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We present a construction which, under suitable assumptions, takes a model of Moggi’s computational

λ-calculus with sum types, effect operations and primitives, and yields a model that is adequate and

fully abstract. The construction, which uses the theory of fibrations, categorical glueing, ⊤⊤-lifting, and
⊤⊤-closure, takes inspiration from O’Hearn & Riecke’s fully abstract model for PCF. Our construction can

be applied in the category of sets and functions, as well as the category of diffeological spaces and smooth

maps and the category of quasi-Borel spaces, which have been studied as semantics for differentiable and

probabilistic programming.
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1 INTRODUCTION

Two programs are contextually equivalent if they evaluate to the same result (with the same effect)

in all program contexts. This natural notion of equality makes precise the intuitive ‘sameness’ a

programmer is generally interested in, for example for optimization or compilation. However, the

quantification over all program contexts makes establishing contextual equivalence notoriously

difficult. A wide variety of techniques have been proposed to mitigate this difficulty: in this work

we focus on a particular strand, namely the construction of fully abstract denotational models.
A denotational semantics assigns a mathematical object (e.g. a set-theoretic function) to each term

or program construct. Two terms are denotationally equal if they are assigned the same denotation.

If any two terms with the same denotation are contextually equivalent, a model is adequate; if any
two contextually-equivalent terms have the same denotation, it is fully abstract. Thus, adequacy
and full abstraction roughly correspond to soundness and completeness in logic: in an adequate
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and fully abstract model, denotational equality completely characterises contextual equivalence.

By constructing fully abstract models, one reduces contextual equivalence to denotational equality.

In this paper we construct fully abstract models for a wide class of languages with effects encoded
by monads (à la Moggi [1989, 1991]), including set-theoretic state (Sec. 9), measure-theoretic proba-

bilistic programming (Sec. 11.1) and state in differentiable neural network programming (Sec. 11.2).

Our main theorem (Thm. 10.2) says the following. Suppose one chooses an effect (e.g. global state)
and a signature of operations (e.g. operations for reading and writing to memory), as well as a

semantic model consisting of a category M, a monad, and a denotation for each operation. Then,

subject to suitable conditions onM, one can construct an adequate and fully abstract model in

which the morphisms are maps inM preserving certain predicates. Our construction is inspired

by that of O’Hearn and Riecke [1995], so we call it the OHR construction.

1.1 First steps towards the OHR construction

Much of the preceding work on full abstraction has focussed on languages with recursion (see

Sec. 1.3), but even set-theoretic models for simple languages can fail to be fully abstract. The next

example, which we learned from C. Matache & S. Staton, shows the natural model of read-only

state for a global one-bit reference cell is not fully abstract. For now we use notation rather loosely.

Example 1.1. Consider a language with a type bool of booleans and a signature containing terms

tt and ff for the booleans, an operation read of type (1 → bool) reading from the reference cell,

and operations for the usual logical operations on booleans. This language has a natural semantic

interpretation in the category Fin of finite sets and functions. We take Fin rather than the large

category of Set of all sets and functions to avoid size issues later on (see Sec. 8); this does not affect

the model. On bool, set ⎜bool⨆︁ := 2 = {0, 1}. Programs are interpreted using the reader monad
R𝑋 := (2 ⇒ 𝑋 ): a term (Γ ⊢ 𝑀 : 𝜎) is denoted by a function ⎜Γ⨆︁ → R⎜𝜎⨆︁ whose values are
functions from the state of the read-only bit to the end result. Product types are interpreted using

the cartesian product of sets, and arrow types by sets of functions: ⎜𝜎 → 𝜏⨆︁ := (⎜𝜎⨆︁⇒ R⎜𝜏⨆︁). In
particular, the denotation of a closed program of type 𝜎 may be identified with an element of R⎜𝜎⨆︁.
The idea is that programs are parametrised by the value of the reference cell. For example,

⎜read ()⨆︁ = id2: if the reference cell contains 𝑖 , the read operation returns 𝑖 . Similarly, the program(
(read ()) or ¬(read ())

)
reading from the state twice, negating one result, and taking the disjunc-

tion, is interpreted by const1, the constant function at 1: the result is 1 no matter what is stored in

the cell.

This defines a semantic model: the category is Fin, the monad is R, and operations are interpreted

as sketched above. Now consider the following closed terms of type ((1 → bool) → bool) → bool:

𝑀 := 𝜆𝑓 .(𝑓 𝜆𝑥 .tt) or (𝑓 𝜆𝑥 .ff) and 𝑀 ′
:= 𝜆𝑓 .(𝑓 read) or

(
𝑓 (𝜆𝑥 .¬(read ()))

)
(1)
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Semantically,𝑀 and𝑀 ′
are interpreted by elements of R

( (
(1 ⇒ R2) ⇒ R2

)
⇒ R2

)
. As the state

can only be read, and never changed, it is intuitively clear that𝑀 and𝑀 ′
are contextually equivalent

(we give a proof using our construction in Lemma 9.1). However, ⎜𝑀⨆︁ ≠ ⎜𝑀 ′⨆︁: if we define

𝜅 : (1 ⇒ R2) → R2 by 𝜅 (𝑔) = const1 if 𝑔(∗) = const1 and 𝜅 (𝑔) = const0 otherwise, then for any

𝑖, 𝑗 ∈ 2 one has ⎜𝑀⨆︁(𝑖) (𝜅) ( 𝑗) = 1 but ⎜𝑀 ′⨆︁(𝑖) (𝜅) ( 𝑗) = 0.

This example highlights the main obstacle to constructing fully abstract models. Typically, a

denotational model contains “counterexamples to contextual equivalence”: morphisms such as

𝜅 which can be used to distinguish the denotations of contextually equivalent terms. A classic

example is the parallel-or function, which is commonly used to show the domains model of PCF is

not fully abstract [Plotkin 1977]. To obtain a fully abstract model from a non-fully-abstract one,

therefore, we need to remove all the counterexamples to contextual equivalence.

How might we refine Ex. 1.1 to remove 𝜅? Intuitively, 𝜅 cannot correspond to a program because

it uses too much information. To compute 𝜅 (𝑔) one must verify that 𝑔(∗) returns 1 both when

the reference cell contains 0 and when the reference cell contains 1. In other words, 𝜅 must know

how 𝑔 behaves in every possible state. But the state is read-only, so programs cannot do this. This

suggests that we should restrict to morphisms which do not use such extra information. One

way to do this is to construct a new, refined model in which objects are paired with relations

and maps are required to preserve these relations. In Ex. 1.2 we outline such a model, again due

to C. Matache & S. Staton. Instead of taking just sets, the objects are sets paired with relations

𝑅0 and 𝑅1 which constrain the behaviour of morphisms when the reference cell contains 0 and

1, respectively.

Example 1.2. Let LFin be the category with objects given by triples (𝑋, 𝑅0, 𝑅1), where𝑋 ∈ Fin and

𝑅0, 𝑅1 ⊆ 𝑋 2
are binary relations on 𝑋 , and morphisms 𝑓 : (𝑋, 𝑅0, 𝑅1) → (𝑌, 𝑆0, 𝑆1) given by maps

𝑓 : 𝑋 → 𝑌 on the carrier sets which preserve both relations: if (𝑥, 𝑥 ′) ∈ 𝑅𝑖 then (𝑓 𝑥, 𝑓 𝑥 ′) ∈ 𝑆𝑖 . This
category has enough structure to model the calculus: it is cartesian closed and has a (strong) monad

R̂ defined by R̂(𝑋, 𝑅0, 𝑅1) :=
(
R𝑋, R̂(𝑅0), R̂(𝑅1)

)
, where (ℎ,ℎ′) ∈ R̂(𝑅𝑖) if and only if (ℎ 𝑖, ℎ′ 𝑖) ∈ 𝑅𝑖 .

We give a denotational semantics to programs in this category by interpreting bool as 𝑙 (bool) :=(
2, {(0, 0), (1, 1)}, {(0, 0), (1, 1)}

)
; this extends to a semantic interpretation of every type using the

cartesian closed structure, and the interpretations of the primitives and operations in Fin all define

morphisms in LFin with respect to this new structure. Then one obtains an interpretation in LFin

of every term using the cartesian closed structure and the monad R̂. We denote the interpretation

of (Γ ⊢ 𝑀 : 𝜎) in LFin by 𝑙⎜Γ ⊢ 𝑀 : 𝜎⨆︁ to distinguish it from the interpretation in Fin.
Now, 𝜅 is not a morphism 𝑙⎜1 → bool⨆︁ → R̂(𝑙⎜bool⨆︁) in LFin. Writing 𝑅𝜎

0
and 𝑅𝜎

1
for the

two relations in 𝑙⎜𝜎⨆︁, then (
𝜆𝑥 . id2, 𝜆𝑥 . const1

)
∈ 𝑅1→bool

1
but

(
𝜅 (𝜆𝑥 . id2), 𝜅 (𝜆𝑥 . const1)

)
=

(const0, const1) is not in 𝑅bool
1

. In fact, this is sufficient to show 𝜅 is not the denotation of any
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term in the Fin-model of Ex. 1.1. To see this, note the forgetful functor U : LFin → Fin :

(𝑋, 𝑅0, 𝑅1) ↦→ 𝑋 strictly preserves the semantic interpretation: U(𝑙⎜Γ ⊢ 𝑀 : 𝜎⨆︁) = ⎜Γ ⊢ 𝑀 : 𝜎⨆︁
for every term. If 𝜅 were definable, so that 𝜅 = ⎜𝑥 : 1 → bool ⊢ 𝐾 : bool⨆︁, we would get 𝜅 =

⎜𝑥 : 1 → bool ⊢ 𝐾 : bool⨆︁ = U(𝑙⎜𝑥 : 1 → bool ⊢ 𝐾 : bool⨆︁). Since U(𝑓 ) = 𝑓 , this entails 𝜅 is a map

in LFin, a contradiction.

The model just sketched is an improvement on that in Ex. 1.1: we have removed the counterex-

ample to contextual equivalence 𝜅. However, this success is only partial. Even though 𝜅 is not a

morphism in LFin, it is still an element of the function space. Since 𝜅 ∈ ⎜(1 → bool) → bool⨆︁ in
Fin and the forgetful functor preserves the semantic interpretation, 𝜅 ∈ U(𝑙⎜(1 → bool) → bool⨆︁).
But then U(𝑙⎜𝑀⨆︁) (𝑖) (𝜅) = ⎜𝑀⨆︁(𝑖) (𝜅) ≠ ⎜𝑀 ′⨆︁(𝑖) (𝜅) = U(𝑙⎜𝑀 ′⨆︁) (𝑖) (𝜅). Since U is faithful, it fol-

lows that 𝑙⎜𝑀⨆︁ ≠ 𝑙⎜𝑀 ′⨆︁: even though we’ve cut 𝜅 out of our semantic model, its existence in the

function space is sufficient to distinguish the denotations of contextually equivalent terms. We

solve this using the notion of concreteness (cf. O’Hearn and Riecke [1995]).

1.1.1 Cutting down the function space: concreteness. We start by expressing the property “𝜅 is not

a morphism in LFin but it is an element of the function space” in categorical terms.

Lemma 1.1. The set map ⌜𝜅⌝ : 1 → ⎜(1 → bool) → bool⨆︁ : ∗ ↦→ 𝜅 does not define a morphism
from the terminal object to 𝑙⎜(1 → bool) → bool⨆︁ in LFin.

This lemma suggests that we need to restrict our function spaces to consist only of those elements

that are ‘named’ by a a morphism from the terminal object (a global element) in LFin. We do this

by restricting our attention to the subcategory of concrete objects.

Definition 1.1. An object 𝑋 := (𝑋, 𝑅0, 𝑅1) ∈ LFin is concrete if for every 𝑥 ∈ 𝑋 the corresponding

global element ⌜𝑥⌝ : 1 → 𝑋 in Fin lifts to a global element ⌜𝑥⌝ : 1 → 𝑋 in LFin.

Explicitly, (𝑋, 𝑅0, 𝑅1) is concrete if for every 𝑥 ∈ 𝑋 the pair (𝑥, 𝑥) is in both 𝑅0 and 𝑅1. Write CFin

for the full subcategory of LFin consisting of just the concrete objects. This category has enough

structure to be a semantic model because it is a reflective and coreflective subcategory of LFin: the

inclusion 𝑗 : CFin ↩→ LFin has both left and right adjoints. The left adjoint K adds the diagonal:

K(𝑋, 𝑅0, 𝑅1) :=
(
𝑋, 𝑅0 ∪ {(𝑥, 𝑥)

�� 𝑥 ∈ 𝑋 }, 𝑅1 ∪ {(𝑥, 𝑥)
�� 𝑥 ∈ 𝑋 }

)
(2)

The right adjoint H, by contrast, cuts down the carrier set. It takes (𝑋, 𝑅0, 𝑅1) to the object with

carrier

{
𝑥 ∈ 𝑋

�� (𝑥, 𝑥) ∈ 𝑅0 and (𝑥, 𝑥) ∈ 𝑅1
}
and relations given by restricting 𝑅0 and 𝑅1 to this set.

We can now give the structure for the semantic model. The interpretation of bool in LFin is

concrete, so the interpretation of base types and constants in LFin restricts to CFin. Next, the monad

R̂ induces a strong monad on CFin with underlying functorHR̂ 𝑗 via the adjunction 𝑗 ⊣ H. Finally, by
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the general theory of (co)reflective subcategories, CFin is a cartesian closed category. Products are

computed as in LFin but exponentials are not: the function space (𝑋 ⇒CFin 𝑌 ) in CFin is obtained

by applying H to the function space ( 𝑗𝑋 ⇒LFin 𝑗𝑌 ) in LFin. Thus, the function space in CFin is a

version of that in LFin which has been ‘cut down’ by H. The next result makes this explicit.

Lemma 1.2. For any 𝑋,𝑌 ∈ CFin the carrier set of (𝑋 ⇒CFin 𝑌 ) is isomorphic to LFin( 𝑗𝑋, 𝑗𝑌 ).

The lemma says that we may identify elements of the function space (𝑋 ⇒CFin 𝑌 ) with mor-

phisms in LFin. In particular, unwinding the isomorphism shows that, since 𝜅 is not a morphism in

LFin, it cannot be an element of the function space in CFin. This also explains why the forgetful func-

tor U : CFin → Fin cannot preserve exponentials—and hence the semantic interpretation—even

though it does preserve products: in general LFin(𝑋,𝑌 ) ⫋ Fin(𝑋,𝑌 ) = (𝑋 ⇒ 𝑌 ).

Remark 1.1. The requirement that U does not preserve the semantic interpretation is necessary.

If D is a fully abstract semantic model and the functor 𝐹 : D → Fin preserves the semantic

interpretation, then the denotations in D of the terms 𝑀 and 𝑀 ′
in (1) must be equal (by full

abstraction) but their images under 𝐹 , namely ⎜𝑀⨆︁ and ⎜𝑀 ′⨆︁, are not (by Ex. 1.2): a contradiction.

One might hope that the semantic model on CFin is fully abstract. However, this is not the case.

Although we have cut 𝜅 out of both the hom-sets and the function spaces, other counterexamples to

contextual equivalence remain: the notion of ‘relation’ employed in LFin is too weak. Nonetheless,

the construction of CFin highlights the two sufficient conditions we will rely on to obtain full

abstraction in our OHR construction, and provides a template for how to go about ensuring them.

1.1.2 Sufficient conditions for full abstraction. Our construction of CFin had two stages: first, to

remove the counterexample to contextual equivalence 𝜅 from being a morphism, then to remove it

from the function space. Each stage corresponds to a condition we shall require for full abstraction.

First we want to prevent any counterexamples to contextual equivalence from being morphisms.

Intuitively, such counterexamples are morphisms that provide information which is not available

within the syntax. It is therefore plausible that if every map ⎜Γ⨆︁ → 𝑇 ⎜𝜎⨆︁ is definable—that is,
the denotation of some term—then no counterexamples to contextual equivalence can exist. A

semantic model satisfying this property is called fully complete [Abramsky and Jagadeesan 1994].

Next we want to phrase the property achieved by concreteness as a condition on the underlying

category. One way to describe the problem caused by Lemma 1.1 is that in LFin we can have 𝑙⎜𝑀⨆︁ ≠
𝑙⎜𝑀 ′⨆︁ even though 𝑙⎜𝑀⨆︁ ◦ 𝑔 = 𝑙⎜𝑀 ′⨆︁ ◦ 𝑔 for every global element 𝑔 : 1 → 𝑙⎜(1 → bool) → bool⨆︁.
Hence 𝑙⎜𝑀⨆︁ and 𝑙⎜𝑀 ′⨆︁ may agree on the denotation of every closed term but still not be equal.

