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Abstract

This paper shows how to reason about streams concisely and precisely. Streams, infinite sequences
of elements, live in a coworld: they are given by a coinductive datatype, operations on streams
are implemented by corecursive programs, and proofs are typically concocted using coinduction.
This paper offers an alternative to coinduction. Suitably restricted, stream equations possess unique
solutions. This property gives rise to a simple and attractive proof technique, essentially bringing
equational reasoning to the coworld. We redevelop the theory of recurrences, finite calculus and
generating functions using streams and stream operators, building on the cornerstone of unique
solutions. The paper contains a smörgåsbord of examples: we study recursion elimination, investigate
the binary carry sequence, explore Sprague-Grundy numbers and present two proofs of Moessner’s
Theorem. The calculations benefit from the rich structure of streams. As the type of streams is an
applicative functor we can effortlessly lift operations and their properties to streams. In combination
with Haskell’s facilities for overloading, this greatly contributes to conciseness of notation. The de-
velopment is indeed constructive: streams and stream operators are implemented in Haskell, usually
by one-liners. The resulting calculus or library, if you wish, is elegant and fun to use.

1 Introduction

The cover of my favourite maths book displays a large Σ imprinted in concrete (Graham
et al., 1994). There is a certain beauty to it, but sure enough, when the letter first appears
in the text, it is decorated with formulas. Sigma denotes summation and, traditionally,
summation is a binder introducing an index variable that ranges over some set. More often
than not, the index variable then appears as a subscript referring to an element of some
other set or sequence. If you turn the pages of this paper, you will not find many index
variables or subscripts though we deal with recurrences, summations and power series.
Index variables have their rôle, but often they can be avoided by taking a holistic view,
treating the set or the sequence they refer to as a single entity. Manipulating a single entity
is almost always simpler and more elegant than manipulating a cohort of singletons.

Adopting this holistic view, the present paper shows how to reason effectively about
streams, combining concision with precision. Streams, infinite sequences of elements,
are a simple example of codata: they are given by a coinductive datatype, operations on
streams are implemented by corecursive programs. In a lazy functional language, such as
Haskell (Peyton Jones, 2003), streams are easy to define and many textbooks on Haskell
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reproduce the folklore examples of Fibonacci or Hamming numbers defined by recursion
equations over streams. One has to be a bit careful in formulating a recursion equation,
basically ensuring that the sequence defined does not swallow its own tail. However, if
this care is exercised, the equation possesses a unique solution, a fact that is not widely
appreciated. Uniqueness can be exploited to prove that two streams are equal: if they satisfy
the same recursion equation, then they are! This technique makes an interesting alternative
to coinduction, the prevalent proof technique for codata. Building on the cornerstone of
unique solutions, we redevelop the theory of recurrences, finite calculus and generating
functions. We hope that this will contribute to popularising this attractive proof technique.

The paper contains a smörgåsbord of examples: we study recursion elimination, investi-
gate the binary carry sequence, explore Sprague-Grundy numbers and present two proofs of
Moessner’s Theorem. Rather attractively, the calculations have a strong equational flavour.
Furthermore, they benefit greatly from the rich structure of streams: the type of streams is
an applicative functor or idiom; streams can be seen as memo-tables or tabulations. The
idiomatic structure allows us to effortlessly lift operations and their properties to streams,
a device we use extensively in combination with Haskell’s facilities for overloading. The
development is indeed constructive: streams and stream operators are implemented in
Haskell, usually by one-liners. Technically, we view Haskell as a meta-language for Set,
the category of sets and total functions, avoiding the need to consider ⊥.

The paper draws heavily from previous work. The two major sources of inspiration
were Rutten’s work on stream calculus (2003; 2005) and the aforementioned textbook
on concrete mathematics (Graham et al., 1994) — hence the title of the paper. Rutten
shows that stream equations, which he calls behavioural differential equations, have indeed
unique solutions. A detailed discussion of related work can be found in Section 6.

The rest of the paper is structured as follows. Section 2 introduces the basic stream
operations and their properties, organised around the different structural views of streams:
idioms, tabulations and final coalgebras. Furthermore, it introduces the fundamental proof
technique, which exploits uniqueness of solutions. Section 3 shows how to capture re-
currences as streams and solves a multitude of recreational puzzles. We study recursion
elimination, investigate the binary carry sequence and explore Sprague-Grundy numbers.
Section 4 redevelops the theory of finite calculus using streams and stream operators. As a
major application, we present a proof of Moessner’s Theorem. Section 5 introduces gener-
ating functions and explains how to solve recurrences. Moessner’s Theorem is reformulated
in terms of generating functions, and an application to combinatorial counting is presented.
Finally, Section 6 reviews related work and Section 7 concludes.

2 Streams

A stream is an infinite sequence of elements. The type of streams, called Stream α , is like
Haskell’s list datatype [α ], except that there is no base constructor so we cannot construct
a finite stream. The Stream type is not an inductive type, but a coinductive type.

data Stream α = Cons {head :: α, tail :: Stream α }
(≺) :: α → Stream α → Stream α

a≺ s = Cons a s
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Table 1. Precedences and fixities of operators (including prelude operators).

precedence left associative non-associative right-associative
9 � · ◦
7 ∗ / div mod \ × ÷ ⊗
6 + − ∪
5 : ++ ≺ g ≺≺
4 ∈ 6 < 6 > > ˙ etc
0 ?

Streams are constructed using≺ , which prepends an element to a stream. They are destruc-
ted using head, which yields the first element, and tail, which returns the stream without
the first element. We let s, t and u range over streams.

Though the type of streams enjoys a deceptively simple definition, it is an infinite
product, it exhibits a rich structure: Stream is an idiom, a tabulation, a monad, a final coal-
gebra, and a comonad. The following section, which introduces the most important generic
operations on streams, is organised around these different views. Table 1 summarises the
operators, listing their precedences and fixities.

2.1 Operations

Idiom Most definitions we encounter later on make use of operations lifted to streams. We
obtain these liftings almost for free, as Stream is a so-called applicative functor or idiom
(McBride & Paterson, 2008).

class Idiom ι where
pure :: α → ι α

(�) :: ι (α → β )→ (ι α → ι β )

The constructor class introduces an operation for embedding a value into an idiomatic
structure, and an application operator that takes a structure of functions to a function that
maps a structure of arguments to a structure of results. The identity type constructor, Id α =
α , is an idiom. Idioms are closed both under type composition, (ι ◦ κ) α = ι (κ α), and
type pairing, (ι ×̇κ) α = (ι α,κ α). Here are the definitions that turn Stream into an idiom.

instance Idiom Stream where
pure a = s where s = a≺ s
s� t = (head s) (head t)≺ (tail s)� (tail t)

The function pure constructs a constant stream; pure 0, for example, yields the infinite
sequence of zeros (A0000041). The method is given by a first-order equation: s = a ≺ s.
Alternatively, it can be defined by a second-order equation: pure a = a ≺ pure a, which

1 Most if not all integer sequences defined in this paper are recorded in Sloane’s On-Line
Encyclopedia of Integer Sequences (Sloane, 2009). Keys of the form Annnnnn refer to entries
in that database. Somewhat surprisingly, pure 0 is not A000000. Just in case you were wondering,
the first sequence (A000001) lists the number of groups of order n.
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amounts to the λ -lifted version of the actual definition (Danvy, 1999). The first-order
equation is preferable, because it constructs a cyclic structure, using only a constant amount
of space (Bird, 1998). We let c range over constant streams. Idiomatic application lifts
function application pointwise to streams. We refer to pure as a parametrised stream and
to � as a stream operator.

Using nested idiomatic applications, we can lift an arbitrary function pointwise to an
idiomatic structure. Here are generic combinators for lifting nary operations (n = 0,1,2).

repeat :: (Idiom ι)⇒ α → ι α

repeat a = pure a

map :: (Idiom ι)⇒ (α → β )→ (ι α → ι β )
map f s = pure f � s

zip :: (Idiom ι)⇒ (α → β → γ)→ (ι α → ι β → ι γ)
zip g s t = pure g� s� t

The context (Idiom ι)⇒ constrains the type variable ι to instances of the class Idiom.
Using zip we can, for instance, lift pairing to idioms.

(?) :: (Idiom ι)⇒ ι α → ι β → ι (α,β )
(?) = zip (,)

The quizzical ‘(,)’ is Haskell’s pairing constructor. We need to introduce a new operator for
lifted pairing as we cannot overload ‘(,)’. Overloading pairing would not be a terribly good
idea anyway, since it is a polymorphic operation. If ‘(,)’ has both the type α→ β → (α,β )
and Stream α → Stream β → Stream (α,β ), then expressions such as (s, t) are inherently
ambiguous: is (s, t) a pair of streams or a stream of pairs?

For convenience and conciseness of notation, we overload the arithmetic operations
to also denote the corresponding operations lifted to streams. In Haskell, this is easily
accomplished using the numeric type classes. Here is an excerpt of the code.2

instance (Num α)⇒ Num (Stream α) where
(+) = zip (+)
(−) = zip (−)
(∗ ) = zip (∗ )
negate = map negate -- unary minus
fromInteger i = repeat (fromInteger i)

This instance declaration allows us, in particular, to use integer constants as streams —
in Haskell, the literal 3 abbreviates fromInteger (3 :: Integer). This convention effectively
overloads integer literals. Depending on the context, i, j, k, m and n either denote an integer
or a constant stream of integers.

