(A) for all (X, R) ∈ V0(A) and allX ′ ∈ Lc,

• For all (X, R) ∈ V0(A) and allX ′ ∈ Lc there is an edge inE(A) from (X, R) to (X, X ′, R), and

• If R′ = ReachG\X′(r′) then there is an edge inE(A) from (X, X ′, R) to (X ′, R′) if, and only if, r′ ∈
ReachG\(X∩X′)(R).

Remark. In the sequel, it may be more convenient to view (non-initial) positions of the game as pairs(X, r) with
X ⊆ V (G) andr ∈ V (G) to represent the position(X, R) whereR = ReachG\X(r).

We recall from Chapter 5 the definitions of asearchand astrategy. As with the game characterizing tree-width, we
are interested in the minimum number of cops required to capture the robber. Because of this, and from the definition
of the game, it follows that we may assume the first move of the cops is to not place any cops on the graph and
“wait and see” where the robber moves: if the robber can win from (∅, r1) for somer1 ∈ V (G) then he can win
from (∅, V (G)), and conversely, if the cops have a winning strategyσ which uses at mostk cops from(∅, r) for all
r ∈ V (G), then the strategy defined by playing∅ at (∅, V (G)) andσ otherwise is also a winning strategy which uses
at mostk cops. In view of this, and the above remark, we introduce a more practical definition of a strategy where the
strategy is only defined for positions(X, r) whereX ⊆ V (G), |X | ≤ k, andr ∈ V (G).

Definition 6.2 (k-cop strategy). Let G be a directed graph, and consider the cops and visible robbergame onG. A
(k-cop) strategyfor the cops is a functionσ : [V (G)]≤k × V (G) → [V (G)]≤k. A search(X1, r1)(X2, r2) · · · is
consistentwith a strategyσ if Xi+1 = σ(Xi, ri) for all i. A strategyσ is awinning strategy, if every search consistent
with σ is finite.

In a similar way, we can define a strategy for the robber against k cops.

CHAPTER 6. DAG-WIDTH 78

Definition 6.3 (Strategy againstk cops). Let G be a directed graph, and consider the cops and visible robbergame on
G. A strategy againstk copsis a functionρ : [V (G)]≤k × [V (G)]≤k ×V (G)→ V (G) such that for allX, X ′ ⊆ V (G)
andr ∈ V (G) \X , ρ(X, X ′, r) ∈ ReachG\(X∩X′)(r). A search(X1, r1)(X2, r2) · · · is consistentwith a strategyρ if
ri+1 = ρ(Xi, Xi+1, ri) for all i.

We observe that, similar to the game on undirected graphs, variants of the cops and visible robber game where
only one cop can be moved at a time, or the cops are lifted and placed in separate moves are all equivalent in that the
number of cops required to capture the robber on a graph does not depend on the variant.

We call the graph searching width (recall Definition 5.36) associated with this game and the resource we are
interested in bounding, thecop numberof the graph. That is,

Definition 6.4 (Cop number). Thecop numberof a directed graphG is the leastk such thatk cops have a strategy to
win the cops and visible robber game onG.

Before we introduce the technical aspects of this game needed in later sections, we present a couple of results that
illustrate some of its properties.

Lemma 6.5. LetG be a (finite) non-empty directed graph. At least one cop is required to capture a visible robber on
G and exactly one cop is required if, and only if,G is acyclic.

Proof. As we have no requirement that the robber moves, as long as there is one vertex, the robber can defeat zero
cops by remaining at that vertex. That is, ifv ∈ V (G), then functionρ defined byρ(∅, ∅, v) = v is clearly a winning
strategy against0 cops.

If G is acyclic, then one cop can catch the robber by always playing to the current position of the robber. Eventually,
the robber will not be able to move and the cops will capture him. More precisely, defineσ(X, r) = {r}. Then for
any search(X0, r0)(X1, r1) · · · consistent withσ, we observe that for alli, ri 6= ri+1 and there is a directed path
from ri to ri+1. SinceG is finite and acyclic, it follows that every search consistent with σ must be finite and therefore
winning for the cops.

Conversely, ifG has a cycle(v1, v2, . . . , vm), then the robber can defeat one cop by forever staying in the cycle.
That is, for allr ∈ V (G) andX ∈ [V (G)]≤1 letρ(X, X ′, r) = v1 for all X ′ such thatv1 /∈ X ′ andρ(X, {v1}, r) = v2.
This is clearly a strategy for the robber against one cop, andas any search consistent withρ can be extended to an
infinite search, it is winning for the robber. ut

The cops and visible robber games we have already seen Chapter 5 characterizing tree-width and directed tree-
width have the property that they are invariant under edge reversal. That is, the number of cops required to catch the
robber does not change if the directions of all the edges of the graph are reversed. As we see below, this is not the
case for the game we consider here. One exception is graphs ofcop number1, that is, acyclic graphs. We recall from
Section 1.1.2, the definition ofGop.

Proposition 6.6. The cop number of a directed graphG is 1 if, and only if, the cop number ofGop is 1.

Proof. This follows from Lemma 6.5 by observing thatG is acyclic if, and only if,Gop is acyclic. ut

Proposition 6.7. For anyj, k with 2 ≤ j ≤ k, there exists a graphT j
k with cop numberj such that the cop number of

(T j
k)op is k.

Proof. Informally, T j
k is a binary branching tree of heightk such that every vertex has edges to all its descendants,

and edges back to itsj − 1 nearest ancestors.1 More precisely,T j
k is the directed graph defined as follows:

• V (T j
k) = {w ∈ {0, 1}∗ : |w| < k}, and

1To aid informal descriptions we view this graph as a directedtree with additional structure. Thus we use descendants, ancestors, root and leaves
to refer to various vertices in the graph as they would be in the underlying directed tree.

CHAPTER 6. DAG-WIDTH 79

• (w1, w2) ∈ E(T j
k) if, and only if, eitherw1 ≺ w2 or w2 ≺ w1 and|w1| − |w2| < j, where≺ is the prefix

ordering on{0, 1}∗.

We now show that the cop number ofT j
k is j and the cop number of(T j

k)op is k. First we see thatj cops have a winning
strategy onT j

k by initially playing on the root then following the robber down, in a leap-frogging manner, whichever
subtree he plays in. More precisely, we inductively define the strategyσ as follows. Initially,σ(∅, V (G)) = {ε}. We
observe that from the definition of the edge relation, if the robber chooses to respond by moving to a vertexw with
first symbol0, then he is unable to reach any vertexw′ with first symbol1. Similarly if the robber chooses to move
to a vertex with first symbol1, he cannot reach any vertex in the0-subtree. Now suppose the cops are onX and the
robber is onwr andX andwr satisfy the following:

There existswmin andwmax such thatX = {w : wmin � w ≺ wmax} andReachT j

k
\X(wr) = {w :

wmax � w}. (∗)

Thenwmax is the next vertex to be occupied by a cop. If|X | < j, thenσ(X, wr) = X ∪ {wmax}, otherwise if
|X | = j, σ(X, wr) = X \ {wmin}∪{wmax}. Letw′

r be the next location of the robber after the cops move fromX to
X ′ = σ(X, wr). We show that the resulting position(X ′, w′

r) satisfies (∗). Clearly from the definition ofσ, we have
eitherX ′ = {w : wmin � w � wmax} or X ′ = {w : wmin ≺ w � wmax}, so the first part of (∗) is true. Next we
show thatw′

r ∈ ReachT j

k
\X(X)wr \ {wmax}. Clearly, ifX ′ ⊇ X this is true, so we need only consider the case when

|X | = j. But this implies|wmax|−|wmin| = j, thus there are no edges fromwmax to wmin. Aswmin is the only vertex
vacated and every vertex reachable fromwr is reachable fromwmax, the set of vertices reachable by the robber must
decrease. Now letw′ be the shortest word which is a prefix ofw′

r and for whichwmax is a proper prefix. It follows
from the definition of the edge relation that every vertex which the robber can reach must havew′ as a prefix. Thus
ReachT j

k
\X(X ′)w′

r = {w : w′ � w}. Clearly the strategyσ is a strategy forj cops, we now show that it is winning.
We observe that for every search consistent withσ, the sequence ofwmax is a sequence of words of increasing length.
So afterk moves there will be no vertex available for the robber to moveto. Thusσ is a winning strategy forj cops.
A winning strategy fork cops on(T j

k)op can be similarly defined, replacingj with k in the above definition. Note that
when|X | = k there is no vertex available for the robber, so the cops neverhave to make a “leap-frog” move.

We now show that the robber can defeatj − 1 cops onT j
k andk − 1 cops on(T j

k)op. The strategy for the robber
involves choosing some leaf. Whenever a cop moves to that leaf, a simple counting argument shows that there must
be at least one unoccupied ancestor which the robber can reach with at least one clear path to a leaf below. The robber
then plays to that ancestor and along that path to the leaf. More precisely, letL = {w ∈ V (T j

k) : |w| = k − 1}. For
eachX, X ′ ∈ [V (G)]<j andwr ∈ V (G), let ρ(X, X ′, wr) = w′ for somew′ ∈ (L ∩ ReachT j

k
\X((X ∩X ′))r) \X ′.

Clearly if ρ is well defined, it describes a winning strategy for the robber againstj − 1 cops. We now show that there
always exists some suchw′. Since|L| = 2k−1 > j − 1, the robber can always choose an element ofL initially, so
we may assume thatwr ∈ L. If wr /∈ X ′ then choosingw′ = wr suffices, so supposewr ∈ X ′. Sincewr /∈ X
and |X |, |X ′| < j, it follows that |X ∩ X ′| < j − 1. Thus there existsw′′ ≺ wr such that|wr| − |w′′| < j and
{w : w′′ � w andw′

r 6� w} ∩ X ′ = ∅ wherew′
r is the shortest word which is a prefix ofwr and for whichw′′ is a

proper prefix. Thus for everyw ∈ L such thatw′′ is a prefix ofw, there is a path fromwr to w in T j
k \ (X ∩ X ′).

Thus choosingw′ ∈ L such thatw′′ is a prefix ofw gives a well-defined strategy. A winning strategy for the robber
againstk − 1 cops on(T j

k)op is defined similarly, replacingj with k in the above definition. ut

6.1.1 Monotonicity

For the remainder of this chapter, we are primarily concerned with monotone strategies. We recall from Definition 5.8
the definitions of fugitive-monotone (robber-monotone) and searcher-monotone (cop-monotone) searches and strate-
gies. We observe that, as with the cops and visible robber game on undirected graphs, the cops and visible robber
game for directed graphs permits idling and is vacating sensitive. Thus from Lemma 5.11, we have:

Lemma 6.8. A cop-monotone winning strategy fork cops is robber-monotone.

CHAPTER 6. DAG-WIDTH 80

We saw in Theorem 5.37 that for the cops and visible robber game on undirected graphs, the converse to this holds:
if k cops have a robber-monotone winning strategy thenk cops have a cop-monotone winning strategy. In [JRST01] it
was shown that this is not the case for the strongly connectedvisible robber game. The next result shows that as with
the game on undirected graphs, for the game we are considering, the two notions of monotonicity coincide.

Lemma 6.9. If k cops have a cop-monotone or robber-monotone winning strategy, then they have a winning strategy
that is both cop-monotone and robber-monotone.

Proof. From Lemma 6.8, it suffices to show that ifk cops have a robber-monotone winning strategy thenk cops have a
cop-monotonewinning strategy. Suppose the cops have a robber-monotonewinning strategy, and let(X0, r0)(X1, r1) · · ·
be a search consistent with that strategy. From this we construct a sequence which can be used to define a cop-
monotone strategy in the obvious way. SupposeXi 6⊆ Xi+1 and letv ∈ Xi \ Xi+1. As v ∈ Xi, the robber is
unable to reachv when the cops are onXi. As the strategy is robber-monotone, the robber is unable toreachv at any
further stage, in particular, he cannot reachv when the cops are onXi+1. Thus, no cop needs to revisitv in order to
prevent the robber from reachingv. Thus, we can removev from all Xj, j > i. Proceeding in this way results in a
sequence(X0, r0)(X

′
1, r1) · · · . The strategy which takes(X ′

i, ri) to X ′
i+1 is cop-monotone for this search. Repeating

this for all plays (that is, every choice for robber) resultsin a cop-monotone strategy. Hence, whenever the cops have
a robber-monotone winning strategy they also has a cop-monotone strategy. ut

With this lemma in mind we define amonotone winning strategyin the obvious way. Note that we have actually proved
a slightly stronger assertion:

Corollary 6.10. If k cops have a monotone winning strategy in the cops and visiblerobber game on a digraphG, then
k cops have a winning strategyσ such thatσ(X, r) ⊆ X ∪ ReachG\X(r) for all X ⊆ V (G) andr ∈ V (G) \X .

In Theorem 5.37, we also saw that in the visible robber game onundirected graphs, ifk cops have a winning
strategy thenk cops have a monotone winning strategy. An interesting question is whether this extends to the game
on directed graphs. Kreutzer and Ordyniak [KO07] have recently shown that this is not the case.

Theorem 6.11([KO07]). For anym ∈ N, there exists a digraph for which5m cops can capture a visible robber but
6m cops are required to do so with a monotone strategy.

Of course, this result does not preclude the possibility that, as with the strong visible robber game, the number
of cops required for a monotone capture is bounded by some function of the number of cops required for a winning
strategy which is not necessarily monotone. This gives us the following interesting open problem:

Open problem 6.12. Does there exist a functionf : ω → ω such that for all digraphsG, if k cops can capture a
visible robber onG thenf(k) cops can capture the robber with a monotone strategy?

6.2 DAG-decompositions and DAG-width

In this section, we present a decomposition of directed graphs that is somewhat similar in style to tree decompositions
of undirected graphs. This leads to the definition of DAG-width, which can be seen as a measure of how close a given
graph is to being acyclic. We show then that a graph has DAG-widthk if, and only if,k cops have a monotone winning
strategy in the cops and robber game played on that graph. We conclude with some algorithmic properties enjoyed by
DAG-width.

Definition 6.13 (Guarding). Let G be a directed graph. A setW ⊆ V (G) guardsa setV ⊆ V (G) if W ∩ V = ∅ and
whenever there is an edge(u, v) ∈ E(G) such thatu ∈ V andv 6∈ V , thenv ∈W .

Definition 6.14 (DAG-decomposition). Let G be a digraph. ADAG-decompositionof G is a pair(D,X) whereD is
a directed, acyclic graph andX = (Xd)d∈V (D) is a family of subsets ofV (G) such that

CHAPTER 6. DAG-WIDTH 81

(D1)
⋃

d∈V (D) Xd = V (G).

(D2) For all verticesd �D d′ �D d′′, Xd ∩Xd′′ ⊆ Xd′ .

(D3) For all edges(d, d′) ∈ E(D), Xd∩Xd′ guardsX≥d′ \Xd , whereX≥d′ :=
⋃

d′�Dd′′ Xd′′ . For any rootd, X≥d

is guarded by∅.

The width of a DAG-decomposition(D,X) is defined asmax{|Xd| : d ∈ V (D)}. TheDAG-widthof a graph is
defined as the minimal width of any of its DAG-decompositions.

The main result of this section is an equivalence between monotone strategies for the cop player and DAG-
decompositions.

Theorem 6.15.For any directed graphG, there is a DAG-decomposition ofG of widthk if, and only if,k cops have a
monotone winning strategy in the cops and visible robber game onG.

To prove this, we first need some simple observations about guarding.

Lemma 6.16. LetG be a directed graph, andW, X, Y, Z ⊆ V (G).

(i) X guards ReachG\X(Y).

(ii) If W guardsY , X guardsZ, then(W ∪X) \ (Y ∪ Z) guardsY ∪ Z.

(iii) If X guardsY , Z ⊇ X andZ ∩ Y = ∅, thenZ guardsY .

(iv) If X guardsY thenX ∪ Z guardsY \ Z

Proof. (i): ClearlyX∩ReachG\X(Y) = ∅. Now suppose(v, w) ∈ E(G), v ∈ ReachG\X(Y) andw /∈ ReachG\X(Y).
It follows from the definition ofReachG\X(Y) thatw ∈ X . ThereforeX guardsReachG\X(Y).

(ii) : Suppose(v, w) ∈ E(G), v ∈ Y ∪ Z andw /∈ Y ∪ Z. If v ∈ Y , thenw ∈ W , asW guardsY . Similarly, if
v ∈ Z thenw ∈ X asX guardsZ. Hencew ∈ (W ∪X) \ (Y ∪ Z), and(W ∪X) \ (Y ∪ Z) guardsY ∪ Z.

(iii) : Suppose(v, w) ∈ E(G), v ∈ Y andw /∈ Y . As X guardsY , w ∈ X . As Z ⊇ X , w ∈ Z. Therefore,Z
guardsY .

(iv): SinceX ∩Y = ∅ andZ ∩ (Y \Z) = ∅, it follows that(X ∪Z)∩ (Y \Z) = ∅. Now suppose(v, w) ∈ E(G),
v ∈ Y \Z andw /∈ Y \Z. Thus,w /∈ Y or w ∈ Z. For the first case,w ∈ X asX guardsY . Hencew ∈ X ∪Z. ut

We now turn to the proof of Theorem 6.15.

Proof of Theorem 6.15.Supposek cops have a monotone winning strategyσ in the cops and visible robber game on a
directed graphG. Asσ is monotone, from Corollary 6.10 it follows that we may assume that cops are only ever placed
on vertices that are reachable by the robber. That is,

σ(X, r) ⊆ X ∪ ReachG\X(r). (6.1)

We recall the definition of a strategy DAG,Dσ, from Definition 5.7. Since the nodes ofDσ are positions in the
cops and robber game, the functionσ is well defined for alld ∈ V (Dσ). We claim that(Dσ,X), with X defined by
Xd = σ(d) for all d ∈ V (Dσ), is a DAG-decomposition ofG of width≤ k. To support our claim, we first observe the
following simple facts. Ford = (X, r) ∈ V (Dσ),

ReachG\X(r) ⊆
⋃

d�Dσ d′

σ(d′) ⊆ X ∪ ReachG\X(r). (6.2)

CHAPTER 6. DAG-WIDTH 82

The first inclusion follows from the fact thatσ is a winning strategy for the cop player: at position(X, r) every
vertex reachable by the robber (ReachG\X(r)) will be occupied by a cop at some point in the future. The second
inclusion follows from repeated application of (6.1). Further, ford = (X, r) ∈ V (Dσ),

ReachG\X(r) = ReachG\(X∩σ(X,r))(r). (6.3)

As X ∩ σ(X, r) ⊆ X , ReachG\X(r) ⊆ ReachG\(X∩σ(X,r))(r). The reverse inclusion follows from the fact thatσ is a
robber-monotone strategy.

Equations (6.2) and (6.3) together imply ford = (X, r):

(⋃

d�Dσ d′

σ(d′)
)
\X = ReachG\(X∩σ(X,r))(r). (6.4)

We now show that(Dσ,X) is indeed a DAG-decomposition of width≤ k. For (D1), if there was av ∈ V (G) \⋃
d∈V (Dσ) Xd, then the robber could defeatσ by playing tov at the beginning and staying there indefinitely. Hence⋃
d∈V (D) Xd = V (G). (D2) follows immediately from the (cop-)monotonicity of the winning strategyσ. Towards

establishing (D3), let us first consider a rootd = (X, r) of Dσ. From the definition ofDσ, this root is unique, thus
X≥d = V (G) and is therefore guarded by∅. Now suppose(d, d′) ∈ E(Dσ). If d′ = (X ′, r′) thenXd = σ(d) = X ′.
So by (6.4),

X≥d′ \Xd =
(⋃

d′�Dσ d′′

σ(d′′)
)
\X ′ = ReachG\(X′∩σ(X′,r′))(r

′).

Therefore, from Lemma 6.16(i),Xd ∩ Xd′ = X ′ ∩ σ(X ′, r′) guardsX≥d′ \Xd. It follows that(Dσ,X) is a DAG-
decomposition. To see that it has width≤ k, note thatmax{|Xd| : d ∈ V (Dσ)} = max{|σ(d)| : d ∈ V (Dσ)} ≤ k.

Conversely, let(D,X) be a DAG-decomposition of widthk. A strategy fork cops can then be defined as:

(1) Let the robber choose a vertexv ∈ V (G). From (D1), there existsdv ∈ V (D) such thatv ∈ Xdv
. Let d be a root

of D which lies abovedv.

(2) Place cops onXd.

(3) From (D3) and Lemma 6.16(iii),Xd guardsX≥d \ Xd. Therefore, the robber can only move to vertices in
X≥d \Xd. Suppose the robber moves tov′ ∈ Xd′′ . Let d′ be a successor ofd which lies aboved′′.

(4) Remove cops onXd \Xd′ (leaving cops onXd ∩Xd′)

(5) AsXd ∩Xd′ guardsX≥d′ \Xd, the robber can only move to vertices inX≥d′ – that is, the robber must remain in
the sub-DAG rooted atd′.

(6) Return to step 2 withd′ asd.

AsD is a DAG, at some point the robber will not be able to move becauseX≥d \Xd is empty whend is a leaf. Hence,
this is a winning strategy fork cops. To show that it is monotone, observe that (D2) ensures that at no point does a cop
return to a vacated vertex. This concludes the proof of Theorem 6.15. ut

We observe that as a strategy DAG is the underlying DAG in the decomposition(D,X) constructed in this proof,
and a strategy DAG has a unique root, we have the following:

Corollary 6.17. If a digraphG has a DAG-decomposition of widthk, thenG has a DAG-decomposition(D,X) of
width≤ k such thatD has a unique root.

In the sequel we show that we can make further simplifying assumptions about the structure of DAG-decompositions.
The remainder of this section looks at some properties of DAG-decompositions motivated by similar results for

tree-width and tree decompositions. We first observe that the winning strategies for the cop player in Lemma 6.5

CHAPTER 6. DAG-WIDTH 83

and Proposition 6.7 are monotone. These results therefore imply that a graph has DAG-width1 if, and only if, it is
acyclic (indeed, the graph itself will suffice as a decomposition) and that the DAG-width of a graph may change by an
arbitrary amount if its edges are reversed. This last observation is particularly useful when searching for alternative
characterizations of DAG-width, such as those we introducein Chapter 8.

We further observe that, as with the game on undirected graphs, the cops and visible robber game enjoys the
properties of graph searching games introduced in Section 5.4. In particular this means that DAG-width decreases
when taking subgraphs, and suitably increases when taking lexicographic products.

Lemma 6.18. Let (D,X) be a DAG-decomposition of a digraphG, and letG′ be a subgraph ofG. (D,X|G′) where
X|G′ :=

(
Xd ∩ V (G′)

)
d∈V (D)

is a DAG-decomposition ofG′.

Proof. Clearly, (D1) and (D2) still hold for(D,X|G′). For (D3), we observe that, ifX guardsY in G, thenX ∩V (G′)
guardsY ∩V (G′) in G′. This is because, ifv ∈ Y ∩V (G′), w ∈ V (G′) \Y and(v, w) ∈ E(G′) ⊆ E(G), thenw ∈ X
(asX guardsY), hencew ∈ X ∩ V (G′). Then, (D3) follows immediately from (D3) for the original decomposition
(D,X). ut

Corollary 6.19. LetG andG′ be directed graphs such thatG′ is a subgraph ofG. Then DAG-width(G′) ≤ DAG-width(G).

Lemma 6.20. Let G be a directed graph andKn the complete graph onn vertices. DAG-width(G • Kn) = n ·
DAG-width(G).

Proof. From Theorem 5.64, it suffices to show that the cops and visible robber game is composition-expanding. We
show that it satisfies conditions (I)–(IV) of Lemma 5.65. Clearly as the cops are free to make any move, conditions
(I) and (II) are satisfied. For condition (III), suppose onG as the cops move fromX to X ′, the robber can move from
r to r′. It follows by the definitions ofReachand lexicographic product that if the cops move fromX × V (Kn) to
X ′× V (Kn) in G •Kn, the robber can move from(r, v) to (r′, w′) for all v, w ∈ V (Kn). Thus there is an edge in the
arena (of the game onG • Kn) from (X × V (Kn), X ′ × V (Kn), R× V (Kn)) to (X ′ × V (Kn), R′ × V (Kn)) where
R = ReachG\X(r) andR′ = ReachG\X′(r′). Finally, to show condition (IV), we observe that forX ⊆ V (G • Kn)
and(r, v) ∈ V (G • Kn), Reach(G•Kn)\X(r, v) consists of those vertices(r′, v′) /∈ X such thatr′ inReachG\Y (r)
whereY = {x ∈ V (G) : (x, w) ∈ X for all v ∈ V (Kn)}. Thus, if there is an edge in the arena (for the game onG)
from (Y, Y ′, S) to (Y ′, S′), then there is an edge in the arena (for the game onG • Kn) from (X, X ′, R) to (X ′, R′)
whereX , X ′, Y , Y ′, R, R′, S andS′ are as defined in condition (IV) of Lemma 5.65. ut

We also show that the DAG-width of graphs is closed under directed unions, which, as we discussed in Chapter 4,
is an important property of a reasonable decomposition of directed graphs.

Lemma 6.21. LetG be a directed union of the digraphsG1 andG2. Then

DAG-width(G) = max{DAG-width(G1), DAG-width(G2)}.