This is the property we want to outlaw: we require our semantic model to be well-pointed, so two

maps 𝑓 , 𝑓 ′ : 𝑋 → 𝑌 are equal iff 𝑓 ◦ 𝑔 = 𝑓 ′ ◦ 𝑔 for every 𝑔 : 1 → 𝑋 (cf. Freyd [1972]; Lawvere
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[2006]). Indeed, the step from LFin to CFin restricts a non-well-pointed category to a well-pointed

one.

Even though we have only provided informal motivation, full completeness and well-pointedness

are actually sufficient to guarantee full abstraction: see Prop. 3.1.

1.1.3 A template for the OHR construction. Even though CFin is not fully abstract, it does highlight

the two key steps our OHR construction will take. We therefore finish our exploration of CFin by

presenting its construction in abstract terms. At this stage the details of the definitions are not

important: instead one should focus on the broad outline, because the OHR construction will have

the same shape. For a more detailed, but still high-level, overview see Sec. 2.

LFin may be constructed using fibrations for logical relations [Katsumata 2005, 2013]. These build

on the observation of Hermida [1993] and Jacobs [1999] that properties of programming languages

are naturally described using (Grothendieck) fibrations, and axiomatise the structure required to

study logical relations in category-theoretic terms. At this stage our main example arises from

the subobject fibration cod : Sub(Fin) → Fin. The objects of Sub(Fin) are pairs of finite sets

(𝑋,𝐴) such that 𝐴 ⊆ 𝑋 : we think of 𝐴 as a unary predicate on 𝑋 . Morphisms (𝑋,𝐴) → (𝑋 ′, 𝐴′)
are functions 𝑓 : 𝑋 → 𝑋 ′

which preserve the predicates. The functor cod takes (𝑋,𝐴) to the

superset 𝑋 .

One obtains LFin by change-of-base along the functor Δ : 𝑋 ↦→ (𝑋,𝑋 ) : Fin → Fin × Fin. This
means LFin is the category constructed as the pullback in Figure 1a. The theory of fibrations for

logical relations guarantees that LFin is cartesian closed and that U strictly preserves this structure.

The construction is completed by restricting to the full subcategory of concrete objects, as shown.

Although we have yet to give the relevant definitions—we sketch these in Sec. 2—Figure 1b

shows our OHR construction takes the same form. The category C is constructed by choosing

an appropriate fibration for logical relations, applying change-of-base, then restricting to the full

subcategory of concrete objects. Choosing I appropriately gives the OHR model ohr(M).

CFin LFin Sub(Fin) × Sub(Fin)

Fin Fin × Fin

HR̂𝑗

⌜

R̂

K⊣⊣

H

U cod× cod

R

Δ

(a) The construction of CFin

C K ∏
𝑖∈I Sub(C𝑖

∧
)

M ∏
𝑖∈I C𝑖

∧

W:=H𝑇 𝑗

⌜

𝑇

K⊣⊣

H

U

∏
𝑖∈I cod

𝑇
⟨N𝐹𝑖

⟩
𝑖∈I

(b) The OHR construction

Fig. 1. The construction of CFin compared to the OHR construction
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1.2 This paper

We construct a fully abstract model for λ+
c
, an extension of Moggi’s computational λ-calculus with

sum types, primitives, and effect operations. Our main result is that, for any model of λ+
c
satisfying

suitable conditions, the OHR construction over that model exists and is fully abstract (Thm. 10.2).

We take an abstract, category-theoretic approach so that our construction is parametric in the

input model and works for any choice of monadic effect.

We start without sum types (Secs. 7 and 8), then refine the construction to include them (Sec. 10).

As in O’Hearn & Riecke’s work, the maps in ohr(M) are maps inM preserving a certain class

of relations, the carrier of the function space is a sub-space of the function space inM, and the

canonical functor ohr(M) → M strictly preserves sums and products (but not exponentials,
cf. Remark 1.1). Thus, M and ohr(M) are tightly connected: we explore this in Sec. 9. Our

development makes use of the abstract framework of fibrations for logical relations and logical
relations of varying arity (Sec. 4), as well as an analysis of the definability predicate for λ+

c
over an

arbitrary model (Sec. 5). We also give a bird’s-eye view of the key steps in the construction before

diving into the details (Sec. 2).

As applications, we instantiate the construction for three different languages, each over a

different category of sets-with-structure (Secs. 9 and 11). We consider the language for read-

only state of Ex. 1.1, an idealised language for probabilistic programming over the category of

quasi-Borel spaces [Heunen et al. 2017]), and a simple language for differential programming over

the category of diffeological spaces [Huot et al. 2020; Iglesias-Zemmour 2013; Souriau 1980]. In

Sec. 9 we also provide a conceptual justification for why the counterexample 𝜅 of Ex. 1.1 does not

give rise to a counterexample in the OHR model. As well as showcasing the structure of the OHR

model, and how one can work with it, this helps explain why the construction succeeds.

1.2.1 Technical contributions. The key message of this paper is that fully abstract models for λ+
c
can

often be constructed mechanistically, without using special features of the model or language.

Indeed, our construction applies to any set-theoretic model of λ+
c
, independently of the monadic

effect, so long as every element of the base types is denoted by some term (see Ex. 8.1).

The main technical contributions are as follows. (1) An analysis of the relationship between

logical relations, semantic-interpretation preserving functors, and definability. This includes a

characterisation of the definablemorphisms in an arbitrarymodel of λ+
c
, which builds on thework of

Katsumata [2008, 2013] (Sec. 5). (2) The introduction of an abstract, fibrational notion of concreteness,
which serves to ‘cut down’ a function space to just those morphisms preserving suitable properties

(Sec. 6). (3) A conceptual, category-theoretic framework for constructing fully abstract models

independently of the choice of monadic effect, base types, and primitives (Thm. 10.2). As well as

covering a wide range of examples, this also lays foundations for future work.
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1.3 Related work

Our analysis of definability—and logical relations more generally—builds on Katsumata’s work

on sum types (2008) and computational effects (2005). The theory we develop shows how to

combine these two approaches, and also extends from the monadic metalanguage over Set to
the computational λ-calculus over an arbitrary model. As far as we are aware, this is the first

characterisation of definability for the computational λ-calculus, with or without sum types. A

very different approach is due to Fiore and Simpson [1999], who characterise definability for sum

types in the simply-typed λ-calculus using a sheaf condition. The closest work to our own is that

of Goubault-Larrecq et al. [2004], who show that a certain logical relation is sound and complete

for contextual equivalence for a version of Moggi’s monadic metalanguage with cryptographic

primitives and name generation. This builds on previous work [Lasota et al. 2007], which also

relates the monadic lifting of Goubault-Larrecq et al. [2008] to logical relations, and hence a form

of full abstraction, but only for specific effects and types up to first-order.

Because morphisms in ohr(M) are maps in M which preserve certain relations, one can

test equality of morphisms in ohr(M) just as easily as in M: for example, over a set-theoretic

model it is just equality of functions. This contrasts with the fully abstract models constructed by

quotienting with an equivalence relation generated from the syntax (e.g. [de’ Liguoro 1996; Milner

1977]), where morphisms are equivalence classes of maps in the original model. Indeed, writing

deL⎜𝜎⨆︁ for the interpretation of a type in a de’Liguoro-style model andM⎜𝜎⨆︁ for its interpretation
in the original model, one has 𝜑 ∈ deL⎜𝜎 → 𝜏⨆︁ if and only if there exists some 𝑓 ∈ M⎜𝜎 → 𝜎⨆︁
such that 𝜑 is the equivalence class of 𝑓 . To verify this is well-defined one then needs to prove

that 𝜑 induces a map of sets, i.e. an element of Set(deL⎜𝜎⨆︁, deL⎜𝜏⨆︁), and check it has the structure

required to be a morphism in the model (e.g. Scott continuity / smoothness / . . . ). Our construction

avoids this extra work: the required properties on morphisms and function spaces are all imposed

by the coreflection H and the fact ohr(M) is a concrete category overM.

Our approach also differs from that taken in games semantics, which has been highly successful

in constructing fully abstract models for a variety of languages (e.g. Abramsky et al. [1998, 2000];

Clairambault and de Visme [2020]; Hyland and Ong [2000]). In such models the notion of morphism

is changed to include more intensional information, and one obtains a fully abstract model by

identifying suitable morphisms. Games models are often effectively presentable and may be used

to give decision procedures for certain fragments (e.g. [Murawski and Tzevelekos 2012]). Our

construction, by contrast, is highly non-effective.

We are not aware of any previous fully abstract model for a Moggi-style language with its usual

categorical semantics, even for a fixed effect: the closest we know of is the characterisation of

contextual equivalence given by Goubault-Larrecq et al. [2004]. Indeed, much of the work in this
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area has been inspired by PCF. Plotkin [1977] famously showed that, even though the domains

model is not fully abstract for PCF, it is fully abstract for PCF extended with parallel-or. This

prompted a rich vein of research attempting to classify sequential computation, and hence construct

a fully abstract model for PCF in domains (see e.g. Fiore et al. [1996]). More recent non-games-based

constructions generally take their inspiration from this rich literature and focus on languages

with recursion: beyond the original O’Hearn–Riecke model, notable examples include Cartwright

et al. [1994]; Ehrhard et al. [2014]; Marz [2000]; Matache et al. [2021]; Riecke and Sandholm [2002].

Apart from the first two works, these models employ a similar basic idea to ours, quantifying over

a range of ‘predictions’ which one eventually instantiates to ensure full abstraction. In contrast to

our construction, however, all these works construct a category tailored to the language being

studied: while they each consider a rich and subtle language, their strategy does not have the

range of examples of our λ+
c
-based approach.

1.4 Future work

Given the subtleties already evident in models over Set, we believe the conditions we require on
the starting λ+

c
-model to be reasonable. But this work is not the end of the story. Further work is

required to cover examples such as presheaf models, or domain-theoretic models of recursion.

We see two immediate next steps. First, loosening the requirement that the original model be

well-pointed. We expect that, subject to natural assumptions on the monad and its underlying

category, the definability predicate and contextual equivalence predicate (cf. Lasota et al. [2007];
Power and Robinson [2000]) should both satisfy logical relations conditions, so that full abstraction

at ground types lifts to all higher types. Second, generalising the construction of the hull functor,

perhaps using the comprehension categories or subset types of Jacobs [1993, 1999]. These extensions
may enable us to deal with more advanced models, such as presheaf models for local state.

Finally, we would like to extend this work to encompass recursion. First, we would need to

show the argument enriches (for example, over 𝝎Cpo). Second, we would want to incorporate a

notion of approximation to exploit the fact that, in a domain-based model, one may approximate

the definable elements from below using suitable compactness properties.

2 EXECUTIVE SUMMARY

In this section we give a high-level overview of our OHR construction. As indicated in Sec. 1.1.3,

this broadly follows the steps used to construct CFin; the construction is summarised in Figure 1b.

We assume a language given by choosing a signature S of base types, primitives and effectful

operations, together with a semantic model consisting of a cartesian closed category M, a (strong)

monad 𝑇 , and a semantic interpretation of the base types and constants. The cartesian closed
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structure and monad then determine a semantic interpretation ⎜−⨆︁ of all the terms in the language.

In this overview we omit sum types as the construction with them is a little more complex.

2.1 Strengthening the notion of relation

We saw in Sec. 1.1.2 that in order to construct a fully abstract semantic model it suffices to construct

one that is fully complete and well-pointed. As with CFin, we shall handle well-pointedness by

restricting to a subcategory of concrete objects. Our main aim, therefore, is to soup up the notion

of ‘relation’ in LFin so that every morphism is definable. Our approach is based on two old insights.

Insight 1: Kripke relations of varying arity. Jung and Tiuryn [1993] observed that, because

of the variable binding in λ-abstraction, it is highly non-trivial to characterise the definable

morphisms in a model of the simply-typed lambda calculus using 𝑛-ary relations for a fixed 𝑛.

They therefore introduced Kripke relations of varying arity: a Kripke relation of varying arity on

a set 𝑋 consists of a relation 𝑅(Γ) ⊆ (⎜Γ⨆︁ ⇒ 𝑋 ) for every context Γ, compatible with variable

renaming and weakening. For brevity we call these simply Kripke relations.
Kripke relations and relation-preserving morphisms form a category KripM,⎜−⨆︁ (we shall give a

precise definition momentarily). This may be thought of as a version of LFin in which the binary

relations 𝑅0 and 𝑅1 are replaced by a family of relations with arities given by the contexts. In other

words, the relations are replaced by a presheaf on a category of contexts (cf. [Fiore et al. 1999]).

Definition 2.1. A context Γ is a finitely-supported partial map Var ⇀fin Ty from a countably

infinite set of variables to the set of types; we write ⋄ for the empty context and (𝑥 : 𝜎) ∈ Γ for

Γ(𝑥) = 𝜎 . Context renamings 𝜌 : Γ → Δ are maps 𝜌 : Dom Γ → DomΔ that respect the types: if

(𝑥 : 𝜎) ∈ Γ then (𝜌𝑥 : 𝜎) ∈ Δ. We write ConS for the category of contexts and context renamings.

The interpretation ⎜−⨆︁ defines a functor ConopS → M: if Γ := (𝑥𝑖 : 𝜎𝑖)𝑖=1,...,𝑛 , 𝜌 : Γ → Δ and

𝜌 (𝑥𝑖) = 𝑦𝜌𝑖 for all 𝑖 then ⎜𝜌⨆︁ := ⟨𝜋𝜌1, . . . , 𝜋𝜌𝑛⟩ : ⎜Δ⨆︁→ ⎜Γ⨆︁. Classically, Kripke relations of varying
arity are defined with respect to this functor. For our purposes later we give a slightly more general

definition, in which ⎜−⨆︁ is replaced by an arbitrary functor and Con
op

S by an arbitrary category.

Definition 2.2. Let 𝐹 : A → M be a functor from a small category A. A Kripke relation of varying
arity with respect to 𝐹 , which we call simply a Kripke relation, on 𝑋 ∈ M is a family of predicates{
𝑅(Γ) ⊆ M(𝐹 (Γ), 𝑋 )

}
Γ∈A satisfying the monotonicity condition: if ℎ ∈ 𝑅(Γ) and 𝜌 : Δ → Γ is

a morphism in A, then ℎ ◦ 𝐹𝜌 ∈ 𝑅(Δ). Kripke relations form a category KripM,𝐹 with objects

(𝑋, 𝑅) where 𝑋 ∈ M and 𝑅 is a Kripke relation on 𝑋 . A morphism 𝑓 : (𝑋, 𝑅) → (𝑌, 𝑆) is a map

𝑓 : 𝑋 → 𝑌 inM that preserves the relation: if ℎ ∈ 𝑅(Γ) then 𝑓 ◦ ℎ ∈ 𝑆 (Γ).
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For 𝐹 := ⎜−⨆︁ and M ⊆ Set the monotonicity condition says that if 𝜆𝛾 . 𝑥𝛾 ∈ 𝑅(Γ) ⊆ (⎜Γ⨆︁⇒ 𝑋 )
and 𝜌 : Γ → Δ is a context renaming, then 𝜆𝛿 . 𝑥⎜𝜌⨆︁𝛿 ∈ 𝑅(Δ) ⊆ (⎜Δ⨆︁ ⇒ 𝑋 ). In this setting,

𝑓 : (𝑋, 𝑅) → (𝑌, 𝑆) if and only if 𝜆𝛾 . 𝑥𝛾 ∈ 𝑅(Γ) implies 𝜆𝛾 . 𝑓 (𝑥𝛾 ) ∈ 𝑆 (Γ) for every context Γ.

We now make the analogy with LFin precise by showing how KripM,𝐹 can be constructed in

the same way as LFin (recall Figure 1a). As before it is not necessary to follow all the details:

our aim is to demonstrate that the same construction is at work. The main step is replacing the

fibration for logical relations cod : Sub(Fin) → Fin with its indexed counterpart. We therefore

replace subsets by subpresheaves: a sub-presheaf 𝑅 of 𝑃 : A → Set is a family {𝑅(Γ) ⊆ 𝑃 (Γ)}Γ∈A

compatible with 𝑃 ’s action on morphisms. The A-parametrised version of the subobject fibration

employed in Figure 1a is the subobject fibration cod : Sub(A
∧
) → A

∧
taking a sub-presheaf 𝑅 ↩→ 𝑃

to 𝑃 . The category KripM,𝐹 then arises as the pullback (change-of-base) along the nerve functor
N𝐹 : 𝑋 ↦→ M(𝐹 (−), 𝑋 ), as in Figure 2.

KripM,𝐹 Sub(A
∧
)

M A
∧

𝑇

U

⌜

cod

𝑇
N𝐹

Fig. 2. The construction of KripM,𝐹

As for LFin, it follows from the theory of logical relations

of varying arity that KripM,𝐹 is a cartesian closed cate-

gory, and that the forgetful functor U strictly preserves this

structure (see Sec. 4.1). Moreover, we can use the⊤⊤-lifting
of Katsumata [2005] to define a monad 𝑇 on KripM,𝐹 so

that U strictly preserves the monadic structure: 𝑇 is called

a lifting of 𝑇 (Def. 4.2). Thus, KripM,𝐹 is a generalised category of relations and it has has enough

structure to interpret the language of interest. The question of which interpretation to take is the

subject of our next insight.