We shall make intensive use of overloading, going beyond Haskell’s predefined numeric
classes. For instance, we also lift exponentiation and binomial coefficients to streams: st

2 Since repeat, map and zip work for an arbitrary idiom, we should actually be able to define a
generic instance of the form (Idiom ι ,Num α)⇒ Num (ι α). Unfortunately, this does not quite
work with the Standard Haskell libraries, as Num has two super-classes, Eq and Show, which
cannot sensibly be defined generically.
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and
(s

t

)
. To reduce clutter, we omit the necessary class and instance declarations — they

are entirely straightforward — and just note the use of overloading as we go along.
Of course, the elements of a stream are by no means confined to numbers. Streams of

Booleans are equally useful. For this element type, it is convenient to lift and overload the
Boolean constants, false and true, and the Boolean operators, ¬, ∧ and ∨, to streams.
Again, the definitions are straightforward and omitted. One might be tempted to also
overload to denote lifted equality of streams. However, the predefined Eq class dictates
that returns a Boolean. Consequently, lifted equality, which returns a stream of Booleans,
cannot be made an instance of that class. Instead, we introduce a new operator.

( ˙ ) :: (Idiom ι ,Eq α)⇒ ι α → ι α → ι Bool
( ˙ ) = zip ( )

Likewise, we also define dotted variants of 6 , <, 6, > and >.
Using this vocabulary we can already define the usual suspects: the natural numbers

(A001477), the factorial numbers (A000142), and the Fibonacci numbers (A000045).

nat = 0≺ nat +1

fac = 1≺ (nat +1)∗ fac

fib = 0≺ fib′

fib′ = 1≺ fib+fib′

Note that ≺ binds less tightly than +, see Table 1. For instance, 0 ≺ nat + 1 is grouped
0 ≺ (nat + 1). The three sequences are given by recursion equations adhering to a strict
scheme: each equation defines the head and the tail of the sequence, the latter possibly in
terms of the entire sequence. As an aside, we will use the convention that the identifier x′

denotes the tail of x, and x′′ the tail of x′. The Fibonacci numbers provide an example of
mutual recursion: fib′ refers to fib and vice versa. Actually, in this case mutual recursion is
not necessary, as a quick calculation shows: fib′ = 1≺ fib+fib′ = (1≺ fib)+(0≺ fib′) =
(1≺ fib)+fib. So, an alternative definition is

fib = 0≺ (1≺ fib)+fib .

It is fun to play with the sequences. Here is a short interactive session.

� fib
〈0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610, . . .〉
� nat ∗nat
〈0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225, . . .〉
� fib′2−fib∗fib′′

〈1,−1,1,−1,1,−1,1,−1,1,−1,1,−1,1,−1,1,−1, . . .〉
� fib′2−fib∗fib′′ ˙ (−1)nat

〈True,True,True,True,True,True,True,True,True,True,True,True,True,True, . . .〉

The part after the prompt,� , is the user’s input. The result of each submission is shown in
the subsequent line. This document has been produced using lhs2TEX(Hinze & Löh, 2008).
The session displays the actual output of the Haskell interpreter, generated automatically
with lhs2TEX’s active features.
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Interleaving Another important operator is interleaving of two streams.

(g) :: Stream α → Stream α → Stream α

s g t = head s≺ t g tail s

Though the symbol is symmetric, g is not commutative. Neither is it associative. Let us
look at an example application. The above definition of the naturals is based on the unary
number system. Using interleaving, we can alternatively base the sequence on the binary
number system.

bin = 0≺ 2∗bin+1 g 2∗bin+2

Since g has lower precedence than the arithmetic operators, see Table 1, the right-hand
side of the equation above is grouped 0≺ ((2∗bin+1) g (2∗bin+2)).

Now that we have two definitions of the natural numbers, the question naturally arises as
to whether they are actually equal. Reassuringly, the answer is “Yes!” Proving the equality
of streams or of stream operators is one of our main activities in this paper. However, we
postpone a proof of nat = bin, until we have the prerequisites at hand.

Many numeric sequences are actually interleavings in disguise: for instance, (−1)nat =
1 g−1, nat div 2 = nat g nat, and nat mod 2 = 0 g 1.

Just as binary numbers can be generalised to nary numbers, g can be generalised to
interleave n argument streams, represented by a list of streams.

interleave :: [Stream α ]→ Stream α

interleave (s : x) = head s≺ interleave (x++[tail s ])

Tabulation The Fibonacci function is the folklore example of a function whose straight-
forward definition leads to a very inefficient program.

F0 = 0
F1 = 1
Fn+2 = Fn +Fn+1

To compute Fn a total of Fn+1− 1 additions are necessary. In other words, the running
time of F is proportional to the result. By contrast, the stream definition, fib, does not suffer
from this problem: to determine the nth element only n −̇1 = max {n−1,0} additions are
required. The following display visualises the workings of fib.

0 1 1 2 3 5 8 13 21 34 55 · · · fib

= = = = = = = = = = = · · · =

0 1 0 1 1 2 3 5 8 13 21 · · · 0 ≺ (1 ≺ fib)
+ + + + + + + + + + · · · +
0 1 1 2 3 5 8 13 21 34 · · · fib

The speed-up is, of course, not a coincidence: fib is the memoised version of F. In fact,
streams are in one-to-one correspondence to functions from the natural numbers:

Stream α ∼= Nat→ α .

A stream can be seen as the tabulation of a function from the natural numbers. Conversely,
a function of type Nat→ α can be implemented by looking up a memo-table. Here are the
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functions that witness the isomorphism.

data Nat = 0 | Nat +1

tabulate :: (Nat→ α)→ Stream α

tabulate f = f 0≺ tabulate ( f · (+1))

lookup :: Stream α → (Nat→ α)
lookup s 0 = head s
lookup s (n+1) = lookup (tail s) n

We have F = lookup fib and tabulate F = fib. Section 3.1 shows how to systematically
turn functions given by recurrence relations into streams defined by recursion equations.

For conciseness of notation, we sometimes abbreviate lookup s n by (s)n, so that, in
particular, head s = (s)0.

Many idioms are, in fact, tabulations: the diagonal functor ∆ = Id ×̇ Id, for instance,
tabulates functions from the Booleans as ∆ α ∼= Bool→α . In general, the type constructor ι

is said to tabulate τ → iff ι α ∼= τ → α .
The type constructor τ→ itself3, the so-called environment monad, also gives rise to an

idiom.
instance Idiom (τ →) where

pure a = λx→ a
f �g = λx→ ( f x) (g x)

Here, pure is the K combinator and � is the S combinator from combinatory logic. Like for
streams, lifting is defined pointwise: zip (+) f g = pure (+)� f �g = λx→ f x+g x.

Monad Since τ→ is a monad, Stream can also be turned into a monad: return is pure and
join is given by

join :: Stream (Stream α)→ Stream α

join s = head (head s)≺ join (tail (tail s)) .

We will, however, not make use of the monadic structure.

Final coalgebra The stream nat is constructed by repeatedly mapping a function over a
stream. We can capture this recursion scheme using a combinator.

recurse :: (α → α)→ (α → Stream α)
recurse f a = s where s = a≺ map f s

So, nat = recurse (+1) s.
Alternatively, we can build a stream by repeatedly applying a given function to a given

initial seed.
iterate :: (α → α)→ (α → Stream α)
iterate f a = a≺ iterate f ( f a)

So, iterate (+1) 0 is yet another definition of the naturals. In fact, recurse f a and iterate f a
always yield the same stream, see Section 2.5.

3 In Haskell, the type constructor→ is curried, it has kind ∗ → ∗→ ∗. The operator section τ → is
shorthand for (→) τ . Unfortunately, the section is not legal Haskell syntax.
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The iterator is a special case of the unfold or anamorphism for the Stream datatype,
which captures another common corecursion pattern.

unfold :: (σ → α)→ (σ → σ)→ (σ → Stream α)
unfold g f a = g a≺ unfold g f ( f a)

The type σ can be seen as a type of states. The anamorphism implements an automaton
over this state space: the third argument is the initial state; the second argument is the
transition function that maps the current state to the next state; and the first argument is the
output function that maps the current state to an ‘output symbol’.

The functions iterate and unfold are inter-definable: iterate f = unfold id f and con-
versely unfold h t = map h · iterate t. We prefer iterate over unfold, since the extra gener-
ality is barely needed. Section 3.1 explains why.

Comonad Finally, Stream has the structure of a comonad, the categorical dual of a monad :
head is the counit and tails, defined below, is the comultiplication.

tails :: Stream α → Stream (Stream α)
tails = iterate tail

We shall neither make use of the comonadic structure.

2.2 Stream comprehensions

Throughout the paper we emphasise the holistic view on streams. However, from time to
time it is useful to define a stream pointwise or to relate a given stream to a pointwise
definition. Parallel stream comprehensions allow us to do exactly this.

〈e | x1← e1 | . . . | xn← en〉= pure (λx1 . . .xn→ e)� e1 � · · · � en

In fact, since the notation is defined in terms of the idiomatic primitives, it makes sense
for an arbitrary idiom. The notational advantage of a comprehension over the idiomatic
expression on the right-hand side is that the bound variable xi and the stream it iterates
over ei are adjacent. For streams, the order of the binders is not significant: any permutation
of x1← e1, . . . , xn← en generates the same stream. This does not hold for arbitrary idioms:
in the IO idiom, for instance, the order is significant.