Proof. For DAG-decompositions(D1,X 1) and(D2,X 2) of G1 andG2 respectively, the DAGD obtained by adding
an edge from every leaf ofD1 to every root ofD2. together withX := (X1

d)d∈V (D1)∪̇(X2
d)d∈V (D2) forms a DAG-

decomposition ofG. Conversely, any DAG-decomposition(D,X) of G can be restricted toG1 andG2 yielding DAG-
decompositions for these graphs, according to Lemma 6.18. ut

We observe that it follows that the DAG-width of a directed graph is the maximum DAG-width of all its strongly
connected components.

For algorithmic purposes, it is often useful to have a normalform for decompositions. The following is similar to
one for tree decompositions as presented in [Bod97].

Definition 6.22. [Nice DAG-decompositions] A DAG-decomposition(D,X) is nice if

(N1) D has a unique root.

CHAPTER 6. DAG-WIDTH 84

Xd0

��

����
��
��
��
�

��4
44

44
44

44
44

4
Xd0

��

��4
44

44
4

Xdl

��

Xdr

��

��4
44

44
4

Xd1
Xd2

. . . Xdm

Xd1
Xd2

. . . Xdm

Figure 6.1: Splitting atd0

(N2) Everyd ∈ V (D) has at most two successors.

(N3) If d1, d2 are two successors ofd0, thenXd0
= Xd1

= Xd2
.

(N4) If d1 is the unique successor ofd0, then|Xd0
4 Xd1

| ≤ 1.

The final result we establish in this section is that every graph with DAG-widthk has a nice decomposition with
width k. For this, we transform a DAG-decomposition into one which is nice that has the same width. To do this we
formalize the transformations we use, and show that executing them (possibly subject to some constraints) does not
violate any of the properties of a DAG-decomposition. Firstwe require the following useful observation.

Lemma 6.23. Let (D,X) be a DAG-decomposition. For all(d, d′) ∈ E(D),

X≥d′ \Xd = X≥d′ \ (Xd ∩Xd′).

Proof. As Xd ∩ Xd′ ⊆ Xd, X≥d′ \ Xd ⊆ X≥d′ \ (Xd ∩ Xd′). Conversely, supposev ∈ X≥d′ , that is,v ∈ Xd′′

for somed′′ �D d′. We will show thatv ∈ Xd ∩ Xd′ , or v /∈ Xd. Supposev ∈ Xd. Then asd �D d′ �D d′′,
v ∈ Xd ∩Xd′′ ⊆ Xd′ . Hencev ∈ Xd ∩Xd′ . Thus,X≥d′ \Xd ⊇ X≥d′ \ (Xd ∩Xd′). ut

Definition 6.24 (Splitting). Let (D,X) be a DAG-decomposition, and supposed0 ∈ V (D) hasm > 1 successors
d1, d2, . . . , dm. The decomposition(D′,X ′) obtained from(D,X) by splittingd0 is defined as follows:

(i) V (D′) = V (D)∪̇{dl, dr},

(ii) E(D′) =
(
E(D) \ {(d0, di) : 1 ≤ i ≤ m}

)

∪ {(d0, dl), (d0, dr), (dl, d1)}
∪ {(dr, di) : 2 ≤ i ≤ m}, and

(iii) X ′
d = Xd, for all d ∈ V (D), andX ′

dl
= X ′

dr
= Xd0

.

Figure 6.1 gives a visual representation of this transformation.

Lemma 6.25. Let (D,X) be a DAG-decomposition of a digraphG of widthk, and supposed0 ∈ V (D) hasm > 1
successorsd1, d2, . . . , dm. Then(D′,X ′) obtained from(D,X) by splitting d0 is a DAG-decomposition ofG of
widthk.

Proof. First we observe that, asd0 is the unique predecessor ofdl anddr, for anyd ∈ V (D) such thatd ≺D′ dl or
d ≺D′ dr, it must be the case thatd �D d0. Thus, for alld ∈ V (D),

X ′
≥d =

⋃

d�D′d′

X ′
d′ =

⋃

d�Dd′

Xd′ = X≥d,

CHAPTER 6. DAG-WIDTH 85

since ifXdl
or Xdr

is included in the union on the left, then so isXd0
, and so neitherXdl

nor Xdr
contribute to the

overall union.
Also, for all i such that1 ≤ i ≤ m, it is the case thatXd0

∩Xdi
guardsX≥di

\Xd0
. Therefore, by Lemma 6.16(iii),

Xd0
guardsX≥di

\Xd0
. (6.5)

It is easily seen that the edges added do not create any cycles, so D′ is a DAG. Further,
⋃

d∈V (D′) X ′
d =⋃

d∈V (D) Xd = V (G). To prove the connectivity condition (D2), letd, d′, d′′ ∈ V (D′), be such thatd �D′ d′ �D′ d′′.
If d′ = d or d′′ then triviallyX ′

d ∩X ′
d′′ ⊆ X ′

d′, so supposed ≺D′ d′ ≺D′ d′′. We consider four cases:

• If none of d, d′, d′′ is dl or dr, thend, d′, d′′ ∈ D, and (D2) follows from the fact that(D,X) is a DAG-
decomposition.

• If d is dl or dr then since all descendants ofd are inV (D), andd0 ∈ V (D) is the unique predecessor ofd, we
obtain the following chain of nodes inD: d0 ≺D d′ ≺D d′′. SoX ′

d ∩X ′
d′′ = Xd0

∩Xd′′ ⊆ Xd′ = X ′
d′ .

• If d′′ is dl or dr then from the comments at the beginning of the proof,d ≺D d′ �D d0. Thus,X ′
d ∩ X ′

d′′ =
Xd ∩Xd0

⊆ Xd′ = X ′
d′.

• Finally, if d′ is dl or dr then by the same reasoning as the previous two cases,d �D d0 ≺D d′′. SoX ′
d ∩X ′

d′′ =
Xd ∩Xd′′ ⊆ Xd0

= X ′
d′ .

Thus, in all cases,X ′
d ∩X ′

d′′ ⊆ X ′
d′ , showing that (D2) holds. To see that condition (D3) also holds, observe first that

every root ofD′ is a root ofD too. So∅ guardsX≥d = X ′
≥d. Now let(d, d′) ∈ E(D′). We consider three cases:

• d′ ∈ V (D) (i.e., d′ 6= dl, dr). If d = dl or dr, thenX ′
d = Xd0

. Otherwise(d, d′) ∈ E(D). In both cases,
X ′

d ∩X ′
d′ guardsX ′

≥d′ \X ′
d.

• d′ = dl (sod = d0). HereX ′
≥d′ = Xd0

∪X≥d1
, soX ′

≥d′ \X ′
d = X≥d1

\Xd0
. Hence, by (6.5),Xd0

= X ′
d∩X ′

d′

guardsX≥d1
\Xd0

= X ′
≥d′ \X ′

d.

• d′ = dr (sod = d0). HereX ′
≥d′ = Xd0

∪⋃
2≤i≤m X≥di

, and soX ′
≥d′ \X ′

d = (
⋃

X≥di
) \Xd0

=
⋃

(X≥di
\

Xd0
), where the unions are taken overi for 2 ≤ i ≤ m. From Lemma 6.16(ii) and (6.5),X ′

d ∩ X ′
d′ = Xd0

guards
⋃

2≤i≤m(X≥di
\Xd0

) = X ′
≥d′ \X ′

d.

As X ′
dl

= X ′
dr

= Xd0
, we have

max{|X ′
d| : d ∈ V (D′)} = max{|Xd| : d ∈ V (D)} = k.

Consequently, the decomposition(D′,X ′) has widthk. ut

By thedecomposition resulting from splittingd m − 1 timeswe mean the decomposition resulting from splitting
d, and then recursively splittingdr until dr has only one successor. Acomplete splitof (D,X) is the decomposition
(D′,X ′) obtained by recursively splitting every node with more thantwo successors.

Definition 6.26 (Adding). Let (D,X) be a DAG-decomposition of a digraphG. If (d0, d1) ∈ E(D) andX ⊆ V (G)
thedecomposition resulting from addingX to (d0, d1) is the pair(D′,X ′) with

(i) V (D′) = V (D)∪̇{dX}

(ii) E(D′) = (E(D) \ {(d0, d1)}) ∪ {(d0, dX), (dX , d1)}

(iii) X ′
dX

= X , and for alld ∈ V (D), X ′
d = Xd.

See Figure 6.2 for a visual interpretation.

CHAPTER 6. DAG-WIDTH 86

Xd0

��

Xd0

��

+ X X

��

Xd1
Xd1

Figure 6.2: AddingX to (d0, d1)

Lemma 6.27. Let (D,X) be a DAG-decomposition of a digraphG of widthk and let(D′,X ′) be the decomposition
resulting from addingX ⊆ V (G) to (d0, d1). If either

(i) Xd0
∩Xd1

⊆ X ⊆ Xd0
, or

(ii) Xd0
∩Xd1

⊆ X ⊆ Xd1
,

then(D′,X ′) is a DAG-decomposition ofG of widthk.

Proof. We observe that for alld ∈ V (D), if d ≺D′ dX , then, asd0 ∈ V (D) is the unique predecessor ofdX , we have
d �D d0, and ifdX ≺D′ d, then asd1 ∈ V (D) is the unique successor ofdX , we haved1 �D d. This implies, for all
d ∈ V (D)

X ′
≥d =

⋃

d�D′d′

X ′
d′ =

⋃

d�Dd′

Xd′ = X≥d,

since if X ′
dX

is included in the union on the left, then bothX ′
d0

andX ′
d1

are, and so in either case of the lemma
X ′

dX
= X does not contribute to the overall union.

Further,Xd0
∩Xd1

guardsX≥d1
\Xd0

= X≥d1
\ (Xd0

∩Xd1
) from Lemma 6.23.

Clearly,D′ is a DAG. We now show that(D′,X ′) satisfies the properties (D1) to (D3). It is easily seen that⋃
d∈V (D′) X ′

d = X ∪⋃
d∈V (D) Xd = V (G). This shows (D1). Towards establishing condition (D2), supposed �D′

d′ �D′ d′′. If d′ = d or d′ = d′′ then trivially X ′
d ∩ X ′

d′′ ⊆ X ′
d′ , so supposed ≺D′ d′ ≺D′ d′′. We consider four

cases:

• If none of d, d′, d′′ is dX thend, d′, andd′′ are all inV (D), so (D2) follows from the fact that(D,X) is a
DAG-decomposition.

• Supposed = dX . From the observations made at the beginning of the proof, weget the following chain of
nodes inD: d0 ≺D d1 �D d′ ≺D d′′. So in case(i) of the lemma, we haveX ⊆ Xd0

. SoX ′
d ∩ X ′

d′′ =
X ∩Xd′′ ⊆ Xd0

∩Xd′′ ⊆ Xd′ = X ′
d′ , by condition (D2) of(D,X). Otherwise, ifX ⊆ Xd1

, thenX ′
d∩X ′

d′′ =
X ∩Xd′′ ⊆ Xd1

∩Xd′′ ⊆ Xd′ = X ′
d′ .

• The other cases are similar. Ifd′′ = dX then we obtaind ≺D d′ �D d0 ≺D d1. So if X ⊆ Xd0
, then

X ′
d ∩ X ′

d′′ = Xd ∩ X ⊆ Xd ∩ Xd0
⊆ Xd′ = X ′

d′ . If X ⊆ Xd1
, thenX ′

d ∩X ′
d′′ = Xd ∩X ⊆ Xd ∩Xd1

⊆
Xd′ = X ′

d′ .

• Finally, assumed′ = dX . Thend �D d0 ≺D d1 �D d′′. HenceXd ∩Xd′′ ⊆ Xd0
andXd ∩Xd′′ ⊆ Xd1

. Thus,
X ′

d ∩X ′
d′′ = Xd ∩Xd′′ ⊆ Xd0

∩Xd1
⊆ X = X ′

d′ .

Finally, towards (D3), ifd is a root ofD′, thend is a root ofD. Hence∅ guardsX≥d = X≥d′ . Now let(d, d′) ∈ E(D′).
We consider three cases:

• dX 6∈ {d, d′}, i.e.,(d, d′) ∈ E(D). In this case, (D3) follows from the fact that(D,X) is a DAG-decomposition.

CHAPTER 6. DAG-WIDTH 87

• Now supposed = dX (sod′ = d1). If Xd0
∩Xd1

⊆ X ⊆ Xd0
, so we are in case(i) of the lemma, then

X≥d1
\ (Xd0

∩Xd1
) ⊇ X≥d1

\X ⊇ X≥d1
\Xd0

.

Further, by Lemma 6.23,X≥d1
\ (Xd0

∩Xd1
) = X≥d1

\Xd0
. ThereforeX≥d1

\X = X≥d1
\Xd0

. As (D,X)
is a DAG-decomposition,Xd0

∩ Xd1
guardsX≥d1

\ Xd0
, and asXd0

∩ Xd1
⊆ X ∩ Xd1

, Lemma 6.16(iii)
implies thatX ′

d ∩X ′
d1

= X ∩Xd1
guardsX≥d1

\Xd0
= X ′

≥d1
\X ′

d.

Otherwise we are in case(ii) and we haveXd0
∩ Xd1

⊆ X ⊆ Xd1
. Let Z = X \ (Xd0

∩ Xd1
). We know

(Xd0
∩Xd1

) guardsX≥d1
\ (Xd0

∩Xd1
), due to Lemma 6.23. Hence, by Lemma 6.16(iv),X ′

d ∩X ′
d1

= X =
(Xd0

∩Xd1
) ∪ Z guards

(X≥d1
\ (Xd0

∩Xd1
)) \ Z = X≥d1

\ ((Xd0
∩Xd1

) ∪ Z)

= X≥d1
\X = X ′

≥d1
\X ′

d′ .

• Finally, supposed′ = dX (so d = d0). Here we claimX ′
≥dX

\ X ′
d0

= X≥d1
\ Xd0

. If X ⊆ Xd0
, then

X ′
≥dX
\ X ′

d0
= (X ∪ X≥d1

) \ Xd0
= (X \ Xd0

) ∪ (X≥d1
\ Xd0

) = X≥d1
\Xd0

. If X ⊆ Xd1
, then since

dX �D′ d1, X ′
≥dX

= X ′
≥d1

= X≥d1
. Now X ⊇ Xd0

∩ Xd1
, so by Lemma 6.16(iii),X ′

d′ = X guards
X≥d1

\Xd0
= X ′

≥dX
\X ′

d0
.

Note that sinceX ⊆ Xd0
or Xd1

, max{|X ′
d| : d ∈ V (D′)} = max{|Xd| : d ∈ V (D)} = k. So(D′, (X ′

d)d∈V (D′))
has widthk. ut

If X1, X2, . . . , Xn is a sequence of subsets ofV (G), thedecomposition resulting from addingX1, X2, . . . , Xn to
(d0, d1) is the decomposition resulting from addingX1 to (d0, d1) and then recursively addingXi+1 to (dXi

, d1).
We can now describe how to transform a DAG-decomposition into one which is nice and has the same width.

Theorem 6.28. If G has a DAG-decomposition of widthk, thenG has a nice DAG-decomposition of widthk.

Proof. Let (D,X) be a DAG-decomposition of widthk. From Corollary 6.17, we may assume thatD has a unique
root. We carry out each of the following steps.

1. We apply a complete split on(D,X) to obtain a DAG-decomposition such that every node has at most two
successors, and ifd has two successorsd1 andd2, thenXd = Xd1

= Xd2
. This establishes (N2) and (N3).

2. To satisfy (N4), we require two stages. First, for each(d0, d1) ∈ E(D) with Xd0
6= Xd1

, we addXd0
∩Xd1

to
(d0, d1) to obtain a DAG-decomposition such that for every(d, d′) ∈ E(D′), Xd is either a subset or a superset
of Xd′ .

3. Secondly, for each(d, d′) ∈ E(D) with |Xd| − |Xd′ | = m > 1 (or |Xd′ | − |Xd| = m > 1), let X0 =
Xd, X1, . . . , Xm = Xd′ be a strictly decreasing (increasing) sequence of subsets.Such a sequence exists
because at the previous step we finished with a DAG-decomposition such thatXd ⊆ Xd′ or Xd ⊇ Xd′ . Add
X1, X2, . . . , Xm−1 to (d, d′). At this point we have a decomposition which satisfies (N1) to(N4), and is
therefore nice.

Finally, from Lemmas 6.25 and 6.27, at each step we have a DAG-decomposition of widthk. ut

6.3 Algorithmic aspects of DAG-width

We now consider algorithmic applications of DAG-width as well as the complexity of deciding the DAG-width of a
graph and computing a DAG-decomposition.

CHAPTER 6. DAG-WIDTH 88

6.3.1 Computing DAG-width and decompositions

Because deciding if the tree-width of a graph is at most a given integer is NP-complete, it is no surprise that deciding
if the DAG-width of a graph is at most a given integer is intractable. Indeed, the following is a direct consequence of
the NP-completeness of the TREE-WIDTH decision problem and Proposition 6.36.

Theorem 6.29. Given a digraphG and a natural numberk, deciding if the DAG-width ofG is at mostk is NP-hard.

Despite the similarity to tree-width, it is currently unknown whether deciding if the DAG-width of a graph is
bounded by a given value is in NP. However, we strongly believe that this is the case, giving us the following:

Conjecture 6.30. Given a digraphG and a natural numberk, deciding if the DAG-width ofG is at mostk is NP-
complete.

However, for any fixedk, it is possible, in polynomial time, to decide if a graph has DAG-width at mostk and to
compute a DAG-decomposition of this width if it has. This follows in a similar manner to Proposition 5.71, so for the
proof of the next result we refer the reader to Section 5.5.

Theorem 6.31.LetG be a directed graph and letk < ω. Deciding ifk cops have a monotone winning strategy in the
cops and visible robber game onG, and computing such a strategy if it exists can be executed intimeO(|V (G)|2k+4).

Note also that the translation of strategies into decompositions is computationally easy, that is, it can be done in
polynomial time. Since winning strategies can be computed in polynomial time in the size of the graph, we get the
following.

Proposition 6.32. Given a graphG of DAG-widthk, a DAG-decomposition ofG of widthk can be computed in time
O(|G|O(k)).

6.3.2 Algorithms on graphs of bounded DAG-width

We can use DAG-decompositions, particularly nice DAG-decompositions, to define dynamic programming algorithms
similar to those used with tree decompositions. Working bottom-up from the leaves of the underlying DAGD, for each
noded ∈ V (D) we compute a data set containing information for the subgraph induced byX≥d :=

⋃
d′�Dd Xd. The

general pattern is described in Algorithm 6.1. We observe that if the starting decomposition is nice, then thecombine
andexpandsteps become significantly simplified. Indeed, thecombinestep can be seen as applying to inner nodes
with two successors and theupdatesteps apply to inner nodes with only one successor.

Algorithm 6.1 Dynamic programming using a DAG-decomposition

Given a DAG-decomposition(D,X):

Leaves:Compute the data set forXd for all leavesd.

Combine: If d ∈ V (D) is an inner node with successorsd1, . . . , dm, combine the data sets computed for
X≥d1

, . . . , X≥dm
to a data set for the union

⋃m
i=1 X≥di

.

Expand: Finally, expand the data set to includeXd.

As the directed tree-width of a graph is bounded above by a constant factor of its DAG-width (see Proposition 6.37),
any graph property that can be decided in polynomial time on classes of graphs of bounded directed tree-width can be
decided on classes of graphs of bounded DAG-width also. Thisimplies that properties such as Hamiltonicity that are
known to be polynomial time on graphs of bounded directed tree-width can be solved efficiently on graphs of bounded
DAG-width too. We give a nontrivial application of DAG-width in Section 6.3.3 where we show that parity games can
be solved efficiently on arena of bounded DAG-width, something which is not known for directed tree-width.

CHAPTER 6. DAG-WIDTH 89

We observe that the arena used in the proof of Theorem 2.64 hasDAG-width 2: place one cop on vertexqϕ and the
remaining graph is acyclic and can be searched monotonely with one cop. This implies that, unlike parity games, win-
set games (and, consequently, Muller games, Zielonka DAG games, Emerson-Lei games and circuit games) remain
hard on arenas of bounded DAG-width.

Proposition 6.33. Deciding win-set games on arenas of DAG-width2 is PSPACE-hard.

As for the relation to undirected tree-width, it is clear that not all graph properties that can be decided in polynomial
time on graphs of bounded tree-width can also be decided efficiently on graphs of bounded DAG-width. For instance,
the 3-colourability problem is known to be decidable in polynomial time on graphs of bounded tree-width. However,
the problem does not depend on the direction of edges. For anygiven (undirected) graph, we can simply direct the
edges in such a way that it becomes acyclic. Thus, arbitrary instances are polynomial-time reducible to instances of
DAG-width 1. As 3-colourability over arbitrary graphs is NP-hard, it follows that the problem cannot be solved in
polynomial time on graphs of bounded DAG-width, unless PTIME = NP.

6.3.3 Parity Games on Graphs of Bounded DAG-Width

Using the algorithm scheme of Algorithm 6.1, we now outline adynamic programming algorithm for solving parity
games. The advantage of such an algorithm is that on any classof arenas of bounded DAG-width it runs in polynomial
time, giving us a large class of graphs for which there existsa tractable algorithm for solving parity games. Full details
of the algorithm can be found in [BDHK06].

Given an arenaA, a DAG-decomposition ofA is a DAG-decomposition of the underlying directed graph(V (A), E(A)).

Theorem 6.34.For anyk, given a parity game(A, χ) where the DAG-width ofA is at mostk, determining if Player 0
has a winning strategy can be decided in polynomial time.

Let us fix a parity game(A, χ) whereχ : V (A) → P, and letn = |V (A)|. We assume that every vertex inA
has out-degree at most2. It is easy to see that the arena resulting from the transformation described in Theorem 2.59,
replacing vertices that have out-degree more than2 with binary branching trees, requires at most one more cop to
capture a visible robber. Thus such a transformation results in an arena with DAG-width at mostk + 1. Let (D,X)
be a DAG-decomposition ofA of width k which we assume is nice. For technical reasons, we also assume that for
the rootd of D, Xd = ∅. From Proposition 6.32 we can compute such a decomposition in polynomial time. The
idea is that we utilise the restrictions imposed by a DAG-decomposition to bound the number of strategies we need to
consider. Although memoryless strategies are sufficient for parity games, we do not assume the strategies we consider
are memoryless.

ConsiderU ⊆ V (A) and a setW that guardsU . Fix a pair of strategiesσ andτ . For anyv ∈ U , there is exactly
one playπ = v0v1 · · · that is consistent with Player 0 playingσ and Player 1 playingτ . Let π′ be the maximal prefix
of π that is contained inU . Theoutcomeof the pair of strategies(σ, τ) (givenU andv) is defined as follows.

outσ,τ (U, v) :=

win0 if π′ = π andπ is winning for Even;

win1 if π′ = π andπ is winning for Odd;

(vi+1, p) if π′ = v0 · · · vi andp = max{χ(vj) : j ≤ i + 1}.

That is to say that, if the play consistent with Player 0 playing σ and Player 1 playingτ leads to a cycle contained
entirely within U , then the outcome simply records which player wins the game.However, if the winner is not
determined entirely withinU , the outcome records the vertexw in W in which the play emerges fromU and the
largest priority that is seen in the playπ starting inv and ending inw, including the end points.

By construction, if outσ,τ (U, v) = (w, p) thenw ∈ W . More generally, for any setW ⊆ V , define the set of
potential outcomes inW , written pot-out(W), to be the set{win0, win1} ∪ {(w, p) : w ∈W andp ∈ P}.

We recall from Chapter 3, the definition of thereward orderv. We now define a partial orderE on pot-out(W)
which orders potential outcomes according to how good they are for Player 1. It is the least partial order satisfying the
following conditions:

CHAPTER 6. DAG-WIDTH 90

(i) win1 E o for all outcomeso;
(ii) oE win0 for all outcomeso;

(iii) (w, p) E (w, p′) if p v p′ for all w ∈W .

In particular,(w, p) and(w′, p′) are incomparable ifw 6= w′. The idea is that ifτ andτ ′ are strategies such that
outσ,τ (U, v)E outσ,τ ′(U, v) then Player 1 is better off playing strategyτ rather thanτ ′ in response to Player 0 playing
according toσ.

A single outcome is the result of fixing the strategies playedby both players in the subgame induced by a set of
verticesU . If we fix the strategy of Player 0 to beσ but consider all possible strategies that Player 1 may play,we can
order these strategies according to their outcome. If one strategy achieves outcomeo and anothero′ with oE o′, there
is no reason for Player 1 to consider the latter strategy. Thus, we define resultσ(U, v) to be the set of outcomes that are
achieved by the best strategies that Player 1 may follow, in response to Player 0 playing according toσ. More formally,
resultσ(U, v) is the set ofE-minimal elements in the set{o : o = outσ,τ (U, v) for someτ}. Thus, resultσ(U, v) is an
anti-chain in the partial order(pot-out(W),E), whereW is a set of guards forU . Finally, we write RESULT(U, v) for
the set{resultσ(U, v) : σ is a strategy for Player 0}.

The data structure which we wish to compute is defined as follows. For anyd ∈ V (D), let Vd = X≥d \Xd. Let

FRONTIER(d) = {(v, r) : v ∈ Vd andr ∈ RESULT(Vd, v)}.