Insight 2: logical relations. The second insight, due to Plotkin [1973], is that a morphism is

definable only if it satisfies every logical relation: this is often referred to as the “fundamental lemma”

of logical relations. Classically, a logical relation is a family of relations {𝑅𝜎 }𝜎 ∈Ty indexed by types

which is compatible with the type formation rules: for example, one requires that (ℎ,ℎ′) ∈ 𝑅𝜎→𝜏 if

and only if (𝑥, 𝑥 ′) ∈ 𝑅𝜎 implies (ℎ 𝑥, ℎ′ 𝑥 ′) ∈ 𝑅𝜏 . The definition in our setting is similar, except one

must also take account of variable renamings and the monadic effect. For us, a logical relation

𝑅 consists of a Kripke relation 𝑅𝜎 on 𝑇 ⎜𝜎⨆︁ for every type 𝜎 , compatible with the type formation

rules (Def. 5.1). Thus, 𝑅 is a family of sets indexed by both types and contexts.

Let us make this more precise. To handle the presence of the effect we use the following operation

restricting a Kripke relation to values, namely those maps that factor through the monadic unit.

Definition 2.3. For (𝑇𝑋, 𝑅) ∈ KripM,𝐹 , define 𝑅
val(Γ) :=

{
ℎ : 𝐹 (Γ) → 𝑋

�� 𝜂𝑋 ◦ ℎ ∈ 𝑅(Γ)
}
.

Following the strategy for the simply-typed lambda calculus (e.g. Alimohamed [1995]; Ma and

Reynolds [1992]; Mitchell and Scedrov [1993]), we express compatibility with type formation
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by compatibility with the structure of KripM,⎜−⨆︁. For a fixed lifting 𝑇 of 𝑇 , a logical relation is

a family of Kripke relations {𝑅𝜎 }𝜎 ∈Ty satisfying equations such as (⎜𝜎⨆︁, 𝑅val𝜎 ) ⇒ (𝑇 ⎜𝜏⨆︁, 𝑅𝜏 ) =

(⎜𝜎 → 𝜏⨆︁, 𝑅val𝜎→𝜏 ) and 𝑇 (⎜𝜎⨆︁, 𝑅val𝜎 ) = (𝑇 ⎜𝜎⨆︁, 𝑅𝜎 ) in KripM,⎜−⨆︁. This captures exactly the required

logical relations conditions. For example, if M ⊆ Set the exponential (𝑋, 𝑅) ⇒ (𝑌, 𝑆) is (𝑋 ⇒
𝑌, 𝑅 ⊃ 𝑆), where 𝜆𝛾 . ℎ𝛾 ∈ (𝑅 ⊃ 𝑆) (Γ) if and only if for all renamings 𝜌 : Γ → Δ and 𝜆𝛿 . 𝑥𝛿 ∈ 𝑅(Δ)
one has 𝜆𝛿 . ℎ⎜𝜌⨆︁(𝛿) (𝑥𝛿 ) ∈ 𝑆 (Δ). Thus one recovers a renaming-compatible version of the classic

condition.

Example 2.1. (1) The crucial example of a logical relation is the definability predicate given

by def𝜎 (Γ) :=
{⎜Γ ⊢ 𝑀 : 𝜎⨆︁ | 𝑀 is derivable

}
. Then 𝑓 ∈ def

val

𝜎 (Γ) if and only if 𝜂⎜𝜎⨆︁ ◦ 𝑓 de-

notes a term. (2) The forgetful functor U : LFin → Fin induces a logical relation U defined by

U𝜎 (Γ) := LFin(𝑙⎜Γ⨆︁, R̂𝑙⎜𝜎⨆︁) ⊆ Fin(𝑠⎜Γ⨆︁, R𝑠⎜𝜎⨆︁). This phenomenon holds generally: see Prop. 5.1.

A logical relation 𝑅 := {𝑅𝜎 }𝜎 ∈Ty determines a semantic interpretation in KripM,⎜−⨆︁. One sets
𝑙𝑅⎜𝛽⨆︁ := (⎜𝛽⨆︁, 𝑅val

𝛽
) and observes the equations making𝑅 logical entail that 𝑙𝑅⎜𝜎⨆︁ := (⎜𝜎⨆︁, 𝑅val𝜎 ) and

𝑇 (𝑙𝑅⎜𝜎⨆︁) := (𝑇 ⎜𝜎⨆︁, 𝑅𝜎 ) for every type 𝜎 . Following Alimohamed [1995], we say 𝑓 : ⎜Γ⨆︁→ 𝑇 ⎜𝜎⨆︁
in M satisfies 𝑅 if and only if 𝑓 : 𝑙𝑅⎜Γ⨆︁→ 𝑇 (𝑙𝑅⎜𝜎⨆︁) in KripM,⎜−⨆︁. One then recovers a version of

the fundamental lemma (Thm. 5.1) stating that a morphism is definable if and only if it satisfies

every logical relation. If 𝑓 is definable, so 𝑓 = ⎜𝑀⨆︁, it lifts to the map 𝑙𝑅⎜𝑀⨆︁ in KripM,⎜−⨆︁ because
U : KripM,⎜−⨆︁ → M preserves the semantic interpretation. Conversely, if 𝑓 satisfies every logical

relation, it satisfies def; since id⎜Γ⨆︁ ∈ def
val

Γ (Γ), this entails that 𝑓 ◦ id⎜Γ⨆︁ = 𝑓 ∈ def𝜎 (Γ).
Summarising, we have the following: (1) restricting to definable morphisms is restricting to

those satisfying every logical relation; (2) the morphisms satisfying a logical relation 𝑅 are exactly

those that lift to morphisms respecting the corresponding semantic interpretation in KripM,⎜−⨆︁.

From the two insights to a fully abstract model. The lesson we take from the preceding is

that, in order to obtain full completeness, it suffices to adapt the definition of KripM,⎜−⨆︁ to build a

semantic model C in which morphisms necessarily satisfy every logical relation over that model.

There is a risk of circularity here: to construct C we need to refer to logical relations over C,
but these can only be defined once we have constructed C. O’Hearn & Riecke’s way out of this

apparent loop is a kind of impredicativity, which they compare to the use of reducibility candidates

for proving strong normalisation of the polymorphic λ-calculus (e.g. Girard [1989]).

We take a similar approach. We construct C so that objects are paired not just with one relation

but with a whole indexed family of them. By carefully choosing a monadW, a semantic interpreta-

tion 𝑙⎜−⨆︁, and the indexing set I, we can ensure that for any type 𝜎 and logical relation R over

C there is 𝑖0 ∈ I so that the relation at index 𝑖0 for 𝑙⎜𝜎⨆︁ is exactly Rval

𝜎 . Morphisms in C will be

morphisms inM which preserve the relations at every 𝑖 ∈ I, so it will follow that any C-morphism
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must satisfy R. Crucially, if we choose I large enough, we can ensure 𝑖0 exists using only data

overM.

2.2 Constructing the fully abstract model

We start by defining a category K in which objects are paired with a family of relations indexed

by I. For now we leave I as an arbitrary set; once we have seen the properties we require for full

completeness, we shall show how to choose it concretely. To this end we suppose for now that for

each 𝑖 ∈ I we have a category A𝑖 and a functor 𝐹𝑖 : A𝑖 → M. The objects of K then consist of an

object 𝑋 ∈ M together with a Kripke relation 𝑋 (𝑖) for each 𝑖 ∈ I, so that

(
𝑋,𝑋 (𝑖)

)
∈ KripM,𝐹𝑖

;

thus, each 𝑋 (𝑖) is a family of predicates

{
𝑋 (𝑖) (Γ) ⊆ M(𝐹𝑖 (Γ), 𝑋 )

}
Γ∈A𝑖

compatible with the action

of 𝐹𝑖 on morphisms. Morphisms 𝑓 : (𝑋,𝑋 ) → (𝑌,𝑌 ) in K are morphisms 𝑓 : 𝑋 → 𝑌 in M which

preserve every relation: if ℎ ∈ 𝑋 (𝑖) (Γ) then 𝑓 ◦ ℎ ∈ 𝑌 (𝑖) (Γ).
Once again this category arises from the theory of fibrations of logical relations. Fibrations

for logical relations are closed under small products, so we can take

∏
𝑖∈I cod :

∏
𝑖∈I Sub(A𝑖) →∏

𝑖∈I A𝑖

∧
and pull back along ⟨N𝐹𝑖 ⟩𝑖∈I to obtain K as in Figure 3. As with KripM,𝐹 , this category

is cartesian closed: its structure is given component-wise, and we also define a monad 𝑇 on K
component-wise. The forgetful functor U : K → M then preserves both the cartesian closed and

monadic structure.

K ∏
𝑖∈I Sub(A𝑖

∧
)

M ∏
𝑖∈I A𝑖

∧

⌜𝑇

U

∏
𝑖∈I cod

𝑇
⟨N𝐹𝑖

⟩
𝑖∈I

Fig. 3. The construction of K

The category C of our fully abstract model will be the

subcategory 𝑗 : C ↩→ K consisting of just the concrete

objects, namely those (𝑋,𝑋 ) ∈ K such that every global

element 𝑥 : 1 → 𝑋 lifts to a global element 𝑥 : 1 → 𝑋 inK
(cf. Def. 1.1). This is always a reflective subcategory and, in

the examples we consider, also a coreflective subcategory.

Thus C is cartesian closed and acquires a monadW with

underlying functor H𝑇 𝑗 , in the same way as CFin. This is

summarised in Figure 1b. As for CFin, the function space (𝑋 ⇒C 𝑌 ) in C has carrier isomorphic to

K( 𝑗𝑋, 𝑗𝑌 ) (see Lemma 6.2), so the function space only morphisms preserving the required relations.

It remains to choose I and the semantic interpretation 𝑙⎜−⨆︁. Following O’Hearn & Riecke, we

choose I in such a way that it necessarily contains the data we need. To simplify applications, we

intentionally choose I to be as large as possible: the more permissive we are in the choice of I, the

more properties we have for reasoning within the OHR model.

It turns out that it suffices to choose I and 𝑙⎜−⨆︁ so that for any logical relation R = {R𝜎 }𝜎 ∈Ty
over C there exists 𝑖0 ∈ I so that the relation at 𝑖0 of the interpretation of a base type 𝛽 is

precisely Rval

𝛽
, that is, 𝑙⎜𝛽⨆︁(𝑖0) = Rval

𝛽
. Let us show why this is the case. If 𝑙⎜𝛽⨆︁(𝑖0) = Rval

𝛽
for
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every base type 𝛽 , the cartesian closed structure of C and the monad W yield 𝑙⎜𝜎⨆︁(𝑖0) = Rval

𝜎 and

W(𝑙⎜𝜎⨆︁) (𝑖0) = R𝜎 for every type 𝜎 (Prop. 7.1). Morphisms in C preserve the relations at every

index, so if 𝑓 : 𝑙⎜Γ⨆︁→ W(𝑙⎜𝜎⨆︁) in C then 𝑓 :

(
𝑙⎜Γ⨆︁, 𝑙⎜Γ⨆︁(𝑖)) → W

(
𝑙⎜Γ⨆︁, 𝑙⎜Γ⨆︁(𝑖)) in KripM,𝐹𝑖

for

every 𝑖 ∈ I; instantiating at 𝑖0 yields 𝑓 :

(
𝑙⎜Γ⨆︁,Rval

Γ

)
→

(
W(𝑙⎜Γ⨆︁),R𝜎

)
in KripM,𝐹𝑖

0

, so 𝑓 satisfies

R.
Now we turn to choosing I. We take it to be a dependent product over enough sets that we

can always find the required 𝑖0 (see Sec. 8). An element 𝑖 ∈ I is therefore a tuple (A, 𝐹 , 𝑟,𝑇 ) in
which: (1) A is a category and 𝐹 is a functor A → M; (2) 𝑟 is a map assigning a concrete Kripke

relation over 𝐹 on ⎜𝛽⨆︁ to every base type 𝛽 , so that (⎜𝛽⨆︁, 𝑟 (𝛽)) ∈ KripM,𝐹 , together with a suitable

interpretation of constants; (3)𝑇 is a lifting of𝑇 to KripM,𝐹 , so that the forgetful functor preserves

the monadic structure. Note that none of this data refers to C, only toM or data earlier in the tuple.

To see why this definition works, let R :=
{
R𝜎 (Γ) ⊆ C(𝑙⎜Γ⨆︁,W𝑙⎜𝜎⨆︁}

Γ∈Con,𝜎 ∈Ty be a logical

relation over C. For technical reasons we need to assume it satisfies certain compatibility and

properties (e.g. Def. 5.3), but these are mild. We set 𝑖0 :=
(
Con

op

S ,U ◦ 𝑙⎜−⨆︁, 𝑟 ,𝑇 R )
, where 𝑙⎜−⨆︁ is the

semantic interpretation in C defined below, U is the forgetful functor C → M, 𝑟 : 𝛽 ↦→ Rval

𝛽
, and

𝑇 R
is a monad we construct so that 𝑇 R (Rval

𝜎 ) is closely related to R𝜎 (Lemma 7.3).

We verify first that the the choice of 𝑟 and the equality 𝑙⎜𝜎⨆︁(𝑖0) = Rval

𝜎 are well-typed. Via

the inclusion C(𝑙⎜Γ⨆︁, 𝑋 ) ⊆ M(𝑙⎜Γ⨆︁, 𝑋 ) we get that R determines a Ty-indexed family of Kripke

relations onM over the functorU◦𝑙⎜−⨆︁ as follows:R𝜎 (Γ) ⊆ C
(
𝑙⎜Γ⨆︁,W𝑙⎜𝜎⨆︁) ⊆ M

(
U𝑙⎜Γ⨆︁,W𝑙⎜𝜎⨆︁) .

Thus, we may identify R𝜎 with an object (W𝑙⎜𝜎⨆︁,R𝜎 ) ∈ KripM,U◦𝑙⎜−⨆︁ and Rval

𝛽
is a Kripke relation

on 𝑙⎜𝛽⨆︁. So long as the carrier 𝑙⎜𝛽⨆︁ equals ⎜𝛽⨆︁, therefore, the equalities are indeed well-typed.

Finally we show how to guarantee that 𝑙⎜𝛽⨆︁(𝑖0) = Rval

𝛽
. We do this by choosing the right

semantic interpretation. We have just seen that we must set 𝑙⎜𝛽⨆︁ = ⎜𝛽⨆︁ on carriers. On relations,

we read off the choice of relation given by the corresponding index: 𝑙⎜𝛽⨆︁(A, 𝐹 , 𝑟,𝑇 ) := 𝑟 (𝛽). In
particular, for 𝑖0 we get that 𝑙⎜𝛽⨆︁(𝑖0) = Rval

𝛽
. As outlined above, it follows that every morphism

𝑙⎜Γ⨆︁→ W(𝑙⎜𝜎⨆︁) in C satisfies R, hence is definable: the semantic model given by C, 𝑙⎜−⨆︁ and W

is fully complete. Moreover, by our restriction to concrete objects, it is well-pointed. Thus, the

model is fully abstract.

2.3 Properties of the OHR model

We finish this summary by noting some properties of C. Morphisms in C are morphisms inM
which satisfy every compatible logical relation over C. To show a M-morphism 𝑓 is not a map in

C, therefore, it suffices to find a logical relation over C which 𝑓 does not satisfy. In the presence of

effects, doing this directly this can be difficult. We mitigate this in two ways. First, we show that

logical relations can be constructed by constructing a semantic model (Prop. 5.1). Often this can be
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done using an intuitive relational condition, as in the construction of LFin in Ex. 1.1. Second, we

indicate how one may induce logical relations on C using certain logical relations onM (Sec. 9).

The semantic interpretation of ground types in C coincides with that inM. Moreover, in our

examples the monadW on C is a sub-monad of the monad 𝑇 onM: there is a canonical monad

morphism giving a monic c𝑋 : W𝑋 ↩→ 𝑇𝑋 for every𝑋 ∈ C (Lemma 6.1). Hence, the interpretations

of closed ground terms in C are determined by those inM (Lemma 8.2). This disappears at higher

types because the forgetful functor C → M does not preserve function spaces (cf. Remark 1.1).

It follows that C inherits much of the intuition of the original model. For example, in the OHR

model over the model LFin of Ex. 1.1, the maps are set maps, the carriers of the function spaces are

subsets of those in Fin, and the carrier of W𝑋 is a subset of R𝑋 . We examine this further in Sec. 9.

Finally, we do not yet incorporate recursion so our model does not use any form of approximation.

