
Lifting CDCL to Abstract Lattices

 Rajdeep Mukherjee
 PhD, University of Oxford

Conflict Driven Clause Learning

** Partial assignments are main data structure in SAT solvers

Make
Assumptions

unsafe

safe

Deduction

Restore
Consistent

State

Refine formula

The CDCL Algorithm Summary

Model Theoretic
 Search

Proof Theoretic
 Search

Guides

BCP + Decision ! Constructs an assignment

Learning infers new clauses

SAT Solvers: Precise but inefficient
Abstract Interpreter: Efficient but Imprecise

How to make SAT solvers more efficient?
! Choose a domain that’s better suited to your problem than the Boolean domain!

How to make Abstract interpretation more precise?
! Wrap them in the SAT architecture!

Lifting CDCL to Program Analysis

** Leopold Haller, Abstract Satisfaction, D.Phil, University of Oxford, 2013
** Papers on ACDCL: TACAS 2013, POPL 2013, POPL 2014, FMSD 2014, SAS 2013

Partial Assignments ! Abstract Domain
 Decision ! Restrict range of variables
 Unit Rule ! Best Abstract Clause Transformer
 BCP ! GFP Iteration
 Learning ! Generate program analysis constraint
 Implicit form of Trace Partitioning

Decision Procedure Abstract Interpretation

Abstract Conflict Driven Clause Learning

Satisfiability Solvers are Abstract Interpreters **

New program analysis that embeds an abstract domain inside Conflict Driven Clause
Learning algorithm of modern day SAT solvers.

What is ACDCL?

From AI Point of View ! ACDCL is an abstract interpreter that uses Decision and
Learning to increase transformer precision

From a decision procedure perspective ! ACDCL is a SAT solver for program analysis
constraints. It is a strict generalisation of propositional CDCL.

About ACDCL

Sketch of ACDCL Algorithm

Instantiating CDCL with Numerical Abstract Domains

Forward analysis
 with intervals

** Astree failed to verify with interval domain, require external hint to recover from imprecision

Forward analysis
 with octagons

Instantiating CDCL with Numerical Abstract Domains

For (N=46000)

Partial Assignment
 Prop ! {t, f, ?}

Boolean Constants Domain
 Main data-structure in a SAT solver::
 Partial Assignment

 Assignments are extended
using deduction and decisions

SAT solver operates over
Boolean Constants Abstract Domain

Three-Valued Logic

BCP is GFP computation

❖ Abstract transformers are sound but imprecise.

❖ gfp iteration improves the precision of the abstraction

Example of sAbstract fixed-point

Theorem (Cousot and Cousot 1979)::
The concretisation of greatest fixed-point computation over abstract post transformer
gives more precise deductions compared to the concretisation of abstract post transformer

Properties of Domain elements for lifting CDCL

Property of a Clause Learning SAT solver:

Each non-singleton element of the partial assignment domain can be decomposed
into a set of precisely complementable singleton elements

Abstract domains such as Intervals and Octagons are decomposable into half-spaces
which have precise complements

Property of Numerical Abstract Domains:

decomp(2 ≤ x ≤ 4 ∧ 3 ≤ y ≤ 5) —> {x ≥ 2, x ≤ 4, y ≥ 3, y ≤ 5}

Abstract Learning

>> Learning and case based reasoning are different !

>> A case-based reasoning does proof under each assumption.

>> Learning generates constraints that preserve error reachability.

>> ACDCL adds the learnt clause to the set of transformer

φ := (y=x ∧ y=y+x ∧ y≤0)

Use Abstract Conflict Graph Cutting Algorithm to find UIP

Consider a program fragment:

DPLL with No Abstract Learning

Input Program DPLL strategy using forward analysis with Intervals

1. x :[0, INF]
2. x :[0, INF], y :[0, INF]
3. x :[0, INF], y :[5, INF] ! PROOF
4. x :[0, INF], y:[-INF, 4]
5. x :[0, INF], y:[-INF, 3] ! PROOF
6. x :[0, INF], y :[4,4] !PROOF
7. x :[0, INF], y:[-INF,0] ! PROOF
8. x:[-INF,0]
9. x:[-INF,0], y :[0, INF]
10. x:[-INF,0], y :[5, INF] !PROOF
11. x:[-INF,0], y:[-INF,4]
12. x:[-INF,0], y:[-INF,3] ! PROOF
13. x:[-INF,0], y :[4,4] ! PROOF
14. x:[-INF,0], y:[-INF,0] ! PROOF

if(y <4)
 x = 1;
else
 x = -1;
assert(x!=0);

▪ Bad choice by splitting on ‘x’ because x is overwritten !
▪ Made bad splits on ‘y’ !

CDCL with Abstract Learning

Input Program (P) CDCL style strategy using forward analysis with Intervals

 Perform
Generalization

Case Splitting:

1. x :[0, INF]
2. x :[0, INF], y :[0, INF]
3. x :[0, INF], y :[5, INF] ! PROOF
4. Generalize to y: [4:INF] ! PROOF
5. y: [-INF:3] ! PROOF

1 x :[0, INF]
2 x :[0, INF], y :[0, INF]
3 x :[0, INF], y :[5, INF] ! PROOF

y: [-INF,3] and y:[4,INF]

if(y <4) {
 P;
 assert(x!=0);
}
else {
 P;
 assert(x!=0);
}

if(y <4)
 x = 1;
else
 x = -1;
assert(x!=0);

Value of x is irrelevant for the proof

Proof still works if split
at y[4,INF] instead of y[5,INF]

CDCL learns this is the
only interesting case left

Analysis using ACDL

Input Program (P) if(y <4) {
 P;
 assert(x!=0);
}
else {
 P;
 assert(x!=0);
}

Analysis using ACDL

if(y <4)
 x = 1;
else
 x = -1;
assert(x!=0);

CDCL with abstract learning implicitly produces program and property driven trace partitioning.

Program Dependent: If the guard were (y<10), ACDL would have generated different partitioning
like y:[-INF,9], y:[10,INF]

Property Dependent: If the assertion had been (x<1), no splitting would have been needed

Program and Property Driven Trace Partitioning

SAT versus ACDCL

Effect of Decision and Propagation Heuristics

Ongoing Work

>> Efficient Gamma completeness check in Template Polyhedra

>> Instantiate CDCL over more expressive lattice structures

>> Generalize Conflict Reasons for Template Polyhedra