We show how to compute in polynomial time FRONTIER(d) for all d ∈ V (D). It follows from the definitions that if
win0 ∈ RESULT(V (A), v), then Player 0 has a winning strategy fromv. Thus, asX≥r = V (A) whenr is the root of
D, it follows thatwin0 ∈ RESULT(X≥r, vI(A)) if, and only if, Player 0 wins the game.

We observe that SinceX≥d \ Xd is guarded byXd, |Xd| ≤ k and |Vd| ≤ n, the number of distinct values of
resultσ(Vd, v) asσ ranges over all possible strategies is at most(n + 1)k + 2. This bound on the number of possible
values of resultσ(Vd, v) guarantees that|FRONTIER(d)| ≤ n

(
(n + 1)k + 2

)
.

We now outline how we compute FRONTIER(d) for each stage of the dynamic programming scheme presented
earlier.

Leaves: If d ∈ V (D) is a leaf, then as|Vd| ≤ k, it is clear that for allv ∈ Vd, RESULT(Vd, v), and hence
FRONTIER(d), can be computed in constant time.

Combine: If d ∈ V (D) is a node with two successorsd1 andd2, then asXd = Xd1
= Xd2

, it follows thatVd =
Vd1
∪ Vd2

. In this case, asXd guardsVd1
andVd2

there is no path from a vertex inVd1
to a vertex inVd2

except
throughXd. It is straightforward to show that FRONTIER(d) = FRONTIER(d1) ∪ FRONTIER(d2).

Expand: If d ∈ V (D) is a node with one successord′, we consider three cases.

Case 1:Xd = Xd′ . In this case, FRONTIER(d) = FRONTIER(d′).

Case 2:Xd \ Xd′ = {u}. Then, by (D2),u 6∈ Vd′ . Also, by the definition ofVd, u 6∈ Vd. We conclude that
Vd = Vd′ . Moreover, sinceXd′ guardsVd′ (by Lemma 6.16(iii)), there is no path from any element ofVd′ to u
except throughXd′ . Thus, if(w, p) ∈ resultσ(Vd, v) for somev andσ, it must be the case thatw ∈ Xd′ . Hence,
FRONTIER(d) = FRONTIER(d′).

Case 3:Xd′ \Xd = {u}. This is the critical case. HereVd = Vd′ ∪{u} and in order to construct FRONTIER(d)
we must determine the results of all plays beginning atu. If u has one successor, then this is trivial, so let us
assumeu has2 successorsu1 andu2. We observe that fori ∈ {1, 2} eitherui ∈ Xd or ui ∈ Vd′ . If ui ∈ Xd,
let Ri = {(ui, max{p, q})}, wherep = χ(u) andq = χ(ui). Otherwise letRi = RESULT(Vd′ , ui). ThusRi is
the set of outcomes obtained if the play proceeds fromu to ui.

Consider a play fromv ∈ Vd. If it does not reachu, then we can read, from RESULT(Vd′ , v) ∈ FRONTIER(d′),
the outcome of the play. Otherwise, if the play reachesu, it continues to eitheru1 or u2. If bothu1 andu2 are in
Vd′ then either the play returns tou, in which case we know the winner of the play, or the play reaches a vertex

CHAPTER 6. DAG-WIDTH 91

in Xd. This latter case also occurs if either ofu1 or u2 is in Xd. Thus to compute RESULT(Vd, v), and hence
FRONTIER(d), we proceed as follows.

For eachr ∈ RESULT(Vd′ , v), we do the following. If there is nop ∈ P such that(u, p) ∈ r add r to
RESULT(Vd, v). Otherwise, let(u, p) ∈ r for somep. We now consider two cases. Ifu ∈ V1(A) then
for eachr1 ∈ R1 and r2 ∈ R2, let R = r1 ∪ r2. Replace each(w, q) ∈ R with (w, max{p, q}). Let
R′ = R ∪ (r \ {(u, p)}). If (u, q) ∈ R′ for some oddq then Player 1 wins the play for the chosen strategies, so
replace(u, q) with win1. Similarly, replace(u, q) ∈ R′ for q even withwin0. Finally, we remove the elements
of R′ which are notE-minimal and addR′ to RESULT(Vd, v).

Now supposeu ∈ V0(A) for eachr′ ∈ R1 ∪ R2, if (u, q) ∈ r′ andmax p, q is odd, replacer′ with win1 and
add it to RESULT(Vd, v). Otherwise, letR =

(
r \ {(u, p)}

)
∪

{
(w, q) : (w, q′) ∈ r′ andq = max{p, q′}

}
. If R

contains a pair(u, q) thenq must be even and we replace this pair inR by win0. Finally, we add theE-minimal
elements ofR to RESULT(Vd, v).

In a similar way, we can also compute the set RESULT(Vd, u).

It is clear from the bounds on the size of FRONTIER(d) that at each stage, FRONTIER(d) can be computed in polyno-
mial time. Since the DAG-decomposition has size at mostO(n2k+4), it follows that this algorithm runs in polynomial
time. This completes the outline of the proof of Theorem 6.34.

6.4 Relation to other graph connectivity measures

As a structural measure for undirected graphs, the concept of tree-width is of unrivalled robustness. On the realm of
directed graphs, however, its heritage seems to be split among several different concepts. In the sequel we compare
DAG-width with several other connectivity measures for directed graphs, namely tree-width, directed tree-width, and
directed path-width. We show that, despite their similar nature, the measures are all significantly different.

6.4.1 Undirected tree-width

First we formalize the relationship between DAG-width and undirected tree-width alluded to in previous sections. We
recall from Chapter 4, the definition of tree-width. We also recall that the tree-width of a directed graphG is defined
as the tree-width of the undirected graph obtained fromG by forgetting the orientation of the edges.

Proposition 6.35.

(i) If a directed graphG has tree-widthk, it has DAG-width at mostk + 1.

(ii) There exists a family of directed graphs with arbitrarily large tree-width and DAG-width1.

Proof. (i): Suppose(T ,W) is a tree decomposition ofG of width k, withW = (Wt)t∈V (T). Choose somer ∈ V (T)
and orient the edges ofT away fromr. That is, if{s, t} ∈ E(T) ands is on the unique path fromr to t, then change
{s, t} to (s, t). SinceT is a tree, every edge has a unique orientation in this manner.LetD be the resulting DAG. For all
d ∈ V (D), setXd := Wt wheret is the node ofT corresponding tod. We claim that(D,X) with X = (Xd)d∈V (D)

is a DAG-decomposition ofG of width k + 1. The condition (D1) is trivial from (T1); (D2) follows from (T2).
The orientation ensuresD has one rootr, soX≥r = V (G). Condition (D3) is hence satisfied at the root. For the
other nodes, (D3) follows from Lemma 4.2. Let(d, d′) ∈ E(D) and supposev ∈ X≥d′ \ Xd. Suppose also that
(v, w) ∈ E(G) andw /∈ X≥d′ \Xd. As there is a path (of length1) from v to w, it follows from Lemma 4.2 that either
v ∈ Xd ∩Xd′ or w ∈ Xd ∩Xd′ . Sincev /∈ Xd, w ∈ Xd ∩Xd′ and (D3) holds.

(ii) : For any integern ∈ N, letKn be the (undirected) complete graph withn verticesv1, v2, . . . , vn. Orient the
edges ofKn such that(vi, vj) is an edge if and only ifi < j. The resulting directed graph is acyclic and therefore
has DAG-width 1, but the underlying undirected graph is a complete graph ofn vertices and therefore has tree-width
n− 1. ut

CHAPTER 6. DAG-WIDTH 92

We now observe that DAG-width is equivalent to tree-width onundirected graphs if we view an undirected graph
as a directed graph in the natural way. We recall from Section1.1.2, the directed graph

←→G obtained from an undirected
graphG by replacing each edge{u, v} with two anti-parallel edges(u, v) and(v, u).

Proposition 6.36. LetG be an undirected graph.G has tree-widthk − 1 if, and only if,
←→G has DAG-widthk.

Proof. It is easily seen that thek-cops and robber game for undirected graphs onG is equivalent to thek-cops and
robber game for directed graphs on

←→G . The result follows from the correspondence between the measures and
existence of monotone winning strategies. ut

6.4.2 Directed tree-width

In Chapter 4 we saw directed tree-width from [JRST01] and in Chapter 5 we discussed how it was characterized by
the strong visible robber game. We can use this game characterization to relate directed tree-width and DAG-width:
as the strong visible robber game is defined similarly to the cops and visible robber game with added restrictions
on movement of the robber, we see that a (robber-monotone) winning strategy fork cops in the cops and visible
robber game is a (robber-monotone) winning strategy fork cops in the strong visible robber game. Thus, we can use
Lemma 5.41 to obtain a bound on the directed tree-width. Towards a converse to this, we show that directed tree-
width and DAG-width are very different measures by exhibiting a class of graphs with small directed tree-width and
arbitrarily large DAG-width.

Proposition 6.37.

(i) If a directed graphG has DAG-widthk, it has directed tree-width at most3k + 1.

(ii) There exists a family of graphs with arbitrarily large DAG-width and directed tree-width1.

Proof. (i): If G has DAG-widthk thenk cops can win the cops and visible robber game onG. Thus,k cops can win
the strongly visible robber game onG, as the robber is more restricted in this game. From Lemma 5.41, it follows that
G has directed tree-width at most3k + 1.

(ii) : Consider the family{(T 2
k)op : k ≥ 2} of graphs defined in Proposition 6.7. Note that(T 2

k)op is a binary
branching tree of heightk with back-edges from every vertex to each of its ancestors. We have shown that(T 2

k)op

has cop numberk, and it is clear that the strategy described fork cops is monotone, so(T 2
k)op has DAG-widthk.

On the other hand, consider the directed treeT obtained from(T 2
k)op by removing back-edges. For eacht′ ∈ V (T),

let Bt′ := {t, s} wheret is the vertex inV ((T 2
k)op) corresponding tot′ ands is the predecessor oft (if t′ is not the

root of T), and letW(s′,t′) := {s} for all (s′, t′) ∈ E(T). Then, it is easy to see that(T , (B′
t)t′∈V (T), (We)e∈E(T))

is a directed tree decomposition of(T 2
k)op of width 1. For k ≥ 2, (T 2

k)op is not acyclic and therefore has directed
tree-width exactly1. ut

6.4.3 Directed path-width

We saw in Chapter 4 the definition ofpath-width. According to Barát [Bar05], Reed, Seymour and Thomas defined
a natural extension of path-width to directed around 1995, however [Tho02] seems to be the first occurrence of the
definition in the literature. The definition mirrors the definition of path-width, however the direction of the edges is
accounted for by fully utilising the linear ordering present in a sequence.

Definition 6.38(Directed path decompositions and directed path-width [Bar05]). LetG be a directed graph. Adirected
path decompositionof G is a sequenceX1, . . . , Xn of subsets ofV (G) such that:

(DP1)
⋃n

i=1 Xi = V (G),

(DP2) If i ≤ j ≤ k thenXi ∩Xk ⊆ Xj, and

CHAPTER 6. DAG-WIDTH 93

(DP3) For eache = (u, v) ∈ E(G), there existsi ≤ j such thatu ∈ Xi andv ∈ Xj.

Thewidth of a directed path decomposition,X1, . . . , Xn, is max{|Xi| : 1 ≤ i ≤ k} − 1. Thedirected path-widthof
G is the smallest width of any directed path decomposition ofG.

Just as tree-width can be characterized by the cops and visible robber game, we saw in Chapter 5 that path-width
can also be characterized by a cops and robber game: the cops and invisible robber game of Example 5.2.2. In [Bar05]
Barát considered the natural extension of this cops and robber game to directed graphs and showed that it the number
of cops required to capture an invisible robber lies within one of the directed path-width of the graph. He also observed
that the number of cops required to capture an invisible robber with a cop-monotone strategy is equal to one more than
the directed path-width of the graph.

It is therefore not surprising that directed path-width is intimately related to DAG-width. From the game character-
izations, it appears that directed path-width is to DAG-width as path-width is to tree-width. Indeed, as we see from the
definitions the two are closely connected. In fact, a DAG-decomposition can be seen as a generalization of a directed
path decomposition where we replace the linear order of the subsets ofV (G) with a partial order. This means that a
directed path decomposition is a DAG-decomposition where the underlying DAG is a directed path. It is therefore not
surprising that DAG-width bounds directed path-width below and there are families of graphs of bounded DAG-width
and unbounded directed path-width. Just as the class of binary trees is a class of graphs with bounded tree-width and
unbounded directed path-width, we now show that the class ofbidirected binary trees is a class of graphs with bounded
DAG-width and unbounded directed path-width.

Proposition 6.39.

(i) If a directed graphG has directed path-widthk, it has DAG-width at mostk + 1.

(ii) There exists a family of graphs with arbitrarily large directed path-width and DAG-width2.

Proof. (i): Let W1, . . . , Wn be a directed path decomposition ofG of width k. LetDn be the directed path withn
vertices. That isV (Dn) = {d1, . . . , dn} and(di, dj) ∈ E(Dn) if, and only if, j = i + 1. SetXdi

:= Wi for all
di ∈ V (Dn). We claim(Dn, (Xd)d∈V (Dn)) is a DAG-decomposition ofG of width k + 1. Condition (D1) follows
from (DP1) and (D2) follows from (DP2). To show (D3) for1 ≤ i < n, supposev ∈ X≥di+1

\Xdi
and(v, w) ∈ E(G).

From (DP3) there existi′ ≤ j′ such thatv ∈ Wi′ andw ∈ Wj′ . If i′ ≤ i, then by (DP2)v ∈ Xdi
, contradicting the

choice ofv. Thus,i < i′ ≤ j′ andw ∈ X≥di+1
. If w /∈ X≥di+1

\Xdi
thenw ∈ Xdi

and thereforew ∈ Xdi+1
by

(DP2). Thus,Xdi
∩Xdi+1

guardsX≥di+1
\Xdi

.

(ii) : Let Tk be the (undirected) binary tree of heightk ≥ 2. From Proposition 6.36,
←→Tk has DAG-width2. It

is easy to see that on
←→Tk , an invisible robber can defeatk − 1 cops, butk cops have a winning strategy. Therefore,

from [Bar05],
←→Tk must have directed path-width at leastk−2. Thus, the family{←→Tk : k ≥ 2} satisfies the proposition.

ut

Chapter 7

Digraph measures: Kelly-width

In Chapter 4 we introduced the concept of tree-width as a measure of graph complexity. We remarked on its usefulness
for algorithmic purposes, and discussed the importance of the problem of extending tree-width to directed graphs. In
this chapter, we continue investigating this extension by considering other characterizations of tree-width and their
natural generalizations to digraphs.

Part of the reason why tree-width is such a good measure of graph complexity is that many other measures arising
from different areas of graph theory can be shown to be equivalent to tree-width. For instance, we saw in Chapter 5
that the number of cops required to capture a visible robber in a graph-searching game is equivalent to the tree-width
of that graph. In this chapter we consider three other characterizations of tree-width: partialk-trees, elimination orders
and a graph searching game in which an invisible robber attempts to avoid capture by a number of cops, subject to the
restriction that he may only move if a cop is about to occupy his position. Partialk-trees are the historical forerunner of
tree-width and are therefore associated with graph structure theory [Ros70]. In fact, many of the original algorithmic
results for tree-width were formulated in terms of partialk-trees (see, for example [AP89]). Elimination orderings
are particularly useful in the analysis of (symmetric) matrix factorizations such as Cholesky decompositions [Liu90].
For example, elimination orders can be used to determine theparallel time required to factorize a symmetric matrix
with Gaussian elimination [BGHK95]. Finally, as we saw in Chapter 5 (and also [DKT97, FHT04]), graph searching
games have recently been used to explore and generate robustmeasures of graph complexity. We generalize all these to
directed graphs, resulting in partialk-DAGs, directed elimination orderings, and an inert robbergame on digraphs. We
show that all these generalizations are equivalent on digraphs and are also equivalent to the width-measure associated
to a new kind of decomposition we introduce. As the game is reminiscent of capturing hideout-based outlaws, we
propose the name Kelly-decompositions, after the infamousAustralian bushranger Ned Kelly. The fact that all these
notions are equivalent on digraphs as they are on undirectedgraphs suggests that this might be a robust measure of
complexity and connectivity of digraphs.

As with tree-decompositions and DAG-decompositions, Kelly-decompositions have a structure that is well suited
for designing dynamic programming algorithms that will runin polynomial time when the width of these decomposi-
tions is bounded. However, unlike DAG-decompositions (as far as is currently known), the size of Kelly-decompositions
can be made linear in the size of the graph it decomposes, significantly reducing the space complexity of such al-
gorithms. As with the previous chapter, we will introduce a general scheme for producing dynamic programming
algorithms that use the additional structural informationprovided by Kelly-decompositions. We illustrate its use by
producing algorithms for solving NP-complete problems such as Hamiltonian cycle, and computing the winner of a
parity game. Both these algorithms run in polynomial time ongraphs of bounded Kelly-width.

The chapter is organised as follows. In the first section we formally define inert robber games, elimination orders,
and partialk-trees andk-DAGs. We show that on digraphs the associated width measures are all equivalent. In
Section 7.2, we introduce Kelly-decompositions and Kelly-width and show that it also coincides with the measures
defined in Section 7.1. In Section 7.3, we present applications: Algorithms for Hamiltonian cycle, weighted disjoint
paths and parity games that all run in polynomial time on graphs of bounded Kelly-width, and detail a connection

94

CHAPTER 7. KELLY-WIDTH 95

between Kelly-decompositions and asymmetric matrix factorization. Finally, we compare Kelly-width to some of the
other directed graph measures we have already seen such directed tree-width and DAG-width, showing that it is a
unique measure of complexity. However, we also provide evidence to suggest that Kelly-width and DAG-width are
measuring the same fundamental property of digraphs.

7.1 Inert robber games, elimination orderings, and partialk-DAGs

7.1.1 Inert robber game

The cops and robber game we consider for this chapter is the cops and inert robber game from Example 5.2.5. This
game consists of an invisible robber who is able to run from his position along any path which does not pass through
a cop, however he may only move if a cop is about to land on his position. For convenience, we say that he isinert.
The natural generalization of this game to directed graphs is defined as followed.

Definition 7.1 (Cops and inert robber game). Let G be a directed graph. Thecops and inert robber game onG is the
cops and robber game defined by(Lc,Lr,A), where

• Lc = P(V (G)) andLr = P(V (G)) \ {∅},

• V0(A) consists of pairs(X, R) ∈ Lc × Lr such thatX ∩R = ∅,

• V1(A) consists of triples(X, X ′, R) ∈ V1(A) for all (X, R) ∈ V0(A) and allX ′ ∈ Lc,

• For all (X, R) ∈ V0(A) and allX ′ ∈ Lc there is an edge inE(A) from (X, R) to (X, X ′, R), and

• There is an edge inE(A) from (X, X ′, R) to (X ′, R′) if, and only if,

R′ =
(
R ∪ ReachG\(X∩X′)(X

′ ∩R)
)
\X ′.

We recall from Chapter 5 the definitions of asearch, monotonicityand astrategy. As with the game characterizing
tree-width, we are interested in the minimum number of cops required to capture the robber, so we also recall the
definition of astrategy fork copsfrom Definition 5.32. SinceR′ is uniquely defined fromX, R andX ′, the inert
robber game is in actuality a single player game. As we mentioned earlier, this is typical for games with an invisible
robber. One consequence is that given a strategy for the cops, there is a unique play consistent with that strategy.
We call this the playassociatedwith the strategy. In the remainder of this chapter we are primarily concerned with
robber-monotone strategies. However, we first show that theadded constraint on the movement of the invisible robber
does not affect the existence of a cop-monotone winning strategy fork cops.

Proposition 7.2. Let G be a digraph. Thenk cops have a cop-monotone winning strategy in the cops and invisible
robber game onG if, and only if,k cops have a cop-monotone winning strategy in the cops and inert robber game on
G.

Proof. Since the cops and inert robber game is more restrictive on the robber than the cops and invisible robber game,
a winning strategy in the latter is a winning strategy in the former. We now show how a cop-monotone winning
strategy,σ, for k cops in the cops and inert robber game is also a cop-monotone winning strategy fork cops in the
cops and invisible robber game. Let(X0, R0)(X1, R1) · · · (Xn, Rn) be the unique search associated withσ in the
cops and inert robber game. We define ak-cop cop-monotone strategy,σ′, for the cops and invisible robber game as
follows. DefineR′

i inductively as:R′
0 = V (G), and for1 ≤ i ≤ n, R′

i = ReachG\(Xi∩Xi−1)(R
′
i−1) \Xi. Then define

σ′(Xi, R
′
i) = Xi+1, soσ′ is essentially the strategy resulting from playingσ in the cops and invisible robber game.

By definition,(X0, R
′
0)(X1, R

′
1) · · · is the search associated withσ′, and it is clearly a cop-monotone strategy fork

cops. We now show that it is winning. In particular, we prove by induction oni thatR′
i = Ri for 0 ≤ i ≤ n.

CHAPTER 7. KELLY-WIDTH 96

SinceR0 = V (G) = R′
0 our claim is clearly true fori = 0. Now supposeRi = R′

i for somei ≥ 0. Since
Ri ∪ ReachG\(Xi∩Xi+1)(Ri ∩ Xi+1) ⊆ ReachG\(Xi∩Xi+1)(R

′
i), we haveRi+1 ⊆ R′

i+1. So supposeRi+1 6⊇ R′
i+1.

Then there existsw ∈ ReachG\(Xi∩Xi+1)(Ri)\Xi+1 such thatw /∈ Ri∪ReachG\(Xi∩Xi+1)(Ri∩Xi+1)\Xi+1. Thus
w /∈ Xi ∪ Ri. Note that sincew /∈ Ri, we havei ≥ 1. Furthermore, there existsv ∈ Ri \Xi+1 such that there is a
path fromv to w in G \ (Xi ∩Xi+1). Letv′ be the last element ofRi on this path, and letw′ /∈ Ri be the successor of
v′ on this path. Since the path is inG \ (Xi ∩Xi+1), w′ /∈ Xi ∩Xi+1. Supposew′ /∈ Xi. Then sinceXi ∩ Ri = ∅,
there is a path fromv to w′ in G \Xi. Therefore, asv ∈ Ri = R′

i = ReachG\(Xi−1∩Xi)(Ri−1) \Xi we havew′ ∈ Ri,
contradicting the definition ofw′. Thus

w′ ∈ Xi \Xi+1.

Now letj ≥ i + 1 be such thatv′ ∈ Rj \Rj+1. Sinceσ is winning, andv′ ∈ Ri+1, there is such aj. By the definition
of the cops and inert robber game, it must be thatv′ ∈ Xj+1 \Xj. We claim thatw′ ∈ Rj+1. Sincei ≤ i+1 ≤ j +1,
andw ∈ Xi \Xi+1, by the cop-monotonicity ofσ, w′ /∈ Xj+1. Therefore, as(v′, w′) ∈ E(G),

w′ ∈ ReachG\(Xj∩Xj+1)(Rj ∩Xj+1) = Rj+1.

Now let l ≥ j + 1 be such thatw′ ∈ Rl \Rl+1. Sinceσ is winning andw′ ∈ Rj+1, such anl exists. By the definition
of the cops and inert robber game, it must be thatw′ ∈ Xl+1. But sincei ≤ i + 1 ≤ l + 1, andw′ ∈ Xi, by the
cop-monotonicity ofσ, w′ ∈ Xi+1 – contradiction. ThusRi ⊇ R′

i, and thereforeRi = R′
i. ut

7.1.2 Elimination orderings

Our next definition extends the idea of vertex elimination todigraphs. Vertex elimination, for undirected and directed
graphs, has been researched for many years in the study of linear programming [RT75]. One technique for solving
a system of equations is to combine equations so that the value of some variables can easily be determined, thereby
eliminating those variables and reducing the system to a simpler one. This elimination process may introduce new
relations between the remaining variables, and capturing this process in a more general setting is the motivation
behind vertex elimination of graphs. We can represent a system of equations as a graph with a vertex for each variable
occurring in the system, and an edge between variables that are related by some equation in the system. Vertex
elimination is then a symbolic representation of variable elimination.

More precisely, letG be an undirected graph andv ∈ V (G). To eliminatev from G, we removev, but add edges
(if necessary) between any two vertices adjacent tov. In this way, we see that vertex elimination is the process of
removing vertices from a graph but adding edges to preserve reachability. It is this concept that we extend to directed
graphs.

Definition 7.3 (Directed elimination). LetG be a digraph andv ∈ V (G). The graph resulting fromdirected elimination
of v from G is the graphG′ obtained fromG by deletingv and adding new edges(u, w) (if necessary) if(u, v) and
(v, w) ∈ E(G).

We can use vertex elimination to define a complexity measure on undirected graphs. LetG be an undirected
graph. A linear orderC = (v1, v2, . . . , vn) on V (G) defines a sequence of eliminations whereby the vertices ofG
are successively eliminated in the order specified byC. For convenience we callC anelimination orderingand this
sequence of eliminations, theelimination defined byC. We define thewidthofC to be the maximum of the degrees of
the vertices when they are eliminated. These definitions easily translate to directed graphs, but the complexity measure
we are interested in is the maximum out-degree of eliminatedvertices.