While O’Hearn & Riecke use a form of compactness to approximate every term using a countable

chain, no such facility is available to us. We hope to pursue this line in the future (see Sec. 1.4).

3 THE COMPUTATIONAL λ-CALCULUS λ+
c

Syntax. Throughout we shall assume a fixed (but arbitrary) choice of λ+
c
-signature S, consisting of

(1) A set B of base types, which we extend with a unit type, binary products, an empty type and

binary sums to obtain the set of ground types: G ∋ 𝛾 ::= 𝛽 ∈ B | 1 | 𝛾 ∗𝛾 | 0 | 𝛾 + 𝛾 . Including
function types yields the set of simple types: Ty+ ∋ 𝜎 ::= 𝛽 ∈ B | 1 | 𝜎 ∗𝜎 | 0 | 𝜎 +𝜎 | 𝜎 → 𝜎.

(2) A set E of (algebraic) effect operations [Plotkin and Power 2003] and an assignment E → G×G
assigning a parameter type 𝛼 and an arity type 𝜅 to every op ∈ E.

(3) A set P of primitives and an assignment P → Ty+ of a simple type 𝜅 to every 𝜉 ∈ P. We

require that either 𝜅 ∈ G or 𝜅 = 𝜎1 ∗ · · · ∗ 𝜎𝑛 → 𝛾 where 𝛾 ∈ G and each 𝜎𝑖 is a (possibly

thunked) ground type: either 𝜎𝑖 ∈ G, or 𝜎𝑖 = (1 → 𝛾𝑖) and 𝛾𝑖 ∈ G.

We write op : 𝛼 ⇝ 𝜅 to indicate that op ∈ E has parameter type 𝛼 and arity type 𝜅, and 𝜉 : 𝜅

to indicate that 𝜉 ∈ P is assigned type 𝜅. Although we do not take advantage of it in this paper,

we distinguish between effect operations and primitives so that future developments can employ

the better metatheory enjoyed by effect operations (e.g. Kammar and Plotkin [2012]; Katsumata

[2013]).

Example 3.1. For a set of exceptions 𝐸 consider the exception monad (−) + 𝐸 together with an

effect operation raise𝑒 raising an exception for each 𝑒 ∈ 𝐸. The corresponding handle𝑒 operation

is not algebraic ([Plotkin and Power 2003, Example 3]), but one could add it as a primitive.
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The typing rules of the type theory λ+
c
(S) are the usual rules for the simply-typed lambda

calculus with finite products and finite sum types (e.g. Fiore and Simpson [1999]; Scherer [2017])

together with the rules for effect operations and primitives:

Γ ⊢ 𝑀 : 𝛼 (op : 𝛼 ⇝ 𝜅)
Γ ⊢ op𝑀 : 𝜅

(𝜉 : 𝜅)
Γ ⊢ 𝜉 : 𝜅

Semantic interpretation. A λ+
c
(S)-model (M,𝑇 , 𝑠) consists of

(1) A categoryM with finite products (×, 1), finite coproducts (+, 0) and exponentials⇒ (that

is, a bi-cartesian closed category or bi-CCC).
(2) A functor 𝑇 : M → M equipped with natural transformations with components 𝜇𝐴 :

𝑇𝑇𝐴 → 𝑇𝐴, 𝜂𝐴 : 𝐴 → 𝑇𝐴, and st𝐴,𝐵 : 𝐴 ×𝑇𝐵 → 𝑇 (𝐴 × 𝐵) satisfying standard axioms [Kock

1972] (that is, a strong monad (𝑇, 𝜇, 𝜂, st)). Where the context is unambiguous we write simply

𝑇 .

(3) An interpretation 𝑠 : B → Ob(M) of base types. This extends to an interpretation 𝑠⎜−⨆︁ :
Ty+ → Ob(M) of all types; on contexts we set 𝑠⎜Γ⨆︁ := ∏

(𝑥 :𝜎) ∈Γ 𝑠⎜𝜎⨆︁.
(4) An interpretation of effect operations and primitives: a Kleisli arrow 𝑠⎜op⨆︁ : 𝑠⎜𝛼⨆︁→ 𝑇𝑠⎜𝜅⨆︁

for every op : 𝛼 ⇝ 𝜅 and a global element 𝑠⎜𝜉⨆︁ : 1 → 𝑠⎜𝜅⨆︁ for every 𝜉 : 𝜅.
A morphism of λ+

c
(S)-models 𝐹 : (M,𝑇 , 𝑠) → (M ′,𝑇 ′, 𝑠 ′) is a functor 𝐹 : M → M ′

which strictly

preserves all the structure. Thus, 𝐹 must strictly preserve the cartesian closed structure and satisfy

𝐹𝑇 = 𝑇 ′𝐹 , 𝐹𝜇𝑋 = 𝜇 ′
𝐹𝑋

, 𝐹𝜂𝑋 = 𝜂 ′
𝐹𝑋

, 𝐹 st𝑋,𝑌 = st
′
𝐹𝑋,𝐹𝑌

and 𝐹𝑠 = 𝑠 ′ for all 𝑋 ∈ M.

The interpretation 𝑠 in a λ+
c
(S)-model (M,𝑇 , 𝑠) extends to an interpretation 𝑠⎜−⨆︁ of all λ+

c
(S)-terms:

𝑠⎜Γ ⊢ 𝑀 : 𝜏⨆︁ : 𝑠⎜Γ⨆︁ → 𝑇 (𝑠⎜𝜏⨆︁). The rules are standard (e.g. Fiore and Simpson [1999]; Moggi

[1989]) so we omit them. A λ+
c
(S)-model morphism strictly preserves these interpretations: if

𝐹 : (M,𝑇 , 𝑠) → (M ′,𝑇 ′, 𝑠 ′) and (Γ ⊢ 𝑀 : 𝜎) then 𝐹 (𝑠⎜Γ ⊢ 𝑀 : 𝜎⨆︁) = 𝑠 ′⎜Γ ⊢ 𝑀 : 𝜎⨆︁.
We shall also consider the development without sum types. Write λc(S) for the fragment of λ+

c
(S)

without any sum types, and Ty for the subset of Ty+ defined by Ty ∋ 𝜎 ::= 𝛽 ∈ B | 1 | 𝜎∗𝜎 | 𝜎 → 𝜎 .

A λc(S)-model consists of a CCC (M,×, 1,⇒) equipped with a strong monad, an interpretation of

base types and an interpretation of each operation op and primitive 𝜉 .

We write 𝑓 # for the Kleisli extension 𝜇𝑌 ◦𝑇 𝑓 : 𝑇𝑋 → 𝑇𝑌 of 𝑓 : 𝑋 → 𝑇𝑌 .

Full abstraction and full completeness. We streamline the development by using the semantic
contextual equivalence of Milner [1977]. We say two λ+

c
(S)-terms (Γ ⊢ 𝑀 : 𝜎) and (Γ ⊢ 𝑀 ′

: 𝜎)
are contextually equivalent in a λ+

c
(S)-model (M,𝑇 , 𝑠), and write (Γ ⊢ 𝑀 ≃ctx 𝑀

′
: 𝜎), if for every

closed ground context𝐶 [−] one has 𝑠⎜⋄ ⊢ 𝐶 [𝑀] : 𝛾⨆︁ = 𝑠⎜⋄ ⊢ 𝐶 [𝑀 ′] : 𝛾⨆︁. The model is fully abstract
if contextual equivalence implies denotational equality: 𝑠⎜Γ ⊢ 𝑀 : 𝜏⨆︁ = 𝑠⎜Γ ⊢ 𝑀 ′

: 𝜏⨆︁ whenever
(Γ ⊢ 𝑀 ≃ctx 𝑀

′
: 𝜎). This notion coincides with the syntactic definition in common examples, such
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as the domains model of PCF. The converse to full abstraction—called adequacy—follows from the

compositionality of the interpretation 𝑠⎜−⨆︁. We now substantiate the claim made in Sec. 1.1.2.

Proposition 3.1. Any well-pointed, fully complete λ+
c
(S)-model is fully abstract.

The proof echoes the definable separability criterion of Curien [2007]; one uses well-pointedness

together with the fact that for any term (Γ ⊢ 𝑀 : 𝜏) and environment (⋄ ⊢ 𝐺 :

∏
(𝑥 :𝜎) ∈Γ 𝜎) there is

a context 𝐶 [−] such that 𝑠⎜Γ ⊢ 𝐶 [𝑀] : 𝜏⨆︁ = 𝑠⎜Γ ⊢ 𝑀 : 𝜏⨆︁# ◦ 𝑠⎜⋄ ⊢ 𝐺 :

∏
(𝑥 :𝜎) ∈Γ 𝜎⨆︁.

4 THE FIBRATIONAL APPROACH TO DEFINABILITY

In this section we introduce the technical machinery referred to in Sec. 2, namely fibrations for
logical relations, which axiomatise the data required to study logical relations, ⊤⊤-lifting, which
allows us to construct monads on categories of relations, and ⊤⊤-closure, for handling sum types.

4.1 Kripke relations of varying arity and fibrations for logical relations

We assume familiarity with the basics of fibrations: see e.g. Jacobs [1999] or Loregian and Riehl

[2020]. For any fibration 𝑝 : E → B and product-preserving functor N : C → B, write U :

Krip(𝑝,N) → C for the fibration obtained by change-of-base as in the (pullback) diagram in

Figure 4.

Krip(𝑝,N) E

C B

⌜

U
𝑝

N

Fig. 4. Constructing Krip(𝑝,N)

Objects of Krip(𝑝,N) are pairs (𝑋 ∈ C, 𝑅 ∈ E) such that

N𝑋 = 𝑝𝑅; morphisms are pairs (𝑓 : 𝑋 → 𝑋 ′, ˆ𝑓 : 𝑅 → 𝑅′) such
that N𝑓 = 𝑝 ( ˆ𝑓 ). We want to study cases in which Krip(𝑝,N) is a
bi-CCC and U strictly preserves this structure. This is captured

by the next definition, due to Katsumata [2013].

Definition 4.1. A fibration for logical relations over a bi-CCC
B is a partial order bifibration 𝑝 : E → B with small fibres and

fibrewise small products such that E is a bi-CCC and 𝑝 strictly preserves the bi-CCC structure.

Sec. 1.1.3 employed the category Sub(Fin) of unary predicates on Fin; the functor Sub(Fin) → Fin :

(𝐴,𝑋 ) ↦→ 𝑋 is a fibration for logical relations. For more examples see [Katsumata 2013, §6].

Lemma 4.1 ([Katsumata 2013, Prop. 6]). For any fibration for logical relations 𝑝 : E → B, bi-CCC
C and product-preserving functor N : C → B, U : Krip(𝑝,N) → C is a fibration for logical relations.

As noted above, the categories LFin, KripM,𝐹 and K all arise as instances of this lemma. In par-

ticular, where N𝐹 denotes the nerve functor 𝑋 ↦→ M
(
𝐹 (−), 𝑋

)
, we have KripM,𝐹 := Krip(cod,N𝐹 )

and K := Krip(∏𝑖 cod,N⟨𝐹𝑖 ⟩𝑖 ). The bi-CCC structure of KripM,𝐹 is given below. The exponentials

encode the Jung–Tiuryn logical relations condition (cf. Jung and Tiuryn [1993]; Plotkin [1980]).
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Products: The terminal object is (1C,⊤), where⊤(Γ) = {!𝐹Γ}. The binary product is (𝐴
1
, 𝑅1) ×

(𝐴
2
, 𝑅2) := (𝐴

1
×𝐴

2
, 𝑅1 ⊛ 𝑅2), where ℎ ∈ (𝑅1 ⊛ 𝑅2) (Γ) if and only if 𝜋𝑖 ◦ℎ ∈ 𝑅𝑖 (Γ) for 𝑖 = 1, 2.

Exponentials: (𝐴, 𝑅) ⇒ (𝐵, 𝑆) := (𝐴 ⇒ 𝐵, 𝑅 ⊃ 𝑆), where ℎ ∈ (𝑅 ⊃ 𝑆) (Γ) if and only if

eval ◦⟨ℎ ◦ 𝐹𝜌,𝑢⟩ ∈ 𝑆 (Δ) for every morphism 𝜌 : Δ → Γ and every 𝑢 ∈ 𝑅(Δ).
Coproducts: The initial object is (0C,⊥), where ⊥(Γ) = ∅. The binary coproduct is (𝐴

1
, 𝑅1) +

(𝐴
2
, 𝑅2) := (𝐴

1
+𝐴

2
, 𝑅1⊕𝑅2), with (𝑅1⊕𝑅2) (Γ) :=

{
inj

1
◦ ℎ

�� ℎ ∈ 𝑅1(Γ)
}
∪
{
inj

2
◦ ℎ

�� ℎ ∈ 𝑅2(Γ)
}
.

4.2 Monad liftings and generalised ⊤⊤-lifting

By Lemma 4.1, if we start from a λ+
c
(S)-model (M,𝑇 , 𝑠) then the category of Kripke relations

KripM,𝑠⎜−⨆︁ is a bi-CCC. To make this into a λ+
c
(S)-model we want a lifting of 𝑇 .

Definition 4.2 ([Katsumata 2005, 2013]). Let 𝑝 : E → B be a fibration for logical relations and

(𝑇, 𝜇, 𝜂, st) a strong monad onB. A lifting of𝑇 is a strong monad (𝑇, 𝜇, 𝜂, ŝt) on E such that 𝑝𝑇 = 𝑇𝑝 ,

𝑝𝜇 = 𝜇𝑝 , 𝑝𝜂 = 𝜂𝑝 , and 𝑝 ŝt = st𝑝 .

Our characterisation of definability will rely on the semantic ⊤⊤-lifting of Katsumata [2005].

Alternative liftings include the free lifting [Kammar and McDermott 2018] and the monadic lifting

of Goubault-Larrecq et al. [2008]. We choose Katsumata’s approach because it interacts well with

the extra structure we shall need at sum types (see Def. 5.2).

The next lemma describes the abstract situation.

Lemma 4.2. Let 𝑝 : E → B be a fibration for logical relations and 𝑇 and 𝑆 be strong monads on B

related by a morphism of strong monads 𝛼 : 𝑇 ⇒ 𝑆 [Pareigis 1977; Street 1972]. Further assume that
𝑆 has a lifting 𝑆 and set 𝑇𝑋 to be the cartesian lifting below:

𝑇𝑋 𝑆𝑋 E

𝑇 (𝑝𝑋 ) 𝑆 (𝑝𝑋 ) B

𝛼𝑋

𝑝

𝛼𝑝𝑋

(3)

Then𝑇 (−) extends to a monad which is a lifting of𝑇 , and 𝛼 extends to a morphism of strong monads.

⊤⊤-lifting arises by taking 𝑆 and 𝑆 to both be the (strong) continuation monad. In any CCC C,

let K𝑃 denote the continuation monad (− ⇒ 𝑃) ⇒ 𝑃 ; there exists a canonical monad morphism

𝜎𝑃 : 𝑇 ⇒ K𝑇𝑃 with components 𝜆(eval# ◦ st ◦⟨𝜋2, 𝜋1⟩). When 𝑝 : E → B is a fibration for logical

relations, write K̂𝑃 for the continuation monad on E with target 𝑃 and observe that this is a lifting

of K𝑝 (𝑃 ) . We call an object 𝑃 ∈ E such that 𝑝 (𝑃) = 𝑇𝑄 for some 𝑄 ∈ B a ⊤⊤-lifting parameter.

Definition 4.3 ([Katsumata 2005]). Let 𝑝 : E → B be a fibration for logical relations and 𝑇 be a

strong monad on B. Where 𝑝 (𝑃) = 𝑇𝑄 is a ⊤⊤-lifting parameter, the ⊤⊤[𝑃]-lifting 𝑇⊤⊤[𝑃 ]
of 𝑇
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is the monad obtained by taking 𝑆 := K̂𝑃 , 𝑆 := K𝑇𝑄 and 𝛼 := 𝜎𝑄 in (3). For a small set P ≠ ∅ of

⊤⊤-lifting parameters, the ⊤⊤[P]-lifting of 𝑇 is the fibred product 𝑇⊤⊤[P]
:=

∧
𝑃 ∈P𝑇

⊤⊤[𝑃 ] (−).

We shall implicitly assume that every set of ⊤⊤-lifting parameters is both non-empty and small.

4.3 Generalised ⊤⊤-closure

While the definability predicate for a λ+
c
(S)-model (M,𝑇 , 𝑠) interacts well with the cartesian closed

structure of KripM,𝑠⎜−⨆︁, this is not the case for the cocartesian structure (see Sec. 5). We therefore

follow Katsumata [2008] in restricting to a subcategory with a different coproduct structure.