The functional programming language Miranda4 supports a second form of generators,
so-called iterative generators, which capture recurrence relations.

〈e1 | x← e2,e3 . .〉= pure (λx→ e1)� iterate (λx→ e3) e2

The iterative generator avoids the duplication of the binder ‘λx→’ on the right-hand side.
In parallel stream comprehensions, iterative generators can be freely mixed with ordinary
generators. As an example, here is an alternative definition of fib

fib = 〈a | (a,b)← (0,1),(b,a+b) . .〉 ,

which uses tupling to achieve linear running time. We will derive this version in Sec-
tion 3.2.1.

4 Miranda is a registered trademark of Research Software Limited.
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2.3 Definitions

Not every legal Haskell definition of type Stream τ actually defines a stream. Two simple
counterexamples are s = tail s and s = head s ≺ tail s. Both of them loop in Haskell;
when viewed as stream equations they are ambiguous.5 In fact, they admit infinitely many
solutions: every constant stream is a solution of the first equation, every stream is a solution
of the second one. This situation is undesirable from both a practical and a theoretical
standpoint. Fortunately, it is not hard to restrict the syntactic form of equations so that they
possess unique solutions (Rutten, 2003, Theorem 3.1). We insist that equations adhere to
the following form:

x = h≺ t ,

where x is an identifier of type Stream τ , h is a constant expression of type τ , and t is an
expression of type Stream τ possibly referring to x or other stream identifiers. However,
neither h nor t may contain head or tail.

If x is a parametrised stream or a stream operator,

x x1 . . . xn = h≺ t

then h and t may use head xi or tail xi provided xi is of the right type. Apart from that, no
other uses of head or tail are permitted. Equations of this form are called admissible.

Looking back, we find that the definitions we have encountered so far, including those
of pure, � and g, are admissible. In general, we consider systems of admissible equations
to cater for mutually recursive definitions. In fact, most of the definitions cannot be read in
isolation. For instance, nat’s defining equation, nat = 0 ≺ nat + 1, silently refers to pure
and �, so nat is actually given by a system of three equations

nat = 0≺ pure (+)�nat �pure 1
pure a = a≺ pure a
s� t = (head s) (head t)≺ (tail s)� (tail t) ,

all of which are admissible.
If the requirements are violated, then a simple rewrite sometimes saves the day. As an

example, the folklore definition of fib

fib = 0≺ 1≺ fib+ tail fib

is not admissible, since tail is applied to the stream defined. We can, however, eliminate
the call to tail by introducing a name for it. If we replace tail fib by fib′, we obtain the
two equations given in Section 2.1. The alternative definition fib = 0 ≺ (1 ≺ fib)+ fib is
also admissible. Nested occurrences of ≺ are unproblematic since they can be seen as
shorthand for mutually recursive equations: fib = 0≺ cons 1 fib+fib and cons h t = h≺ t.

5 There is a slight mismatch between the theoretical framework of streams and the Haskell
implementation of streams. Since products are lifted in Haskell, Stream τ additionally contains
partial streams such as ⊥, a0 ≺ ⊥, a0 ≺ a1 ≺ ⊥ and so forth. We ignore this extra complication,
viewing Haskell as a meta-language for Set.
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Sometimes the situation is more subtle. The two stream operators

even,odd :: Stream α → Stream α

even s = head s≺ odd (tail s)
odd s = even (tail s)

are well-defined, even though odd does not meet the syntactic requirements. If s = x g y,
then even s = x and odd s = y. The operators are ruled out, however, since their use in other
recursive definitions is possibly problematic: the equation x = 0 ≺ even x, for instance, is
admissible, yet it has infinitely many solutions.

Not all is lost, however. Consider as another example the equation

s = a≺ f (even s) g g (odd s)

or, equivalently,

x g y = a≺ f x g g y , (1)

where f and g are some stream operators. In this case, the equation uniquely determines s,
and hence x and y, since it is equivalent to the recursive equation x = a ≺ g ( f x) and the
non-recursive y = f x. So, we may view Equation (1) as a notational shorthand for the two
latter equations. The scheme nicely captures alternations, for instance,

d g i = 1≺ d ∗2 g i+1

alternates between doubling and incrementing (A075427).
By the way, non-recursive definitions like

nat′ = nat +1

are unproblematic and unrestricted as they can always be inlined.

2.4 Laws

This section provides an account of the most important properties of streams, serving
mainly as a handy reference. If you wish, you can skim through the material or proceed
directly to Section 2.5.

We have noted before that the type Stream has a rich structure: it is an idiom, a tabulation
and a final coalgebra. The laws are categorised according to these different views.

First of all, streams enjoy the following extensionality property.

s = head s≺ tail s (2)

Idiom Streams satisfy the four idiom laws.

pure id �u = u (identity)

pure (·)�u� v�w = u� (v�w) (composition)

pure f �pure x = pure ( f x) (homomorphism)

u�pure x = pure (λ f → f x)�u (interchange)
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The first two imply the well-known functor laws: map preserves identity and composition
(hence the names of the idiom laws).

map id = id

map ( f · g) = map f · map g

Index manipulations are often applications of the second functor law, which becomes
evident, if we rephrase the laws using stream comprehensions.

〈a | a← s〉 = s (3)

〈 f (g a) | a← s〉 = 〈 f b | b← 〈g a | a← s〉〉 (4)

To illustrate, here is a short calculation that demonstrates a simple index manipulation.

〈2∗ i | i← nat +1〉
= { nat +1 = 〈 j +1 | j← nat〉 }
〈2∗ i | i← 〈 j +1 | j← nat〉〉

= { functor law (4) }
〈2∗ ( j +1) | j← nat〉

Every structure comes equipped with structure-preserving maps; so do idioms: a natural
transformation h :: ι α → κ α is an idiom homomorphism iff

h (pure a) = pure a ; (5)

h (x� y) = h x�h y . (6)

The two conditions imply, in fact, the naturality property: map f · h = h · map f . The
identity function is an idiom homomorphism, and homomorphisms are closed under com-
position. The projection function head is a homomorphism (from Stream to the identity
idiom Id), so is tail. The latter projection is an idiom endomorphism, a homomorphism
from an idiom to itself. Also pure itself is a homomorphism (from Id to the idiom).
Condition (6) for pure is equivalent to the third idiom law (hence its name).

This leaves us to explain the fourth idiom law: it captures the fact that a pure, effect-free
computation commutes with an impure, effectful computation.

Lifted pairing ? satisfies

map fst (s? t) = s ; (7)

map snd (s? t) = t ; (8)

map fst p?map snd p = p . (9)

It is important to note that the Laws (7)–(9) do not hold for arbitrary idioms. Perhaps
surprisingly, (the uncurried version of) ? is also a homomorphism (from ∆ · Stream to
Stream · ∆). In the case of streams or, more generally, commutative idioms, ? is even an
idiom isomorphism, an idiom homomorphism which has an inverse.

Since the arithmetic operations are defined pointwise, the familiar arithmetic laws also
hold for streams. In proofs we will signal their use by the hint arithmetic.
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Interleaving The interleaving operator interacts nicely with lifting.

pure a g pure a = pure a (10)

(s1 � s2) g (t1 � t2) = (s1 g t1)� (s2 g t2) (11)

A simple consequence is (s g t)+ 1 = s + 1 g t + 1 or, more generally, map f (s g t) =
map f s g map g t. The two laws show, in fact, that interleaving is a homomorphism (from
∆ · Stream to Stream). Interleaving is even an isomorphism; the reader is encouraged to
work out the details.

Property (11) is also called abide law because of the following two-dimensional way of
writing the law, in which the two operators are written either above or beside each other.

s1 � s2

g
t1 � t2

=
s1 s2

g � g
t1 t2

s1 | s2

t1 | t2
=

s1 s2

—— ——
t1 t2

The two-dimensional arrangement is originally due to Hoare, the catchy name is due to
Bird (1987). The geometrical interpretation can be emphasised further by writing the two
operators | and −, like on the right-hand side (Fokkinga, 1992).

Tabulation The functions lookup and tabulate are mutually inverse and they satisfy the
following naturality properties.

map f · tabulate = tabulate · ( f ·)
( f ·) · lookup = lookup · map f

Note that post-composition ( f ·) is the mapping function for the functor τ→. The laws are
somewhat easier to memorise, if we write them in a pointwise style.

map f (tabulate g) = tabulate ( f · g) (12)

f · lookup t = lookup (map f t) (13)

Furthermore, tabulate and lookup are idiom isomorphisms between Stream and Nat→.
We will exploit this fact in Section 3.2.1, when we look at tabulation in more detail.

