Lifting CDCL to Abstract Lattices

Rajdeep Mukherjee
PhD, University of Oxford

UNIVERSITY OF

OXFORD

Conflict Driven Clause Learning

Deduction Make
Assumptions
BCP| — 2

X~____ |Decide SAT

Restore
Consistent
State

|Learn Backtrack ———| UNSAT
@e formula

** Partial assighments are main data structure in SAT solvers

conflict

The CDCL Algorithm Summary

BCP + Decision - Constructs an assignment

Model Theoretic
Search

Learning infers new clauses

Guides

Proof Theoretic
Search

Lifting CDCL to Program Analysis

SAT Solvers: Precise but inefficient
Abstract Interpreter: Efficient but Imprecise

How to make SAT solvers more efficient?
— Choose a domain that’s better suited to your problem than the Boolean domain!

How to make Abstract interpretation more precise?
- Wrap them in the SAT architecture!

Abstract Conflict Driven Clause Learning

Satisfiability Solvers are Abstract Interpreters **

Decision Procedure Abstract Interpretation
Partial Assignments - Abstract Domain
Decision > Restrict range of variables
Unit Rule > Best Abstract Clause Transformer
BCP > GFP Iteration
Learning - Generate program analysis constraint

Implicit form of Trace Partitioning

** Leopold Haller, Abstract Satisfaction, D.Phil, University of Oxford, 2013
** Papers on ACDCL: TACAS 2013, POPL 2013, POPL 2014, FMSD 2014, SAS 2013

About ACDCL

New program analysis that embeds an abstract domain inside Conflict Driven Clause
Learning algorithm of modern day SAT solvers.

What is ACDCL?

From Al Point of View - ACDCL is an abstract interpreter that uses Decision and
Learning to increase transformer precision

From a decision procedure perspective - ACDCL is a SAT solver for program analysis
constraints. It is a strict generalisation of propositional CDCL.

Sketch of ACDCL Algorithm

Algorithm 1: Abstract Conflict Driven Clause Learning ACDC Ly, u, m.(A)

input :A program in the form of a set of abstract transformers .A.

output : The status safe or unsafe.

T+ (), R+ |

result < deducer,(A,T,R)

if result = conflict then return safe

while true do

if result = sat then return unsafe

q < decidep,, (abs(T))

T+ T-q

R(T T

result < deducen, (A, T,R)

do
if —analyzeConflict; (A, T, R) then return safe
result < deducem, (A, T,R)

13 while result = conflict

14 end

o 0 N QA T AW N -

|
Ll —

.
[]

Instantiating CDCL with Numerical Abstract Domains

Decision

n0 [nO:c:[l,l])—>[n1:v=[0,5]]
\

I

n2: L [n3:c= i 1]]

Y
nd: = [0, 5] j
Learn: c = [0, 0] i

[EITOTI 1 H nd:z = |0, 25]]

Forward analysis
with intervals

o
Il
1l
\i
()
Il
.ﬂ‘
INTERVAL Analysis

INTERVAL Analysis

0 Learnt Clause
n5 |*= " =[Error]
reeton | =i0 |00
Y \

** Astree failed to verify with interval domain, require external hint to recover from imprecision

Instantiating CDCL with Numerical Abstract Domains

n0

assume(v >= 0A
v < N)

V

Forward analysis OCTAGON Analysis

V Nﬁ Iwith octagons:> 4 5<z< 5)_»@? ; (_OZSZz _33(2);3)/\/\(£x5—§ sz+ 5z)) 3OJ
Y
\ /_v [Error: 1 j

n4

Z:=xX * X

Y

<0
n5 === {Error|

Solver decisions |propagations|conflicts conflict literals|restarts

_ MiniSat 233 36436 162 2604 2

For (N=46000) ACDCL (Interval) 1 17 1 1 0
ACDCL (Octagons) 0 7 0 0 0

SAT solver operates over
Boolean Constants Abstract Domain

Boolean Constants Domain

Main data-structure in a SAT solver::

Partial Assignment 1.

| y— 1 y — 0 x 0
Partial Assighment

Prop 2 {t, f, 7} :]
r— 1 r— 0 r— 1 r—0
Three-Valued Logic))
y 1 y— 1 y—0 y—0

Assighments are extended T

using deduction and decisions

BCP is GFP computation

% Abstract transformers are sound but imprecise.