Definition 4.4. Let 𝑝 : E → B be a fibration for logical relations,𝑇 be a strong monad on B, and𝑇

be a lifting of 𝑇 to E. Define a monad (−)⊤⊤[𝑇 ]
lifting the identity monad by taking 𝑆 := 𝑇 , 𝑆 := 𝑇 ,

𝑇 := id and 𝛼 := 𝜂𝑇 in (3). If 𝑋 = 𝑋⊤⊤[𝑇 ]
we say 𝑋 is 𝑇 -closed. We write 𝑖 : E⊤⊤[𝑇 ] ↩→ E for the

full subcategory of 𝑇 -closed objects.

The ⊤⊤-closure of Katsumata [2008] arises as a special case. Where P is a set of ⊤⊤-lifting
parameters, an object 𝑋 ∈ E is ⊤⊤[P]-closed, or simply ⊤⊤-closed, if id⊤⊤[P] (𝑋 ) = 𝑋 .

Lemma 4.3. Let 𝑝 : E → B be a fibration for logical relations and 𝑇 be a strong monad on B. For
any set P of ⊤⊤-lifting parameters, (−)⊤⊤[𝑇⊤⊤[P] ] = id

⊤⊤[P] .

Hence, 𝑋 is ⊤⊤[P]-closed if and only if it is 𝑇⊤⊤[P]
-closed. We finish this section by recording

some elementary properties of the subcategory of 𝑇 -closed objects. The first two cases generalise

properties of the subcategory of ⊤⊤-closed objects proven in [Katsumata 2008].

Lemma 4.4. Let 𝑝 : E → B be a fibration for logical relations, 𝑇 be a strong monad on B, and 𝑇 be
a lifting of 𝑇 to E. Then:

(1) (−)⊤⊤[𝑇 ] is an idempotent monad, so E⊤⊤[𝑇 ] is a replete, reflective subcategory;

(2) E⊤⊤[𝑇 ] is a sub-CCC of E, and has finite coproducts as 𝑋𝑖

inj𝑖−−→ ∑
𝑖≤𝑛 𝑋𝑖

≤−→ id
⊤⊤[𝑇 ] (∑

𝑖≤𝑛 𝑋𝑖

)
;

(3) 𝑇 restricts to a strong monad on E⊤⊤[𝑇 ] : if 𝑋 is 𝑇 -closed, then so is 𝑇𝑋 .

5 DEFINABILITY AND λ+
c
(S)-LOGICAL RELATIONS

In Sec. 2.1 our second key observation was that the the definable morphisms in a fixed λ+
c
(S)-model

(M,𝑇 , 𝑠) may be characterised as as those which satisfy every logical relation, and that this can be

expressed in categorical terms: a map 𝑓 : 𝑠⎜Γ⨆︁→ 𝑇 (𝑠⎜𝜎⨆︁) in M satisfies 𝑅 if and only if it lifts to

a morphism of Kripke relations 𝑓 : 𝑙𝑅⎜Γ⨆︁→ 𝑇 (𝑙𝑅⎜𝜎⨆︁). We now make this precise.

Our starting point is the next definition, which extends both logical relations for the simply-

typed λ-calculus and logical relations for the monadic metalanguage over Set [Katsumata 2005].

Since we use λ+
c
(S) rather than the monadic metalanguage we use the (−)val operation (Def. 2.3).
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Definition 5.1. Let𝑇 be a lifting of𝑇 to KripM,𝑠⎜−⨆︁. A λc(S)-logical relation over𝑇 is a Ty-indexed
family {𝑅𝜎 ↩→ M(𝑠⎜−⨆︁,𝑇𝑠⎜𝜎⨆︁)}𝜎 ∈Ty such that for every 𝜎, 𝜏, 𝜎1, 𝜎2 ∈ Ty we have

𝑅val
1

= ⊤, 𝑅val𝜎1∗𝜎2
= 𝑅val𝜎1
⊛ 𝑅val𝜎2

, 𝑅val𝜎→𝜏 = (𝑅val𝜎 ⊃ 𝑅𝜏 ), 𝑇 (𝑠⎜𝜎⨆︁, 𝑅val𝜎 ) = (𝑇𝑠⎜𝜎⨆︁, 𝑅𝜎 ) .
Moreover, we require that the interpretation of every effect operation op : 𝛼 ⇝ 𝜅 and primitive

(𝜉 : 𝜅) lifts to Kripke relations: 𝑠⎜op ⨆︁ : (𝑠⎜𝛼⨆︁, 𝑅val𝛼 ) → (𝑇𝑠⎜𝜅⨆︁, 𝑅𝜅) and 𝑠⎜𝜉⨆︁ : (1,⊤) → (𝑠⎜𝜅⨆︁, 𝑅val𝜅 ).
We extend the definition to contexts using the product structure, so that 𝑅valΓ := ⊛ (𝑥 :𝜎) ∈Γ 𝑅

val

𝜎 .

A λc(S)-logical relation is equivalently an interpretation of base types 𝑠𝑅 : 𝛽 ↦→ (𝑠⎜𝛽⨆︁, 𝑅val
𝛽
)

which extends to an interpretation satisfying 𝑠𝑅⎜𝜎⨆︁ = (𝑠⎜𝜎⨆︁, 𝑅val𝜎 ) for every 𝜎 ∈ Ty.
We cannot use the coproduct structure of KripM,𝑠⎜−⨆︁ to incorporate sum types because elements

of def
val

𝜎1
⊕def

val

𝜎2
must factor through one of the injections 𝑠⎜𝜎𝑖⨆︁→ 𝑠⎜𝜎1⨆︁+𝑠⎜𝜎2⨆︁, so one has strict

inclusions⊥ ⫋ def
val

0
and (defval𝜎1

⊕ def
val

𝜎2
) ⫋ def

val

𝜎1+𝜎2 . We therefore restrict to the subcategory

of 𝑇 -closed objects. Using Lemma 4.4, one obtains the following diagram for any lifting 𝑇 of 𝑇 .

The inclusion 𝑖 strictly preserves cartesian closed structure but does not preserve coproducts.

Krip
⊤⊤[𝑇 ]
M,𝑠⎜−⨆︁ KripM,𝑠⎜−⨆︁𝑇

𝑖

𝑇

(−)⊤⊤[𝑇 ]

⊣

(4)

We now define λ+
c
(S)-logical relations by extending Def. 5.2 with cases for sums; as in Def. 5.2,

this extends to contexts using the product structure.

Definition 5.2 (cf. [Katsumata 2008, §3.4]). Let 𝑇 be a lifting of 𝑇 to KripM,𝑠⎜−⨆︁. A λ+
c
(S)-logical

relation over𝑇 is a Ty+-indexed family {𝑅𝜎 ↩→ M(𝑠⎜−⨆︁,𝑇𝑠⎜𝜎⨆︁)}𝜎 ∈Ty+ such that: (1) the conditions

of Def. 5.1 hold; and (2) 𝑅val
0

= ⊥⊤⊤[𝑇 ]
and (𝑅val𝜎1

⊕ 𝑅val𝜎2
)⊤⊤[𝑇 ] = 𝑅val𝜎1+𝜎2 for every 𝜎1, 𝜎2 ∈ Ty+.

Remark 5.1. When 𝑇 is the ⊤⊤-lifting 𝑇⊤⊤[P]
, so that 𝑅⊤⊤[𝑇 ] = id

⊤⊤[P]𝑅, it suffices to require

that

(
(𝑅val𝜎1

⊕ 𝑅val𝜎2
) ⊃ 𝑄

)
=
(
𝑅val𝜎1+𝜎2 ⊃ 𝑄

)
and (𝑅val

0
⊃ 𝑄) = (⊥ ⊃ 𝑄) for any𝑄 ∈ P and 𝜎1, 𝜎2 ∈ Ty+:

modulo the (−)val operation, this is the condition in Katsumata’s definition.

λ+
c
(S)-logical relations satisfy the same key property as λc(S)-logical relations.

Lemma 5.1. Let 𝑅 be a λ+
c
(S)-logical relation over 𝑇 . Then every (𝑠⎜𝜎⨆︁, 𝑅val𝜎 ) and (𝑇𝑠⎜𝜎⨆︁, 𝑅𝜎 ) is

𝑇 -closed. Hence if 𝑠𝑅 (𝛽) =
(
𝑠⎜𝛽⨆︁, 𝑅val

𝛽

)
for all base types 𝛽 then 𝑠𝑅⎜𝜎⨆︁ = (

𝑠⎜𝜎⨆︁, 𝑅val𝜎

)
for all 𝜎 ∈ Ty+.

We now characterise the definable morphisms as those which satisfy every λ+
c
(S)-logical relation.

To do so, we take a detour through λ+
c
(S)-model morphisms. We saw in Ex. 1.2 that such functors

exclude ‘counterexample’ morphisms from a model; it turns out this approach is implicitly using

λ+
c
(S)-logical relations. As well as being a key step in our characterisation of definability, the next

result is useful because it is often more intuitive to construct a model than a λ+
c
(S)-logical relation.
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Let 𝐹 : (M,𝑇 , 𝑠) → (N , 𝑆, 𝑡) be a morphism of λ+
c
(S)-models. Since 𝐹 strictly preserves all the

structure, we obtain F𝜎 (Γ) :=
{
𝐹ℎ

�� ℎ ∈ M(𝑠⎜Γ⨆︁,𝑇𝑠⎜𝜎⨆︁)} ⊆ N(𝑡⎜Γ⨆︁, 𝑆𝑡⎜𝜎⨆︁) for every 𝜎 ∈ Ty+.

Notation 5.1. Every family 𝑅 := {(𝑇𝑠⎜𝜎⨆︁, 𝑅𝜎 )}𝜎 ∈Ty+ and hence every λ+
c
(S)-logical relation,

determines a family of ⊤⊤-lifting parameters: we also denote this by 𝑅.

Proposition 5.1. For any strict λ+
c
(S)-model morphism 𝐹 : (M,𝑇 , 𝑠) → (N , 𝑆, 𝑡), the family F :=

{F𝜎 }𝜎 ∈Ty+ defined above is a λ+c (S)-logical relation over the monad 𝑆⊤⊤[F] lifting 𝑆 to KripN,𝑡⎜−⨆︁.

Thus, we may recast our construction of the category LFin in Ex. 1.2 as restricting to the

subcategory of Set in which morphisms preserve the λc(S)-logical relation U of Ex. 2.1.

Example 5.1. The definability predicate def (Ex. 2.1) arises from Prop. 5.1: for a model (M,𝑇 , 𝑠)
take the subcategory ofM with objects {𝑠⎜𝜎⨆︁}𝜎 ∈Ty+ and morphisms the definable maps.

The desired characterisation now follows from Prop. 5.1, Ex. 5.1, and the argument sketched

in Sec. 2.1; a similar result holds for λc(S)-relations. Say that a morphism 𝑓 : 𝑠⎜Γ⨆︁ → 𝑇𝑠⎜𝜎⨆︁
in M satisfies a λ+

c
(S)-logical relation {𝑅𝜎 }𝜎 ∈Ty+ if 𝑓 lifts to a morphism 𝑠𝑅⎜Γ⨆︁ → 𝑇 (𝑠𝑅⎜𝜎⨆︁) in

Krip
⊤⊤[𝑇 ]
M,𝑠⎜−⨆︁.

Theorem5.1. def := {def𝜎 }𝜎 ∈Ty+ is a λ+c (S)-logical relation over𝑇⊤⊤[def] . Hence, 𝑓 : 𝑠⎜Γ⨆︁→ 𝑇𝑠⎜𝜎⨆︁
inM is λ+

c
(S)-definable if and only if it satisfies every λ+

c
(S)-logical relation over 𝑇⊤⊤[def] .

The logical relations arising via Prop. 5.1 are particularly well-behaved; for example, they are

closed under currying. We end this section by axiomatising these properties.

Definition 5.3. A λ+
c
(S)-logical relation 𝑅 = {𝑅𝜎 }𝜎 ∈Ty+ over𝑇 is: (1) hungry if id𝑠⎜𝜎⨆︁ ∈ 𝑅val𝜎 (𝑥 : 𝜎)

for all 𝜎 ∈ Ty+; (2) 𝜆-compatible if 𝑓 ∈ 𝑅𝜏 (Γ, 𝑥 : 𝜎) implies 𝜆𝑓 ∈ 𝑅val𝜎→𝜏 (Γ); (3) 0-compatible if ℎ ∈
𝑅0(Γ) implies𝑇 !𝑠⎜𝜎⨆︁ ◦ℎ ∈ 𝑅𝜏 (Γ); and (4) +-compatible if the composite below is in 𝑅𝜏 (Γ, 𝑝 : 𝜎1 +𝜎2)
whenever ℎ𝑖 ∈ 𝑅𝜏 (Γ, 𝑥𝑖 : 𝜎𝑖) for 𝑖 = 1, 2 (the isomorphism is the canonical one from distributivity):

𝑠⎜Γ, 𝑝 : 𝜎1 + 𝜎2⨆︁ = 𝑠⎜Γ⨆︁ × (𝑠⎜𝜎1⨆︁ + 𝑠⎜𝜎2⨆︁) �−→ ∑
𝑖=1,2(𝑠⎜Γ⨆︁ × 𝑠⎜𝜎𝑖⨆︁)

[ℎ1,ℎ2 ]−−−−−→ 𝑇𝑠⎜𝜏⨆︁
If 𝑅 is 𝜆-compatible, +-compatible and 0-compatible, we say 𝑅 is (𝜆, +, 0)-compatible.

A hungry logical relation is one which ‘eats’ every morphism which preserves it: 𝑅 is hungry if

and only if

(
𝑓 satisfies 𝑅 =⇒ 𝑓 ∈ 𝑅𝜎 (Γ)

)
for every 𝑓 : 𝑠⎜Γ⨆︁→ 𝑇𝑠⎜𝜎⨆︁ in M.

6 CONCRETENESS

In Sec. 1.1.1 we obtained a well-pointed model by introducing a criterion which ensures the

function spaces only consist of elements that are ‘named’ by a global element, namely concreteness.
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In this section we define concreteness in fibrational terms and show that a λ+
c
(S)-model structure

on Krip(𝑝,N) induces a λ+
c
(S)-model structure on the subcategory of concrete objects, for a fixed

bi-CCC C, fibration for logical relations 𝑝 : E → B, and product-preserving functor N : C → B. We

shall then substantiate the claim in Sec. 1.1.1 that the function space in the subcategory of concrete

objects consists only of those functions which preserve the relevant relations (Lemma 6.2).

Definition 6.1 (cf. Def. 1.1). An object (𝑋, 𝑅) ∈ Krip(𝑝,N) is concrete if every global element

𝑔 : 1 → 𝑋 in C lifts to a global element (𝑔,𝑔) : (1,⊤) → (𝑋, 𝑅) lying over 𝑔. We write

𝑗 : Conc(𝑝,N) ↩→ Krip(𝑝,N) for the full subcategory of concrete objects. When 𝑝 := cod and

N := N𝐹 , so that Krip(𝑝,N) = KripM,𝐹 , we write ConcM,𝐹 for Conc(𝑝,N).

Notation 6.1. We reserve U for forgetful functors into the base category (either C or M) and

indicate the domain by a superscript, so that e.g. UConc(𝑝,N)
: Conc(𝑝,N) → C.

Example 6.1 (cf. [O’Hearn and Riecke 1995]). Let 𝐹 : A → Fin. A Kripke relation (𝑋, 𝑅) ∈ KripFin,𝐹

(Def. 2.2) is concrete if and only if Δ(Γ) := {𝜆𝛾 ∈ 𝐹Γ . 𝑥
�� 𝑥 ∈ 𝑋 } ⊆ 𝑅(Γ) for every Γ ∈ A.

Every Kripke relation has a concrete completion: the inclusion 𝑗 : ConcM,𝐹 ↩→ KripM,𝐹 has a

left adjoint defined by K(𝑋, 𝑅) = (𝑋,K𝑅), where (K𝑅) (Γ) := 𝑅(Γ) ∪ Δ(Γ) (cf. also (2)). This is an

instance of a general construction.

Definition 6.2. Let (𝑋, 𝑅) ∈ Krip(𝑝,N). The set CE(𝑋, 𝑅) of concrete extensions consists of those
𝑆 ∈ E such that 𝑝 (𝑆) = 𝑋 , (𝑋, 𝑅) ≤ (𝑋, 𝑆) and (𝑋, 𝑆) is concrete. The concrete completion (𝑋, 𝑅) of
(𝑋, 𝑅) is the fibred product of all the concrete extensions: (𝑋, 𝑅) := ∧

𝑆 ∈CE(𝑋,𝑅) (𝑋, 𝑆).

The concrete completion operation extends to a functor K which is left adjoint to 𝑗 , thereby

exhibiting Conc(𝑝,N) as a reflective subcategory of Krip(𝑝,N). For Conc(𝑝,N) to inherit a monad

from Krip(𝑝,N), we further ask for Conc(𝑝,N) to be a coreflective subcategory. This amounts to

adding a restriction operation, taking an object of Krip(𝑝,N) to the largest concrete subobject.