Final coalgebra On streams, recursion and iteration coincide.

recurse f a = iterate f a

The function iterate satisfies an important fusion law, which amounts to the free theorem
of (α → α)→ (α → Stream α).

map h · iterate f1 = iterate f2 · h ⇐= h · f1 = f2 · h (14)

The unfold or anamorphism of the Stream datatype is characterised by the following
universal property.

h = unfold g f ⇐⇒ head · h = g and tail · h = h · f (15)

Read from left to right the universal property states that unfold g f is a solution of the
equations head · h = g and tail · h = h · f . Read from right to left the property asserts that
unfold g f is indeed the unique solution.
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The universal property has a multitude of consequences. Instantiating g to head and f to
tail, we obtain the reflection law.

unfold head tail = id

Instantiating h to unfold g f , gives the two computation rules, which are point-free
versions of the defining equation of unfold.

head · unfold g f = g

tail · unfold g f = unfold g f · f

Since the type of unfold involves two type variables, unfold enjoys two fusion laws:
fusion and functor fusion.

unfold g f · h = unfold g′ f ′ ⇐= g · h = g′ and f · h = h · f ′

map h · unfold g f = unfold (h · g) f

Both are, in fact, also consequences of the iterate-fusion law (14).
As an aside, the pair of functions (head, tail) forms a so-called coalgebra for the functor

F X = A×X. The stream coalgebra is final as there is a unique coalgebra homomorphism
from every other coalgebra (g, f ) to the stream coalgebra: unfold g f — this is the import
of the universal property (15).

2.5 Proofs

The last section has listed a multitude of laws. It is high time that we show how to prove
them correct. In Section 2.3 we have planted the seeds by restricting the syntactic form of
equations so that they possess unique solutions. It is now time to reap the harvest. If x = φ x
is an admissible equation, we denote its unique solution by fix φ . (The equation implicitly
defines a function in x. A solution of the equation is a fixed point of this function and vice
versa.) The fact that the solution is unique is captured by the following property.

fix φ = s ⇐⇒ φ s = s

Read from left to right it states that fix φ is indeed a solution of x = φ x. Read from right
to left it asserts that any solution is equal to fix φ . The universal property of unfold is an
instance of this scheme. Now, if we want to prove s = t where s = fix φ , then it suffices to
show that φ t = t.

As a first example, let us prove the idiom homomorphism law.

pure f �pure a

= { definition of � }
(head (pure f )) (head (pure a))≺ tail (pure f )� tail (pure a)

= { definition of pure }
f a≺ pure f �pure a

Consequently, pure f �pure a equals the unique solution of x = f a≺ x, which by definition
is pure ( f a).



14 R. Hinze

That was easy. The next proof is not much harder. We show that the natural numbers are
even and odd numbers interleaved: nat = 2∗nat g 2∗nat +1.

2∗nat g 2∗nat +1

= { definition of nat }
2∗ (0≺ nat +1) g 2∗nat +1

= { arithmetic }
(0≺ 2∗nat +2) g 2∗nat +1

= { definition of g }
0≺ 2∗nat +1 g 2∗nat +2

= { arithmetic }
0≺ (2∗nat g 2∗nat +1)+1

Inspecting the second but last term, we note that the result implies nat = 0≺ 2∗nat +1 g
2∗nat +2, which in turn proves nat = bin.

Now, if both s and t are given as fixed points, s = fix φ and t = fix ψ , then there are at
least four possibilities to prove s = t:

φ (ψ s) = ψ s =⇒ ψ s = s =⇒ s = t ;
ψ (φ t) = φ t =⇒ φ t = t =⇒ s = t .

We may be lucky and establish one of the equations. Unfortunately, there is no success
guarantee. The following approach is often more promising. We show s = χ s and χ t = t.
If χ has a unique fixed point, then s = t. The point is that we discover the function χ on
the fly during the calculation. Proofs in this style are laid out as follows.

s

= { why? }
χ s

⊂ { x = χ x has a unique solution }
χ t

= { why? }
t

The symbol ⊂ is meant to suggest a link connecting the upper and the lower part. Overall,
the proof establishes that s = t.

Let us illustrate the technique by proving Cassini’s identity: fib′2− fib ∗ fib′′ = (−1)nat

(recall that exponentiation is also lifted to streams).

fib′2−fib∗fib′′

= { definition of fib′′ and arithmetic }
fib′2− (fib2 +fib∗fib′)

= { definition of fib and definition of fib′ }
1≺ (fib′′2− (fib′2 +fib′ ∗fib′′))
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= { fib′′−fib′ = fib and arithmetic }
1≺ (−1)∗ (fib′2−fib∗fib′′)

⊂ { x = 1≺ (−1)∗ x has a unique solution }
1≺ (−1)∗ (−1)nat

= { definition of nat and arithmetic }
(−1)nat

When reading ⊂-proofs, it is easiest to start at both ends working towards the link. Each
part follows a typical pattern, which we will see time and time again: starting with e we
unfold the definitions obtaining e1 ≺ e2; then we try to express e2 in terms of e.

So far, we have been concerned with proofs about streams. However, the proof tech-
niques apply equally well to parametric streams and stream operators! As an example, let
us prove the abide law by showing f = g where

f s1 s2 t1 t2 = (s1 � s2) g (t1 � t2) and g s1 s2 t1 t2 = (s1 g t1)� (s2 g t2) .

The proof is straightforward involving only bureaucratic steps.

f a b c d

= { definition of f }
(a�b) g (c�d)

= { definition of � and definition of g }
head a�head b≺ (c�d) g (tail a� tail b)

= { definition of f }
head a�head b≺ f c d (tail a) (tail b)

⊂ { x s1 s2 t1 t2 = head s1 �head s2 ≺ x t1 t2 (tail s1) (tail s2) has a unique solution }
head a�head b≺ g c d (tail a) (tail b)

= { definition of g }
head a�head b≺ (c g tail a)� (d g tail b)

= { definition of � and definition of g }
(a g c)� (b g d)

= { definition of g }
g a b c d

Henceforth, we leave the two functions implicit sparing ourselves two rolling and two
unrolling steps. On the downside, this makes the common pattern around the link more
difficult to spot.

A popular benchmark for the effectiveness of proof methods for corecursive programs is
the iterate-fusion law (14). The ‘unique fixed-point proof’ is short and sweet; it compares
favourably to the ones given by Gibbons and Hutton (2005).

map h (iterate f1 a)

= { definition of iterate and definition of map }
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h a≺ map h (iterate f1 ( f1 a))

⊂ { x a = h a≺ x ( f1 a) has a unique solution }
h a≺ iterate f2 (h ( f1 a))

= { assumption: h · f1 = f2 · h }
h a≺ iterate f2 ( f2 (h a))

= { definition of iterate }
iterate f2 (h a)

Unsurprisingly, the linking equation g a = h a≺ g ( f1 a) corresponds to the unfold operator,
which as we have noted can be defined in terms of map and iterate.

The fusion law implies map f · iterate f = iterate f · f , which is the key for proving
nat = iterate (+1) 0, or, more generally, recurse f a = iterate f a. We show that iterate f a
is the unique solution of x = a≺ map f x.

iterate f a

= { definition of iterate }
a≺ iterate f ( f a)

= { iterate fusion law (14): h = f1 = f2 = f }
a≺ map f (iterate f a)

Let us conclude by noting that the proof techniques are not always applicable. For
example, they cannot be used to show the extensionality law (2), s = head s≺ tail s, simply
because s is not given by a recursion equation. In this case, we have to resort to coinduction.

3 Recurrences (≺ , g)

Using ≺ and g we can easily capture recurrences or functions from the natural numbers.
Though functions from the naturals and streams are in one-to-one correspondence, a stream
is often easier to manipulate than a function or a recurrence, because a stream is a single
entity, typically defined by a single equation. Before we consider concrete examples, we
first explore tabulation in more depth.

3.1 Tabulation

The simplest recurrences are of the form a0 = k and an+1 = f (an), for some natural
number k and some function f on the naturals. This recurrence is captured by the stream
equation a = k ≺ map f a, or more succinctly by recurse f k. Though fairly obvious, the
relation is worth exploring. On the face of it, the linear recurrence corresponds to the fold
or catamorphism of the inductive type Nat.

fold :: (α → α)→ α → (Nat→ α)
fold s z 0 = z
fold s z (n+1) = s (fold s z n)
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Catamorphisms are dual to anamorphisms, enjoying a dual characterisation.

h = fold s z ⇐⇒ h 0 = z and h · (+1) = s · h

Some simple consequences of the universal property are the reflection law, fold (+1) 0 =
id, and the computation rules, fold s z 0 = z and fold s z · (+1) = s · fold s z.

We already noted that tabulating fold s z gives recurse s z. The proof of this fact makes
crucial use of tabulate’s naturality property.

tabulate (fold s z)

= { definition of tabulate }
fold s z 0≺ tabulate (fold s z · (+1))

= { computation rules, see above }
z≺ tabulate (s · fold s z)

= { naturality of tabulate (12) }
z≺ map s (tabulate (fold s z))

Consequently, there are, at least, four equivalent ways of expressing the linear recurrence
a0 = z and an+1 = s(an).

tabulate (fold s z) = recurse s z = iterate s z = 〈x | x← z,s x . .〉

Using the reflection law for Nat, this furthermore implies that nat is the tabulation of the
identity function: tabulate id = tabulate (fold (+1) 0) = iterate (+1) 0 = nat.

If we ‘un-tabulate’ iterate, setting loop f = lookup · iterate f , we obtain a tail-recursive
function, which can be seen as the counterpart of Haskell’s foldl for natural numbers.

loop :: (α → α)→ α → (Nat→ α)
loop f a 0 = a
loop f a (n+1) = loop f ( f a) n

Mathematically speaking, loop programs n-fold composition: loop f a n = f (n) a.
The fact that nat tabulates id has a very simple, yet important consequence:

tabulate f

= { f · id = f }
tabulate ( f · id)

= { naturality of tabulate (12) }
map f (tabulate id)

= { tabulate id = nat }
map f nat

= { stream comprehensions }
〈 f n | n← nat〉 .