% gfp iteration improves the precision of the abstraction

Theorem (Cousot and Cousot 1979)::

The concretisation of greatest fixed-point computation over abstract post transformer
gives more precise deductions compared to the concretisation of abstract post transformer

Example of sAbstract fixed-point

p=pA(-pVq)
apost ,(T) = apost,(T) M (apost_,(T) Ll apost,,(T))
=(p—1)
apost ,({p + t)) = apost ({p — t)) N (apost_,({p — t)) U apost ({p + t)))
={p—t)N(LU{(p—tg—t))
={p—t)N{(p—tqg—t)
=(pr=>t,q—t)

Properties of Domain elements for lifting CDCL

Proper f 1 Learning SAT solver:

Each non-singleton element of the partial assignment domain can be decomposed
into a set of precisely complementable singleton elements

Property of Numerical Abstract Domains:

Abstract domains such as Intervals and Octagons are decomposable into half-spaces
which have precise complements

decomp(2<x<4ar3<y<h)—>{x=22,x<4,y2>3,y<b}

Abstract Learning

>> Learning and case based reasoning are different !
>> A case-based reasoning does proof under each assumption.
>> Learning generates constraints that preserve error reachability.

>> ACDCL adds the learnt clause to the set of transformer

Consider a program fragment: ¢ := (y=X A y=y+X A y<0)

cut 1 cut 0
’ c+y>15Azc+y<I15A

T—5>0A—-2+5>0 > T YSEAT—Yy> 5N —— |

y—10>0A—y+10>0 A
\zyZO/\y—fL‘ZO/\ \
y—52>20AN—-y+5=>0A S

c+y>10Az+y<10A

Use Abstract Conflict Graph Cutting Algorithm to find UIP

DPLL with No Abstract Learning

Input Program DPLL strategy using forward analysis with Intervals
if(y <4
Ty <) x :[0, INF]
else ’ x :[0, INF], y :[0, INF]
X = -1 x :[0, INF], y :[5, INF] > PROOF

1.
2
3
=0\ 4, X :[0, INF], y:[-INF, 4]
assert(x!=0); 5. x :[0, INF], y:[-INF, 3] > PROOF
6 x [0, INF], y :[4,4] >PROOF

7. x:[0, INF], y:[-INF,0] > PROOF

8. x:[-INF.0]

9. x:[-INFO], y :[0, INF]

10. x:[-INF,0], y :[5, INF] >PROOF

11. x:[INF,0], y:[-INF,4]
12. x:[-INF,0], y:[-INF,3] > PROOF
13. x:[-INF,0], y :[4,4] > PROOF

14. x:[-INF,0], y:[-INF,0] > PROOF

= Bad choice by splitting on ‘x’ because x is overwritten !
= Made bad splits on ‘y’ !

CDCL with Abstract Learning

Input Program (P) CDCL style strategy using forward analysis with Intervals
if(y <4) 1 x :[0, INF]
X =1; 2 x:[0, INF], y :[0, INF]
else 3 x :[0, INF], y :[5, INF] - PROOF
X =-1; Value of x is irrelevant for the proof
assert(x!=0);
Analysis using ACDL
Perform
Generalization
if(y <4
é)y 3 1. x :[0, INF] Proof still works if split
’ A 2. x :[0, INF], y :[0, INF] |aty[4,INF] instead of y[5,INF]
|=
}assert(x' 0); 3. x :[0, INF1, y :[5, INF] > PROOF
else { 4 Generalize to y: [4:INF] - PROOF
p- 5 y: [-INF:3] > PROOF
assert(x!=0); e CDCL L this is th
} Case Spl]ttmg' only ini:g:tin]gsc]:;se Teft
y: [-INF,3] and y:[4,INF]

Program and Property Driven Trace Partitioning

Input Program (P) if(y <4) {
if(y <4) P;
X =1; assert(x!=0);

Analysis using ACDL

else }
X =-1; | > else {
assert(x!=0); P;
assert(x!=0);
3

CDCL with abstract learning implicitly produces program and property driven trace partitioning.

Program Dependent: If the guard were (y<10), ACDL would have generated different partitioning
like y:[-INF,9], y:[10,INF]

Property Dependent: If the assertion had been (x<1), no splitting would have been needed

ACDCL (Decision)

SAT versus ACDCL

o Safe
10% | | Unsafe
102
a2
10*
100 ®oo A @ M0 A ABO o oo
107} -1 0 1 2 3
10 10 10 10 10
SAT (Decision)

(a)

ACDCL (Propagation)

o Safe

10% | | * Unsafe

103

102

10!

10°

|

1071
1071

10°

1ot 10 10*° 10
SAT (Propagation)

(b)

Multi-way Propagation

Effect of Decision and Propagation Heuristics

Performance of Propagation Heuristics

time (in seconds)

103 o Safe Gl
» Unsafe o
102 . . N
10! ’ .
10°)
-1 Kw o ‘
107! 10° 101 102 103

Forward Propagation

(a)

103

102

10t

10°

1071

Performance of Decision Heuristics

)
» Berkmin s
= Random o ®
+ Ordered -
oy
’AA .
v!'."‘A
U
3
(Lin
. ’u
yoo"
A,,,ao"'.s"”
AA :" o4
apppengppets”t
0 10 20 30 40 50 60
Benchmarks

(b)

70

Ongoing Work

>> Efficient Gamma completeness check in Template Polyhedra
>> Instantiate CDCL over more expressive lattice structures

>> Generalize Conflict Reasons for Template Polyhedra