Definition 6.3. Krip(𝑝,N) admits a hull functor if the inclusion 𝑗 : Conc(𝑝,N) ↩→ Krip(𝑝,N) has
a right adjoint H. We denote the unit and counit of the adjunction 𝑗 ⊣ H by e and c, respectively,

and write 𝜛 for the canonical map witnessing that H preserves products.

Example 6.2. In Ex. 6.1, the hull functor and its counit are given by the inclusion H𝑋 ↩→ 𝑋 :

H𝑋 :=
{
𝑥 ∈ 𝑋

�� 𝜆𝛾 . 𝑥 ∈ 𝑅(Γ) for every Γ ∈ A
}
, ℎ ∈ (H𝑅)Γ ⇐⇒ (𝐹Γ ℎ−→ H𝑋 ↩→ 𝑋 ) ∈ 𝑅(Γ).

In the preceding example, and in those we consider in Sec. 11, the action of the hull functor on

relations is determined by the counit c. We axiomatise this with the next definition.
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Definition 6.4. A hull functor H is tractable if the diagram below is a cartesian lifting for all

(𝑋, 𝑅) in Krip(𝑝,N). We denote H’s action by (𝑋, 𝑅) ↦→ (H𝑋,H𝑅) and the counit’s components

by (c, ĉ).

𝑗H𝑅 𝑅 E

N 𝑗H𝑋 N𝑋 B

ĉ(𝑋,𝑅)

𝑝

Nc(𝑋,𝑅)

Example 6.3. Let 𝐹 : A → M. The hullH : KripM,𝐹 → ConcM,𝐹 is tractable iffℎ ∈ (H𝑅) (Γ) ⇐⇒
c𝑋 ◦ ℎ ∈ 𝑅(Γ) for all (𝑋, 𝑅) ∈ KripM,𝐹 . Hull functors over Fin are always tractable (recall Ex. 6.2).

Remark 6.1. In the examples considered in this paper the (tractable) hull functor is always defined

similarly to Ex. 6.2. This is because our models M are categories of sets-with-structure such that,

if 𝑋 ∈ M has carrier set |𝑋 | ∈ Set, and 𝑆 ⊆ |𝑋 |, then there exists a mono 𝑆 ↣ 𝑋 inM such that 𝑆

has carrier 𝑆 . In future work we shall seek a more widely-applicable condition (see Sec. 1.4).

When Krip(𝑝,N) admits a hull functor the subcategory Conc(𝑝,N) becomes a bi-CCC by the

theory of (co)reflective subcategories (e.g. Adamek et al. [2009]; Borceux [1994]). Products and

coproducts are inherited from Krip(𝑝,N), and exponentials are given as follows:

(𝑋 ⇒Conc(𝑝,N) 𝑌 ) := H

(
𝑗𝑋 ⇒Krip(𝑝,N) 𝑗𝑌

)
, eval

Conc(𝑝,N)
:= eval

Krip(𝑝,N) ◦
(
c𝑗𝑋⇒𝑗𝑌 × 𝑗𝑋

)
Moreover, a strongmonad (𝑇, 𝜇, 𝜂, ŝt) onKrip(𝑝,N) defines amonad (W, 𝜇W, 𝜂W, stW) onConc(𝑝,N):

W := H𝑇 𝑗, 𝜇W := H𝑇 𝜇 𝑗 ◦ H𝑇 c𝑇 𝑗, 𝜂W := H𝜂 𝑗 ◦ e, st
W

:= Hŝt ◦𝜛 ◦ (e × H𝑇 𝑗) .

Lemma 6.1. If Krip(𝑝,N) admits a hull functor, then ( 𝑗, c) is a morphism of strong monadsW ⇒ 𝑇 :

c𝑇 𝑗 ◦ 𝜇W = 𝜇𝑇 ◦𝑇 c𝑇 𝑗 ◦ c𝑇 𝑗W, c𝑇 𝑗 ◦ 𝜂W = 𝜂𝑇 , c𝑇 𝑗 ◦ stW = st
𝑇 ◦(id × c𝑇 𝑗 ).

Hence, if c is component-wise monic, the monadic structure ofW is determined by that of 𝑇 .

The next result summarises this section.

Proposition 6.1. For any bi-CCC C, fibration for logical relations 𝑝 : E → B and product-preserving
functor N : C → B such that Krip(𝑝,N) admits a hull functor, Conc(𝑝,N) is a bi-CCC and 𝑗 strictly
preserves products and coproducts. Moreover, if 𝑇 is a strong monad on Krip(𝑝,N) then H𝑇 𝑗 is the
underlying functor of a strong monadW on Conc(𝑝,N), yielding the diagram below:

Conc(𝑝,N) Krip(𝑝,N)W:=H𝑇 𝑗 𝑇

K⊣
⊣

H

(5)
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We emphasise that the inclusion 𝑗 does not preserve exponentials. Instead, the exponential in
Conc(𝑝,N) is related to that inKrip(𝑝,N) by the counit c. In the presence of slightlymore structure—

e.g. when 𝑝 is the subobject fibration—the global elements of the carrier of the exponential in

Conc(𝑝,N) may be identified with morphisms inM preserving the relevant Kripke relations.

Lemma 6.2. Suppose that, in the situation of Prop. 6.1, it is moreover the case that for every 𝐴 ∈ B

the (partially-ordered) fibre E𝐴 over 𝐴 has a bottom element𝑀𝐴. Then U
Krip(𝑝,N) has a left adjoint

𝐿 : C → Krip(𝑝,N) : 𝐴 ↦→ (𝐴,𝑀𝐴). The composite K ◦ 𝐿 preserves the terminal object, and hence
determines a natural isomorphism M

(
1,UConc(𝑝,N) (𝑋 ⇒Conc(𝑝,N) 𝑌 )

)
� Krip(𝑝,N) ( 𝑗𝑋, 𝑗𝑌 ).

7 ABSTRACT OHR CONSTRUCTIONS FOR λc

We can now execute the strategy outlined in Sec. 2. We start with the abstract construction, in
which we assume the properties we need on the indexing set; in Sec. 8 we show how to choose

this set concretely. Fix a λc(S)-model (M,𝑇 , 𝑠) and a small set I such that for each 𝑖 ∈ I one has:

A small category A𝑖 , a functor 𝐹𝑖 : A𝑖 → M, and a monad lifting 𝑇𝑖 of 𝑇 to KripM,𝐹𝑖
. (6)

For each 𝑖 ∈ I one has KripM,𝐹𝑖
:= Krip(cod,N𝐹𝑖 ) and its subcategory of concrete objects

ConcM,𝐹𝑖 := Conc(cod,N𝐹𝑖 ). Similarly, taking the fibration for logical relations

∏
𝑖∈I cod one ob-

tains a category K := Krip

( ∏
𝑖∈I cod, ⟨N𝐹𝑖 ⟩𝑖∈I

)
with objects denoted 𝑋 := (𝑋,𝑋 ) as in Sec. 2, and

a subcategory C := Conc

( ∏
𝑖∈I cod, ⟨N𝐹𝑖 ⟩𝑖∈I

)
. The structure inK and C is determined component-

wise.

Lemma 7.1. (1) Take (𝑌,𝑌 ) ∈ K , 𝑓 : 𝑋 → 𝑌 inM, and cartesian liftings in K and KripM,𝐹𝑖
:∏

𝑖∈I Sub(A𝑖

∧
) 𝑓 ∗(𝑌 ) 𝑌

∏
𝑖∈I A𝑖

∧
⟨N𝐹𝑖 ⟩𝑖 (𝑋 ) ⟨N𝐹𝑖 ⟩𝑖 (𝑌 )

∏
𝑖 cod

⟨N𝐹𝑖
⟩𝑖 (𝑓 )

𝑓 ∗
(
𝑌 (𝑖)

)
𝑌 (𝑖) Sub(A𝑖

∧
)

N𝐹𝑖 (𝑋 ) N𝐹𝑖 (𝑌 ) A𝑖

∧
cod

N𝐹𝑖
(𝑓 )

Then 𝑓 ∗(𝑌 ) is determined component-wise, in the sense that
(
𝑓 ∗(𝑌 )

)
(𝑖) = 𝑓 ∗

(
𝑌 (𝑖)

)
for all 𝑖 ∈ I.

(2) Setting𝑇 (𝑋,𝑋 ) :=
(
𝑇𝑋,𝑇𝑋

)
, where𝑇𝑋 (𝑖) = 𝑇𝑖

(
𝑋 (𝑖)

)
for each 𝑖 ∈ I, defines a lifting of𝑇 toK .

(3) (𝑋,𝑋 ) ∈ C if and only if
(
𝑋,𝑋 (𝑖)

)
∈ ConcM,𝐹𝑖 for every 𝑖 ∈ I.

(4) 𝑓 : 𝑋 → 𝑌 in C if and only if 𝑓 :

(
𝑋,𝑋 (𝑖)

)
→

(
𝑌,𝑌 (𝑖)

)
in ConcM,𝐹𝑖 for every 𝑖 ∈ I.

For our abstract construction we want to assume enough structure so that Prop. 6.1 holds. This

is captured by the following; assumption (3) axiomatises the situation of Ex. 6.2.

Assumption 7.1. We assume the following: (1) an interpretation 𝑠 of base types, operations and

primitives with U
C ◦ 𝑠 = 𝑠 ; (2) an index 𝑖0 ∈ I with A𝑖0 = ConS and 𝐹𝑖0 := U

C ◦ 𝑠⎜−⨆︁. Moreover, we

assume: (3) K admits a tractable hull functor H with counit c : 𝑗H ⇒ id component-wise monic.
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With these assumptions, Prop. 6.1 entails that C acquires a bi-CCC structure and a strong monad

W with underlying functor H𝑇 𝑗 . We therefore recover the situation in Figure 1b.

Definition 7.1. We call (C,W, 𝑠) the abstract OHR model on (M,𝑇 , 𝑠).

7.1 λc(S)-logical relations over C

Having constructed (C,W, 𝑠) we turn to considering logical relations over this model and relating

them to logical relations over (M,𝑇 , 𝑠). To this end we consider the following two diagrams, in

which Ŵ is any lifting ofW; recall that Krip

(
cod,N

U◦𝑠⎜−⨆︁
)
is exactly KripM,𝐹𝑖

0

by Assump. 7.1(2).

KripC,𝑠⎜−⨆︁ Sub(ConS
∧

)

C ConS
∧

⌜Ŵ

U
cod

W

N𝑠⎜−⨆︁

KripM,𝐹𝑖
0

Sub(ConS
∧

)

M ConS
∧

⌜𝑇𝑖
0

cod

𝑇
N
U◦𝑠⎜−⨆︁

(7)

As observed in Sec. 2, for any (𝑋,R) ∈ KripC,𝑠⎜−⨆︁ the faithfulness of U in (7) yields a chain of

inclusions R ↩→ C(𝑠⎜−⨆︁, 𝑋 ) ↩→ M(U𝑠⎜−⨆︁, 𝑋 ), so (𝑋,R) becomes an object in KripM,𝐹𝑖
0

.

Remark 7.1. The bi-CCC structure of KripC,𝑠⎜−⨆︁ is given as in Sec. 4.1, except one must take

care to use the bi-CCC structure of C. For example, the exponential (𝑋,R) ⇒KripC,𝑠⎜−⨆︁ (𝑌,S) is(
H(𝑋 ⇒ 𝑌 ),H(𝑋 ⊃ 𝑌 ),R ⋔ S

)
, where ℎ ∈ (R ⋔ S)Γ ⇐⇒ eval ◦

〈
c𝑗𝑋⇒𝑗𝑌 ◦ ℎ ◦ 𝑠⎜𝜌⨆︁, 𝑢〉 ∈ S(Δ)

for any 𝜌 : Γ → Δ and 𝑢 ∈ R(Γ); equivalently, c𝑗𝑋⇒𝑗𝑌 ◦ ℎ ∈ (R ⊃ S)(Γ).

Together with the fact the forgetful functors KripC,𝑠⎜−⨆︁ → C and C → M both strictly preserve

products, Remark 7.1 entails that—so long as Ŵ interacts well with𝑇𝑖0—then λc(S)-logical relations
over Ŵ are ‘tracked’ by the cartesian closed structure of KripM,𝐹𝑖

0

. The proof is by induction.

Lemma 7.2. Let R = {R𝜎 }𝜎 ∈Ty be a λc(S)-logical relation over Ŵ such that: (1) ℎ ∈ R𝜎 (Γ) if and
only if c𝑇 𝑗𝑠⎜𝜎⨆︁ ◦ ℎ ∈ (𝑇𝑖0Rval

𝜎 ) (Γ); and (2) 𝑠⎜𝛽⨆︁(𝑖0) = Rval

𝛽
for every 𝛽 ∈ Ty. Then 𝑠⎜𝜎⨆︁(𝑖0) = Rval

𝜎

and (W𝑠⎜𝜎⨆︁) (𝑖0) = R𝜎 for every type 𝜎 ∈ Ty.

We now want to find Ŵ and𝑇𝑖0 so that condition (1) in this lemma holds automatically. Recalling

Prop. 5.1, it is natural to use the ⊤⊤-lifting arising from the given logical relation, namely Ŵ =

W
⊤⊤[R]

. It remains to identify a suitable choice of 𝑇𝑖0 . To this end, note that every (W𝑠⎜𝜎⨆︁,R𝜎 )
gives rise to a ⊤⊤-lifting parameter (𝑇𝑠⎜𝜎⨆︁, ⟨R𝜎 ⟩) in KripM,𝐹𝑖

0

as follows:

⟨R𝜎 ⟩(Γ) :=
{
c𝑇 𝑗𝑠⎜𝜎⨆︁ ◦ ℎ

�� ℎ ∈ R𝜎 (Γ)
}
⊆ M(𝑠⎜Γ⨆︁,𝑇𝑠⎜𝜎⨆︁)

Lemma 7.3. Let R = {R𝜎 }𝜎 ∈Ty be a hungry λc(S)-logical relation over Ŵ := W
⊤⊤[R] . Then

condition (1) of Lemma 7.2 holds: ℎ ∈ R𝜎 (Γ) ⇐⇒ c𝑇 𝑗𝑠⎜𝜎⨆︁ ◦ ℎ ∈ (𝑇⊤⊤[⟨R⟩]Rval

𝜎 ) (Γ).
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Combining Lemmas 7.2 and 7.3 yields the following, which makes precise the sense in which

morphisms in the abstract OHR model preserve every compatible logical relation over C.

Proposition 7.1. Let R = {R𝜎 }𝜎 ∈Ty be a hungry λc(S)-logical relation over Ŵ := W
⊤⊤[R] and

suppose 𝑖0 ∈ I is such that 𝑇𝑖0 = 𝑇
⊤⊤[⟨R⟩] and 𝑠⎜𝜎⨆︁(𝑖0) (𝛽) = Rval

𝛽
for every 𝛽 ∈ B. Then 𝑠⎜𝜎⨆︁(𝑖0) =

Rval

𝜎 and (W𝑠⎜𝜎⨆︁) (𝑖0) = R𝜎 for every type 𝜎 ∈ Ty, so every 𝑓 : 𝑠⎜Γ⨆︁→ W𝑠⎜𝜎⨆︁ in C satisfies R.

8 A FULLY ABSTRACT MODEL FOR λc

Choosing the indexing set I. We now follow the strategy sketched in Sec. 2.2. To instantiate the

abstract OHR construction (Def. 7.1) we need to choose I, 𝑖0 ∈ I, and 𝑠 so that Assump. 7.1 and the

hypotheses of Prop. 7.1 hold. Thus, we replace Assump. 7.1 with the weaker assumptions below.

Assumption 8.1. Let (M,𝑇 , 𝑠) be a λ+
c
(S)-model such that M is small and, for any small set J

and J-indexed set of functors A𝑗 → M, the category Krip(∏𝑗 ∈J cod, ⟨N𝐹 𝑗 ⟩𝑗 ∈J) admits a tractable

hull functor with counit c component-wise monic.

Remark 8.1. The size restriction is not onerous. Although many models of interest are large

(e.g. Set,𝝎Cpo, presheaf categories), one generally works within a small subcategory. For example,

one may replace Set with the subcategory Set𝜅 of hereditarily-𝜅 sets, for 𝜅 some infinite cardinal.

We construct I in stages, ranging over the data required to construct a λ+
c
-model structure on

each category of Kripke relations K𝑖 . By Prop. 5.1 this amounts to ranging over a collection of

λc(S)-logical relations. First we give the data necessary to construct K𝑖 :

• Fix a set S of small categories such that Con
op

S ∈ S (the singleton

{
Con

op

S

}
suffices).

• For each A ∈ S, let Fun(A) := [A,M] be the set of functors A → M; this is small sinceM is.