Setting f = lookup s in the equation above, gives the following extensionality law

s = 〈(s)n | n← nat〉 , (16)
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which allows us to switch swiftly between a pointwise and a point-free or holistic view.
Now, let us tackle a slightly more involved class of recurrences. The sequence given by

the ‘binary’ recurrence a0 = k, a2n+1 = f (an) and a2n+2 = g(an) corresponds to the stream
a = k ≺ map f a g map g a. Turning to the proof, observe that the extensionality law (16)
implies a = 〈an | n← nat〉 = 〈an | n← bin〉. The calculation below then proves that the
latter expression satisfies the stream equation above.

〈an | n← bin〉
= { definition of bin and abide law (11) }

a0 ≺ 〈an | n← 2∗bin+1〉g 〈an | n← 2∗bin+2〉
= { functor law (4) }

a0 ≺ 〈a2∗n+1 | n← bin〉g 〈a2∗n+2 | n← bin〉
= { definition of a }

k ≺ 〈f (an) | n← bin〉g 〈g(an) | n← bin〉
= { functor law (4) }

k ≺ map f 〈an | n← bin〉g map g 〈an | n← bin〉

The crucial step in the derivation is easily overlooked: it is the application of nat = bin that
makes the calculation fly.

To tabulate an arbitrary recurrence or an arbitrary function from the naturals, we can
either apply tabulate or simply map the function over the stream of natural numbers.
Of course, if f is recursively defined, f = φ f , then this is a wasted opportunity, as the
recursive calls do not re-use any of the tabulated values. In order to also replace these calls
by table look-ups, we invoke the rolling rule of fixed-point calculus (Backhouse, 2001).

fix φ

= { lookup · tabulate = id }
fix (lookup · tabulate · φ)

= { rolling rule: fix ( f · g) = f (fix (g · f )) }
lookup (fix (tabulate · φ · lookup))

The calculation transforms a fixed point over functions into a fixed point over streams.
Introducing names for the participants, we obtain f = lookup s and s = tabulate (φ f ).
While the derivation is completely general, each call of f now involves a linear look-
up. By contrast, the tabulations for linear and ‘binary’ recurrences avoid the look-up by
maintaining ‘pointers’ into the memo table. As an aside, the derivation above is an instance
of the worker-wrapper transformation (Gill & Hutton, 2009).

3.2 Examples

In the previous section we have considered abstract recurrences. Let us tackle some con-
crete examples now. In the next section we re-visit our all-time-favourite, the Fibonacci
numbers, and then move on to examine some less known examples in the sections there-
after.
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3.2.1 Fibonacci numbers

There and Back Again

John Ronald Reuel Tolkien (1937)

The recurrence of F, see Section 2.1, does not fit the schemes previously discussed, so we
have to start afresh. (We could apply the general scheme for recursive functions, but this
involves linear look-ups.) The calculations are effortless, however, if we make use of the
fact that tabulate is an idiom homomorphism. Using the environment idiom we can rewrite
the last equation of F in a point-free style: F · (+2) = F +F · (+1).

tabulate F

= { definition of tabulate, twice }
F0 ≺ F1 ≺ tabulate (F · (+2))

= { definition of F }
0≺ 1≺ tabulate (F +F · (+1))

= { tabulate is an idiom homomorphism }
0≺ 1≺ tabulate F + tabulate (F · (+1))

= { definition of tabulate }
0≺ 1≺ tabulate F + tail (tabulate F)

The only non-trivial step is the second but last one, which employs tabulate ( f + g) =
tabulate f + tabulate g, which in turn is syntactic sugar for tabulate (pure (+) � f � g) =
pure (+) � tabulate f � tabulate g. Since tabulate preserves the idiomatic structure, the
derivation goes through nicely.

Tabulation and look-up allow us to switch swiftly between functions from the naturals
and streams. So, even if coinductive structures are not available in your language of choice,
you can still use stream calculus for program transformations. Let us illustrate this point
by deriving an efficient iterative implementation of F. To this end we have to transform fib
into a form that fits the recursion equation of iterate or recurse. This can be easily achieved
using the standard technique of tupling (Bird, 1998), which boils down to an application
of lifted pairing ?.

fib?fib′ (A)

= { definition of fib and definition of fib′ }
(0≺ fib′)? (1≺ fib+fib′)

= { definition of ? }
(0,1)≺ fib′ ? (fib+fib′)

= { introduce step (a,b) = (b,a+b) and lift the equality to streams }
(0,1)≺ map step (fib?fib′)

The last step makes use of the fact that equations between elements, such as step (a,b) =
(b,a + b), can be lifted to equations between streams, map step (s ? t) = t ? (s + t), see
also (Hinze, 2010a). The calculation shows that fib?fib′ satisfies the recursion equation of
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iterate, we have fib?fib′ = iterate step (0,1). Consequently,

fib = map fst (iterate step (0,1)) = unfold fst step (0,1) = 〈a | (a,b)← (0,1),(b,a+b) . .〉.

To obtain an iterative or tail-recursive program, we simply ‘un-tabulate’ the derived stream
expression.

lookup fib

= { see above }
lookup (map fst (iterate step (0,1)))

= { naturality of lookup (12) }
fst (lookup (iterate step (0,1)))

= { definition of loop }
fst (loop step (0,1))

An alternative approach is based on the observation that the tails of fib are linear combi-
nations of fib and fib′. Let i and j be constant streams, then

i∗fib+ j ∗fib′ (B)

= { definition of fib and definition of fib′ }
i∗ (0≺ fib′)+ j ∗ (1≺ fib+fib′)

= { arithmetic }
j ≺ i∗fib′+ j ∗ (fib+fib′)

= { arithmetic }
j ≺ j ∗fib+(i+ j)∗fib′ .

Viewing i∗fib+ j∗fib′ as a function in (i, j), the calculation shows that the linear combina-
tion satisfies the recursion equation of unfold, we have i∗fib+ j∗fib′= unfold snd step (i, j)
and hence fib = unfold snd step (1,0).

The two iterative versions of fib are tantalisingly close. We may, in fact, be fooled into
thinking that we can obtain one from the other by fusing with swap (a,b) = (b,a). A
moment’s reflection shows that this does not work since the ‘next’ function is the same in
both cases. However, the two derivations imply a simple formula for a generalised version
of fib that abstracts away from the two initial values.

pfib i j = s where s = i ≺ s′

s′ = j ≺ s+ s′

We can express pfib i j in terms of fib and fib′, since

tail (pfib i j)

= { tupling, analogous to the first derivation (A) }
map snd (iterate step (i, j))

= { map g · iterate f = unfold g f }
unfold snd step (i, j)

= { second derivation (B) }
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i∗fib+ j ∗fib′ .

Furthermore, pfib i j = ( j− i)∗fib+ i∗fib′. So, in a sense, the extra generality of pfib is not
needed.

As an example application, let us calculate the number of binary strings of a given length
that do not contain adjacent 1s. These binary strings are used in the Fibonacci number
system (Graham et al., 1994). The empty string clearly satisfies the condition; a leading 0
can be followed by any string that satisfies the criterion; if the string starts with a 1, then it
must be followed by a string that does not start with a 1. The description can be captured
by the following grammar in Backus-Naur Form (Nao is short for no adjacent ones).

Nao = ε | 0 Nao | 1 Nap
Nap = ε | 0 Nao

Here, Nap produces Nao strings that do not start with a 1. Now, to solve the original
problem we have to group the strings by length. Let nao (nap) be the stream whose nth
element specifies the number of words of length n produced by Nao (Nap). The language
Nao contains one string of length 0 and nao + nap strings of length n + 1, motivating the
following stream definitions.

nao = 1≺ nao+nap
nap = 1≺ nao

By the token above, nao = tail (pfib 1 1) = 1 ∗ fib + 1 ∗ fib′ = fib′′. In Section 5.5 we will
show how to systematise the translation of grammars into stream equations.

The elements of a stream are by no means confined to numbers. Using a lifted version of
equality, ˙ , we can, for instance, generate a stream of Booleans. To illustrate the use of ˙ ,
let us prove that every third Fibonacci number is even: (fib mod 2 ˙ 0) = (nat mod 3 ˙ 0).
The proof makes essential use of the fact that equality on Bool is associative (Backhouse &
Fokkinga, 2001). We show that even fib satisfies x = true≺ false≺ false≺ x, where even
is lifted to streams — recall that, like integer constants, false and true are overloaded.

even fib

= { definition of fib, definition of fib′ and definition of even }
true≺ false≺ even (fib+fib′)

= { even (a+b) even a even b, and lifting }
true≺ false≺ (even fib ˙ even fib′)

= { definition of fib and definition of fib′ }
true≺ false≺ ((true≺ even fib′) ˙ (false≺ (even fib ˙ even fib′)))

= { definition of ˙ }
true≺ false≺ false≺ (even fib′ ˙ even fib ˙ even fib′)

= { a a true (twice), and lifting }
true≺ false≺ false≺ even fib
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3.2.2 Bit fiddling

Bitte ein Bit
Slogan of “Bitburger Brauerei” (1951)

Let us move on to some less known examples, which are meant to illustrate the use of
interleaving. All of the examples involve fiddling with bits, so we start off defining the
stream of all bit strings.

bit = [ ]≺ 0++bit g 1++bit

Here list concatenation ++ is lifted to streams. Furthermore, the literals 0 and 1 are doubly
lifted, first to lists and then to streams: n expands to the stream of singleton lists pure [n].
The stream of positive numbers in binary representation, least significant bit first, is then
bit ++1, and the stream of binary naturals is [ ]≺ bit ++1.