Definition 7.4 ((Partial) Directed elimination ordering). Let G be a digraph and letV ⊆ V (G) be a subset of vertices.
A partial directed elimination ordering onV is a linear orderingC = (v1, v2, . . . , vn) of V . A directed elimination
orderingis a partial directed elimination ordering onV (G). The(partial) directed elimination defined byC is the fol-
lowing sequence of directed graphs. We defineGC

0 := G, and letGC

i+1 be the graph resulting from directed elimination
of vi+1 from GC

i . Thewidth of C is the maximum over alli of the out-degree ofvi in GC

i . For convenience we also
define thesupport ofvi with respect toC as supp

C
(vi) := {vj : (vi, vj) ∈ E(GC

i)}.

CHAPTER 7. KELLY-WIDTH 97

We observe that the width of a directed elimination orderingis the maximum cardinality of all its supports.
Immediately from the definitions, we have this simple lemma relating the support of an element in an elimination

ordering to the set of vertices reachable from that vertex.

Lemma 7.5. LetC be a directed elimination ordering of a graphG and letv ∈ V (G). LetR := {u : v C u}. Then
supp

C
(v) = {u : v C u and there isv′ ∈ ReachG\R(v) such that(v′, u) ∈ E(G)}.

7.1.3 Partialk-trees and partial k-DAGs

The class ofk-trees and, more generally, chordal graphs are important and widely studied classes of undirected graphs.
A graph ischordal if any cycle of four or more vertices contains a chord – an edgebetween a pair of vertices not
adjacent in the cycle, and a chordal graph is ak-tree if it contains no(k + 2)-clique as a subgraph. These structural
restrictions are algorithmically beneficial: for example,chordal graphs have a linear number of maximal cliques, so
problems such as finding a clique of a given size, which are in general NP-complete, can be efficiently solved on
chordal graphs andk-trees.

An equivalent way to characterize the class ofk-trees is as a class of graphs generated by a generalization of how
one might construct a tree.

Definition 7.6 ((Partial)k-trees). The class ofk-trees is defined recursively as follows:

• The complete graph onk vertices is ak-tree.

• A k-tree withn + 1 vertices is obtained from ak-treeH with n vertices by adding a vertex and making it
adjacent to ak-clique inH.

A partial k-tree is a subgraph1 of ak-tree.

The last concept we define in this section is a generalizationof partial k-trees, called partialk-DAGs. Just as
k-trees are a generalization of trees,k-DAGs are a class of digraphs generated by a generalization of how one might
construct a directed, acyclic graph in a top-down manner.

Definition 7.7 ((Partial)k-DAG). The class ofk-DAGsis defined recursively as follows:

• A complete digraph withk vertices is ak-DAG.

• A k-DAG with n + 1 vertices is obtained from ak-DAG H with n vertices by adding a vertexv and edges
satisfying the following:

– Edges fromv to X ⊆ V (H) where|X | ≤ k

– An edge fromu ∈ V (H) to v if (u, w) ∈ E(H) for all w ∈ X \ {u}.

A partial k-DAG is a subgraph of ak-DAG.

The second condition on the edges provides a method to add as many edges as possible going to the new vertex
without introducing cycles. Note that ifX = ∅, the antecedent of this condition is true for allu ∈ V (H), so a digraph
is a partial 0-DAG if, and only if, it is a directed acyclic graph.

We also observe that this definition generalizesk-trees, for if the vertices (X) adjacent to the new vertex (v)
induce a clique, we will add edges back fromX to v, effectively creating bidirected edges betweenv andX (and
possibly some additional edges fromH \X to v). The following result shows thatk-DAGs generalize the alternative
characterization ofk-trees we presented initially.

Lemma 7.8. LetG be ak-DAG. Then:

1Technically a partial graph is a spanning subgraph, that is,subgraph with the same vertex set. However, for the results we establish the
distinction is not significant.

CHAPTER 7. KELLY-WIDTH 98

(i) G contains no(k + 2)-clique as a subgraph,

(ii) Any cycle inG with at least three vertices contains a chord, and

(iii) Any bidirected cycle with at least four vertices contains a bidirected chord.

Proof. (i): Let W ⊆ V (G) be a set ofk + 2 vertices. Supposev ∈ W was the last vertex ofW to be added in the
construction ofG. Since all other vertices ofW were added beforev, all edges fromv to W were added as part of the
first condition on the added edges. Therefore, there must be at mostk outgoing edges fromv to vertices inW , and so
W cannot be the vertex set of a(k + 2)-clique.

(ii) : Let C = (v1, v2, . . . , vn) be a cycle of lengthn ≥ 3 in G. Without loss of generality, assumev0 was the last
vertex ofC to be added in the construction ofG. Since there is an edge fromvn to v1, it follows that there must be an
edge fromvn to all successors ofv1 added beforev1, in particular tov2. Thus(vn, v2) is a chord ofC.

(iii) : Let C = (v1, v2, . . . , vn) be a bidirected cycle of lengthn ≥ 4. Again we assumev1 was the last vertex ofC
to be added in the construction ofG. From the proof of(ii) , there is an edge(vn, v2) ∈ E(G). Since(v1, vn, . . . , v2) is
also a cycle, the same argument implies there is also an edge(v2, vn) ∈ E(G). These two edges make up a bidirected
chord ofC. ut

Lemma 7.8 does not provide an equivalent characterization for k-DAGs because the given properties are invariant
under edge-reversal. We see in Proposition 7.40 that the class ofk-DAGs is not closed under this operation.

7.1.4 Equivalence results

We have introduced three notions that can be used to define thecomplexity of digraphs, all of which naturally extend
measures for undirected graphs. On undirected graphs, the three measures are equivalent to each other, and also to
tree-width [DKT97]. Our main result of this section is that the three measures introduced are equivalent on digraphs.

Theorem 7.9. LetG be a digraph. The following are equivalent:

1. k + 1 cops have a robber-monotone winning strategy to capture an inert robber onG.

2. G has a directed elimination ordering of width≤ k.

3. G is a partialk-DAG.

Proof. 1 ⇒ 2: Supposek + 1 cops have a robber-monotone winning strategyσ. Without loss of generality, we
assume that only one cop is placed at a time. Let(X0, R0)(X1, R1) · · · be the (unique) search consistent withσ. For
eachv ∈ V (G), let xv = min{i : v ∈ Xi}. Sinceσ involves placing one cop at a time, for distinctv, w ∈ V (G),
xv 6= xw. LetC = (v1, v2, . . . , vn) be the order defined as:vi C vj if, and only if, xvj

< xvi
. For convenience, let

Vi = {v1, . . . , vi}, andxi = xvi
for all i. We observe that from the definition ofxi, Vi ∩Xxi

= {vi}.
We claimC has width≤ k. If this were not the case, there must existvi such that|supp

C
(vi)| ≥ k + 1. As

|supp
C

(vi)| ≥ k + 1 and |Xxi
| ≤ k it follows that there existsvj ∈ supp

C
(vi) \ Xxi

. From the definition of
supp

C
(vi), we havevi C vj , soxj < xi. Furthermore, from Lemma 7.5,vj ∈ ReachG[Vi∪{vj}](vi). Therefore, since

Vi∩Xxi−1∩Xxi
= ∅ andvi ∈ Xxi

it follows thatvj ∈ Rxi
. But sincevj /∈ Rxj

, the robber-monotonicity ofσ implies
vj /∈ Rl for all l ≥ xj , contradicting the fact thatvj ∈ Rxi

. Thus there exists no suchvi with |supp
C

(vi)| ≥ k + 1,
andC has width≤ k.

2⇒ 3: LetC = (v1, v2, . . . , vn) be a directed elimination ordering ofG of width k. For ease of notation, define
Xi := supp

C
(vi), and letm = n − k. LetK0 be the complete graph on the vertices{vm+1, vm+2, . . . , vn}, and let

Kj (j ≥ 1) be thek-DAG formed by addingvm−j+1 toKj−1, and edges fromvm−j+1 to Xm−j+1 (together with the
other edges added fromKj−1 to vn−k−j+1 in the definition ofk-DAGs). We claim that for all0 ≤ j ≤ m, GC

m−j is a
subgraph ofKj . The result then follows by takingj = m. We prove our claim by induction onj. For the base case
(j = 0) the result is trivial asKj is a complete graph. Now assume the result is true forj ≥ 0, and consider the graph
GC

m−j−1. For simplicity leti = m − j. By the definition of directed elimination, for every edge(u, v) ∈ E(GC

i−1)
either:

CHAPTER 7. KELLY-WIDTH 99

(a) vi /∈ {u, v},
(b) u = vi, or
(c) v = vi.

In the first case,(u, v) ∈ E(GC

i) and therefore inE(Kj) ⊆ E(Kj+1) by the induction hypothesis. For the second
case,(u, v) is added during the construction ofKj+1. For the final case, for anyw ∈ Xi, (vi, w) is an edge ofGC

i−1,
so(u, w) is an edge ofGC

i (for u 6= w), and therefore ofKj by the induction hypothesis. Thus(u, vi) is added during
the construction ofKj+1, andE(GC

i−1) ⊆ E(Kj+1) as required.
3 ⇒ 1: Let G be a partialk-DAG. SupposeG is a subgraph of thek-DAG, K, formed from a complete graph

on the verticesXk := {v1, v2, . . . , vk}, and then by adding the verticesvk+1, vk+2, . . . , vn. For1 ≤ i ≤ n − k let
Xk+i ⊆ {v1, . . . , vk+i−1} denote the set of successors ofvk+i. That is, whenvk+i is added during the construction
of K, edges are added fromvk+i to each vertex inXk+i. Note that for alli, |Xi| ≤ k. We define a (history dependent)
strategyσ for the cops inductively as follows. For allR, σ(∅, R) = Xk. If X = Xi for somei,

k ≤ i ≤ n then for allR, σ(X, R) = Xi ∪ {vi}. If X = Xi ∪ {vi} for somei, k ≤ i < n, then for allR,
σ(X, R) = Xi+1. We claim that this defines a monotone winning strategy fork + 1 cops. LetRi = {vj : j > i},
then from the definition ofk-DAGs and theXi, it is easy to see that the search associated with the strategy is:

(∅, V (G))(Xk, Rk)(Xk+1, Rk)(Xk+1 ∪ {vk+1}, Rk+1) · · · (Xn ∪ {vn}, ∅).

As Ri ⊇ Ri+1 for all i, the strategy is monotone and winning as required. ut

7.2 Kelly-decompositions and Kelly-width

Theorem 7.9 shows that the concepts introduced in the previous section define a sound measure of digraph complexity
which naturally generalizes tree-width. We now turn to the problem of finding a closely related digraph decomposition.
The decomposition we introduce is a partition of the vertices, arranged as a directed acyclic graph, together with sets of
vertices which guard against paths in the graph that do not respect this arrangement. We have an additional restriction
to avoid trivial decompositions: vertices in the guard setsmust appear either to the left or earlier in the decomposition.
Before we present the formal definition, we recall from Definition 6.13, the definition ofguarding.

Definition 7.10 (Kelly-decomposition and Kelly-width). A Kelly-decompositionof a digraphG is a triple D :=
(D,B,W) whereD is a DAG andB = (Bd)d∈V (D) andW = (Wd)d∈V (D) are families of subsets ofV (G) such
that

(K1) B is a partition ofV (G),

(K2) for all d ∈ V (D), Wd guardsB≥d :=
⋃

d′�DDd Bd′ , and

(K3) for all d ∈ V (D) there is a linear order on its successorsd1, . . . , dp so that for all1 ≤ i ≤ p, Wdi
⊆ Bd ∪Wd ∪⋃

j<i B≥dj
. Similarly, there is a linear order on the roots such thatWri

⊆ ⋃
j<i B≥rj

.

The width of D is max{|Bd ∪ Wd| : d ∈ V (D)}. TheKelly-width of G is the minimal width of any of its Kelly-
decompositions.

Our main result of this section is that Kelly-decompositions do in fact correspond with the complexity measure
defined at the end of the previous section.

Theorem 7.11. LetG be a digraph. The following are equivalent:

1. k cops have a robber-monotone winning strategy to capture an inert robber onG.

2. G has Kelly-width≤ k.

CHAPTER 7. KELLY-WIDTH 100

Proof. 2⇒ 1: Let (D,B,W) a Kelly-decomposition ofG of width k. LetT be the spanning tree ofD obtained from
the depth-first traversal ofD which always chooses the greatest successor according to the ordering on successors
guaranteed by (K3). Let(t1, t2, . . . , tn) be the order ofV (T) (and hence,V (D)) visited in the depth-first traversal
of T which always chooses the least successor according to the ordering. Sot1 will always be the root ofD which is
first in the linear order on the roots,t2 will be the least successor oft1 which is not a descendant of any greater root,
or the next root ofD in the ordering if no such successor exists, and so on. We observe that by the construction of this
ordering, every descendanttj of ti in D is either a descendant ofti in T , or ti andtj have a common ancestor from
which ti is a descendant of a lesser successor thantj . In both casesj ≥ i from the depth-first traversal ofT . It follows
that ⋃

j<i

Btj
∩B≥ti

= ∅. (7.1)

We now define the strategy. For1 ≤ i ≤ n, let X2i−1 = Wti
andX2i = Wti

∪ Bti
. We define a (history

dependent) strategyσ inductively asσ(∅, R) = X1 andσ(Xi, R) = Xi+1 for all R ⊆ V (G). We claim thatσ is a
robber-monotone winning strategy fork cops. Let(X0, R0) · · · (X2n, R2n) be the search associated with the strategy.
We show by induction oni that for0 < i ≤ n, R2i−2 = R2i−1 =

⋃
j≥i B≥tj

. It follows immediately that the strategy
must be monotone and winning. SinceX1 = Wt1 = ∅, we haveR1 = R0 = V (G) =

⋃
j≥1 B≥tj

. Now let us assume
R2i−2 = R2i−1 =

⋃
j≥i B≥tj

for somei ≥ 1. From (K2), we observe thatReachG\Wti
(Bti

) ⊆ B≥ti
⊆ R2i−1. Thus

R2i =
(
R2i−1 ∪ReachG\(X2i−1∩X2i)(R2i−1 ∩X2i)

)
\X2i

=
(
R2i−1 ∪ReachG\Wti

(Bti
)
)
\Bti

=
⋃

j≥i B≥tj
\Bti

=
⋃

j≥i+1 B≥tj
(from Equation 7.1).

SinceWd ∩ B≥d = ∅ for all d ∈ V (D), it follows from (K3) and the construction of the ordering that Wti+1
⊆⋃

j≤i Btj
. Therefore, from Equation 7.1, we haveR2i ∩Wti+1

⊆ ⋃
j>i B≥tj

∩⋃
j≤i Btj

= ∅. Hence,

R2i+1 =
(
R2i ∪ ReachG\(X2i∩X2i+1)(R2i ∩X2i+1)

)
\X2i+1

= (R2i ∪ ∅) \Wti+1

= R2i,

completing the inductive step.
1⇒ 2: It follows from Theorem 7.9 that it suffices to show that ifG has a directed elimination ordering of width

k − 1 thenG has Kelly-width≤ k. LetC = (v1, v2, . . . , vn) be a directed elimination ordering ofG of width k − 1.
We define(D,B,W) as follows.V (D) := V (G). For alld ∈ V (D) let Bd := {d} andWd := supp

C
(d) and define

B := (Bd)d∈V (D) andW := (Wd)d∈V (D). Towards defining the edge relation ofD, let d ∈ V (D) be a node. For
convenience we writeGd for the induced subgraphG[{w : w C d} ∪ {d}]. Let C1, . . . , Cp be the strongly connected
components ofGd \ d. Let d1, . . . , dp be theC-maximal elements ofC1, . . . , Cp, respectively. We put an edge(d, di)
betweend anddi if di is reachable fromd in Gd and there is nodj with di C dj C d such thatdj is reachable fromd
in Gd anddi is reachable fromdj in Gd \ d.

We claim that(D,B,W) is a Kelly-decomposition of width≤ k. Clearly,D is a DAG, as all the edges inE(D)
are oriented following the orderingC. Further, the width of the decomposition is clearly at most one more than the
width ofC.

To establish (K2), we first show the following claim.

Claim. For alld ∈ V (D), ReachGd
(d) = B≥d.

Proof of claim. We first show by induction on the indexi of d in C that ReachGd
(d) ⊆ B≥d. For i = 1 there is

nothing to show. Suppose the claim has been proven for allj < i. Let v ∈ ReachGd
(d). Let C1, . . . , Cm be the

strongly connected components ofGd \ d. Without loss of generality we assume thatv ∈ C1. Let s be theC-maximal
element ofC1 and letd′ be theC-maximal element such that

CHAPTER 7. KELLY-WIDTH 101

• d′ is theC-maximal element of someCi

• there is a directed path fromd to d′ in Gd

• there is a directed path fromd′ to s in Gd \ d.

By construction, there is an edge(d, d′) ∈ E(D). If d′ = v, or in fact ifd′ is theC-maximal element ofC1, then there
is nothing more to show. Otherwise, ifd′ andv are not in the same strongly connected component ofGd \ d, thens,
and hencev, must be reachable fromd′ in Gd′ . For, by construction,s is reachable fromd′ in Gd \ d andd′ is the
C-maximal element reachable fromd in Gd and from whichs can be reached inGd \ d. Thus, ifs was not reachable
from d′ in Gd′ then the only path fromd′ to s in Gd \ d must include an elementw C d such thatd′ Cw, contradicting
the maximality ofd′. Hence,v is reachable fromd′ in Gd′ and therefore, by induction hypothesis,v ∈ B≥t′ ⊆ B≥t.

A simple induction on the height of the nodes inD establishes the converse. a

It remains to show that for alld ∈ V (D) there is a linear ordering@ of the successorsd satisfying the ordering
condition required by the definition of Kelly-decompositions. For successorsv 6= v′ of d definev @ v′ if v′ C v, that
is,@ is the inverse ordering ofC.

Let d1, . . . , dm be the successors ofd ordered by@. We claim that for alli ∈ {1, . . . , m},

Wdi
⊆ Bd ∪Wd ∪

⋃

j<i

B≥dj
.

If v ∈ Bd there is nothing to show. Ifd C v thenv ∈ Wd asdi C d is reachable fromd and thereforeWdi
∩ {x :

dE x} = supp
C

(di)∩ {x : dE x} ⊆ supp
C

(d)∩ {x : dE x} = Wd ∩ {x : dE x}. Finally, supposevC d. But then,
v ∈ B≥d and hencev ∈ B≥dj

for some1 ≤ j ≤ m. By definition of support sets,v /∈ B≥di
anddi C v. But then,

v /∈ B≥dj
for all j A i, that is,j C i, as thendj C v and by construction,w C dj for all w ∈ B≥dj

. Hence,v ∈ B≥dl

for somedl B di. This completes the proof of the theorem. ut

The proof of Theorem 7.11 is constructive in that given an elimination ordering of widthk − 1 we construct a
Kelly-decomposition of widthk, and conversely. In fact, the proofs establish a slightly stronger statement.

Corollary 7.12. Every digraphG of Kelly-widthk has a Kelly-decompositionD = (D,B,W) of widthk such that for
all d ∈ V (D):

• |Bd| = 1,

• Wd is the minimal set which guardsB≥d, and

• Every vertexv ∈ B≥d is reachable inG \Wd from the uniquew ∈ Bd.

Further, ifG is strongly connected, thenD has only one root.

We call such a decompositionspecial.
Just as with the cops and visible robber game, it is easy to seethat the cops and inert robber game satisfies the

properties introduced in Section 5.4. The characterization of Kelly-width by such graph searching games implies that
Kelly-width is well behaved under important structural relations. The proofs of the following results are similar to
those presented in Section 6.3.

Lemma 7.13.Let(D,B,W) be a Kelly-decomposition of a digraphG, and letG′ be a subgraph ofG. (D,B|G′ ,W|G′)
whereB|G′ := (Bd ∩ V (G′))d∈V (D) andW|G′ := (Wd ∩ V (G′))d∈V (D) is a Kelly-decomposition ofG′.

Corollary 7.14. LetG andG′ be directed graphs such thatG′ is a subgraph ofG. Then Kelly-width(G′) ≤ Kelly-width(G).

Lemma 7.15. Let G be a directed graph andKn the complete graph onn vertices. Kelly-width(G • Kn) = n ·
Kelly-width(G).

CHAPTER 7. KELLY-WIDTH 102

Lemma 7.16. LetG be a directed union of the digraphsG1 andG2. Then

Kelly-width(G) = max{Kelly-width(G1), Kelly-width(G2)}.

We observe that from this last result it follows that the Kelly-width of a directed graph is the maximum Kelly-width
of all its strongly connected components.

7.3 Algorithmic aspects of Kelly-width

7.3.1 Computing Kelly-decompositions

In this section we mention several algorithms for computingKelly-width and Kelly-decompositions. The proofs
of Theorems 7.9 and 7.11 show that Kelly-decompositions canefficiently be constructed from directed elimination
orderings or monotone winning strategies, so we concern ourselves with the problem of finding any of the equivalent
characterizations.

In a recent paper Bodlaender et al. [BFK+06] study exact algorithms for computing the (undirected) tree-width of
a graph. Their algorithms are based on dynamic programming to compute an elimination ordering of the graph. The
algorithms translate easily to directed elimination orderings and can therefore be used to compute Kelly-width, giving
us the following theorem:

Theorem 7.17. The Kelly-width of a graph withn vertices andm edges can be determined in

• O
(
(n + m) · 2n

)
time andO

(
n · 2n

)
space, or

• O
(
(n + m) · 4n

)
time andO(n2) space.

Proof. The algorithms we require for these bounds are presented as Algorithm 7.1 and Algorithm 7.2 respectively.
Lemmas 7.18 and 7.20 prove that these algorithms are correct, and Lemmas 7.19 and 7.21 establish the running times
and space requirements. ut

Algorithm 7.1 KELLY-WIDTH-DP(G)
let KW (∅) = 0
for k = 1 to |V (G)| do

for eachS ∈ [V (G)]k do
for eachv ∈ S do

Compute suppS(v) := Nout(ReachS(v)) ∪ {v}
let KW (S) = minv∈S max{KW (S \ {v}), |suppS(v)|}

return KW (V (G))

Lemma 7.18. For any digraphG, KELLY-WIDTH-DP(G) outputs the Kelly-width ofG.

Proof. We observe that for a directed elimination orderingC = (v1, . . . , vn), supp
C

(vi) is not dependent on the
order of the vertices{v1, . . . , vi−1}. The algorithm uses this observation to reduce the number ofpossible orderings
which need to be considered fromn! to 2n. It is easily seen that|suppS(v)| is v together with the support set ofv
in any directed elimination ordering wherev is preceded by some ordering of the remaining elements ofS. Thus
max{KW (S \ {v}), |suppS(v)|} is one more than the minimal width of a partial directed elimination ordering onS
wherev is the last vertex eliminated. It follows thatKW (S) returns one more than the minimal width of a partial
directed elimination ordering onS, and thusKW (V (G)) returns the Kelly-width ofG. ut

CHAPTER 7. KELLY-WIDTH 103

Lemma 7.19. LetG be a digraph withn vertices andm edges.KELLY-WIDTH-DP(G) requires at mostO
(
(n + m) ·

2n
)

time andO
(
n · 2n

)
space.

Proof. For a setS ⊆ V (G) and a vertexv ∈ V (G), it is readily seen thatReachS(v) can be computed with a depth-
first search fromv. Since such a search can be executed in timeO(n + m) [CLR96], it follows that suppS(v) can be
computed in timeO(n + m). The innermostfor loop is executed once for eachS ⊆ V (G), and loops|S| times. So
if each value forKW (S) is stored as it is computed so that its value can be found in constant time, the total running
time for the algorithm isO(n + m)

∑
S⊆V (G) O(|S|) = O

(
(n + m) · 2n

)
. ut

Algorithm 7.2 KELLY-WIDTH-REC(G, L, S)

if S = {v} for somev then
return suppL(v)

let Opt =∞
for eachS′ ⊆ S with |S′| = b|S|/2c do

Computew1 = KELLY-WIDTH-REC(G, L, S′)
Computew2 = KELLY-WIDTH-REC(G, L ∪ S′, S \ S′)
let Opt = min

{
Opt, max{w1, w2}

}

return Opt

Lemma 7.20. For any digraphG, KELLY-WIDTH-REC(G, ∅, V (G)) outputs the Kelly-width ofG.

Proof. We prove by induction on|S| that KELLY-WIDTH-REC(G, L, S) returns one more than the minimal width of
a partial directed elimination ordering onL ∪ S where the first|L| vertices are elements ofL. From our observations
regarding suppL(v) in the proof of Lemma 7.18, we see this is true for|S| = 1. Now suppose it is true for|S| ≤ s,
we show that it is true for allS with |S| ≤ 2s. Consider a single execution of thefor loop. Since|S′| = b|S|/2c,
it follows by the induction hypothesis thatw1 is one more than the minimal width of a partial directed elimination
ordering onL ∪ S′ where the first|L| elements are fromL andw2 is one more than the minimal width of a partial
directed elimination ordering onL ∪ S where the first|L| + |S′| elements are fromL ∪ S′. Thus, the maximum of
w1 andw2 is one more than the minimal width of a partial directed elimination ordering onL ∪ S where the first|L|
elements are fromL, and the next|S′| elements are fromS′. Opt stores the minimum of all these maxima, over all
subsetsS′ with |S′| = b|S|/2c. As the minimal width of a partial directed elimination ordering of L ∪ S where the
first |L| elements are fromL must be the minimal width of a partial directed elimination ordering ofL ∪ S where the
first |L| elements are fromL and the nextb|S|/2c elements are fromS′ for someS′ ⊆ S, it follows thatOpt stores
the required value. Thus KELLY-WIDTH-REC(G, ∅, V (G)) returns the Kelly-width ofG. ut

Lemma 7.21. LetG be a directed graph withn vertices andm edges. ThenKELLY-WIDTH-REC(G, ∅, V (G)) runs in
O

(
(n + m) · 4n

)
time andO(n2) space.