Since the nerve functor N𝐹 : M → A
∧
preserves limits for any 𝐹 : A → M, for each A ∈ S and

𝐹 ∈ Fun(A) one obtains a bi-CCC KripM,𝐹 . We then take

• For each A ∈ S and 𝐹 ∈ Fun(A), take Lift(A, 𝐹 ) to be the set of liftings of 𝑇 to KripM,𝐹 . This

is small becauseM is small and KripM,𝐹 → M has small fibres.

Clearly U ◦ 𝑠⎜−⨆︁ ∈ Fun(ConopS ), so Assump. 7.1(2) will hold, and 𝑇⊤⊤[⟨def⟩] ∈ Lift(ConopS ,U𝑠⎜−⨆︁).
It remains to construct the interpretation 𝑠 . By Lemma 7.1 it suffices to work component-wise,

so fix A ∈ S, 𝐹 ∈ Fun(A) and 𝑇 ∈ Lift(A, 𝐹 ). We need each base type to be interpreted by a

concrete object, so we range over interpretations of base types 𝑟 : B → ConcM,𝐹 lying over the

interpretation 𝑠 . However, to interpret primitives with thunks we want to use the exponentials of

KripM,𝐹 , which lie over those inM, rather than those of ConcM,𝐹 . Thus, we use the composite

𝑗 ◦ 𝑟 : B → KripM,𝐹 . This extends canonically to an interpretation ( 𝑗 ◦ 𝑟 )⎜−⨆︁ of all types, so
we take
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• Interp(A, 𝐹 ,𝑇 ) is the set of all maps 𝑟 : B → ConcM,𝐹 such that: (1) U
ConcM,𝐹 ◦ 𝑟 = 𝑠; and

(2) 𝑠⎜op ⨆︁ : 𝑗𝑟⎜𝛼⨆︁→ 𝑇 ( 𝑗𝑟⎜𝜅⨆︁) and 𝑠⎜𝜉⨆︁ : 1 → ( 𝑗𝑟 )⎜𝜅⨆︁ for each op : 𝛼 ⇝ 𝜅 and 𝜉 : 𝜅 in S.

This set is small because the fibration KripM,𝐹 → M has small fibres, so for each 𝛽 ∈ B there’s a

small set of choices of object lying over 𝑠⎜𝛽⨆︁. Putting everything together, we define
I :=

{
(A, 𝐹 ,𝑇 , 𝑟 )

�� A ∈ S, 𝐹 ∈ Fun(A),𝑇 ∈ Lift(A, 𝐹 ), 𝑟 ∈ Interp(A, 𝐹 ,𝑇 )
}

(8)

We nowdetail theOHR construction. FollowingO’Hearn and Riecke [1995], set 𝑠 (𝛽) =
(
𝑠 (𝛽), 𝑠 (𝛽)

)
where 𝑠 (𝛽) (A, 𝐹 ,𝑇 , 𝑟 ) is the second projection of 𝑟 (𝛽); this is a mapping B → C by Lemma 7.1(3).

To interpret operations and primitives we use the following lemma, which shows that these lift

from M to K ; we can then use the adjunction 𝑗 ⊣ H to construct the required maps in C. Thunks
require particular care because if 𝜎𝑖 = (1 → 𝛾𝑖) then 𝑠⎜𝜎𝑖⨆︁ = H(1 ⇒ 𝑗W𝑠⎜𝛾𝑖⨆︁). We therefore define

an object ⌜𝑠⎜𝜎𝑖⨆︁⌝ and map 𝑚𝜎𝑖 : 𝑗𝑠⎜𝜎𝑖⨆︁ → ⌜𝑠⎜𝜎𝑖⨆︁⌝ by setting ⌜𝑠⎜𝜎𝑖⨆︁⌝ := 𝑠⎜𝛾𝑖⨆︁ and 𝑚𝜎𝑖 := id

if 𝜎𝑖 = 𝛾𝑖 , and ⌜𝑠⎜𝜎𝑖⨆︁⌝ := 1 ⇒ 𝑇 𝑗𝑠⎜𝛾𝑖⨆︁ and 𝑚𝜎𝑖 := (id ⇒ c𝑇 𝑗𝑠⎜𝛾𝑖⨆︁) ◦ c
1⇒W𝑠⎜𝛾𝑖⨆︁ if 𝜎𝑖 is a thunk

(1 → 𝛾𝑖).

Lemma 8.1. For I and 𝑠 : B → C as defined above, and K and C constructed as in Figure 1b:
(1) if op : 𝛼 ⇝ 𝜅 , then 𝑠⎜op ⨆︁ : 𝑗𝑠⎜𝛼⨆︁→ 𝑇𝑠⎜𝜅⨆︁ inK ; and (2) if 𝜉 : 𝛾 , then 𝑠⎜𝜉⨆︁ : 1 → 𝑠⎜𝛾⨆︁ in C; and
(3) if 𝜉 : 𝜎1 ∗ · · · ∗ 𝜎𝑛 → 𝛾 , then 𝑠⎜𝜉⨆︁ : 1 → (

𝑗⌜𝑠⎜𝜎1⨆︁⌝ × · · · × 𝑗⌜𝑠⎜𝜎𝑛⨆︁⌝) ⇒ 𝑇𝑠⎜𝛾⨆︁) in K .

For the interpretation of primitives note that for any category Krip(𝑝,N) with hull functor H

there is a bijective correspondence between maps 1 → H( 𝑗𝑋 ⇒ 𝑗H𝑇 𝑗𝑌 ) and maps 1× 𝑗𝑋 → 𝑇 𝑗𝑌 .

Definition 8.1. The OHR model (ohr(M),W, 𝑠) over (M,𝑇 , 𝑠) is the λc(S)-model obtained by

instantiating Def. 7.1 with: (1) indexing set I as in (8), and A𝑖 , 𝐹𝑖 and 𝑇𝑖 given by the projections;

and (2) interpretation 𝑠 with 𝑠 (𝛽) := 𝑠 (𝛽) and 𝑠 (𝛽) (A, 𝐹 ,𝑇 , 𝑟 ) the second projection of 𝑟 (𝛽); and
(3) operations op : 𝛼 ⇝ 𝜅 interpreted by 𝑠⎜op ⨆︁ := H(𝑠⎜op ⨆︁) ◦ e𝑠⎜𝛼⨆︁, primitives (𝜉 : 𝛾) by
𝑠⎜𝜉⨆︁ := 𝑠⎜𝜉⨆︁ and primitives (𝜉 : 𝜎1 ∗ · · · ∗ 𝜎𝑛 → 𝛾) by setting 𝑠⎜𝜉⨆︁ to be the arrow corresponding

to eval ◦(𝑠⎜𝜉⨆︁ ×∏𝑛
𝑖=1𝑚𝜎𝑖 ) across the bijective correspondence above.

The next result makes precise the idea that ohr(M)-morphisms preserve every compatible

logical relation over ohr(M). For the proof, set 𝑖0 :=
(
Con

op

S ,U ◦ 𝑠⎜−⨆︁,𝑇⊤⊤[⟨R⟩], 𝑟
)
with 𝑟 : 𝛽 ↦→

(𝑠⎜𝛽⨆︁, 𝑅val
𝛽
), show that 𝑖0 ∈ I, i.e. that 𝑟 ∈ Interp

(
Con

op

S ,U ◦ 𝑠⎜−⨆︁,𝑇⊤⊤[⟨R⟩] )
, and apply Prop. 7.1.

Proposition 8.1. Let R = {R𝜎 }𝜎 ∈Ty be a hungry, 𝜆-compatible λc(S)-logical relation over
Ŵ := W

⊤⊤[R] such that every global element 𝑔 : 1 → 𝑠⎜𝛽⨆︁ inM is in Rval

𝛽
(⋄). Then any morphism

𝑓 : 𝑠⎜Γ⨆︁→ W𝑠⎜𝜎⨆︁ in ohr(M) satisfies R, and hence—since R is hungry—is in R𝜎 (Γ).

Together with Prop. 5.1, the preceding entails ohr(M) is “saturated”: if there exist enough
global elements, no λc(S)-morphism can cut out any morphisms. This should be contrasted with

Ex. 1.2.
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Corollary 8.1. If 𝐹 : (N , 𝑆, 𝑡) → (ohr(M),W, 𝑠) is any strict λc(S)-morphism such that the
induced composite (Uohr(M) ◦ 𝐹 )

1,𝑡⎜𝛽⨆︁ : N(1, 𝑡⎜𝛽⨆︁) → M(1, 𝑠⎜𝛽⨆︁) is onto, then every 𝑓 : 𝑠⎜Γ⨆︁ →
W𝑠⎜𝜎⨆︁ in ohr(M) is in the image of 𝐹 .

Full completeness of the OHR construction. Since def is always λc(S)-logical over 𝑇⊤⊤[def]

(Thm. 5.1), the final obstacle to full completeness is the concreteness condition on global elements.

For this we relate the induced interpretation 𝑠 to 𝑠 . WriteD𝜎 (Γ) :=
{
𝑓
�� 𝑓 is definable in (M,𝑇 , 𝑠)

}
for any context Γ and 𝜎 ∈ Ty, and call a context Γ ground if 𝜎 ∈ G whenever (𝑥 : 𝜎) ∈ Γ. Since

the forgetful functor U
ohr(M)

strictly preserves products, 𝑠⎜Γ⨆︁ = 𝑠⎜Γ⨆︁ for any ground context Γ.

Lemma 8.2. For every ground context Γ and ground type 𝛾 , Uohr(M)
(
c𝑇 𝑗𝑠⎜𝛾⨆︁ ◦ 𝑠⎜Γ ⊢ 𝑀 : 𝛾⨆︁) =

𝑠⎜Γ ⊢ 𝑀 : 𝛾⨆︁. Hence def and D coincide on closed terms of ground type: defval𝛾 (⋄) = Dval

𝛾 (⋄).

Remark 8.2. It follows that our semantic definition of contextual equivalence is consistent

between (M,𝑇 , 𝑠) and (ohr(M),W, 𝑠): we have 𝑀 ≃ctx 𝑀 ′
in M if and only 𝑀 ≃ctx 𝑀 ′

in

ohr(M).

By Lemma 8.2, if a global element 𝑔 : 1 → 𝑠⎜𝛽⨆︁ inM is such that 𝜂𝑠⎜𝛽⨆︁ ◦𝑔 is definable, then this

composite is also definable in ohr(M). Hence from Prop. 8.1 we obtain full completeness.

Theorem 8.1. Let (M,𝑇 , 𝑠) be a small, well-pointed λc(S)-model such that for every 𝛽 ∈ B and
global element 𝑔 : 1 → 𝑠⎜𝛽⨆︁ the composite 𝜂𝑠⎜𝛽⨆︁ ◦𝑔 is definable. Then, if Krip(

∏
𝑖 cod, ⟨𝐹 ⟩𝑖∈I) admits

a tractable hull functor and the counit of the adjunction 𝑗 ⊣ H is component-wise monic, the induced
model (ohr(M),W, 𝑠) is well-pointed and fully complete, hence fully abstract.

Example 8.1. The theorem applies to anymodel on Set in which the signature has a primitive𝑏 : 𝛽

for every 𝑏 ∈ 𝑠 (𝛽) and 𝛽 ∈ B (for the size restriction take Set𝜅 for a large enough 𝜅 , cf. Remark 8.1),

such as when one has a base type nat and primitives 𝑛 : nat for every 𝑛 ∈ N.

9 EXAMPLE: A FULLY ABSTRACT MODEL FOR IMMUTABLE STATE

The structure of the OHR model is closely related to that of the original model, and one can use

this to compute in the OHR model. We highlight these properties by returning to Ex. 1.1: let us

denote the signature considered there by SRO and write (Fin,R, 𝑠) for the associated semantic

model. We shall show why the counterexample 𝜅 , which shows that (Fin, R, 𝑠) is not fully abstract,

does not give rise to a counterexample in (ohr(Fin),W, 𝑠); along the way we shall see a particular

example of how Prop. 8.1 ensures full completeness of the OHR model.

We begin by making explicit the structure of the OHR model for a λc(S)-model (M,𝑇 , 𝑠) with
M ⊆ Set. Recalling Ex. 6.2, the counit c is an inclusion on carrier sets: for any 𝑋 = (𝑋,𝑋 ) ∈ K
one has c𝑋 : 𝑗H𝑋 ↩→ 𝑋 . All the λc-model structure of ohr(M) is then determined by c and the
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corresponding structure onM. For example, products in ohr(M) coincide with products in M
and eval

ohr(M)
is the following composite inM, so that eval

ohr(M) (𝑓 , 𝑥) = 𝑓 (𝑥):

H( 𝑗𝑋 ⇒ 𝑗𝑌 ) × 𝑋 ↩→ (𝑋 ⇒ 𝑌 ) × 𝑋 eval−−−→ 𝑌 (9)

By Lemma 6.1, similar remarks apply to the monadic structure, e.g. 𝜂W
𝑋
(𝑥) = 𝜂𝑇

𝑋
(𝑥) for all 𝑥 ∈ 𝑋 .

We now return to the particular case of Ex. 1.1. Since 𝑠⎜tt⨆︁ and 𝑠⎜ff⨆︁ name the two elements

of 𝑠⎜bool⨆︁, the model (Fin,R, 𝑠) satisfies the conditions of Thm. 8.1. Hence the OHR model

(ohr(Fin),W, 𝑠) on (Fin, R, 𝑠) exists and is fully abstract.

Using the relationship between ohr(Fin) and Fin sketched above, one sees the following.

Example 9.1. For any closed λc(SRO)-terms 𝑁, 𝑁 ′
: 1 → bool and variable 𝑓 : (1 → bool) →

bool,

c𝑇 𝑗𝑠⎜bool⨆︁ ◦ 𝑠⎜𝑓 : (1 → bool) → bool ⊢ or(⟨𝑓 𝑁 , 𝑓 𝑁 ′⟩) : bool⨆︁ = 𝜆𝜑 . 𝜆𝑖 . 𝜑 (𝑛(𝑖)) (𝑖) ∨ 𝜑 (𝑛′(𝑖)) (𝑖)
where 𝑛 = c𝑇 𝑗𝑠⎜1→bool⨆︁ ◦ 𝑠⎜𝑁 ⨆︁ and 𝑛′ = c𝑇 𝑗𝑠⎜1→bool⨆︁ ◦ 𝑠⎜𝑁 ′⨆︁. Since the components of c are

injections, this determines 𝑠⎜or(⟨𝑓 𝑁 , 𝑓 𝑁 ′⟩)⨆︁. Similar considerations show that, where𝑀 and𝑀 ′

are as in (1), then the set maps 𝑠⎜𝑀⨆︁ and 𝑠⎜𝑀 ′⨆︁ have the same action as 𝑠⎜𝑀⨆︁ and 𝑠⎜𝑀 ′⨆︁.

We can now show why the counterexample morphism 𝜅 of Ex. 1.1 cannot determine an element

of 𝑠⎜(1 → bool) → bool⨆︁. The idea, which holds quite generally, is to instantiate a version of

Figure 1a with Fin replaced by ohr(Fin), then adapt the argument from Ex. 1.2 to show 𝜅 does not

restrict to a map in ohr(Fin). Accordingly, let Lohr(Fin) be the category obtained by change-of-base

along Δ ◦ Uohr(M)
: ohr(M) → Fin × Fin. Explicitly, Lohr(Fin) has objects triples

(
(𝑋,𝑋 ), 𝑅1, 𝑅2

)
where each 𝑅𝑖 is a binary relation on the carrier 𝑋 ; products and exponentials are defined as in

LFin.

For the monad, the universal property of the fibration induces a lifting Ŵ of W to Lohr(Fin) : for(
(𝑋,𝑋 ), 𝑆

)
∈ Lohr(Fin) one has (𝑋, 𝑆) ∈ LFin and (R𝑋, R̂𝑆) ∈ LFin, so one defines Ŵ𝑆 using the

cartesian lifting in (10), below. Explicitly, (ℎ,ℎ′) ∈ (Ŵ𝑅)𝑖 ⇐⇒ (ℎ 𝑖, ℎ′ 𝑖) ∈ 𝑅𝑖 . To finish defining a

the semantic model, set 𝑡 (bool) =
(
𝑠⎜bool⨆︁, {(0, 0), (1, 1)}, {(0, 0), (1, 1)}) and interpret primitives

and operations using the universal property of the cartesian lifting. Then (Lohr(Fin) , Ŵ, 𝑡) is a
λc(SRO)-model and the forgetful functor Lohr(Fin) → ohr(Fin) is a λc(SRO)-morphism.

Ŵ𝑆 R̂𝑆 Sub(Fin) × Sub(Fin)

NW𝑋 NR(𝑋 ) Fin × Fin

cod× cod

Nc
𝑇 𝑗𝑋

(10)
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We can now show the counterexample 𝜅 from Ex. 1.1 does not restrict to a counterexample 𝜅 ′ in

ohr(Fin), i.e. that there does not exist 𝜅 ′ in ohr(Fin) and 𝑖 ∈ 2 such that

𝜅 =

(
1

𝜅′−→ W𝑠⎜(1 → bool) → bool⨆︁ ↩→ R

(
(1 ⇒ R2) ⇒ R2

) eval𝑖−−−→ (1 ⇒ R2) ⇒ R2
)
.