� bit
〈[ ], [0 ], [1], [0,0], [1,0], [0,1], [1,1], [0,0,0], [1,0,0], [0,1,0], [1,1,0], [0,0,1 ], . . .〉
� [ ]≺ bit ++1
〈[ ], [1 ], [0,1 ], [1,1 ], [0,0,1 ], [1,0,1 ], [0,1,1 ], [1,1,1 ], [0,0,0,1], [1,0,0,1], . . .〉

The function lookup ([ ]≺ bit ++1) maps a natural number to its binary representation. Its
inverse is the evaluation function val = foldr (λb n→ b+2∗n) 0.

It will be useful to define a variant of bit where all the bits have been zeroed out.

null = [ ]≺ 0++null g 0++null

Now, how can we characterise the pots, the positive numbers that are powers of two
(A036987)? A simple specification is

pot = (bit ++1 ˙ null++1) .

All the bits of a pot are zero, except for the most significant bit. The specification above
is equivalent to pot = (bit ˙ null) — recall that identities between elements, such as
x ++ z y ++ z⇐⇒ x y, can be lifted to identities between streams. From the simplified
specification we can easily calculate a definition of pot.

bit ˙ null

= { definition of bit and definition of null }
([ ]≺ 0++bit g 1++bit) ˙ ([ ]≺ 0++null g 0++null)

= { definition of ˙ and abide law (11) }
([ ] [ ])≺ (0++bit ˙ 0++null) g (1++bit ˙ 0++null)

= { equality }
true≺ (bit ˙ null) g false

Joining the first with the last line we obtain a definition for pot.

pot = true≺ pot g false

Using a similar approach we can characterise the most significant bit of a positive
number (0≺ msb is A053644):

msb = val (null++1) .
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A similar derivation to the one above gives

msb = 1≺ 2∗msb g 2∗msb .

Put differently, msb is the largest pot at most nat′. Here and in what follows we also lift
relations, “x and y are related by R”, to streams. So, instead of “n+1 is odd iff n is even”,
where n is implicitly universally quantified, we say “nat +1 is odd iff nat is even”, where
the relations are implicitly lifted to streams.

We can use msb to bit-reverse a positive number: all bits except the most significant one
are reversed. The stream brp is specified (A059893)

brp = val (reverse bit ++1) ,

where val and reverse are both lifted to streams. The derivation makes use of a simple
property of val: if the bit strings x and y have the same length, length x = length y, then

val (x++ z)− val x = val (y++ z)− val y .

Since val (null++1)− val null = msb, this implies the property

val (reverse bit ++1)− val (reverse bit) = msb (17)

between streams. The derivation proceeds as follows

val (reverse bit ++1)

= { (17) }
val (reverse bit)+msb

= { definition of bit, definition of reverse, and definition of val }
(0≺ val (reverse bit) g val (reverse bit ++1))+msb

= { definition of msb and abide law (11) }
1≺ val (reverse bit)+2∗msb g val (reverse bit ++1)+2∗msb

= { (17) }
1≺ val (reverse bit ++1)+msb g val (reverse bit ++1)+2∗msb .

Consequently, brp is defined

brp = 1≺ brp+msb g brp+2∗msb .

Another example along these lines is the 1s-counting sequence (A000120), also known
as the binary weight. The binary representation of the even number 2 ∗ nat has the same
number of 1s as nat; the odd number 2 ∗ nat + 1 has one 1 more. Hence, the sequence
satisfies ones = ones g ones + 1. Adding two initial values, we can turn the property into
a definition.

ones = 0≺ ones′

ones′ = 1≺ ones′ g ones′+1
It is important to note that x = x g x + 1 does not have a unique solution. However, all
solutions are of the form ones+ c.

Alternatively, ones′ can be derived from the specification ones′ = map sum (bit ++ 1),
where sum computes the sum of a list of numbers. The details are left to the reader.
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Let us inspect the sequences.

� msb
〈1,2,2,4,4,4,4,8,8,8,8,8,8,8,8,16, . . .〉
� nat′−msb
〈0,0,1,0,1,2,3,0,1,2,3,4,5,6,7,0, . . .〉
� brp
〈1,2,3,4,6,5,7,8,12,10,14,9,13,11,15,16, . . .〉
� ones
〈0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4, . . .〉

The sequence nat′−msb (A053645) exhibits a nice pattern; it describes the distance to the
largest pot at most nat′.

3.2.3 Binary carry sequence

Here is a sequence that every computer scientist should know: the binary carry sequence
or ruler function (A007814). The sequence gives the exponent of the largest pot dividing
nat′, that is, the number of leading zeros in the binary representation (least significant bit
first). Put differently, it quantifies the running time of the binary increment. To specify the
sequence we make use of the divisibility relation on numbers: a\b⇐⇒∃n ∈N . a∗n = b.
The stream carry is then specified6

∀s . carry >̇ s = 2s \nat′ , (18)

Note that the variable s ranges over integer streams. Ordering and divisibility are lifted
pointwise to streams — recall that the lifted variant of > is denoted >̇. The specification
precisely captures the verbal description: read from left to right it implies 2carry \nat′; read
from right to left it formalises that carry is the largest such sequence. Now we calculate

2s \nat′

= { nat′ = 2∗nat +1 g 2∗nat′ and s = s1 g s2 }
2s1gs2 \ (2∗nat +1 g 2∗nat′)

= { (10) and abide law (11) }
(2s1 \ (2∗nat +1)) g (2s2 \ (2∗nat′))

= { 2a \ (2∗b+1)⇐⇒ 0 > a, and lifting }
(0 >̇ s1) g (2s2 \ (2∗nat′))

= { 2a \ (2∗b)⇐⇒ 2a−1 \b, and lifting }
(0 >̇ s1) g (2s2−1 \nat′)

= { specification (18) }
(0 >̇ s1) g (carry >̇ s2−1)

= { arithmetic }

6 The author is grateful to Roland Backhouse for suggesting this specification.
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(0 >̇ s1) g (carry+1 >̇ s2)

= { abide law (11) and s = s1 g s2 }
(0 g carry+1) >̇ s .

Since (18) uniquely determines carry, we have

carry = 0 g carry+1 ,

which is, in fact, an executable program. (The form of the equation does not quite meet
the requirements. We allow ourselves some liberty, as a simple unfolding turns it into an
admissible form: carry = 0 ≺ carry + 1 g 0. The unfolding works as long as the first
argument of g is a sequence defined elsewhere.)

There is an intriguing connection to infinite binary trees. Consider the following defini-
tion.

turn 0 = [ ]
turn (n+1) = turn n++[n ]++ turn n

The call turn n yields the heights of the nodes of a perfect binary tree of depth n. Stewart
refers to this recursion pattern as the ‘army method’ with an (n+1)-star general delegating
work to two n-star generals (1999). Now, imagine traversing an infinite binary tree starting
at the leftmost leaf: visit the current node, visit its finite right subtree and then continue
with its parent. The infinite tree is a so-called sideways tree: it has no root, but extends
infinitely upwards. The following parametrised stream captures the traversal:

tree n = n≺ turn n≺≺ tree (n+1) ,

where ≺≺ prepends a list to a sequence.

(≺≺) :: [α ]→ Stream α → Stream α

as≺≺ s = foldr (≺) s as

Here is the punch line: tree 0 also yields the binary carry sequence! The following table of
binary numbers illustrates the correspondence.

1 0
1

1
1

0
0

1
1

0
1

0
1

1
1

1
1

0
0

0
1

1
0

0
1

0
1

0
1

1
1

0
1

0
0

1
1

1
0

1
1

0
1

1
1

1
1

1
1

0
0

0
0

1

For emphasis, prefixes of zeros are underlined. The lines correspond to the marks on a
binary ruler; this is why carry is also called the ruler function. If we connect each 0-prefix
of length n with the nearest 0-prefix of length n+1, we obtain the sideways tree.

Turning to the proof, let us try the obvious: we show that tree 0 satisfies the equation
x = 0 g x+1.

0 g tree 0+1

= { definition of g }
0≺ tree 0+1 g 0
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= { proof obligation, see below }
0≺ tree 1

= { definition of tree and definition of turn }
tree 0

We are left with the proof obligation tree 1 = tree 0 + 1 g 0. With some foresight, we
generalise to tree (k + 1) = tree k + 1 g 0. The ⊂-proof below makes essential use of the
mixed abide law: if length x = length y, then

(x≺≺ s) g (y≺≺ t) = (x g y)≺≺ (s g t) , (19)

where the operator in x g y denotes interleaving of two lists of the same length. Noting that
length (turn n) = 2n−1, we reason

tree (k +1)

= { definition of tree }
k +1≺ turn (k +1)≺≺ tree (k +2)

⊂ { x n = n+1≺ turn (n+1)≺≺ x (n+1) has a unique solution }
k +1≺ turn (k +1)≺≺ (tree (k +1)+1 g 0)

= { proof obligation, see below }
k +1≺ (replicate 2k 0 g turn k +1)≺≺ (tree (k +1)+1 g 0)

= { definition of g and definition of ≺≺ }
((k +1 : turn k +1) g replicate 2k 0)≺≺ (tree (k +1)+1 g 0)

= {mixed abide law (19) }
((k +1 : turn k +1)≺≺ tree (k +1)+1) g (replicate 2k 0≺≺ 0)

= { arithmetic and definition of ≺≺ }
(k ≺ turn k ≺≺ tree (k +1))+1 g 0

= { definition of tree }
tree k +1 g 0

It remains to show the finite version of the proof obligation: turn (k+1) = replicate 2k 0 g
turn k +1. We omit the straightforward induction, which relies on an abide law for lists.