Proof. Let T (s) be the time required to compute KELLY-WIDTH-REC(G, L, S) when|S| = s. We prove by induction
ons thatT (s) = O

(
(n + m) · 4s

)
time. If s = 1, as we saw in Lemma 7.21, suppL(v) can be computed inO(n + m)

time, so the assumption holds for this case. Fors > 1, the algorithm runs in time2
(

s
s/2

)
T (s/2). Using asymptotic

approximations of Catalan numbers [GKP98],
(
2n
n

)
∈ O(4n), soT (s) = O(4s/2)T (s/2) = O

(
(n + m) · 4s

)
. The

space requirement follows from the observation that at eachstage of the recursion we needO(n) space to store the
current subsetS′ of S and the values we have computed. Since the recursion tree hasmaximum heightdlog |S|e ≤ n,
we obtain the space bound ofO(n2). ut

For a givenk, the problem whether a digraphG has Kelly-width≤ k is decided in exponential time with the
above algorithms. As the minimization problem is NP-complete (it generalizes the NP-complete problem of deciding
the tree-width of an undirected graph), we cannot expect polynomial time algorithms to exist. However, the exact

CHAPTER 7. KELLY-WIDTH 104

complexity of determining if a digraph has Kelly-width≤ k for fixed k is currently unknown. Clearly a digraph has
Kelly-width equal to1 if, and only if, it is acyclic, and recently Meister, Telle and Vatshelle [MTV07] exhibited a
polynomial time algorithm for determining if a digraph has Kelly-width 2. So fork ≤ 2 the problem can be solved in
polynomial time. Fork > 2 it is an open problem.

Open problem 7.22. For a fixedk > 2, what is the complexity of the following problem: Given a digraphG doesG
have Kelly-width≤ k?

It seems plausible that, as in the case of DAG-width, studying strategies in the inert robber game will lead to a
polynomial time algorithm whenk is fixed.

7.3.2 Algorithms on graphs of small Kelly-width

In this section we present algorithmic applications of Kelly-decompositions, including a general scheme that can be
used to construct algorithms based on a decomposition. We assume that a Kelly-decomposition (or even an elimination
ordering) has been provided or pre-computed. We give an example algorithm based on this to compute the winner of
a parity game, which runs in polynomial time on graphs of bounded Kelly-width. As the algorithm is similar to the
algorithm of the previous chapter, we outline the major difference between the two.

Dynamic programming algorithms using Kelly-decompositions follow a pattern similar to algorithms that use tree-
decompositions and DAG-decompositions. Starting with a special Kelly-decomposition(D,B,W) and then working
bottom up to compute for each noded ∈ V (D) a data set containing information on the setB≥d :=

⋃
d′�d Bd. The

general pattern is described in Algorithm 7.3.

Algorithm 7.3 Dynamic programming using a Kelly-decomposition

Given a special Kelly-decomposition(D,B,W):

Leaves:Compute the data set forBd for all leavesd.

Combine: If d ∈ V (D) is an inner node with successorsd1, . . . , dm ordered by the ordering guaranteed by the Kelly-
decomposition (we observe that such an ordering can be computed easily with a greedy algorithm), combine the
data sets computed forB≥d1

, . . . , B≥dm
to a data set for the union

⋃m
i=1 B≥di

.

Update: Update the data set computed in the previous step so that the new vertexu with Bd = {u} is taken into
account. Usually, the vertexu will have been part of at least some guard setsWdi

.

Expand: Finally, expand the data set to include guards inWd \
⋃

i Wdi
and also paths starting atu.

We illustrate this pattern by briefly presenting an algorithm for computing the winner of a parity game. The full
algorithm can be found in [HK07]. The algorithm is similar tothe algorithm based on DAG-decompositions, however
the separation of guard sets in Kelly-decompositions makesthe presentation more straightforward. As with DAG-
decompositions, we define a Kelly-decomposition of an arenaA as a Kelly-decomposition of the underlying directed
graph(V (A), E(A)).

Theorem 7.23. For anyk, given a parity game(A, χ) and a Kelly-decomposition ofA of width≤ k, determining if
Player 0 has a winning strategy fromvI(A) can be computed in polynomial time.

To prove the theorem, we first need some preparation. For the rest of this section fix a parity game(A, χ) where
χ : V (A)→ P. We assume that the maximal out-degree of any vertex inV (A) is 2. Using the inert robber game, it is
straightforward to show that the graph resulting from the modification described in Theorem 2.59 has Kelly-width at
most one more than the original graph.

We recall from the proof of Theorem 6.34 the definitions of resultσ(U, v) and RESULT(U, v) for a (not necessarily
memoryless) strategyσ for Player 0, a subset of verticesU ⊆ V (A) and a vertexv ∈ V (A). We show how, for a

CHAPTER 7. KELLY-WIDTH 105

fixed k and given a special Kelly-decomposition(D,B,W) of A of width k, to compute RESULT(B≥d, v) for each
d ∈ V (D) andv ∈ B≥d in polynomial time. As with Theorem 6.34 we observe that asB≥d has at mostk guards
(Wd), |RESULT(B≥d, v)| ≤ (n + 1)k + 2.

The dynamic programming algorithm can then be presented as follows.

Leaves: It follows with the same argument as theLeavesstep in the proof of Theorem 6.34, that for any leafd ∈ V (D),
and vertexv ∈ Bd the set RESULT(Bd, v) can be computed in constant time.

Combine: Let d be an inner node ofD with successorsd1, . . . , dm ordered according to the ordering guaranteed by
(K3). For1 ≤ i ≤ m, let Bi :=

⋃
j≤i B≥di

and letB := Bm =
⋃

1≤i≤m B≥di
. We aim to compute the set

RESULT(B, u) for eachu ∈ B. We observe that ifi < j andu ∈ B≥di
then every path fromu to a vertexv ∈

B≥dj
\B≥di

must go throughWd. Hence, ifu ∈ B≥di
then RESULT(B, u) = RESULT(Bi, u). We compute for

eachi ≤ m andu ∈ Bi the set RESULT(Bi, u) by induction oni. Fori = 1, RESULT(B1, u) = RESULT(d1, u).
Let i > 1 and letu ∈ Bi \Bi−1.

To compute RESULT(Bi, u), we do the following. Letr = resultσ(B≥di
, u) ∈ RESULT(B≥di

, u) be a set of
results against a strategyσ for Player0. The result setr gives us the set of verticesv ∈ Wdi

to which Player1
can force the play againstσ and also the best priority he can achieve in doing so. Now, ifv ∈ Wdi

∩Bi−1 is a
guard contained inBi−1 then once the play has reachedv it can never return toBi \Bi−1 and continues inBi−1

until it reaches a vertex inWd. Hence, once the play has reachedv, we can determine the results of possible
strategies inBi−1 from RESULT(Bi−1, v).

This suggests the following algorithm for computing RESULT(Bi, u). For eachr ∈ RESULT(B≥di
, u) we

compute a setRr of sets as follows. LetR := {(w, p) ∈ r : w ∈ Wdi
\ Wd} be the set of outcomes in

r for plays which end in vertices inBi−1. Let (w1, p1), . . . , (ws, ps) list the elements ofR. For each tuple
ρ = (r1, . . . , rs) with rj ∈ RESULT(Bi−1, wj) Let Rρ be defined as follows. For each(v, p) ∈ r \R add(v, p)
to Rρ. If (v, q) ∈ rj add(v, max{pj , q}) to Rρ. Then, add the setRρ to Rr. Then, RESULT(Bi, u) contains for
eachRρ ∈ Rr the set ofE-minimal pairs inRρ.

Update and Expand:We now consider how to update the data structure to take account of paths that include vertices
enteringB≥d. The argument is similar to theExpandstep of the proof of Theorem 6.34, so we refer the reader
there for the details.

We observe that each step of the above algorithm, and hence the entire algorithm, runs in polynomial time. This
completes the outline of the proof of Theorem 7.23.

7.3.3 Asymmetric matrix factorization

We saw in Section 7.1.2 that the idea of vertex elimination was motivated by the practical application of solving
systems of linear equations. Such systems are more commonlyrepresented as matrix equations:Mx = b, with
the goal being to find a solution for then × 1 vector of variables,x, given anm × n matrix M , and anm × 1
vectorb. A straightforward solution to such an equation is to findM−1, the inverse ofM , to obtainx = M−1b,
however a more common approach is to factorizeM in such a way that solutions may be easily computed. Cholesky
decompositions and LU-factorizations are two such examples of this. IfM is anm × n matrix, anLU-factorization
(or LU-decomposition) of M is anm×m lower triangular matrixL and anm×n upper triangular matrixU such that
M = LU . If, in additionM is symmetric and positive definite, then there is an LU-factorization ofM whereU = LT .
Such a decomposition is called aCholesky decomposition. When a matrix has an LU-factorization we can solve the
equationMx = b as follows: first we use forward substitution to solveLy = b, and then backward substitution to
solveUx = y.

The elimination process we described in Section 7.1.2, alsoknown as Gaussian elimination, is one of the most
common methods for computing an LU-factorization or a Cholesky decomposition. More precisely, Gaussian elimi-
nation is the process of transforming a matrix into an upper triangular matrix via row operations: adding a multiple

CHAPTER 7. KELLY-WIDTH 106

of one row to another (including itself), or interchanging two rows (also known aspivoting). The resulting upper
triangular matrix is theU factor of a LU-factorization, and the row operations can be represented by a sequence of
transformation matrices, the product of which form theL factor of the LU-factorization. If the original matrix was
symmetric and positive definite, this process will generatea Cholesky decomposition.

Since Gaussian elimination can be used to compute LU-factorizations and Cholesky decompositions, it is not
surprising that elimination orderings and two associated structures we introduce here, elimination trees and elimination
DAGs, are useful for investigating the complexity of computing these matrix decompositions. We first define the
particular relationship between graphs and matrices that we are interested in.

Definition 7.24. Let M = (aij) be a squaren × n matrix. We defineGM as the directed graph withV (GM) =
{v1, . . . , vn}, and fori 6= j, (vi, vj) ∈ E(GM) if, and only if, aij 6= 0. We also define the elimination orderingCM

asCM := (v1, . . . , vn).

WhenM is a symmetric matrix, we viewGM as an undirected graph rather than a bidirected graph.
One structure that is particularly useful for analysing symmetric matrix factorization is theelimination tree.

Definition 7.25(Elimination tree). LetG be an undirected graph, andC an elimination ordering forG. Theelimination
treedefined byC is a pair(T , λ) whereT is a rooted tree andλ : V (T)→ V (G) is a bijection such that ifs ∈ V (T)
is the parent oft ∈ V (T), thenλ(s) = minC

(
supp

C
(λ(t))

)
.

Liu [Liu90] observed that elimination trees can be used to investigate many aspects of Cholesky decompositions,
for example the row and column structure of the Cholesky factors can be extracted directly from an elimination tree.
Another observation, from Bodlaender et al. [BGHK95], is that the height of an elimination tree gives the parallel time
required to compute a Cholesky decomposition of a symmetricmatrix using Gaussian elimination.

In [GL93], Gilbert and Liu introduced a generalization of elimination trees, called elimination DAGs, which can
be similarly used to analyse factorizations in the asymmetric case. We recall that atransitive reductionof a directed
graph is a minimal graph with the same transitive closure andwe observe that an acyclic graph has a unique transitive
closure.

Definition 7.26(Upper and Lower elimination DAGs [GL93]). Let M be a square matrix that can be decomposed as
M = LU without pivoting. Theupper (lower) elimination DAGis the transitive reduction of the directed graphGU

(GL respectively).

Gilbert and Liu [GL93] observed that elimination DAGs enjoymany properties similar to elimination trees. For
instance, they are an efficient storage scheme for sparse matrices, and an upper and lower pair of elimination DAGs
are sufficient to capture the path structure of a graph: if there is a directed path fromu to v in the graph, then there is
a vertexw such that there is a path fromu to w in the upper elimination DAG, and a path fromw to v in the lower
elimination DAG. They also showed that when the matrix is symmetric, the upper elimination DAG is isomorphic to
the elimination tree, as is the lower elimination DAG when its edges are reversed.

The Kelly-decomposition constructed in the proof of Theorem 7.11 captures the upper and lower elimination DAGs
in a very direct manner.

Theorem 7.27. Let M be a square matrix that can be decomposed asM = LU without pivoting. Let(D,B,W) be
the Kelly-decomposition ofGM obtained by applying the proof of Theorem 7.11 with elimination orderCM . Then

(a) (D,B) is isomorphic to the lower elimination DAG, and

(b) GU = (V (GM), {(v, w) : w ∈ Wv}), thus the upper elimination DAG is isomorphic to the transitive reduction of
the relation{(v, w) : w ∈Wv}.

Proof. Forv ∈ V (GM), let Xv = {v} ∪ {w ∈ V (GM) : w CM v}. First, from Theorem 1 of [RT78]:

(E(GL))TC = {(v, w) : w CM v, and there is a path fromv to w in GM [Xv]},

CHAPTER 7. KELLY-WIDTH 107

whereRTC denotes the transitive closure ofR. We observe that in the construction of the Kelly-decomposition,E(D)
is the transitive reduction of the right-hand side. Since, by construction, elements ofB are singletons, we can viewB
as a bijection betweenV (D) andV (G), and the first result follows. Secondly, from Theorem 4.6 of [GL93], we have

E(GU) = {(v, w) : v CM w, and there is av′ ∈ ReachXv
(v) with (v′, w) ∈ E(GM)}.

The second result then follows from Lemma 7.5, which shows that{(v, w) : w ∈ Wv} = {(v, w) : w ∈ supp
CM

(v)}
is equivalent to the right-hand side. ut

We can use the results of [GL93] to make the following observation when we construct Kelly-decompositions on
undirected graphs.

Corollary 7.28. LetG be an undirected graph,C an elimination order onG and(D,B,W) the Kelly-decomposition
of G (considered as a bidirected graph) obtained by applying theproof of Theorem 7.11 with elimination orderC.
ThenD is a tree, and more precisely,(Dop,B) is isomorphic to the elimination tree associated with the (undirected)
elimination orderC.

7.4 Comparing Kelly-width and DAG-width

In this section we use graph searching games to compare Kelly-width to DAG-width and directed tree-width. In the
undirected case, all the games we consider require the same number of searchers, however we show that in the directed
case there are graphs on which all three measures differ by anarbitrary amount. We show that Kelly-width bounds
directed tree-width within a constant factor, but the converse fails as there are classes of graphs of bounded directed
tree-width and unbounded Kelly-width. We also provide evidence to suggest that Kelly-width and DAG-width are
within a constant factor of each other.

We recall from Definition 6.1 the cops and robber game used to characterize DAG-width. For convenience, we will
refer to this as the visible robber game. In Example 5.2.1 we discussed another cops and robber game that partially
characterizes directed tree-width: the strongly connected visible robber game. The following theorem summarizes
Theorems 6.15 and Lemma 5.41:

Theorem 7.29. LetG be a digraph.

1. G has DAG-widthk if, and only if,k cops have a monotone winning strategy in the visible robber game onG.

2. G has directed tree-width≤ 3k + 1 or k cops do not have a winning strategy in the strongly connectedvisible
robber game onG.

For the undirected case, the following proposition sums up results from [DKT97] and [ST93].

Proposition 7.30. On any undirected graphG, the following are equivalent

1. k cops have a winning strategy in the visible robber game.

2. k cops have a robber-monotone and cop-monotone winning strategy in the visible robber game.

3. k cops have a winning strategy in the inert robber game.

4. k cops have a robber monotone winning strategy in the inert robber game.

5. The tree-width ofG is at mostk − 1.

It follows from these results that Kelly-width is a generalization of tree-width in the following sense.

Corollary 7.31. LetG be an undirected graph.G has tree-widthk if, and only if,
←→G has Kelly-widthk.

CHAPTER 7. KELLY-WIDTH 108

On general directed graphs, the situation is more complicated. As we saw in Theorem 6.11, monotonicity is not
sufficient for the visible robber game. Kreutzer and Ordyniak [KO07] have also recently shown that monotonicity is
not sufficient for the inert robber game.

Theorem 7.32([KO07]). For anym ∈ N, there exists a graph for which6m cops can capture an invisible, inert
robber but7m cops are required to do so with a robber-monotone strategy.

Of course, as with Theorem 6.11, this does not preclude the possibility that the number of cops required for
monotonicity is bounded by some factor of the number of cops required with any strategy.

Open problem 7.33. Does there exist a functionf : ω → ω such that for all digraphsG, if k cops can capture an
inert robber onG thenf(k) cops can capture the robber with a robber-monotone strategy?

Before we compare Kelly-width with directed tree-width andDAG-width, we first observe that Proposition 7.2
allows us to compare Kelly-width and directed path-width. As we mentioned previously, Barát [Bar05] observed that
the directed path-width of a digraph was one less than the minimum number of cops required to capture an invisible
robber with a cop-monotone strategy. Thus, using the observation that a cop-monotone strategy in the cops and inert
robber game is also robber-monotone, and the example from Proposition 6.39, we obtain the following relationship
between Kelly-width and directed path-width.

Proposition 7.34.

(i) If a directed graphG has directed path-widthk, it has Kelly-width at mostk + 1.

(ii) There exists a family of graphs with arbitrarily large directed path-width and Kelly-width2.

Our next comparison result shows that a robber-monotone winning strategy in the inert robber game can be trans-
lated to a (not necessarily monotone) winning strategy in the visible robber game.

Theorem 7.35.LetG be a directed graph. Ifk cops can catch an inert robber with a robber-monotone strategy onG,
then2k − 1 cops can catch a visible robber onG.

Proof. Supposek cops have a robber-monotone winning strategy in the inert robber game on a digraphG. By Theorem
7.9 this implies that there is a directed elimination orderingC onG of width≤ k− 1. We use the elimination ordering
to describe the winning strategy of2k − 1 cops against a visible robber, thereby establishing the result.

The cops are split into two groups,k cops called theblockersandk− 1 cops called thechasers. Similarly, the cop
moves are split in two phases, a blocking move and a chasing phase.

In the first move,k cops are placed on thek highest elements with respect toC. These cops form the set of
blockers. Let the robber choose some elementv. This concludes the first (blocking) move. We observe:

If u is theC-smallest vertex occupied by a blocker, then every directedpath fromv to a vertex
greater thanu has at least one vertex occupied by a cop.

(∗)

This invariant is maintained by the blocking cops during theplay. Now suppose afterr rounds have been played, the
robber occupies vertexv and the blockers occupy vertices inX so that the invariant (∗) is preserved. Letu be the
C-smallest element inX and letC1, . . . , Cs be the set of strongly connected components ofG[{u′ : u′C u}]. Further,
let @ be a linear ordering onC := {C1, . . . , Cs} so thatCi @ Cj if, and only if, theC-maximal element inCi is
C-smaller than theC-maximal element ofCj . Now the cops move as follows. LetC ∈ C be the component such that
v ∈ C and letw ∈ C be theC-maximal element inC. The cops place thek − 1 cops not currently on the graph on
supp

C
(w). These cops are the chasers. As the chasers approach, the robber has two options. Either he stays within

C or he escapes to a vertex in a different strongly connected componentC′. If the robber runs to a vertexx ∈ C or
x ∈ C′ for someC′ @ C then after the chasers land onS := supp

C
(w) there is no path fromx to a nodeu such that

u B u′ for theC-minimal vertexu′ in S. Hence, the chasers become blockers and the chasing phase iscompleted.
Otherwise, if the robber escapes to aC′ with C @ C′, then the chasers repeat the procedure and move to supp

C
(w′)

CHAPTER 7. KELLY-WIDTH 109

•
v1

��
��

��?
??

?

•
v4

//
//

//
//

/

JJJJJJJJJJJJJJJ // •
v3

��
��
��
��
�

//
//

//
//

/
// • v2

ttttttttttttttt

��
��
��
��
�

•
v5

•
v6

Figure 7.1: GraphG showing the difference between DAG-width and inert robber game

for theC-maximal element inC′. However, as the robber always escapes to a@-larger strongly connected component
and also can not bypass the blockers, this chasing phase mustend after finitely many steps with the robber being on
a vertexv ∈ C for some componentC and the chasers being on supp

C
(w) for theC-maximal element inC. At this

point the chasers become blockers. One of the old blockers isnow placed onw and all others are removed from the
board. The cop onw makes sure that in each such step the robber space shrinks by at least one vertex. By construction,
the invariant in (∗) is maintained. Further, as the robber space shrinks by at least one after every chasing-phase, the
robber is eventually caught by the cops. ut

An immediate consequence of this is that the Kelly-width of agraph bounds the directed tree-width of the graph.

Corollary 7.36. LetG be a directed graph with Kelly-widthk. ThenG has directed tree-width≤ 6k − 2.

Since it is not known whether the number of cops required for awinning strategy in the visible robber game bounds
the number of cops required for a monotone winning strategy,we cannot obtain a similar bound for DAG-width. We
can, however, ask whether we can improve the bound. That is, assuming thatk cops have a robber-monotone winning
strategy against an invisible, inert robber can we define a winning strategy for less than2k − 1 cops in the visible
robber game? Although it might be possible to improve the result, the next theorem shows that we cannot do better
than with 4

3k cops.

Theorem 7.37.For everym ∈ N, there is a graph such that3m cops have a robber-monotone winning strategy in the
inert robber game but no fewer than4m cops can catch a mobile visible robber.

Proof. Consider the graphG in Figure 7.1. We show that onG, 3 cops do not have a (non-monotone winning) strategy
to catch a visible robber, however4 cops do. Consider the partition ofV (G), H =

{
{v1, v2, v4}, {v3}, {v5}, {v6}

}
.

The strategy for the robber against3 cops is to move to any element ofH which is not occupied by a cop. As long
as the robber moves to one of{v1, v4} when the cops occupy{v3, v5, v6}, it will always be possible for him to move
to such an element when the cops move. However4 cops can capture a visible robber with a monotone strategy by
occupying the following sequence of sets of vertices:{v3, v4, v5, v6}, {v2, v3, v5, v6}, {v1, v2, v3}.

On the other hand,3 cops suffice to capture an invisible, inert robber with a robber-monotonestrategy by occupying
the following sequence of sets of vertices:{v4, v5, v6}, {v3, v5, v6}, {v2, v5, v6}, {v2, v3}, {v1, v2, v3}. The result
follows by taking the lexicographic product of this graph with the complete graph onm vertices. ut

Since4 cops can capture a visible robber with a monotone strategy onthe graph in the previous proof, we have the
following:

Corollary 7.38. For all m ∈ N there are graphs of DAG-width4m and Kelly-width3m.

Despite this4
3 bound, for graphs of small Kelly-width we can do better.

Theorem 7.39. For k = 1 or 2, if G has Kelly-widthk, G has DAG-widthk.

CHAPTER 7. KELLY-WIDTH 110

Proof. If G has Kelly-width1, then it must be acyclic, as all guard sets are empty. Thus it has DAG-width1. If G
has Kelly-width2, then it has an elimination orderingC = (v1, v2, . . . , vn) of width 1. A cop-monotone strategy for
two cops against a visible robber is as follows. Initially, let i = n and place one cop onvi. At this point, the robber
is restricted to{v1, . . . , vi−1}. Let j < i be the maximal index such that the robber can reachvj . Place a cop on
vj . After the cop has landed, we claim that the robber is unable to reach bothvi andvj . For otherwise, letr be the
maximal index such that the robber can reachvr (with cops onvi andvj) and fromvr can reachvi (with a cop onvj)
andvj (with a cop onvi). By the maximality ofj, r < j. Let s > r be the first index greater thanr which occurs on a
path fromvr to vi that does not go throughvj , andt > r be the first index greater thanr which occurs on a path from
vr to vj that does not go throughvi. Then from the maximality ofr, s 6= t. Furthermore,{vs, vt} ⊆ supp

C
(r), so

|supp
C

(vr)| > 1, contradicting the width of the ordering. So we can remove the cop from whichever vertex the robber
can no longer reach without changing the robber space, and either the robber is now restricted to{v1, . . . , vj} or the
maximal index which the robber can reach is smaller. Clearly, this is a monotone winning strategy for two cops.ut

We now turn to the converse problem, what can be said about theKelly-width of graphs given their directed
tree-width or DAG-width?

Firstly we observe the following analogue of Proposition 6.7 for Kelly-width.

Proposition 7.40. For any j, k with 2 ≤ j < k, there exists a graphT j
k such that Kelly-width(T j

k) = j and
Kelly-width((T j

k)op) = k.

Proof. Consider the graphT j
k from Proposition 6.7. In the proof of Proposition 6.7, the strategies described for the

cops and the robber are also winning strategies in the inert robber game.2 ut

It follows, using the same argument of Proposition 6.37 thatthere are families of graphs of bounded directed
tree-width and unbounded Kelly-width.

