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Conflict Driven Clause Learning

** Partial assignments are main data structure in SAT solvers
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The CDCL Algorithm Summary 
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Guides

BCP + Decision ! Constructs an assignment

Learning infers new clauses



SAT Solvers:                Precise but inefficient 
Abstract Interpreter:  Efficient but Imprecise

How to make SAT solvers more efficient? 
! Choose a domain that’s better suited to your problem than the Boolean domain! 

How to make Abstract interpretation more precise? 
! Wrap them in the SAT architecture!

Lifting CDCL to Program Analysis 



** Leopold Haller, Abstract Satisfaction, D.Phil, University of Oxford, 2013 
** Papers on ACDCL: TACAS 2013, POPL 2013, POPL 2014, FMSD 2014, SAS 2013

Partial Assignments       !                      Abstract Domain 
  Decision                     !                 Restrict range of variables 
  Unit Rule                    !            Best  Abstract Clause Transformer 
    BCP                          !                        GFP Iteration 
  Learning                     !         Generate program analysis constraint  
                                                    Implicit form of Trace Partitioning 

Decision Procedure Abstract Interpretation

Abstract Conflict Driven Clause Learning

Satisfiability Solvers are Abstract Interpreters **



New program analysis that embeds an abstract domain inside Conflict Driven Clause 
Learning algorithm of modern day SAT solvers. 

What is ACDCL?  

From AI Point of View ! ACDCL is an abstract interpreter that uses Decision and  
Learning  to increase transformer precision 

From a decision procedure perspective ! ACDCL is a SAT solver for program analysis  
constraints. It is a strict generalisation of propositional CDCL.

About ACDCL



Sketch of ACDCL Algorithm 



Instantiating CDCL with Numerical Abstract Domains

Forward analysis  
  with intervals

** Astree failed to verify with interval domain, require external hint to recover from imprecision



Forward analysis  
  with octagons

Instantiating CDCL with Numerical Abstract Domains

For (N=46000)



Partial Assignment 
   Prop ! {t, f, ?}

Boolean Constants Domain
 Main data-structure in a SAT solver::  
           Partial Assignment

   Assignments are extended  
using deduction and decisions

SAT solver operates over 
Boolean Constants Abstract Domain

Three-Valued Logic



BCP is GFP computation

❖ Abstract transformers are sound but imprecise. 

❖ gfp iteration improves the precision of the abstraction

Example of sAbstract fixed-point

Theorem (Cousot and Cousot 1979)::
The concretisation of greatest fixed-point computation over abstract post transformer  
gives more precise deductions compared to the concretisation of abstract post transformer  



Properties of Domain elements for lifting CDCL

Property of a Clause Learning SAT solver:

Each non-singleton element of the partial assignment domain can be decomposed      
into a set of precisely complementable singleton elements 

Abstract domains such as Intervals and Octagons are decomposable into half-spaces 
which have precise complements

Property of Numerical Abstract Domains:

decomp(2 ≤ x ≤ 4 ∧ 3 ≤ y ≤ 5) —> {x ≥ 2, x ≤ 4, y ≥ 3, y ≤ 5}



Abstract Learning

>> Learning and case based reasoning are different !   

>> A  case-based reasoning does proof under each assumption.  

>> Learning generates constraints that preserve error reachability. 

>> ACDCL adds the learnt clause to the set of transformer 

φ := (y=x ∧ y=y+x ∧ y≤0) 

Use Abstract Conflict Graph Cutting Algorithm to find UIP

Consider a program fragment:



DPLL with  No Abstract Learning

Input Program DPLL strategy using forward analysis with Intervals

1.   x :[0, INF] 
2.       x :[0, INF], y :[0, INF] 
3.           x :[0, INF], y :[5, INF] ! PROOF 
4.           x :[0, INF], y:[-INF, 4] 
5.               x :[0, INF], y:[-INF, 3] ! PROOF 
6.               x :[0, INF], y :[4,4] !PROOF 
7.        x :[0, INF], y:[-INF,0] ! PROOF 
8.   x:[-INF,0] 
9.      x:[-INF,0], y :[0, INF] 
10.       x:[-INF,0], y :[5, INF] !PROOF 
11.        x:[-INF,0], y:[-INF,4] 
12.           x:[-INF,0], y:[-INF,3] ! PROOF 
13.           x:[-INF,0], y :[4,4] ! PROOF 
14.    x:[-INF,0], y:[-INF,0] ! PROOF

if(y <4)  
  x = 1; 
else   
   x = -1; 
assert(x!=0); 

▪ Bad choice by splitting on ‘x’ because x is overwritten ! 
▪ Made bad splits on ‘y’ !



CDCL with Abstract Learning

Input Program (P) CDCL style strategy using forward analysis with Intervals

    Perform  
Generalization

Case Splitting:

1.  x :[0, INF] 
2.      x :[0, INF], y :[0, INF] 
3.          x :[0, INF], y :[5, INF]  ! PROOF 
4.                    Generalize to y: [4:INF] ! PROOF 
5.                                         y: [-INF:3] !  PROOF

1  x :[0, INF] 
2      x :[0, INF], y :[0, INF] 
3          x :[0, INF], y :[5, INF]  ! PROOF

y: [-INF,3] and y:[4,INF]

if(y <4) { 
  P; 
  assert(x!=0); 
} 
else  { 
  P; 
  assert(x!=0); 
}

if(y <4)  
  x = 1; 
else   
   x = -1; 
assert(x!=0); 

Value of x is irrelevant for the proof

Proof still works if split 
at y[4,INF] instead of y[5,INF]

CDCL learns this is the  
only interesting case left

Analysis using ACDL



Input Program (P) if(y <4) { 
  P; 
  assert(x!=0); 
} 
else  { 
  P; 
  assert(x!=0); 
}

Analysis using ACDL

if(y <4)  
  x = 1; 
else   
   x = -1; 
assert(x!=0); 

CDCL with abstract learning implicitly produces program and property driven trace partitioning.  

Program Dependent: If the guard were (y<10), ACDL would have generated different partitioning 
like y:[-INF,9], y:[10,INF] 

Property Dependent: If the assertion had been (x<1), no splitting would have been needed 

Program and Property Driven Trace Partitioning



SAT versus ACDCL



Effect of Decision and Propagation Heuristics



Ongoing Work

>> Efficient Gamma completeness check in Template Polyhedra 
  
>> Instantiate CDCL over more expressive lattice structures  

>> Generalize Conflict Reasons for Template Polyhedra 