3.2.4 Fractal sequences

The sequence pot, the 1s-counting sequence and the binary carry sequence are all exam-
ples of fractal or self-similar sequences: a subsequence is similar to the entire sequence.
Another fractal sequence is A025480.

frac = nat g frac

This sequence contains infinitely many copies of the natural numbers. The distance be-
tween equal numbers grows exponentially, 2n, as we progress to the right. Like carry, frac
is related to divisibility:

god = 2∗ frac+1
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is the greatest odd divisor of nat′. Since we have god = 2 ∗ nat + 1 g god and nat′ =
2 ∗ nat + 1 g 2 ∗ nat′, the property follows from a simple case analysis: the greatest odd
divisor of an odd number, 2 ∗ nat + 1, is the number itself; the greatest odd divisor of an
even number, 2∗nat′, is the god of nat′.

Now, recall that 2carry is the largest power of two dividing nat′. Putting these observa-
tions together, we have

2carry ∗god = nat′ .

The proof is surprisingly straightforward.

2carry ∗god

= { definition of carry and definition of god }
20gcarry+1 ∗ (2∗nat +1 g god)

= { arithmetic and abide law (11) }
2∗nat +1 g 2∗2carry ∗god

⊂ { x = 2∗nat +1 g 2∗ x has a unique solution }
2∗nat +1 g 2∗nat′

= { nat′ = 2∗nat +1 g 2∗nat′ }
nat′

3.2.5 Sprague-Grundy numbers

Quadratisch. Praktisch. Gut.

Slogan of “Ritter Sport” (1970)

There is an intriguing connection between the sequence frac and the chocolate game. Two
players participate in this game, eating up a chocolate bar according the following rule: the
player whose turn it is breaks the bar in two pieces, either horizontally or vertically, and
eats the smaller one — or the more appealing one in case of a tie.

The players make alternating moves; the game ends when the bar consists of a single
square. The player whose turn it is loses and consequently has to pay for the chocolate bar.

Representing a game position by the two dimensions of the bar, a possible sequence of
moves is, see picture on the right above:

(11,5) 7→ (11,3) 7→ (7,3) 7→ (6,3) 7→ (3,3) 7→ (3,2) 7→ (2,2) 7→ (1,2) 7→ (1,1) .

Since the number of moves is even, the first player loses. In fact, the first position, (11,5),
is a losing position: every move leads to a winning position. Conversely, from a winning
position there is at least one move to a losing position.

How can we determine whether a position is a winning or a losing position? This is
where the sequence frac enters the scene: (i, j) is a winning position iff (frac)i = (frac) j!
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By this token, square bars — the famous Ritter Sport — are losing positions, but also (7,3)
and (11,5) as (frac)7 = 0 = (frac)3 and (frac)11 = 1 = (frac)5.

The chocolate game is an example of an impartial two-person game. For reasons of
space, we can only sketch the necessary theory. For a more leisurely exposition we refer
the interested reader to the treatment by Backhouse and Michaelis (2005). An impartial
game is fully determined by a function move :: Pos→ [Pos], where Pos is the type of game
positions. The chocolate game can be viewed as a combination of two identical games,
breaking a 1×n bar, whose individual move function is

move n = take (n div 2) [n−1,n−2 . .1 ] .

A position in the combined game is then a pair of positions. The combined game is
known as a sum game, because a player can either make a move in the left or in the right
component game. The central idea for determining winning and losing positions in a sum
game is to assign a number to each component position, the so-called Sprague-Grundy
number, such that (i, j) is a losing position iff sg i = sg j. The numbers are chosen so
that every move from a losing position makes the numbers unequal, and for every winning
position there is a move that makes them equal. One can show that the following definition
of sg satisfies these requirements.

sg p = mex {sg q | q← move p}
mex x = head 〈n | n← nat,n /∈ x〉

Here, mex x yields the minimal excludent of x, the least natural number that is not contained
in the finite set x. The Sprague-Grundy number of p is then the minimal excludent of the
Sprague-Grundy numbers of positions reachable from p.

The claim is that frac′ is the tabulation of sg:

map sg nat′ = frac′ .

(The positions only comprise the positive numbers; hence we have to take the tail of the
two sequences.) This equation is not at all obvious, and, indeed, it takes some effort to
prove it correct. The proof is, however, quite instructive, as it shows how to deal with
course-of-value recursion and interleavings.

First observe that the executable specification of sg is not good for a program, as it is
horribly inefficient: sg p spawns p div 2 recursive calls, each of which triggers another
avalanche of calls. For instance, sg 25 generates a total of 8,986,539 calls. The call struc-
ture of sg is an instance of course-of-value recursion. In this recursion scheme, the value
of gn is defined in terms of all previous values: gn−1, gn−2, . . . , g0. For tabulating functions
defined by course-of-value recursion, it is useful to introduce a stream operator that maps
a stream to the stream of its partial reverses:

course :: Stream α → Stream [α ]
course s = t where t = [ ]≺ s : t ,

where : is lifted to streams. In what follows, we shall also lift the list processing functions
take, init, last, set (which takes a list to a set), and the set operations {−} (singleton set),
∪ (set union), and \ (set difference) to streams.
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The functioning of course is illustrated below.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 · · · t

= = = = = = = = = = = · · · =

[ ] s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 · · · [ ] ≺ s
: : : : : : : : : : · · · :
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 · · · t

If f is the function that takes the list of previous values [gn−1,gn−2, . . . ,g0 ] to gn, then
tabulate g is the unique solution of

s = map f (course s) .

(The equation has a unique solution, as a simple unfolding of course and map turns it into
the required syntactic form.) Again, we avoid index manipulations by introducing a suitable
stream operator. In our example, f is essentially mex after take. Some straightforward
calculations turn the recursive definition of sg into a recursion equation over streams: sg’s
tabulation, map sg nat′, satisfies

x = map mex (set (take (nat′ div 2) (course x))).

Since the equation has a unique solution, we are left with the task of showing that frac′

also satisfies the equation, which is what we tackle next.
In a succession of calculations we determine r = course frac′, s = take (nat′ div 2) r,

t = set s, and finally map mex t. Observe that both nat′div2 and frac′ involve interleavings:
nat′ div 2 = nat g nat′ and frac′ = frac g nat′. To deal effectively with interleavings, it
is helpful to recall that the equation x g y = a ≺ f x g g y uniquely determines x and y,
see Section 2.3. With a single equation we capture three sequences: the entire stream, the
stream of elements at even positions and the stream of elements at odd positions.

Now, setting re g ro = course frac′, we reason

re g ro

= { definition of re g ro }
course frac′

= { definition of course }
[ ]≺ frac′ : course frac′

= { definition of frac′ and definition of re g ro }
[ ]≺ (frac g nat′) : (re g ro)

= { abide law (11) }
[ ]≺ frac : re g nat′ : ro .

Next, let se g so = take (nat g nat′) (re g ro). Using an analogous calculation we can show
that se g so = [ ]≺ frac : se g nat′ : init so. Finally, let te g to = set (se g so), then

te g to

= { definition of te g to }
set (se g so)
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= { see above }
set ([ ]≺ frac : se g nat′ : init so)

= { definition of set: set [ ] = {} and set (a : x) = {a}∪ set x }
{} ≺ {frac}∪ set se g {nat′}∪ set (init so) .

We are stuck. We have to express set (init so) in terms of set so. We can rewrite the former
stream expression to set so \ {last so}, where \ denotes set difference. However, to make
further progress we need to know last so. So let us peek at some values.

� last so
〈0,1,0,2,1,3,0,4,2,5,1,6,3,7,0,8, . . .〉
� frac′

〈0,1,0,2,1,3,0,4,2,5,1,6,3,7,0,8, . . .〉

Somewhat surprisingly, last so seems to be frac′! We leave this conjecture as a proof
obligation and finish off (\ binds more tightly than ∪).

= { proof obligation: last so = frac′ }
{} ≺ {frac}∪ set se g {nat′}∪ set so\{frac′}

= { definition of te g to and abide law (11) }
{} ≺ {frac}∪ te g {nat′}∪ to\{frac′}

We are nearly done. It is not hard to see that te g to = {} ≺ {frac}∪ te g {nat′}∪ to \
{frac′} has the unique solution {0 . .nat} \ { frac} g {0 . .nat}. (Here we also lift the
mixfix notation {a . .b} to streams.) Consequently,

map mex (te g to)

= { see above }
map mex ({0 . .nat}\{frac}g {0 . .nat})

= { abide law (11) }
map mex ({0 . .nat}\{frac}) g map mex {0 . .nat}

= { definition of mex and (frac <̇ nat′) = true }
frac g nat′

= { definition of frac′ }
frac′ .