Corollary 7.41. There exist families of digraphs with directed tree-width2 and unbounded Kelly-width.

Our final result is a step towards relating Kelly-width to DAG-width by showing how to translate a monotone
strategy in the visible robber game to a (not necessarily monotone) strategy in the inert robber game.

Theorem 7.42. If G has DAG-width≤ k, thenk cops have a winning strategy in the inert robber game.

Proof. Given a DAG-decomposition(D,X) of G of width k, the strategy fork cops against an invisible, inert robber
is to follow a depth-first search on the decomposition. More precisely, we assume the decomposition has a single root
r, and we have an empty stack of nodes ofD.

1. Initially, place the cops onXr and pushr onto the stack.

2. At this point we assumed is on the top of the stack and the cops are onXd. We next “process” the successors
of d in turn. To process a successord′ of d, we remove all cops not onXd ∩ Xd′ , place cops onXd′ , pushd′

onto the stack, and return to step2. Note that a node may be processed more than once.

3. Once all the successors of a node have been processed, we pop the node off the stack and if the stack is non-
empty, return to step2.

Because the depth-first search covers all nodes of the DAG andhence all vertices of the graph are eventually occupied
by a cop, the robber will be forced to move at some point. Due tothe guarding condition for DAG-decompositions,
when the robber is forced to move this strategy will always force the robber into a smaller region and eventually
capture him. ut

2Indeed, the winning strategy for the robber is winning even if the robber is visible and inert.

CHAPTER 7. KELLY-WIDTH 111

Again we observe that it is unknown if, in the inert robber game, the number of cops required to capture the robber
with a robber-monotone strategy is bounded by the number of cops required to capture him with any strategy. So
this result does not allow us to directly compare Kelly-width and DAG-width. However, we strongly believe that the
number of cops required for monotone strategies is bounded in both the inert robber game and the visible robber game,
giving us the following conjecture:

Conjecture 7.43. The Kelly-width and DAG-width of a digraph lie within constant factors of one another.

Chapter 8

Havens, Brambles and Minors for Directed
Connectivity

In this chapter we present some preliminary work towards a structure theory for directed graphs based on directed
connectivity. The aim of such a structure theory would be to obtain generalizations of some of the significant results for
undirected graphs, for example finding a directed analogue of the Graph Minor Theorem. However, as we show, even
determining some of the basic building blocks of such a structure theory leads to some interesting open problems. We
work on the assumption that DAG-width, Kelly-width and the non-monotone versions of their cops and robber games
are all approximately the same and can therefore be used to measure the directed connectivity of a digraph. Then,
using the premise that DAG-width or Kelly-width measures the complexity of a graph, we consider the following two
questions: What structural features are present in directed graphs which are “complex”?; and what relation on directed
graphs indicates “structural simplification”?

As we observed with Theorem 4.7 the existence of a bramble or ahaven in an undirected graph indicates that
the tree-width is not going to be small. Similarly, Theorems4.7 and 4.11 show that the existence of the natural
generalizations of havens and brambles imply that the directed tree-width is not going to be small. So in order to
address the first question, we consider generalizations of havens and brambles which correspond to DAG-width and
Kelly-width. Although we are unable to show full equivalence as with Theorems 4.7 and 4.11, we can show, via cops
and robber games, that they do provide obstructions for DAG-width and Kelly-width. That is, their existence in a
graph places restrictions on the DAG-width or Kelly-width of that graph.

Towards finding a relation which indicates structural simplification, we consider the problem of extending the
minor relation to directed graphs. As we mentioned in Chapter 4, the minor relation is an important relation in the
structural theory of undirected graphs as it indicates whether one graph is structurally more simple than another. So
having a minor relation for directed graphs is the cornerstone of any digraph structure theory. We argue that the
existing definitions in the literature of minors for directed graphs are not sufficient, in the sense that a structure theory
based on them would not be able to produce similar results to those of undirected graph structure theory. While it may
be the case that there is no appropriate relation for directed graphs, we provide some examples which may take the
investigation further.

8.1 Havens and brambles

The aim of this section is to define various structural properties which may lead to a minimax theorem for DAG-width
and Kelly-width, similar to Theorem 4.7. To achieve this, weintroduce some generalizations of havens and brambles
and show how they relate to DAG-width and Kelly-width. We recall from Chapter 4, the definitions and theorem that
we wish to generalize:

112

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 113

Definition 4.5 (Haven). Let G be an undirected graph andk ∈ N. A haven of orderk in G is a functionβ :
[V (G)]<k → P(V (G)) such that for allX ⊆ V (G) with |X | < k:

(H1) β(X) is a non-empty connected component ofG \X , and

(H2) If Y ⊆ X , thenβ(Y) ⊇ β(X).

Definition 4.6 (Bramble). LetG be an undirected graph. Abramblein G is a setB of connected subsets ofV (G) such
that for all pairsB, B′ ∈ B eitherB ∩B′ 6= ∅, or there exists{u, v} ∈ E(G) with u ∈ B andv ∈ B′. Thewidth of a
brambleB is the minimum size of a set which has a non-empty intersection with every element ofB.

Theorem 4.7([ST93]). LetG be an undirected graph. The following are equivalent:

1. G has tree-width≥ k − 1

2. G has a haven of orderk.

3. G has a bramble of widthk.

We saw with Theorems 4.11 and 4.12, that the natural extension of these definitions to directed graphs – replacing
“connected components” with “strongly connected components” – results in structural properties closely related to
directed tree-width. In this section we introduce some lessobvious extensions that are closer to DAG-width and
Kelly-width. One of the major obstacles to finding such definitions, and the reason why the extensions we consider
are less obvious is that the definitions have to be dependent on edge direction. That is, a bramble or haven of a graph
should not necessarily be a bramble or haven of the graph obtained by reversing the direction of the edges. The above
definitions of haven and bramble do not have obvious extensions which satisfy this property, however the definitions
we introduce next are dependent on edge direction.

Definition 8.1 (D-Haven). Let G be a directed graph andk ∈ N. A D-haven of orderk in G is a functionβ :
[V (G)]<k → P(V (G)) such that for allX ⊆ V (G) with |X | < k:

(DH1) β(X) is a non-empty subset ofV (G \X), and

(DH2) If Y ⊆ X thenβ(Y) ⊇ β(X) and∀y ∈ β(Y), β(X) ∩ Reachβ(Y)(y) 6= ∅.
As suggested by the nomenclature, and as we observed in Chapter 5, on undirected graphs havens describe winning

strategies for the robber in the cops and visible robber game. That is, when the cops are onX , β(X) suggests the
locations the robber should occupy to defeat the cops. The analogous result for the game on directed graphs suggests
that D-havens are the “correct” extension of havens for DAG-width. More precisely,

Proposition 8.2. LetG be a directed graph. The robber can defeatk cops in the visible cops and robber game onG
if, and only if,G has a D-haven of orderk + 1.

Proof. If G has a D-havenβ of orderk + 1, then the strategy for the robber is to remain inβ(X) whenever the cops
are onX . The D-haven axioms guarantee that this is always possible.More precisely, we define the following strategy
for the robber:ρ(X, X ′, R) = ReachG\X′(r′) for somer′ ∈ β(X ′) ∩ ReachG\(X∩X′)(r). We observe that at every
position(X, r), r ∈ β(X) and show that this implies that such a choice is always possible. SinceX ⊇ X ′ ∩ X , it
follows from (DH2) thatr ∈ β(X ∩ X ′). Then, sinceX ′ ⊇ X ∩ X ′, β(X ′) ∩ Reachβ(X∩X′)(r) 6= ∅, soρ is well
defined. Finally, sinceρ(X, X ′, r) ∈ ReachG\(X∩X′)(r) by definition,ρ is a valid strategy for the robber in the cops
and visible robber game.

For the converse, suppose the robber has a winning strategy,ρ, againstk cops. Define, forX ∈ [V (G)]≤k,

β(X) :=
⋃
{R : the robber wins from(X, R) playingρ}.

We show thatβ is a D-haven of orderk + 1. We observe thatρ(∅, X, V (G)) ⊆ β(X), so asρ is a winning strategy,
β(X) is non-empty for allX ∈ [V (G)]≤k. Thus (DH1) holds. For (DH2) we observe from the definition ofthe cops

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 114

•
v1

88•
v2

•
v3

•
v4

xx

Figure 8.1: Graph to show that D-havens may be disconnected

and visible robber game that if the robber can win from(X, R) then he can win from(Y, R) for all Y ⊆ X . Thus, if
Y ⊆ X , thenβ(Y) ⊇ β(X). ut

Immediately from this result and Lemmas 6.18, 6.20 and 6.21,we observe that D-havens behave as we expect
under subgraphs, lexicographic product, and directed union. Also as a consequence of Proposition 8.2, the existence
of a D-haven in a digraph imposes a restriction on the DAG-width of the graph.

Corollary 8.3. LetG be a digraph. IfG has a D-haven of widthk then the DAG-width ofG is at leastk.

Since a D-haven corresponds to a winning strategy for the robber against any cop strategy and DAG-width corre-
sponds to monotone winning strategies, the converse of Corollary 8.3 is equivalent to the monotonicity question for
the cops and visible robber game: ifk cops have a winning strategy, dok cops have a monotone winning strategy? As
there are graphs where more cops are required to capture the robber with a monotone strategy [KO07], we know that
this does not hold in general. However, a result similar to Theorem 4.11 would provide a solution to the more general
monotonicity problem posed in Open Problem 6.12.

Obdržálek [Obd06] observed that the relaxation of connected components in (H1) to subsets in (DH1) is necessary
if we require havens to correspond to strategies for the robber. More precisely, let us say that a D-haven,β, isconnected
if it also satisfies:

(DH1′) β(X) is a non-empty weakly connected component ofG \X .

Proposition 8.4([Obd06]). There exists a directed graphG such that the robber can defeat2 cops in the cops and
visible robber game onG, but there is no connected D-haven of order2 in G.

The graph that illustrates this result is shown in Figure 8.1. It is difficult to define a notion of haven that corresponds
to the inert robber game for two reasons. First, because the motility of the robber is dependent on the move of the
cops, there may be a number of “responses” to a given cop position in this game. So having a function defined only for
sets of cop locations is not going to be sufficient. Secondly,as we observed in Chapters 5 and 7, the cops and robber
game with an invisible robber is essentially a single playergame. Thus there is only one strategy for the robber and it
is either winning or it is not. So having a function which dynamically suggests a strategy for the robber is not going
to be particularly interesting. A more practical approach would be to identify the structural features which are present
when the strategy for the robber is winning. This leads us to the problem of extending the definition of brambles.

Before we introduce the extension of brambles we are interested in, we need to introduce the concept of initial and
terminal components.

Definition 8.5 (Initial and Terminal Component). Let G be a directed graph, andH a strongly connected component
of G. H is aninitial componentif it is closed under predecessors. That is, ifv ∈ V (G) with (v, w) ∈ E(G) for some
w ∈ V (H), thenv ∈ V (H). H is a terminal componentif it is closed under successors. That is, ifv ∈ V (G) with
(w, v) ∈ E(G) for somew ∈ V (H), thenv ∈ V (H).

We denote by Init(G) the set of all vertices in initial components, and Term(G) the set of all vertices in terminal
components. For a subset of verticesB ⊆ V (G) we write Init(B) and Term(B) for Init(G[B]) and Term(G[B])
respectively whenG is clear from the context.

Another way to view initial and terminal components are as the roots and leaves (respectively) of the block graph
of G: the directed acyclic graph with the strongly connected components ofG as vertices and an edge(C, C′) if there
is an edge inG from some vertex inC to some vertex inC′. With this interpretation it is straightforward to show
that initial and terminal components are well-behaved withrespect to the structural relations for directed graphs we
consider important.

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 115

Lemma 8.6. LetG, G′ andG′′ be non-empty directed graphs andC ⊆ G an initial (terminal) component ofG.

1. If G′ is a subgraph ofG with C ∩ V (G′) 6= ∅ then there is an initial (terminal) componentC′ ⊆ G′ such that
C′ ⊆ C.

2. IfG is a directed union ofG′ andG′′ thenC is either an initial (terminal) component ofG1 or an initial (terminal)
component ofG2.

3. If G′ is a directed union ofG andG′′ (directed union ofG′′ andG) thenC is an initial (terminal) component of
G′.

4. If either|C| ≥ 2 or G′ is strongly connected, thenC • G′ is an initial (terminal) component ofG • G′.

5. If G = G′ • G′′ thenπ1(C) = {v : (v, w) ∈ C} is an initial (terminal) component ofG′.

Definition 8.7 (Initial bramble). Let G be a directed graph. Aninitial bramblein G is a setB of subsets ofV (G) such
that for all pairsB, B′ ∈ B and for allx ∈ Init(B), there existsy ∈ Init(B′) such thaty ∈ ReachB∪Init(B′)(x).

Definition 8.8 (Terminal bramble). Let G be a directed graph. Aterminal bramblein G is a setB of subsets of
V (G) such that for all pairsB, B′ ∈ B and for all x ∈ Term(B), there existsy ∈ Term(B′) such thaty ∈
ReachTerm(B)∪B′(x).

Definition 8.9 (Bramble width). Let G be a directed graph andB an initial or terminal bramble inG. Thewidth of B
is the size of the smallest hitting set ofB. That is, the size of the minimalX ⊆ V (G) such thatX ∩ B 6= ∅ for all
B ∈ B.

Although it would appear that initial and terminal bramblesare similar entities, we show that there are graphs
where the smallest width of an initial bramble differs from the smallest width of a terminal bramble. It might also
seem that, since an initial component of a graphG is a terminal component of the graphGop obtained by reversing
the direction of the edges ofG, that an initial bramble inG is a terminal bramble inGop. However, the ordering of
the quantifiers in each of the definitions means that this is not necessarily the case: an initial bramble inG is, in Gop,
a set of subsets such that for all pairsB, B′ and allx ∈ Term(Gop[B]), there existsy ∈ Term(Gop[B′]) such that
x ∈ ReachGop[Term(B′)∪B](y). Before we show how initial and terminal brambles differ, weshow how they correspond
to DAG-width and Kelly-width, and establish some robustness results.

Lemma 8.10. LetG be a directed graph.

1. If G has an initial bramble of widthk then the robber can defeatk−1 cops in the cops and visible robber game.

2. If G has a terminal bramble of widthk then the robber can defeatk− 1 cops in the cops and inert robber game.

Proof. 1: SupposeG has an initial brambleB of width k. Then, for any setX with |X | ≤ k − 1 there existsBX ∈ B
such thatBX ∩X = ∅. The strategy for the robber is to be on some vertex in Init(BX) whenever the cops are located
onX . It is clear from the definition of an initial bramble that such a move is always possible. As the robber is able to
do this forever, it follows that this is a winning strategy for the visible robber againstk − 1 cops.

2: Now supposeG has a terminal brambleB of width k. Again, for any setX with |X | ≤ k − 1 there exists
BX ∈ B such thatBX ∩X = ∅. The “strategy” for the robber is, when he can move and when the cops are onX , to
move to the first element of a strongly connected component ofTerm(BX) that will be occupied by the cops. More
precisely, we show that after every cop move, there existsB ∈ B such that Term(B) is contaminated. Clearly this is
true at the beginning, as every vertex is contaminated. Now suppose the cops are moving fromX to X ′ and for some
B ∈ B and some terminal componentC of G[B], X ∩ C = ∅ and there exists a contaminated vertexv ∈ X ′ ∩ C.
As BX′ ∩ X ′ = ∅, andC is a terminal component, the path in Term(B) ∪ BX′ from v to somew ∈ Term(BX′) is
cop-free. ThusBX′ is now an element ofB such that Term(BX′) is contaminated. ut

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 116

An immediate corollary from the game characterizations of DAG-width and Kelly-width is that initial and terminal
brambles provide obstructions for DAG-width and Kelly-width.

Corollary 8.11. LetG be a directed graph.

1. If G has an initial bramble of widthk thenG has DAG-width≥ k.

2. If G has a terminal bramble of widthk thenG has Kelly-width≥ k.

Unfortunately, it is not known whether the converse to Lemma8.10 holds.
It is relatively straightforward to show that brambles behave manner to the cops and robber games under various

graph operations. For example a bramble of a graph is a bramble of any supergraph, and the width of a bramble in-
creases by an appropriate factor under lexicographic products. This strongly suggests that the converse of Lemma 8.10
does hold.

Conjecture 8.12. LetG be a directed graph.

1. If the robber can defeatk − 1 cops in the cops and visible robber game onG thenG has an initial bramble of
widthk.

2. If the robber can defeatk − 1 cops in the cops and inert robber game onG thenG has a terminal bramble of
widthk.

We observe that since monotonicity is not sufficient in either cops and robber game [KO07], we know that the
converse of Corollary 8.11 does not hold. However, as with D-havens, a result along the lines of Theorem 4.12 would
resolve Open Problems 6.12 and 7.33.

We conclude this section by combining these results with some results from Chapter 7 to show that initial brambles
and terminal brambles are different.

Proposition 8.13. For all m ∈ N, there exists a directed graph with an initial bramble of width 4m but no terminal
bramble of width≥ 3m + 1.

Proof. Consider the graphG in Figure 7.1. As we observed in the proof of Theorem 7.37,3 cops suffice to capture
an inert robber onG. We also showed thatG has an initial bramble of width4:

{
{v1, v2, v4}, {v3}, {v5}, {v6}

}
. The

result follows by taking the lexicographic product of this graph withKm, the complete digraph onm vertices. ut

8.2 Directed minors

In this section we investigate the problem of finding a relation on directed graphs which represents structural simplifica-
tion. Such relations are ubiquitous throughout mathematics, for example in algebra or model theory homomorphisms
describe structural simplifications, and in geometry or topology homeomorphisms are the key structural relations.
Graphs can be viewed both as relational structures and as topological complexes, so there are well-defined notions
of graph homomorphisms and graph homeomorphisms. However,for undirected graphs at least, the minor relation
is arguably the most suitable relation for comparing fundamental graph structural properties such as connectivity and
cyclicity. Intuitively, a graphG is a minor of a graphH if G can be embedded inH modulo connected sets. That is, if
we consider connected sets inH as “vertices”, thenG is a subgraph of this “graph”. More precisely,

Definition 8.14 (Minor). Let G andH be undirected graphs.G is a minor of H, written G ≤ H, if there exists a
functionξ : V (G)→ P(V (H)) which maps distinct vertices to disjoint sets such that:

• For allv ∈ V (G),H[ξ(v)] is a connected graph, and

• For all{v, w} ∈ E(G) there exists{v′, w′} ∈ E(H) such thatv′ ∈ ξ(v) andw′ ∈ ξ(w).

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 117

So why is the minor relation a good indicator of structural simplification? As we observed above, there are well-
defined notions of graph homomorphisms and graph homeomorphisms. A homomorphism preserves relational struc-
ture and a homeomorphism preserves topological shape, so injective homomorphisms or subgraph homeomorphisms
would seem to be reasonable indicators of structural simplification. However, the minor relation subsumes these. We
see from the definition that the minor relation can be considered a generalization of injective graph homomorphisms:
G is a minor ofH if there is a homomorphic-like injective map fromV (G) to connected sets ofH. Presently we will
also show that ifG is homeomorphic to a subgraph ofH thenG is a minor ofH. So the minor relation can be seen as
a generalization of both relational and topological structure simplification. We now turn to the problem of finding an
extension of the minor relation to directed graphs which enjoys similar properties.

The definition of a minor has two obvious extensions to directed graphs: either map vertices to weakly connected
sets or map vertices to strongly connected sets. However, aswe argue below, neither of these truly reflect the notion
of structural simplification that complexity measures likedirected tree-width, DAG-width and Kelly-width suggest. In
the remainder of this section we identify the characteristics of the minor relation that make it useful and we introduce
several definitions of digraph minor relations and compare them against these criteria. First we show how we can
view the minor relation operationally, and how this impliesthat the minor relation is a generalization of subgraph
homeomorphism.

Definition 8.15 (Edge contraction). Let G be a graph, ande = (v, w) ∈ E(G). The graphG′ obtained fromG by
contractinge is defined as:

• V (G′) = V (G) \ {v},

• E(G′) =
(
E(G) ∪ {(u, w) : (u, v) ∈ E(G)} ∪ {(w, u) : (v, u) ∈ E(G)}

)
\ {(u, v), (v, u) : u ∈ V (G)}.

The following result follows easily from the definitions andis often used as an alternative definition of the minor
relation.

Lemma 8.16. LetG andH be undirected graphs. The following are equivalent:

1. G is a minor ofH,

2. G is isomorphic to a subgraph of a graph obtained by contracting edges ofH, and

3. G is isomorphic to a graph obtained by contracting edges of a subgraph ofH.

Proof. 1 ⇒ 2: SupposeG is a minor ofH and letξ : V (G) → P(V (H)) be the function witnessing this. LetH′

be the graph obtained fromH by contracting, for eachv ∈ V (G) the edges inH[ξ(v)]. Now ξ can be viewed as an
injective mapping fromV (G) to V (H′) such that for each{v, w} ∈ E(G), {ξ(v), ξ(w)} ∈ E(H′). That is,ξ is an
embedding ofG inH′, soG is isomorphic to a subgraph ofH′, a graph resulting from contracting edges ofH.

2 ⇔ 3: Let us view the subgraph relation as the operation of deleting edges and isolated vertices. That is,G
is a subgraph ofH if G can be obtained by deleting edges and isolated vertices ofH. We observe that edge and
isolated vertex deletion and edge contraction commute, that is we obtain the same graph independent of the order
of the operations. Thus if we perform all edge contractions first and then all deletions we obtain the same graph by
performing all deletions first followed by all edge contractions and vice versa. Thus any subgraph of a graph obtained
by contracting edges is a graph obtained by contracting edges of a subgraph and conversely.

3 ⇒ 1: SupposeG is isomorphic to a graph obtained by contracting edges ofH′ whereH′ is a subgraph ofH.
For convenience, we will assume thatG is a graph obtained by contracting edges ofH′. For eachv ∈ V (G) define
ξ(v) as the set of verticesw ∈ V (H′) such that there is a path fromw to v consisting of edges which are contracted to
obtainG. From the definition ofξ,H[ξ(v)] = H′[ξ(v)] is connected. Now suppose{v, w} ∈ E(G). It follows from
the definition of edge contractions that there exists{v′, w′} ∈ E(H′) such that there are paths fromv′ to v and from
w′ to w consisting of edges which are contracted to obtainG. That isv′ ∈ ξ(v) andw′ ∈ ξ(w). As V (H′) ⊆ V (H),
h is a function fromV (G) toP(V (H)), soG is a minor ofH. ut

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 118

Indeed, as subgraphs and edge contractions are well-definedfor directed graphs, this lemma suggests the following
natural definition of a minor relation on directed graphs.

Definition 8.17(Minor for digraphs). Let G andH be directed graphs.G is aminor ofH, G ≤ H, if G is isomorphic
to a graph obtained fromH by a sequence of edge and isolated vertex deletions and edge contractions.

It is clear from Lemma 8.16 that this definition is equivalentto the minor relation on the underlying undirected
graphs, hence the notation. That is,

Proposition 8.18. LetG andH be digraphs.G ≤ H if, and only if,G ≤ H.

We also observe that the≤-minor relation corresponds to the weakly connected “natural” generalization of the
minor relation.

Proposition 8.19. LetG andH be digraphs.G ≤ H if, and only if, there exists a functionξ : V (G)→ P(V (H)) such
that:

• if v 6= w thenξ(v) is disjoint fromξ(w),

• for all v ∈ V (G),H[ξ(v)] is a weakly connected graph, and

• for all (v, w) ∈ E(G) there exists(v′, w′) ∈ E(H) such thatv′ ∈ ξ(v) andw′ ∈ ξ(w).

These observations show that the minor relation has a straightforward extension to directed graphs. However, just
the simple extension of tree-width to directed graphs is notan ideal measure of complexity, we argue below that this
definition is not restrictive enough to be a suitable relation for structural simplification for digraphs. In particular
a minor of an acyclic digraph need not be acyclic, which goes against our tenet that acyclic graphs are structurally
the least complex graphs. However, all the minor relations we introduce in the Section 8.2.2 are restrictions of this
relation.

Lemma 8.16 also demonstrates how minors can be seen as a generalization of subgraph homeomorphisms. First
we recall the definition of a subgraph homeomorphism.

Definition 8.20 (Subgraph homeomorphism). Let G andH be (directed) graphs. We sayG is homeomorphic to a
subgraphof H if there is an injective functionη : V (G) → V (H) and a mappingp from edges ofG to pairwise
internal-vertex-disjoint paths inH such that fore = (v, w) ∈ E(G), p(e) is a (directed) path fromη(v) to η(w).

Lemma 8.21. LetG andH be undirected graphs. IfG is homeomorphic to a subgraph ofH thenG is a minor ofH.