If such a 𝜅 ′ existed, it must lift to Lohr(Fin) by Cor. 8.1, but, arguing in the same way as Ex. 1.2, one

sees this is impossible. Similar reasoning remedies our omission in Ex. 1.1.

Lemma 9.1. For𝑀,𝑀 ′ as in Ex. 1.1,𝑀 ≃ctx 𝑀
′ in (Fin, R, 𝑠).

Proof. By Remark 8.2 it suffices to show𝑀 ≃ctx 𝑀
′
in the OHR model. Suppose for a contradic-

tion that 𝑠⎜𝑀⨆︁ ≠ 𝑠⎜𝑀 ′⨆︁. The counit determines an inclusionW𝑠⎜((1 → bool) → bool) → bool⨆︁ ↩→
R(𝑠⎜(1 → bool) → bool⨆︁⇒ R2) so there exists some 𝑖 ∈ 2 and 𝛿 ∈ 𝑠⎜(1 → bool) → bool⨆︁ such
that 𝑠⎜𝑀⨆︁(𝑖) (𝛿) ≠ 𝑠⎜𝑀 ′⨆︁(𝑖) (𝛿). Using the interpretations of read,tt, ff and ¬ in ohr(M) one
sees that 𝑠⎜(1 → bool) → bool⨆︁ has four elements, and so must equal 𝑠⎜(1 → bool) → bool⨆︁.
A long but basic check then shows that if 𝑠⎜𝑀⨆︁(𝑖) (𝜔) ≠ 𝑠⎜𝑀 ′⨆︁(𝑖) (𝜔) then 𝜔 does not lift to

a morphism in LFin so, by Ex. 9.1, 𝛿 cannot lift to a morphism in LFin. On the other hand, by

concreteness and Cor. 8.1, 𝛿 defines a morphism 1 → 𝑡⎜(1 → bool) → bool⨆︁ in Lohr(Fin) . But then

𝛿 : (𝑋, 𝑅1, 𝑅2) → (𝑌, 𝑆1, 𝑆2) in Lohr(Fin) implies 𝛿 : (𝑋, 𝑅1, 𝑅2) → (𝑌, 𝑆1, 𝑆2) in LFin, contradicting

the preceding. □

10 A FULLY ABSTRACT MODEL FOR λ+
c

We now fold sum types into the development of Secs. 7 and 8. We saw in Sec. 5 that to characterise

definability with sum types one needs to restrict to 𝑇 -closed objects. Accordingly, for our OHR

construction we restrict not just to concrete objects, but to those that are both concrete and 𝑇 -

closed. Write 𝑘 : ConcCl(𝑝,N,𝑇 ) ↩→ Krip(𝑝,N) for the subcategory of concrete, 𝑇 -closed objects.

We induce structure on this category as we did for the concrete and 𝑇 -closed subcategories.

Lemma 10.1 (cf. Lemma 4.4 and Prop. 6.1). In the situation of Prop. 6.1:

(1) The closure operator id⊤⊤[𝑇 ] restricts toConc(𝑝,N): if (𝐴, 𝑅) is concrete, then so is id⊤⊤[𝑇 ] (𝐴, 𝑅).
Hence ConcCl(𝑝,N,𝑇 ) is a replete reflective subcategory of Conc(𝑝,N).

(2) ConcCl(𝑝,N,𝑇 ) is an exponential ideal (e.g. Johnstone [2002, p. 52]) of Conc(𝑝,N).
(3) If H is tractable, then H𝑇 𝑗 restricts to a strong monad on ConcCl(𝑝,N,𝑇 ).

Hence, ConcCl(𝑝,N,𝑇 ) is a bi-CCC with cartesian-closed structure inherited from Conc(𝑝,N) and
coproducts as in Lemma 4.4(2), the forgetful functor U : ConcCl(𝑝,N,𝑇 ) → A strictly preserves finite
products and finite coproducts, and one obtains the diagram below (cf. diagrams (4) and (5)):
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ConcCl(𝑝,N,𝑇 ) Conc(𝑝,N) Krip(𝑝,N)H𝑇𝑘

H𝑇 𝑗

⊣

𝑇

K⊣
⊣

H

(11)

We now refine the abstract OHR construction for λc(S) (Sec. 7) to incorporate sums. Con-

sider a fixed λ+
c
(S)-model (M,𝑇 , 𝑠) and an indexing set I such that for each 𝑖 ∈ I one has cho-

sen data as in (6), and make the assumptions of Assump. 7.1. For each 𝑖 ∈ I one now obtains

three categories: KripM,𝐹𝑖
:= Krip(cod,N𝐹𝑖 ), ConcM,𝐹𝑖 := Conc(cod,N𝐹𝑖 ) and ConcClM,𝐹𝑖 ,𝑇𝑖

:=

ConcCl(cod,N𝐹𝑖 ,𝑇𝑖). Similarly, taking the fibration for logical relations

∏
𝑖∈I cod one obtains a

category K := Krip

( ∏
𝑖∈I cod, ⟨N𝐹𝑖 ⟩𝑖∈I

)
as well as subcategories C := Conc

( ∏
𝑖∈I cod, ⟨N𝐹𝑖 ⟩𝑖∈I

)
and CC𝑙 := ConcCl

( ∏
𝑖∈I cod, ⟨N𝐹𝑖 ⟩𝑖∈I,𝑇

)
, for 𝑇 the monad defined in Lemma 7.1.

Because cartesian liftings are determined component-wise (Lemma 7.1(1)), so is 𝑇 -closure. It fol-

lows that all the properties of Lemma 7.1 extend to CC𝑙 . Moreover, CC𝑙 acquires a bi-CCC structure

and a strongmonadWwith underlying functorH𝑇𝑘 by Lemma 10.1.We call (CC𝑙,W, 𝑠) the abstract
OHR model on (M,𝑇 , 𝑠). The situation is summarised below (cf. Figure 1b and diagram (11)):

ConcClM,𝐹𝑖 ,𝑇𝑖
ConcM,𝐹𝑖 KripM,𝐹𝑖𝑗

⊣ ⊣

CC𝑙 C KW:=H𝑇𝑘

⊣

𝑇

⊣
⊣

H

Next we consider logical relations over CC𝑙 (cf. diagram (7)). Extending Lemmas 7.2 and 7.3 to

incorporate sums, one obtains the following extension of Prop. 7.1 with sum types.

Proposition 10.1. Let R = {R𝜎 }𝜎 ∈Ty+ be a hungry, (𝜆, +, 0)-compatible λ+
c
(S)-logical relation over

W
⊤⊤[R] and suppose 𝑖0 ∈ I is such that 𝑇𝑖0 = 𝑇⊤⊤[⟨R⟩] and 𝑠⎜𝜎⨆︁(𝑖0) (𝛽) = Rval

𝛽
for all 𝛽 ∈ B.

Then 𝑠⎜𝜎⨆︁(𝑖0) = Rval

𝜎 and (W𝑠⎜𝜎⨆︁) (𝑖0) = R𝜎 for all 𝜎 ∈ Ty+, so every 𝑓 : 𝑠⎜Γ⨆︁ → W𝑠⎜𝜎⨆︁ in CC𝑙
satisfies R.

It remains to instantiate the abstract construction. The development goes through verbatim,

except in the definition of I (equation (8)) we must now assume that Interp(A, 𝐹 ,𝑇 ) consists of
maps 𝑟 : B → ConcClM,𝐹 ,𝑇 rather than B → ConcM,𝐹 . We therefore obtain an OHR model as in
Def. 8.1. In this setting, Prop. 8.1 and Cor. 8.1 are as follows.

Theorem 10.1. Let R = {R𝜎 }𝜎 ∈Ty be a hungry, (𝜆, +, 0)-compatible λ+
c
(S)-logical relation over

Ŵ := W
⊤⊤[R] such that every global element 𝑔 : 1 → 𝑠⎜𝛽⨆︁ inM is in Rval

𝛽
(⋄). Then every ohr(M)-

morphism 𝑓 : 𝑠⎜Γ⨆︁→ W𝑠⎜𝜎⨆︁ satisfies R.
Corollary 10.1. If 𝐹 : (N , 𝑆, 𝑡) → (ohr(M),W, 𝑠) is a λ+

c
(S)-morphism with a surjective map

(U ◦ 𝐹 )
1,𝑡⎜𝛽⨆︁ : N(1, 𝑡⎜𝛽⨆︁) → M(1, 𝑠⎜𝛽⨆︁), then any 𝑓 : 𝑠⎜Γ⨆︁→ W𝑠⎜𝜎⨆︁ in ohr(M) is in 𝐹 ’s image.

Since Lemma 8.2 extends to sum types without difficulty, we also recover full abstraction.
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Theorem 10.2. Let (M,𝑇 , 𝑠) be a small, well-pointed λ+
c
(S)-model such that for every 𝛽 ∈ B and

𝑔 : 1 → 𝑠⎜𝛽⨆︁ the composite 𝜂𝑠⎜𝛽⨆︁ ◦ 𝑔 is definable. Then, if Krip(
∏

𝑖 cod, ⟨𝐹 ⟩𝑖∈I) admits a tractable
hull functor and the counit of the adjunction 𝑗 ⊣ H is component-wise monic, the induced model
(ohr(M),W, 𝑠) is well-pointed and fully complete, hence fully abstract.

11 EXAMPLES: FULLY ABSTRACT MODELS OVER Diff AND QBS

In this final section we give two examples of the OHR construction with sums. First we study a

simple language for probabilistic programming. This is the fragment of the idealised Anglican

language of Staton et al. [2016] without recursive types and constructors; for the semantics

we use the category of quasi-Borel spaces [Heunen et al. 2017]. Then we turn to the language

for automatic differentiation studied by Huot et al. [2020], extended with a global memory cell

that may be read and written to. The semantics takes place in the category of diffeological spaces
(e.g. Iglesias-Zemmour [2013]). In each case the hull functor is defined as in Remark 6.1, so tractable.

11.1 Probability over QBS

The category of quasi-Borel spaces was introduced by Heunen et al. [2017] as a setting for the

denotational semantics of higher-order probabilistic programming languages. Naively, one would

hope to interpret such languages in the category Meas of measurable spaces and measurable

maps using the Giry monad [Giry 1982]. However, Meas is not cartesian closed; QBS rectifies this
deficiency. QBS acts as a kind of conservative extension of the category of standard Borel spaces:

there is a functor 𝑅 : Meas → QBS and, if 𝑋,𝑌 are standard Borel spaces, then QBS(𝑅𝑋, 𝑅𝑌 ) =
Meas(𝑋,𝑌 ) (see e.g. Ścibior et al. [2018]). Moreover, the Giry monad restricts to a monad P on

QBS, and if 𝑋,𝑌 are standard Borel spaces then maps 𝑅𝑋 → P(𝑅𝑌 ) correspond to the 𝑠-finite
kernels used by Staton [2017] to give a complete semantics for a first-order probabilistic language.

The signature Sprob for our idealised probabilistic programming language is given in the box

below. The type real represents the real numbers. To get a primitive representing each measurable

function we use the (co)cartesian structure of Meas: where𝑚 : {real} → Meas interprets real
as the standard Borel space (R, ΣR), one obtains a measurable space𝑚⎜𝛾⨆︁ for all ground types

𝛾 . Constant maps and all the usual distributions are measurable; hence for any 𝑟 ∈ R one has

const𝑟 : 1 → real.

Semantically, we set 𝑠 (real) to be the quasi-Borel space corresponding to (R, ΣR). Because R is

standard Borel,𝑚⎜𝛾⨆︁ is standard Borel for every ground type 𝛾 . For each operation op : 𝛾 ⇝ 𝜈 we

therefore take 𝑠⎜op ⨆︁ to be the Kleisli arrow corresponding to the 𝑠-finite kernel interpretation

base types: real; primitives: 𝑓 : 𝛾 → 𝜈 for every 𝑓 :𝑚⎜𝛾⨆︁→𝑚⎜𝜈⨆︁;
operations (for 𝛾 ∈ G): score : real⇝ 1, sample𝛾 : 𝛾 ⇝ 𝛾 , normalise𝛾 : 𝛾 ⇝ real ∗𝛾 + 1+ 1;
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of that operation given by Staton [2017]. Finally, for a primitive 𝑓 : 𝛾 → 𝜈 we use the fact that

QBS(𝑠⎜𝛾⨆︁, 𝑠⎜𝜈⨆︁) = Meas(𝑚⎜𝛾⨆︁,𝑚⎜𝜈⨆︁) to define 𝑠⎜𝑓 ⨆︁ := 𝜆(∗ ∈ 1) . 𝑓 : 1 → (𝑠⎜𝛾⨆︁ ⇒ 𝑠⎜𝜈⨆︁). Thus,
we have a λ+

c
(Sprob)-model (QBS, P, 𝑠) (we silently identify QBS with a suitable small subcategory).

The induced OHR model is fully abstract, since for every 𝑔 : 1 → 𝑠⎜real⨆︁ the composite

𝜂P
𝑠⎜real⨆︁ ◦ 𝑔 is definable. Indeed, global elements in QBS are in bijective correspondence with

global elements in Set, so we can identify 𝑔 with a constant map const𝑟 for some 𝑟 ∈ R. Then

𝜂P
𝑠⎜real⨆︁ ◦ 𝑔 = 𝑠⎜⋄ ⊢ const𝑟 () : real⨆︁, as required. So the OHR model over (QBS, P, 𝑠) exists and is

fully abstract.

The forgetful functor QBS → Set strictly preserves products and coproducts and evaluation in

QBS is as in Set, so the relationship between ohr(QBS) and QBS is very similar to that between

ohr(Fin) and Fin outlined in Sec. 9. The monadW is a restriction of P, products in ohr(QBS) are
as in QBS—hence as in Set—and the evaluation map is a restriction of that in Set (cf. (9)).

11.2 Global state over Diff

Just as quasi-Borel spaces were introduced to deal with the fact that Meas is not cartesian closed,

so the category Diff of diffeological spaces and smooth maps was used by Huot et al. [2020] to deal

with the fact that the usual setting for differential geometry, namely the category of cartesian spaces

and smooth functions, is not cartesian closed. A diffeological space is a pair (𝑋,P𝑋 ) consisting of
a set 𝑋 equipped with a set of plots P𝑈

𝑋
⊆ Set(𝑈 ,𝑋 ) for every 𝑛 ∈ N and open subset 𝑈 ⊆ R𝑛

,

subject to certain axioms. One then widens the definition of smooth function from differential

geometry to this clean axiomatic setting: one calls a function smooth if it send plots to plots.

Huot et al. [2020] show that Diff is a natural setting for studying the denotational semantics of

syntactic (forward mode) automatic differentiation for neural network programming. We consider

an extension of their simple language for AD with a single memory cell. One may lookup the

value of the cell or update it to a new shared value; we assume values range over a fixed set 𝑉 .

The relevant signature SGS is defined in the box below, where the primitives + and × represent the

usual operations on R and 𝜍 represents the sigmoid function 𝜍 (𝑥) = (1 + 𝑒−𝑥 )−1.

base types: real,Val; operations: lookup : 1⇝ Val; update : Val⇝ 1;

primitives: 𝑟 : real (for 𝑟 ∈ R); +,× : real ∗ real → real; 𝜍 : real → real; 𝑣 : Val (for 𝑣 ∈ 𝑉 ).

For the semantic interpretation, set 𝑠 (real) := (R,PR), where P𝑈
R is the set of smooth maps

𝑈 → R. We interpret Val as a coarse diffeological space: 𝑠 (Val) := (𝑉 ,D𝑉 ) whereD𝑈
𝑌

:= Set(𝑈 ,𝑌 ).
The memory cell is modelled by the global state monad 𝐺𝑉 (𝑋 ) := 𝑉 ⇒ (𝑉 ×𝑋 ) on Diff . Primitives

are interpreted by the corresponding (smooth) functions in Set; the usual set maps interpreting

lookup and update (e.g. [Kammar 2014]) are smooth because 𝑠 (Val) is coarse. This defines a
λ+
c
(SGS)-model (Diff,𝐺𝑉 , 𝑠). The global elements in Diff are exactly the global elements in Set so,
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identifying Diff with a suitable small subcategory, the OHR model over (Diff,𝐺𝑆 , 𝑠) exists and is

fully abstract.

The forgetful functor Diff → Set strictly preserves products and coproducts, and evaluation in

Diff is evaluation in Set. Thus, just as for the QBS example, the relationship between the OHR

model and (Diff,𝐺𝑆 , 𝑠) is very similar to that between ohr(Fin) and Fin outlined in Sec. 9.
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