Proof. We observe that ifG is homeomorphic to a subgraph ofH, thenG is isomorphic to a graph obtained from a
subgraph ofH by repeatedly replacing vertices of degree2 with an edge joining its neighbours. But this operation
can also be viewed as contracting edges that have at least oneendpoint with degree2. ThereforeG is isomorphic to a
graph obtained by contracting edges of a subgraph ofH, so by Lemma 8.16,G is a minor ofH. ut

8.2.1 What makes a good minor relation?

We now consider the properties we expect a reasonable definition of a minor relation for directed graphs to satisfy.
First and foremost, the relation should respect digraph complexity. That is, ifG is a minor ofH thenG should not be
more structurally complex thanH. But which notion of digraph complexity should we use? As we mentioned at the
start of the chapter we are primarily interested in a relation corresponding to directed connectivity, so DAG-width or
Kelly-width or their associated cops and robber games wouldbe suitable. However, there is also no known appropriate
relation for strong connectivity, so we also consider directed tree-width. In Section 8.2.3 we consider various graph
properties that are preserved under the operation “taking aminor” and use these to identify unsuitable candidates.

The second property we are interested in is being able to obtain generalizations of theorems concerning the minor
relation. In particular, we are concerned with trying to extend two results: the Graph Minor Theorem, which asserts

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 119

that the minor relation is a well-quasi order, and the algorithmic result that for a fixed graphH, determining ifH is
a minor ofG can be decided in cubic time. The latter result implies that any class characterized by a finite set of
excluded minors can be decided in polynomial time, and the former implies that any minor-closed property can be
characterized by a finite set of excluded minors. Although weshow that many of our defined relations fail to satisfy
this property, the investigation raises some interesting questions.

Our final requirement for a reasonable notion of a minor relation for directed graphs is that it should be an extension
of the minor relation for undirected graphs. In particular,if G andH are undirected graphs such thatG is a minor of
H then

←→G should be a minor of
←→H . Furthermore, it should also generalize subgraph homeomorphisms (for directed

graphs). That is, if we replace internal-vertex-disjoint paths with single edges we should obtain a minor of the original
graph. Although many of our defined relations do satisfy boththese requirements, some interesting relations do not,
including the strongly connected “natural” generalization of the minor relation and two relations which occur in the
literature: the butterfly minor relation and the topological minor relation.

8.2.2 Directed minor relations

In this section we define several minor relations for digraphs. We adopt the operational definition of minor implied by
Lemma 8.16 and generate variations by considering different restrictions on the edge contraction operation. For the
results we establish, it is convenient to consider two typesof edge contraction operation: one which contracts a single
edge, and one which contracts multiple edges simultaneously. We call the first kindedge contractionsand the second
set contractions. We observe that when a sequence of edge contractions are performed, it does not matter in which
order they are performed, the resulting graphs are all isomorphic. Thus to “simultaneously” contract a set of edges, we
can contract them individually in some arbitrary order. We now define the edge and set contractions we use to define
our minor relations.

Definition 8.22. Let G be a directed graph ande = (u, v) ∈ E(G).

• We saye can betopologically contractedif either

– u has in-degree1 and out-degree1, or

– v has in-degree1 and out-degree1.

• We saye can bebutterfly contractedif either

– u has out-degree1, or

– v has in-degree1.

• We saye can beD-contractedunless either

– there is a directed path fromu to v edge disjoint from(u, v), or

– there exists two vertex disjoint cyclesC1, C2, each with at least two vertices, such thatu ∈ C1 andv ∈ C2.

Before we introduce the set contractions, we observe that the above definitions of edge contractions are ordered
from most restrictive to least restrictive. That is,

Lemma 8.23. LetG be a directed graph ande = (u, v) ∈ E(G). If e can be topologically contracted thene can be
butterfly contracted, and ife can be butterfly contracted thene can be D-contracted.

Proof. If e can be topologically contracted then clearlye can be butterfly contracted. Now supposee can be butterfly
contracted. Ifu has out-degree1 thene is the only outgoing edge fromu so there is no path fromu to v which is edge
disjoint frome and there is no cycle which containsu and does not containv. Thuse can be D-contracted. Otherwise
v has in-degree1 ande is the only incoming edge tov. Again, there can be no path fromu to v which is edge disjoint
from e and there is no cycle which containsv and does not containu. Soe can be D-contracted. ut

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 120

Definition 8.24. Let G be a directed graph andE ⊆ E(G).

• If E = {(u, v), (v, u)} then the simultaneous contraction ofE is ananti-parallel contraction.

• If G[E] is a strongly connected graph, then the simultaneous contraction ofE is astrong contraction.

Clearly these definitions are also ordered from most restrictive to least restrictive. We include the result for com-
pleteness.

Lemma 8.25. LetG be a directed graph andE ⊆ E(G). An anti-parallel contraction ofE is a strong contraction of
E.

We now combine these edge and set contractions with the subgraph relation to obtain a number of minor relations.

Definition 8.26 (Subgraph minor). Let G andH be directed graphs.G is a subgraph minorof H, G b H, if G is
isomorphic to a graph obtained fromH by a sequence of edge and isolated vertex deletions.G is ananti-parallel
subgraph minorof H, G bAP H, if G is isomorphic to a graph obtained fromH by a sequence of edge and isolated
vertex deletions and anti-parallel contractions.G is astrong subgraph minorof H, G bS H, if G is isomorphic to a
graph obtained fromH by a sequence of edge and isolated vertex deletions and strong contractions.

Definition 8.27 (Topological minor). Let G andH be directed graphs.G is a topological minorof H, G a H, if
G is isomorphic to a graph obtained fromH by a sequence of edge and isolated vertex deletions and topological
contractions.G is ananti-parallel topological minorof H, G aAP H, if G is isomorphic to a graph obtained from
H by a sequence of edge and isolated vertex deletions, and anti-parallel and topological contractions.G is a strong
topological minorof H, G aS H, if G is isomorphic to a graph obtained fromH by a sequence of edge and isolated
vertex deletions, and strong and topological contractions.

Definition 8.28 (Butterfly minor). Let G andH be directed graphs.G is a butterfly minorof H, G � H, if G is
isomorphic to a graph obtained fromH by a sequence of edge and isolated vertex deletions and butterfly contractions.
G is ananti-parallel butterfly minorof H, G �AP H, if G is isomorphic to a graph obtained fromH by a sequence
of edge and isolated vertex deletions, and anti-parallel and butterfly contractions.G is astrong butterfly minorof H,
G �S H, if G is isomorphic to a graph obtained fromH by a sequence of edge and isolated vertex deletions, and
strong and butterfly contractions.

Definition 8.29 (D-minor). Let G andH be directed graphs.G is a D-minor of H, G E H, if G is isomorphic to a
graph obtained fromH by a sequence of edge and isolated vertex deletions and D-contractions.G is ananti-parallel
D-minor of H, G EAP H, if G is isomorphic to a graph obtained fromH by a sequence of edge and isolated vertex
deletions, and anti-parallel and D-contractions.G is astrong D-minorof H, G ES H, if G is isomorphic to a graph
obtained fromH by a sequence of edge and isolated vertex deletions, and strong and D-contractions.

Remark.Unlike the case for the undirected minor relation, the edge and set contractions we have defined here do
not commute with edge and vertex deletion: an edge may not be edge contractible until some other edges have been
deleted, and a set of edges may no longer be set contractible after some edges have been deleted. However, for our
definitions it is the case that the reverse holds: if an edge isedge contractible before some other edges or vertices have
been deleted, then it is still edge contractible after thosedeletions, and if a set of edges is set contractible after some
deletions then it is set contractible before those deletions. So we may assume that to obtain a minor we perform a
sequence of set contractions, followed by a sequence of edgeand isolated vertex deletions, followed by a sequence of
edge contractions.

Before we establish some results, we define a useful functionwhich captures the inverse of edge contraction.

Definition 8.30 (Vertex expansion). Let� be a minor relation, and letG andH be directed graphs such thatG � H.
A �-vertex expansionof G toH is a functionξ : V (G) → P(V (H)) defined to beξn in the following construction.
Let G0 � G1 � . . . � Gn be a sequence of graphs such thatG0 = H, Gn = G andGi+1 is obtained fromGi by a

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 121

E

��
�

�
���

�

a
���

�

b

EAP

��� ???

�AP

��� ???

aAP

��� ??
?

bAP

??
?

ES

��� ???

�S

��� ???

aS

��� ???

bS

???

≤
???

Figure 8.2: Inclusion diagram for the introduced minor relations

single edge deletion, vertex deletion, or edge contraction1. For eachi ≤ n defineξi : V (Gi)→ P(V (H)) as follows.
ξ0(v) = {v}. If Gi+1 is obtained fromGi by contracting(u, v) thenξi+1(v) = ξi(v) ∪ ξi(u) andξi+1(w) = ξi(w)
for all w 6= u, v (recall thatu /∈ V (Gi+1)). Otherwise we letξi+1(w) = ξi(w) for all w ∈ V (Gi+1).

Lemmas 8.23 and 8.25 imply that all the minor relations we have so far defined can be arranged as in the inclusion
diagram of Figure 8.2. Presently we will show that each inclusion in Figure 8.2 is strict, however first we need to show
that these minor relations are well-behaved with respect todirected connectivity.

Theorem 8.31. Let G andH be directed graphs, withG ES H. If k cops can capture a visible robber onH thenk
cops can capture a visible robber onG.

Proof. As a consequence of Lemma 6.18, it suffices to show that the number of cops required decreases after either
a D-contraction or a strong contraction. Letξ be aES-vertex expansion fromG toH. The idea is that if any of the
vertices ofξ(w) is occupied by a cop, then we occupyw with a cop. It is clear that ifG is obtained fromH by strong
contractions only, then this describes a winning strategy for the cops as the robber is more restricted in his movement.
So it suffices to consider the case whenG is obtained fromH by a single D-contraction of the edge(u, v). In this
case, the robber may be able to reach some vertices inG that he could not reach inH by a directed path through the
contraction ofu andv. Let U ⊆ V (H) be the set of verticesw, not includingu, for which there is a path fromu to w
edge disjoint from(u, v), and letV ⊆ V (H) be the set of verticesw, not includingv, for which there is a path from
w to v edge disjoint from(u, v). We observe that after(u, v) is contracted, the robber is able to move from vertices in
V to vertices inU . We argue that he can only do this once.

Since(u, v) can be D-contracted,U andV are disjoint, as otherwise there would be a path fromu to v edge disjoint
from (u, v). Thus, any path fromU to V must include the edge(u, v). For anyx ∈ V , suppose there is a directed path
in G to somey ∈ U such that there is a directed path fromy to somez ∈ V . Since such a path inH must go through
(u, v), it follows that there is a path fromy to u and a path fromv to z. Thusu andy are two distinct vertices in a
cycle, as arev andz, contradicting the assumption that(u, v) could be D-contracted.

The strategy for the cops is now as follows. Play as before, occupyingw ∈ V (G) if some vertex inξ(w) is
occupied. If the robber never moves fromV to U , then each move of the robber can be simulated onH. Otherwise,
if the robber does move fromV to U , he can never return toV , so we can discard this part of the graph and continue
playing the winning strategy on the subgraph ofH. ut

We now have sufficient tools to demonstrate that each minor relation we have defined is distinct from the others,
and that there are no other inclusions other than those we have already identified.

1We treat set contractions as sequences of single edge contractions, soGi might not necessarily be a minor ofGi+1

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 122

�A 6⊆ �B G1 G2

(I) a 6⊆ bS
•• oo

•�� •//
OO •

• ��

•//
XX1111

(II) � 6⊆ aS
• // • //

��

•

• • //oo •

•
��?

??
? •

• • //oo

??���� •

(III) E 6⊆ �S
• // • //

��

•

• // • // •

•
��?

??
? •

• // • //

??���� •

(IV) ≤ 6⊆ ES
•
�� ��?

??
?

• •oo
• •

(V) bAP 6⊆ E
••

• •

•

•

•

1111

(VI) bS 6⊆ EAP •

• •

•

• •

•

•
•

•

•
•

�� //

1111
XX

��
EEoo

33 ��

^̂oo
111 �� ��

FF 00 ��
FF`̀ooqqq MMM

 111111111111111

•

•

• qqq
q

•MMM
M

1111111

Table 8.1: Separating examples of the introduced minor relations

Theorem 8.32. The inclusion diagram of Figure 8.2 is strict and complete.

Proof. To prove the result, it suffices to show the following six inequations:

(I) a 6⊆ bS

(II) � 6⊆ aS

(III) E 6⊆ �S

(IV) ≤ 6⊆ ES

(V) bAP 6⊆ E

(VI) bS 6⊆ EAP

Now consider Table 8.1. We show that for each pair of minor relations(�,�′), G2 � G1 butG2 6�′ G1. It is easy to
see that in each example,G2 � G1. We therefore show thatG2 6�′ G1.

(I) – (III) : We observe that in each example, the graphG2 has only one less edge thanG1. It is easily checked
that deleting any edge fromG1 will not result in the graphG2, thus the only possible way forG2 �′ G1 is from edge
contractions. In (I), by symmetry any edge will suffice. But no single edge is contractible under strong contractions,
thusG2 6bS G1. In (II) and (III), to obtain a vertex of degree4, the only edge which can be contracted is the vertical
edge. However, in (II) both endpoints of this edge have out-degree2 and therefore it cannot be topologically contracted,
and in (III) this edge is neither the only outgoing edge of itstail nor the only incoming edge of its head, thus it cannot

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 123

be butterfly contracted. In both cases it cannot be contracted using a strong contraction, thus in (II)G2 6aS G1, and in
(III) G2 6�S G1.

(IV): This follows directly from Theorem 8.31, asG1 is acyclic andG2 is not.
(V): We observe that it is not possible to D-contract any edge inG1. Thus ifG2 is a D-minor ofG1, G2 must be a D-

minor of some subgraph ofG1 with at least one edge deleted. However, only two cops are required to capture a robber
onG1 with any edge deleted, whereas three cops are required to capture a robber onG2. Thus, from Theorem 8.31,G2

cannot be a D-minor ofG1.
(VI): We observe that it is not possible to D-contract any edge inG1 without first deleting some edges. As

anti-parallel contractions reduce the number of anti-parallel pairs of edges, we cannot obtainG2 fromG1 through anti-
parallel contractions alone. Thus ifG2 E

AP G1, to obtainG2 from G1 we must first delete some edges. However, it is
easy to check that after any edge is deleted fromG1, three cops have a winning strategy to capture a visible robber:
intuitively, removing an edge makes one of the small cycles “weaker” than the others, either by removing one of the
edges which leaves the cycle, or removing one of the edges in the cycle. The strategy for three cops is then to chase
the robber into this weaker cycle, and then use the weakness to capture him. As four cops are required to capture the
robber onG2, it follows from Theorem 8.31 thatG2 6 EAPG1. ut

Remark.Example (IV), which shows that≤ 6⊆ ES , illustrates that a≤-minor of an acyclic graph may not necessarily
be acyclic. This supports our earlier claim that≤ was not restrictive enough to be a reasonable indicator of structural
simplification for directed graphs.

Before we consider some other structural properties which are preserved by the minor relations we have defined,
we show that the relations we have introduced include other digraph relations that we have already considered. First
we show that topological minors correspond to directed subgraph homeomorphisms.

Proposition 8.33. LetG andH be directed graphs.G a H if, and only if,G is homeomorphic to a subgraph ofH.

Proof. Using the proof of Lemma 8.21 we see that ifG is homeomorphic to a subgraph ofH thenG a H, as the
edge contractions used in the proof are all topological contractions. For the converse, supposeG a H. Without loss
of generality, we may assumeG is obtained by a sequence of edge and vertex deletions followed by a sequence of
topological contractions. ThusG is obtained from a subgraphH′ of H by a sequence of topological contractions.
Let ξ : V (G) → P(V (H′)) be aa-vertex expansion. We show howξ can be used to define a (directed) subgraph
homeomorphism. From the definition of topological contraction, we observe that for eachu ∈ V (G), there is at most
oneu′ ∈ ξ(u) with out-degree≥ 1, as otherwise it would not be possible to contractξ(u) to a single vertex. This
means that intuitively,H′[ξ(u)] looks like a star with one central vertex, paths radiating outwards, and a path fromu
to the central vertex. We defineη : V (G) → V (H) by settingη(u) to be either the vertex inξ(u) with more than
one successor, oru if there is no such vertex. We observe the following: if the in-degree ofu is greater than1, then
η(u) = u; there is a directed path inξ(u) fromu to η(u); and there is a directed path inξ(u) fromη(u) to all vertices in
ξ(u) with a successor outside ofξ(u). Now let(u, v) ∈ E(G) be an edge inG. From the definition of edge contraction,
there existsw ∈ ξ(u) such that(w, v) ∈ E(H′). From our observations regardingη(u) andξ(u), it follows that there
exists a path fromη(u) to v. Since there is a path fromv to η(v), it follows that there is a path fromη(u) to η(v).
To show this path is vertex distinct (excluding end-points)from any other, we observe that for anyv′ 6= v such that
(u, v′) ∈ E(G), the path fromη(u) to v′ is disjoint (except forη(u)) to the path fromη(u) to v, and if u′ 6= u is a
predecessor ofv in G, thenη(v) = v, so the paths fromη(u) to η(v) and fromη(u′) to η(v) are disjoint. ut

Now we observe that the strong subset minor relation corresponds to the strongly connected “natural” generaliza-
tion of the minor relation.

Proposition 8.34. LetG andH be digraphs.G bS H if, and only if, there exists an functionξ : V (G) → P(V (H))
which maps distinct vertices to disjoint sets such that:

• for all v ∈ V (G),H[ξ(v)] is a strongly connected graph, and

• for all (v, w) ∈ E(G) there exists(v′, w′) ∈ E(H) such thatv′ ∈ ξ(v) andw′ ∈ ξ(w).

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 124

Proof. Let ξ be abS-vertex expansion ofG in H. From the definition of strong contraction and edge contraction, it
follows thatξ satisfies the requirements. ut

Finally we observe from Lemma 8.16 that if a minor relation allows anti-parallel contractions, then on bidirected
graphs the relation is equivalent to the minor relation for undirected graphs.

Proposition 8.35. LetG andH be undirected graphs, and� a minor relation such that� ⊇bAP . ThenG ≤ H if,
and only if

←→G � ←→H .

8.2.3 Preservation results

Theorem 8.31 showed that all the minor relations we introduced respect complexity as defined by directed connectivity.
We now consider some other structural properties that are preserved under the operation of taking a minor. Our first
result shows that the taking of butterfly minors preserves non-reachability, or equivalently, a butterfly minor vertex
expansion preserves reachability.

Proposition 8.36. Let G andH be digraphs such thatG �S H. Let ξ be a�S-vertex expansion ofG in H. Let
u, v ∈ V (G). If there is a directed path fromu to v then there existsu′ ∈ ξ(u) andv′ ∈ ξ(v) such that there is a
directed path fromu′ to v′.

Proof. Clearly if G is a subgraph ofH then the result holds, and similarly ifG can be obtained fromH by strong
contractions. Thus it suffices to assume thatG can be obtained fromH by butterfly contractions. Letw ∈ V (G) be a
vertex ofG Sinceξ(w) butterfly contracts to a single vertex, it follows that thereexists a vertexw′ ∈ ξ(w) such that
there is a path tow′ from all vertices inξ(w) with in-degree greater than1, and there is a path fromw′ to all vertices
in ξ(w) with out-degree greater than1. Furthermore, there is a path fromw to w′ and a path fromw′ to all vertices in
ξ(w) with a successor not inξ(w). If w0w1 · · ·wn is a path inG from u = w0 to v = wn, letw′

i be the vertex inξ(wi)
which satisfies the above observation. It follows from the definition of edge contraction, that for alli ≥ 0, there is a
path inH from w′

i to w′
i+1 (in ξ(wi) ∪ ξ(wi+1)). Thus there exists a path fromu′ = w′

0 to v′ = w′
n, as required. ut

Example (III) in Table 8.1 shows that Proposition 8.36 does not hold for D-minors. However, D-minors do preserve
a more restrictive structural property: strong connectivity.

Proposition 8.37. Let G andH be digraphs such thatG ES H. Let ξ be aES-vertex expansion ofG in H. Let
u, v ∈ V (G). If there are directed paths fromu to v and fromv to u then there existsu′ ∈ ξ(u) andv′ ∈ ξ(v) such
that there are directed paths fromu′ to v′ and fromu′ to v′.

Proof. As with Proposition 8.36, we observe that we can assume thatG can be obtained fromH by D-contractions.
For w ∈ V (G), we observe from the definition of D-contractions thatH[ξ(w)] takes the following form: a directed
tree, rooted atw, such that ifw1w2 · · ·wn is a path inH with w1, wn ∈ ξ(w), thenwn is an ancestor ofw1 inH[ξ(w)].
For if this were not the case, then it would not be possible to D-contractξ(w) to a single vertex. The result now follows
by expanding the vertices in the cycle containingu andv in a similar way to Proposition 8.36. ut

8.2.4 Algorithmic results

We now consider the algorithmic aspects of the minor relations we have defined. In particular, we are concerned with
the following decision problem:

(G,�)-MINOR

Instance: A directed graphH
Problem: Is G � H?

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 125

In [RS95], it was shown that for undirected graphs and the standard minor relation,(G,≤)-MINOR is solvable in cubic
time, so it is worth investigating if any of the minor relations we have defined enjoy a similar property. Unfortunately,
we show that this is not the case unless NP= PTIME, as the problem is in general NP-complete for most of the
relations we have defined.

Fortune, Hopcroft and Wyllie [FHW80] showed a dichotomy result for the directed subgraph homeomorphism
problem for a fixed pattern graphG . If G is a star, that is there is a unique source or sink which is the tail or head
(respectively) of every edge, then deciding if a given graphwith a given node mapping has a subgraph homeomorphic
toG is solvable in polynomial time. Otherwise it is NP-complete. Not surprisingly, from Proposition 8.33, this result is
partly applicable to(G,a)-MINOR. The difference is that in [FHW80] it is assumed that the nodemapping was given.
That is, they were asking if given a node mapping could be extended to a subgraph homeomorphism. The(G,a)-
MINOR problem corresponds to the case when the node mapping is not given. This case was discussed in [FHW80]
where it was observed that firstly the polynomial time resultcarries over, as there are at most a polynomial number
of node mappings, and secondly with some additional structure in the pattern graph, the node mapping required for
NP-completeness can be forced to be the only possible node mapping, so the NP-completeness result holds for a large
class of directed graphs (but not quite the complement of thestar graphs). Summarizing their results in the terminology
of this chapter gives us:

Theorem 8.38([FHW80]). If G is a directed graph which is a star then(G,a)-MINOR is solvable in polynomial time.

Theorem 8.39([FHW80]). If G is a directed graph with at least four distinct vertices{v1, v2, v3, v4} and edges
(v1, v2) and(v3, v4) such that fori ≤ 4 the degree ofvi is greater than3 and different from the degree ofvj for j 6= i,
then(G,a)-MINOR is NP-complete.

Corollary 8.40. Let� be a minor relation which includesa and letG be a directed graph which satisfies the require-
ments of Theorem 8.39. Then(G,�)-MINOR is NP-complete.

Because of the additional structure required in the patterngraph to show NP-completeness when the node mapping
is not specified, we no longer have the dichotomy result. Indeed it is an interesting problem to investigate the com-
plexity of the problem whenG is neither a star nor a directed graph satisfying the requirements of Theorem 8.39, for
example if the maximum degree of any vertex inG is 3. This gives us the following problem for further investigation.

Open problem 8.41.CharacterizeG,� and the class of graphsH such that(G,�)-MINOR is NP-complete

8.2.5 Well-quasi order results

We conclude this chapter by showing that only a few of the relations we have introduced can be used to generalize
one of the most significant theorems associated with the minor relation: theGraph Minor Theoremof Robertson and
Seymour [RS04]. Recalling the definition of a well-quasi order from Section 1.1.1, the theorem can be stated as:

Theorem 8.42(Graph Minor Theorem [RS04]). The minor relation is a well-quasi order.

In particular this implies that for any infinite set of graphsthere is a pair of graphs such that one is the minor of the
other. From this, it follows that any family of graphs which is closed under the minor relation can be characterized by
a finite list of forbidden minors. That is, ifF is a family of graphs such thatH ∈ F andG ≤ H impliesG ∈ F, then
there exists a finite set of graphs{G1, . . . ,Gm} such thatG ∈ F if, and only if,Gi 6≤ G for all i ≤ m. Together with
the observation that for a fixed graphG, determining ifG is a minor of a given graph can be decided in cubic time, this
we obtain the following important algorithmic consequence.

Corollary 8.43 ([RS04]). LetF be a minor-closed family of graphs. The problem of deciding if G ∈ F can be computed
in cubic time.

Thus it is an interesting problem to see if we can generalize the Graph Minor Theorem to directed graphs. Unfor-
tunately, for most of the minor relations we have defined, this is not the case.

CHAPTER 8. HAVENS, BRAMBLES AND MINORS 126

C3

•

•

•

111111111 C4

••

• •

C5

•

• HHHHH
• vvvvv

•
))

))
)

•

�����

· · ·

Figure 8.3: An infinite anti-chain for theE relation

C⊕
4

••

• •

C⊕
6 •

••

•

• •

C⊕
8

•
••

•

•
• •

•
· · ·

ooOO

// ��

XX1111

//

��

XX1111
// ��

__???
//

�����

OO

��?
??

oo
??���

��

Figure 8.4: An infinite anti-chain for the�S relation

Theorem 8.44.E and�S are not well-quasi orders.

Proof. Consider the sequence of bidirected cyclesC3, C4, C5, . . . pictured in Figure 8.3. Using the same argument as
in the proof of Theorem 8.32, Example (V), it is easy to see that Ci 6ECj for i < j. ThusE is not a well-quasi order.

Now consider the sequence of graphsC⊕
4 , C⊕

6 , . . . pictured in Figure 8.4. It is easy to see that for all eveni ≥ 4,
an edge inC⊕

i can neither be butterfly contracted nor strong contracted, and the deletion of any edge results in a graph
with an acyclic underlying graph. Thus for alli < j, C⊕

i 6�S C⊕
j , and so�S is not a well-quasi order. ut

Chapter 9

Conclusion and Future work

In this dissertation we examined the role of infinite games onfinite graphs in two aspects of complexity: computa-
tional complexity and structural complexity. The researchresolved some unanswered questions in the literature and
opened up some interesting avenues for further research. Weconclude this dissertation by recalling the major results
established, and discussing possible areas for future study.

9.1 Summary of results

In Chapter 1 we stated the two main goals of this dissertation: to investigate the computational complexity of infinite
games on finite graphs, and to use infinite games to define an algorithmically useful notion of structural complexity
for directed graphs. The first of these goals was predominantly addressed in Chapters 2, 3, 6 and 7, while the second
was catered for in Chapters 4 to 8. We now summarize the contribution each chapter made to each goal.

Complexity of Infinite Games

In Chapter 2 we considered the general class of infinite gameson finite graphs. We introduced a generalization of
bisimulation calledgame simulationwhich enables us to translate strategies from one game to another. We then in-
troduced the notion of acondition type, which gives us a general framework for comparing many typesof games
which occur in the literature, for exampleMuller games[Mul63], Rabin games[Rab72],Streett games[Str82] and
parity games[Mos91, EJ91]. The notion oftranslatabilitybetween condition types lets us compare the computational
complexity of two games via the expressibility and succinctness of their winning conditions. We considered the com-
putational complexity of deciding the winner in Muller games. We provided polynomial time algorithms for explicitly
presented Muller games under various restrictions on the family of sets which specified the winning condition, namely
simple games, and games where the condition is an anti-chain. We showed that deciding the winner of win-set games
was PSPACE-complete. Following our work on translatability, it follows that the problems of deciding the winner of
Muller games where the winning condition is specified as a Muller, Zielonka DAG, Emerson-Lei, or a circuit condition
are all also PSPACE-complete, thus closing one of the open problems relating tothe complexity of Muller games that
we discussed in Chapter 1. We showed that the completeness results carries over to arenas of bounded tree-width for
games specified by a Muller condition. We also gave examples of union-closed and upward-closed games for which
deciding the winner is co-NP-complete. We ended the chapterby showing how the lower bounds for deciding win-set
games can be used to establish that the non-emptiness and model-checking problems for Muller automata are also
PSPACE-complete, thereby resolving an open question in the field ofautomata theory.

Our foray into the sticky world of parity games began in Chapter 3, where we analysed one of the best performing
algorithms for deciding parity games in an effort to establish tighter bounds on the running time. We interpreted
the algorithm from a combinatorial perspective, in particular as a method for finding a global sink on an acyclic

127

CHAPTER 9. CONCLUSION AND FUTURE WORK 128

unique sink oriented hypercube. Using techniques from combinatorics, we improved the upper bound for the running
time. We also provided an example which shows that the hypercube orientations resulting from parity games are not
pseudomodular.

In Chapters 6 and 7, we demonstrated how the structure of the arena affects the complexity of deciding the winner
of parity games. We used DAG-decompositions in Chapter 6 andKelly-decompositions in Chapter 7 to produce two
dynamic programming style algorithms for solving parity games. The upshot of such algorithms is that on a class of
arenas of bounded DAG-width or bounded Kelly-width, there is a polynomial time algorithm for deciding the winner
of a parity game. As DAG-width and Kelly-width encompass other graph parameters such as tree-width, this gives us
the largest class of graphs so far known on which parity gamescan be solved in polynomial time.

Complexity by Infinite Games

In Chapter 4 we discussed the properties that a good measure of digraph structural complexity should have. We cited
tree-width as an example to aspire towards, and discussed why tree-width is not suitable as a measure for directed
graphs. We also discussed why the established notion of directed tree-width from [JRST01] is also not entirely suitable.

In Chapter 5 we introduced a framework for defining reasonable structural complexity measures viagraph search-
ing games, a form of the infinite games we have been considering. We showed how these games encompass many
similar games in the literature, including those that can beused to characterize tree-width.

In Chapter 6 we used the work from Chapter 5 to define an extension of tree-width to directed graphs,DAG-
width. Unlike directed tree-width and Kelly-width, the definition of a DAG-decomposition closely resembles tree
decompositions. After showing that cop-monotonicity and robber-monotonicity coincide in this game, we showed that
DAG-width is equivalent to the number of cops required to capture a visible robber with a monotone strategy, thereby
demonstrating that it is a reasonable measure of structuralcomplexity for directed graphs. We also showed that DAG-
width defines an algorithmically useful complexity measureby showing that a number of problems, including deciding
the winner of a parity game, can be solved in polynomial time on graphs of bounded DAG-width. We concluded the
chapter by demonstrating that DAG-width is markedly different from three other measures defined in the literature:
tree-width, directed tree-width and directed path-width.

In Chapter 7 we considered the generalization to directed graphs of three characterizations of tree-width: partial
k-trees, elimination orderings and the cops and inert robbergraph searching game. This results inpartial k-DAGs,
directed elimination orderings, and the cops and inert robber game for directed graphs. We showed that the graph
parameters defined by these three generalizations were all equivalent, and these, in turn, were equivalent to the width
of a decomposition we introduced called aKelly-decomposition. As with DAG-width, we demonstrated the algorithmic
potential of Kelly-width by exhibiting polynomial time algorithms for a number of problems, including deciding the
winner of a parity game, on graphs of bounded Kelly-width. Weconcluded the chapter by showing that, as with
DAG-width, Kelly-width is quite different from tree-width, directed tree-width and directed path-width. However, its
relation to DAG-width is somewhat more complex. We showed that, in the graph searching games which characterize
DAG-width and Kelly-width, a monotone winning strategy forthe cops in one game implies a winning strategy in
the other (with possibly twice as many cops). Without a result in either game relating the number of cops required
for a monotone strategy to the number of cops with a winning strategy, we are unable to compare DAG-width and
Kelly-width directly. However, we do show that there are graphs on which DAG-width and Kelly-width differ (by an
arbitrary amount).

Finally, in Chapter 8 we presented preliminary results towards a directed graph structure theory, based on the
notions of structural complexity we have developed. We introduced generalizations of havens and brambles which
appear to correspond with DAG-width and Kelly-width. The brambles for DAG-width are dual to the brambles for
Kelly-width, suggesting that DAG-width and Kelly-width are very closely connected. We also considered the problem
of extending the minor relation to directed graphs. We introduced a number of distinct relations ranging from the
subgraph relation to the minor relation on the underlying undirected graphs. We showed that these relations do not
enjoy the algorithmic properties of the minor relation, as deciding if a fixed subgraph is a minor of a given graph
is, in general, NP-complete for most of the minor relations we considered. We concluded the chapter by showing

CHAPTER 9. CONCLUSION AND FUTURE WORK 129

that all except two of the minor relations we introduced contain infinite anti-chains. This implies that to consider a
generalization of the Graph Minor Theorem using the minor relations we defined, we need to use either the anti-parallel
D-minor or the strong D-minor relation.

9.2 Future work

The work we have presented in this dissertation raises a number of interesting questions and directions for further
research. We now discuss some of these, roughly in the order they arose during the dissertation.

The exact complexity for deciding Muller games when the winning condition is explicitly presented remains open,
as does the question for union-closed games with an explicitly presented winning condition. We saw in Theorem 2.62
that if the winning condition is an anti-chain then the game can be solved efficiently. Thus it is possible that the
complexity of the former problem can be derived from the complexity of the latter. This would also be an interesting
question to investigate.

The exact complexity for deciding parity games also remainsan interesting open problem. Characterizing the
acyclic unique sink orientations that arise from valuations in parity games could either establish a polynomial time
algorithm for parity games, or give a super-polynomial lower bound for the strategy improvement algorithm.

Monotonicity questions frequently arise in the study of graph searching games. An interesting line of research
would be to characterize the properties of graph searching games necessary for monotonicity to be sufficient. For
example, extending the work of Fomin and Thilikos [FT03]. Ona more specific level, for the cops and visible robber
game on directed graphs an important open problem is finding arelation between the number of cops required for a
monotone winning strategy and the number of cops required for a winning strategy which is not necessarily monotone.
Such a correspondence allows us to compare DAG-width with other parameters we have considered such as D-havens
and Kelly-width. Similarly, finding a relation between the number of cops required for a robber-monotone winning
strategy and the number of cops required for a not necessarily monotone winning strategy in the inert robber game
allows us to compare Kelly-width to other measures.

Two important questions regarding the complexity of DAG-width and Kelly-width still remain open. First is the
question of whether deciding if a digraph has DAG-width at most a given integer is in NP. Second is the question of
whether, for a fixedk if deciding whether a digraph has Kelly-width at mostk is decidable in polynomial time. An
improved bound fromO(nk) on the size of a DAG-decomposition of a graph would benefit thefirst question.

Finally, the preliminary work on a structure theory based ondirected connectivity raises a number of interest-
ing questions. For example, determining the precise relationship between DAG-width, Kelly-width, and initial and
terminal brambles; characterizing the pattern graphsG for which (G,�)-M INOR is solvable in polynomial time; de-
termining if any of the introduced minor relations is a well-quasi order; and characterizing classes of graphs via
forbidden minors.

9.3 Conclusion

In conclusion, this dissertation has made a significant contribution towards the analysis of the complexity of infinite
games and to the development of a notion of structural complexity for directed graphs, and opened up exciting possi-
bilities for future research. We resolved the open questions regarding the exact complexity of deciding Muller games
and Muller automata non-emptiness and model-checking, andwe made substantial progress towards answering the
question for parity games. We introduced two similar measures of structural complexity for directed graphs which
appear to measure thedirected connectivityof a digraph, a metric which lies between weak connectivity and strong
connectivity and is distinct from both. We demonstrated their algorithmic benefits by providing efficient algorithms
for problems not known to be decidable in polynomial time.

Bibliography

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding embedding in a
k-tree.SIAM Journal on Algebraic and Discrete Methods, 8:277–284, 1987.

[Adl05] Isolde Adler. Directed tree-width examples. To appear inJournal of Combinatorial Theory (Series B),
2005.

[AP89] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems restricted to
partial k-trees.DAMATH: Discrete Applied Mathematics and Combinatorial Operations Research and
Computer Science, 23:11–24, 1989.

[Arn85] Stefan Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decompos-
ability — A survey.BIT, 25:2–33, 1985.

[Bar05] János Barát. Directed path-width and monotonicity in digraph searching. To appear inGraphs and
Combinatorics, 2005.

[BDHK06] Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer. DAG-width and parity games. In
Proceedings of the 23rd International Symposium on Theoretical Aspects of Computer Science, pages
524–536, 2006.

[BFK+06] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dimitrios M. Thilikos.
On exact algorithms for treewidth. InProceedings of the European Symposium on Algorithms, 2006.

[BG04] Dietmar Berwanger and Erich Grädel. Entanglement –A measure for the complexity of directed graphs
with applications to logic and games. InProceedings of the 11th conference on Logic Programming and
Automated Reasoning, pages 209–223, 2004.

[BGHK95] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Approximating treewidth,
pathwidth, frontsize, and shortest elimination tree.Journal of Algorithms, 18(2):238–255, 1995.

[BL69] J. Richard Büchi and Lawrence H. Landweber. Solvingsequential conditions by finite-state strategies.
Transactions of the American Mathematical Society, 138:295–311, 1969.

[Bod88] Hans L. Bodlaender. Dynamic programming on graphs of bounded treewidth. InProceedings of the 15th
International Colloquium on Automata Languages and Programming, volume 317 ofLecture Notes in
Computer Science, pages 105–118, 1988.

[Bod96] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.SIAM
Journal on Computing, 25:1305–1317, 1996.

[Bod97] Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. InProceedings of the 22nd Inter-
national Symposium on Mathematical Foundations of Computer Science, volume 1295 ofLecture Notes
in Computer Science, pages 19–36, 1997.

130

BIBLIOGRAPHY 131

[Bre67] R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers, VI:72–78, 1967.

[BRST91] Daniel Bienstock, Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a forest.
Journal of Combinatorial Theory (Series B), 52(2):274–283, 1991.

[BS91] Daniel Bienstock and Paul D. Seymour. Monotonicity in graph searching.Journal of Algorithms,
12:239–245, 1991.

[BSV03] Henrik Björklund, Sven Sandberg, and Sergei Vorobyov. On combinatorial structure and algorithms
for parity games. Technical Report 002, Uppsala University, Department of Information Technology,
January 2003.

[CLR96] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT
Press, 1996.

[Cou90] Bruno Courcelle. Graph rewriting: An algebraic andlogic approach. In J. van Leeuwan, editor,Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Semantics (B), pages 193–242.
Elsevier, 1990.

[Dam94] Mads Dam. CTL∗ and ECTL∗ as fragments of the modal mu-calculus.Theoretical Computer Science,
126(1):77–96, 1994.

[Die05] Reinhard Diestel.Graph Theory. Springer, 3rd edition, 2005.

[DJW97] Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is needed to win
infinite games? InProceedings of the 12th Annual IEEE Symposium on Logic in Computer Science,
pages 99–110, 1997.

[DK05] Reinhard Diestel and Daniela Kühn. Graph minor hierarchies. Discrete Applied Mathematics,
145(2):167–182, 2005.

[DKT97] Nick D. Dendris, Lefteris M. Kirousis, and Dimitrios M. Thilikos. Fugitive-search games on graphs and
related parameters.Theoretical Computer Science, 172(1-2):233–254, 1997.

[EF99] Heinz-Dieter Ebbinghaus and Jörg Flum.Finite Model Theory. Springer, 2nd edition, 1999.

[EJ88] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of programs
(extended abstract). InProceedings for the 29th IEEE Symposium on Foundations of Computer Science,
pages 328–337, 1988.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy (extended ab-
stract). InProceedings for the 32nd Annual Symposium on Foundations ofComputer Science, pages
368–377, 1991.

[EJS01] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model checking for theµ-calculus and its
fragments.Theoretical Computer Science, 258(1–2):491–522, 2001.

[EL85] E. Allen Emerson and Chin-Laung Lei. Modalities for model checking: Branching time strikes back.
In Proceedings of the 12th Annual ACM Symposium on Principles of Programming Languages, pages
84–96, 1985.

[FFN05] Fedor V. Fomin, Pierre Fraigniaud, and Nicholas Nisse. Nondeterministic graph searching: From path-
width to treewidth. InProceedings of the 30th International Symposium on Mathematical Foundations
of Computer Science, volume 3618 ofLecture Notes in Computer Science, pages 364–375, 2005.

BIBLIOGRAPHY 132

[FG00] Fedor V. Fomin and Petr A. Golovach. Graph searching and interval completion.SIAM Journal of
Discrete Mathematics, 13:454–464, 2000. (electronic).

[FHT04] Fedor V. Fomin, Pinar Heggernes, and Jan Arne Telle.Graph searching, elimination trees, and a gener-
alization of bandwidth.Algorithmica, 41(2):73–87, 2004.

[FHW80] Steven Fortune, John E. Hopcroft, and James Wyllie.The directed subgraph homeomorphism problem.
Theoretical Computer Science, 1980.

[FT03] Fedor V. Fomin and Dimitrios M. Thilikos. On the monotonicity of games generated by symmetric
submodular functions.Discrete Applied Mathematics, 131(2):323–335, 2003.

[GJ79] Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[GKP98] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics. Addison-Wesley,
1998.

[GL93] John R. Gilbert and Joseph W. H. Liu. Elimination structures for unsymmetric sparse LU factors.SIAM
Journal of Matrix Analysis and Applications, 14:334–352, 1993.

[GLS01] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and guards: Game theoretic
and logical characterizations of hypertree width. InProceedings of the 20th Symposium on Principles of
Database Systems, pages 195–201, 2001.

[GM06] Martin Grohe and D. Marx. Constraint solving via fractional edge covers. InProceedings of the 17th
Symposium on Discrete Algorithms, pages 289–298, 2006.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata Logics, and Infinite Games,
volume 2500 ofLecture Notes in Computer Science. Springer, 2002.

[Hal76] Rudolf Halin. S-functions for graphs.Journal of Geometry, 8(1–2):171–186, 1976.

[HD05] Paul Hunter and Anuj Dawar. Complexity bounds for regular games. InProceedings of the 30th Inter-
national Symposium on Mathematical Foundations of Computer Science, volume 3618 ofLecture Notes
in Computer Science, pages 495–506. Springer, 2005.

[HK07] Paul Hunter and Stephan Kreutzer. Digraph measures:Kelly decompositions, games, and orderings. In
Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, New York, NY, USA, 2007.
ACM Press.

[HS96] Jaakko Hintikka and Gabriel Sandu. A revolution in logic? Nordic Journal of Philosophical Logic,
1(2):169–183, 1996.

[HSLdW88] Peter L. Hammer, Bruno Simeone, Thomas M. Liebling, and Dominique de Werra. From linear separa-
bility to unimodality: A hierarchy of pseudo-boolean functions.SIAM Journal of Discrete Mathematics,
1(2):174–184, 1988.

[IK02] Hajime Ishihara and Bakhadyr Khoussainov. Complexity of some infinite games played on finite graphs.
In Proceedings of the 28th International Workshop on Graph Theoretical Concepts in Computer Science,
volume 2573 ofLecture Notes in Computer Science. Springer, 2002.

[JPZ06] Marcin Jurdziński, Mike Paterson, and Uri Zwick. Adeterministic subexponential algorithm for solving
parity games. InProceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms, pages 117–
123, 2006.

BIBLIOGRAPHY 133

[JRST01] Thor Johnson, Neil Robertson, Paul D. Seymour, andRobin Thomas. Directed tree-width.Journal of
Combinatorial Theory (Series B), 82(1):138–154, 2001.

[JRST02] Thor Johnson, Neil Robertson, Paul D. Seymour, andRobin Thomas. Addendum to “Directed tree-
width”, 2002.www.math.gatech.edu/∼thomas/PAP/diradd.pdf.

[Jur00] Marcin Jurdziński. Small progress measures for solving parity games. InProceedings of the 17th Annual
Symposium on Theoretical Aspects of Computer Science, volume 1770 ofLecture Notes in Computer
Science, pages 290–301, 2000.

[Kla94] Nils Klarlund. Progress measures, immediate determinacy, and a subset construction for tree automata.
Annals of Pure and Applied Logic, 69(2-3):243–268, 1994.

[KO07] Stephan Kreutzer and Sebastian Ordyniak. Personal communication, April 2007.

[KP86] Lefteris M. Kirousis and Christos H. Papadimitriou.Searching and pebbling.Theoretical Computer
Science, 47(3):205–218, 1986.

[LaP93] Andrea S. LaPaugh. Recontamination does not help tosearch a graph.Journal of the ACM, 40(2):224–
245, 1993.

[Liu90] Joseph W. H. Liu. The role of elimination trees in sparse factorization.SIAM Journal of Matrix Analysis
and Applications, 11(1):134–172, 1990.

[LTMN02] Salvatore La Torre, Aniello Murano, and Margherita Napoli. Weak Muller acceptance conditions for
tree automata. InProceedings of the 3rd International Workshop on Verification, Model Checking and
Abstract Interpretation, volume 2294 ofLecture Notes in Computer Science, pages 240–254. Springer,
2002.

[Mar75] Donald A. Martin. Borel determinacy.Annals of Mathematics, 102:363–375, 1975.

[McN66] Robert McNaughton. Testing and generating infinitesequences by a finite automaton.Information and
Control, 9(5):521–530, 1966.

[McN93] Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic,
65(2):149–184, 1993.

[Mos91] Andrzej Wlodzimierz Mostowski. Games with forbidden positions. Technical Report 78, Instytut
Matematyki, Uniwersytet Gdański, Poland, 1991.

[MS99] Yishay Mansour and Satinder P. Singh. On the complexity of policy iteration. InUAI ’99: Proceedings
of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden, July 30-August
1, 1999, pages 401–408, 1999.

[MTV07] Daniel Meister, Jan Arne Telle, and Martin Vatshelle. Characterization and recognition of digraphs of
bounded kelly-width. To appear in proceedings of WG, 2007.

[Mul63] David E. Muller. Infinite sequences and finite machines. InProceedings of the 4th IEEE Symposium on
Switching Circuit Theory and Logical Design, pages 3–16, 1963.

[NRY96] Anil Nerode, Jeffery B. Remmel, and Alexander Yakhnis. McNaughton games and extracting strategies
for concurrent programs.Annals of Pure and Applied Logic, 78(1-3):203–242, 1996.

[Obd03] Jan Obdržálek. Fast mu-calculus model checking when tree-width is bounded. InProceedings of 15th
International Conference on Computer Aided Verification, volume 2725 ofLecture Notes in Computer
Science, pages 80–92. Springer, 2003.

BIBLIOGRAPHY 134

[Obd06] Jan Obdržálek. DAG-width: Connectivity measurefor directed graphs. InProceedings of the 17th
ACM-SIAM Symposium on Discrete Algorithms, pages 814–821, 2006.

[Pap95] Christos H. Papadimitriou.Computational Complexity. Addison-Wesley, 1995.

[Par78] T. D. Parsons. Pursuit-evasion in a graph. InTheory and applications of graphs, volume 642 ofLecture
Notes in Mathematics, pages 426–441. Springer, 1978.

[Rab72] Michael O. Rabin. Automata on infinite objects and church’s problem.American Mathematical Society,
1972.

[Ros70] Donald J. Rose. Triangulated graphs and the elimination process.Journal of Mathematical Analysis and
Applications, 32:597–609, 1970.

[RS82] Arnold L. Rosenberg and Ivan Hal Sudborough. Bandwidth and pebbling.Computing, 31:115–139,
1982.

[RS83] Neil Robertson and Paul D. Seymour. Graph minors I: Excluding a forest.Journal of Combinatorial
Theory (Series B), 35:39–61, 1983.

[RS84] Neil Robertson and Paul D. Seymour. Graph minors III:Planar tree-width.Journal of Combinatorial
Theory (Series B), 36:49–63, 1984.

[RS95] Neil Robertson and Paul D. Seymour. Graph minors XIII: The disjoint path problem.Journal of Com-
binatorial Theory (Series B), 63:65–110, 1995.

[RS04] Neil Robertson and Paul D. Seymour. Graph minors XX: Wagner’s conjecture.Journal of Combinatorial
Theory (Series B), 92:325–357, 2004.

[RT75] Donald J. Rose and R. Endre Tarjan. Algorithmic aspects of vertex elimination. InProceedings of the
seventh annual ACM Symposium on Theory of Computing, pages 245–254, 1975.

[RT78] Donald J. Rose and R. Endre Tarjan. Algorithmic aspects of vertex elimination on directed graphs.SIAM
Journal of Applied Mathematics, 34(1):176–197, 1978.

[Saf05] Mohammad Ali Safari. D-width: A more natural measure for directed tree width. InProceedings of
the 30th International Symposium on Mathematical Foundations of Computer Science, volume 3618 of
Lecture Notes in Computer Science, pages 745–756. Springer, 2005.

[SS05] Ingo Schurr and Tibor Szabó. Jumping doesn’t help inabstract cubes. InProceedings of the 11th
International Integer Programming and Combinatorial Optimization Conference, pages 225–235, 2005.

[ST93] Paul D. Seymour and Robin Thomas. Graph searching, and a min-max theorem for tree-width.Journal
of Combinatorial Theory (Series B), 58:22–33, 1993.

[Str82] Robert S. Streett. Propositional dynamic logic of looping and converse is elementarily decidable.Infor-
mation and Control, 54(1-2):121–141, 1982.

[SW01] Tibor Szabó and Emo Welzl. Unique sink orientationsof cubes. InProceedings for the 42nd Annual
Symposium on Foundations of Computer Science, pages 547–555, 2001.

[Tho02] Robin Thomas. Directed tree-width. Slides from a lecture at the Re-
gional NSF-CBMS Conference on Graph Structure and Decomposition, 2002.
www.math.gatech.edu/∼thomas/SLIDE/CBMS/dirtrsl.pdf.

BIBLIOGRAPHY 135

[VJ00a] Jens Vöge and Marcin Jurdziński. A discrete strategy improvement algorithm for solving parity games.
In Proceedings of 12th International Conference on Computer Aided Verification, volume 1855 ofLec-
ture Notes in Computer Science, pages 202–215. Springer, 2000.

[VJ00b] Jens Vöge and Marcin Jurdziński. A discrete strategy improvement algorithm for solving parity games.
Technical Report 00-48, BRICS, 2000.

[WH88] Kathy Williamson Hoke. Completely unimodal numberings of a simple polytope.Discrete Applied
Mathematics, 20:69–81, 1988.

[Yan97] M Yannakakis. Computational complexity. In Emile Aarts and Jan K. Lenstra, editors,Local search in
combinatorial optimization, pages 19–55. Princeton University Press, 1997.

[Zie98] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite
trees.Theoretical Computer Science, 200:135–183, 1998.