Hurray! The second but last step depends on the crucial property that frac is smaller than
nat′ — this follows from the fact that god = 2∗ frac+1 is the greatest odd divisor of nat′.

We still have to discharge the proof obligation. Since the stream so is given by the
equation so = [0]≺ frac′ :nat′ : init so, we have to show that last so = frac′. This is, in fact,
an instance of a more general property: if x is given by x = [head s ]≺ tail s : t : init x, then
last x = s g t. The mostly straightforward proof is left as an exercise to the reader.
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3.2.6 Josephus problem

Our final example is a variant of the Josephus problem (Graham et al., 1994). Imagine
n people numbered 1 to n forming a circle. Every second person is killed until only one
survives. Our task is to determine the survivor’s number.

Now, if there is only one person, then this person survives. For an even number of
persons the martial process starts as follows: 1 2 3 4 5 6 becomes 1 2/ 3 4/ 5 6/. Renumbering
1 3 5 to 1 2 3, we observe that if nat survives in the sequence of first-round survivors, then
2 ∗ nat− 1 survives in the original sequence. Likewise for odd numbers: 1 2 3 4 5 6 7
becomes 1/ 2/ 3 4/ 5 6/ 7 — since the number is odd, the first person is killed, as well.
Renumbering 3 5 7 to 1 2 3, we observe that if nat survives in the remaining sequence,
then 2∗nat+1 survives in the original sequence. The verbal description is captured by the
stream equation below.

jos = 1≺ 2∗ jos−1 g 2∗ jos+1

The nth element of jos determines the survivor’s number, when there are n persons initially.
It is quite revealing to inspect the sequence.

� jos
〈1,1,3,1,3,5,7,1,3,5,7,9,11,13,15,1, . . .〉
� (jos−1)/2
〈0,0,1,0,1,2,3,0,1,2,3,4,5,6,7,0, . . .〉

Since the even numbers are eliminated in the first round, jos only contains odd numbers. If
we divide jos− 1 by two, we obtain a sequence we have encountered before: nat′−msb.
Indeed, jos and msb are related by

jos = 2∗ (nat′−msb)+1 .

In terms of bit operations, jos implements a cyclic left shift: nat′−msb removes the most
significant bit, 2∗ shifts to the left and +1 sets the least significant bit.

2∗ (nat′−msb)+1

= { definition of msb and property of nat′ }
2∗ ((1≺ 2∗nat′ g 2∗nat′+1)− (1≺ 2∗msb g 2∗msb))+1

= { abide law (11) }
2∗ (0≺ 2∗nat′−2∗msb g 2∗nat′+1−2∗msb)+1

= { arithmetic }
1≺ 2∗ (2∗ (nat′−msb)+1)−1 g 2∗ (2∗ (nat′−msb)+1)+1

4 Finite calculus (∆, Σ)

Let us move on to another application of streams: finite calculus (Graham et al., 1994).
Finite calculus is the discrete counterpart of infinite calculus, where finite difference re-
places the derivative and summation replaces integration. We shall see that difference and
summation can be easily recast as stream operators.
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4.1 Finite difference

A common type of puzzle asks the reader to continue a given sequence of numbers. A
first routine step towards solving the puzzle is to calculate the difference of subsequent
elements. This stream operator, finite difference or forward difference, enjoys a simple,
non-recursive definition.

∆ :: (Num α)⇒ Stream α → Stream α

∆ s = tail s− s

Here are some examples (A003215, A000079, A094267, not listed).

� ∆ nat3

〈1,7,19,37,61,91,127,169,217,271,331,397,469,547, . . .〉
� ∆ 2nat

〈1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192, . . .〉
� ∆ carry
〈1,−1,2,−2,1,−1,3,−3,1,−1,2,−2,1,−1,4,−4, . . .〉
� ∆ jos
〈0,2,−2,2,2,2,−6,2,2,2,2,2,2,2,−14,2, . . .〉

The finite difference of carry exhibits an interesting pattern, so let us calculate the stream
as a warm-up exercise.

∆ carry

= { definition of ∆ }
tail carry− carry

= { definition of carry }
(carry+1 g 0)− (0 g carry+1)

= { abide law (11) }
(carry+1) g−(carry+1)

Infinite calculus has a simple rule for the derivative of a power: xn+1 d
dx = (n + 1)xn.

Unfortunately, the first example above shows that finite difference does not interact nicely
with ordinary powers: ∆ nat3 is not 3∗nat2. Can we find a different notion that enjoys an
analogous rule? Let us try. Writing xn for the new power and its lifted variant, we calculate

∆ (natn+1)

= { definition of ∆ }
tail (natn+1)−natn+1

= { definition of nat }
(nat +1)n+1−natn+1 .

Starting at the other end, we obtain

(n+1)∗natn

= { arithmetic }
natn +n∗natn
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Table 2. Converting between powers and falling factorial powers.

x0 = x0

x1 = x1

x2 = x2 + x1

x3 = x3 +3∗ x2 + x1

x4 = x4 +6∗ x3 +7∗ x2 + x1

x0 = x0

x1 = x1

x2 = x2− x1

x3 = x3−3∗ x2 +2∗ x1

x4 = x4−6∗ x3 +11∗ x2−6∗ x1

Table 3. Laws for finite difference (c, k and n are constant streams).

∆ (tail s) = tail (∆ s)
∆ (a≺ s) = head s−a≺ ∆ s
∆ (s g t) = (t− s) g (tail s− t)
∆ n = 0
∆ (n∗ s) = n∗∆ s

∆ (s+ t) = ∆ s+∆ t
∆ (s∗ t) = s∗∆ t +∆ s∗ tail t
∆ cnat = (c−1)∗ cnat

∆ (natn+1) = (n+1)∗natn

∆
( nat

k+1
)

=
(nat

k
)

= { introduce nat ∗natn }
(nat +1)∗natn−natn ∗ (nat−n)

We can connect the loose ends, if the new power satisfies both xn+1 = x ∗ (x− 1)n and
xn+1 = xn ∗ (x−n). That is easy to arrange, we use the first equation as a definition. (It is
not hard to see that the definition then also satisfies the second equation.)

x0 = 1
xn+1 = x∗ (x−1)n

The new powers are, of course, well-known: they are called falling factorial powers (Gra-
ham et al., 1994). The following session shows that they behave as expected.

� nat3

〈0,0,0,6,24,60,120,210,336,504,720,990,1320,1716,2184,2730, . . .〉
� ∆ (nat3)
〈0,0,6,18,36,60,90,126,168,216,270,330,396,468,546,630, . . .〉
� 3∗nat2

〈0,0,6,18,36,60,90,126,168,216,270,330,396,468,546,630, . . .〉

One can convert mechanically between powers and falling factorial powers using Stir-
ling numbers (Graham et al., 1994). The details are beyond the scope of this paper. For
reference, Table 2 displays the correspondence up to the fourth power.

4.1.1 Laws

Table 3 lists the rules for finite differences. First of all, ∆ is a linear operator: it distributes
over sums. The stream 2nat is the discrete analogue of ex as ∆ 2nat = 2nat. In general,

∆ cnat
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= { definition of ∆ }
tail (cnat)− cnat

= { c is constant and definition of nat }
cnat+1− cnat

= { arithmetic }
(c−1)∗ cnat .

The product rule is similar to the product rule of infinite calculus except for an occur-
rence of tail on the right-hand side.

∆ (s∗ t)

= { definition of ∆ and definition of ∗ }
tail s∗ tail t− s∗ t

= { arithmetic }
s∗ tail t− s∗ t + tail s∗ tail t− s∗ tail t

= { distributivity }
s∗ (tail t− t)+(tail s− s)∗ tail t

= { definition of ∆ }
s∗∆ t +∆ s∗ tail t

We can avoid the unpleasant asymmetry of the law, if we further massage ∆ s∗ tail t.

= { definition of ∆ }
s∗∆ t +∆ s∗ (t +∆ t)

= { arithmetic }
s∗∆ t +∆ s∗ t +∆ s∗∆ t

The rule for binomial coefficients is a special case of the rule for falling factorial powers
as

(n
k

)
= nk / k!.

4.1.2 Example: Josephus problem, continued

Let us get back to the Josephus problem: the interactive session in Section 4.1 suggests that
∆ jos is almost always 2, except for pots, the powers of two. We can express this property
using a stream conditional :

∆ jos = (pot′→−nat ; 2) ,

where ( → ; ) is if then else lifted to streams. The stream conditional enjoys the
standard laws, such as (false→ s ; t) = t, and a ternary version of the abide law.

((s1 g s2)→ (t1 g t2) ; (u1 g u2)) = (s1→ t1 ; u1) g (s2→ t2 ; u2) (20)

Both laws are used in the proof of the property above.

∆ jos
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= { ∆ law and arithmetic }
0≺ 2 g 2∗ (tail jos− jos)−2

= { definition of ∆ }
0≺ 2 g 2∗∆ jos−2

⊂ { x = 0≺ 2 g 2∗ x−2 has a unique solution }
0≺ 2 g 2∗ (pot′→−nat ; 2)−2

= { arithmetic and definition of nat′ }
0≺ 2 g (pot′→−(2∗nat′) ; 2)

= { definition of nat, definition of pot and definition of g }
(pot→−(2∗nat) ; 2) g 2

= { conditional and abide law (20) }
((pot g false)→ (−(2∗nat g 2∗nat +1)) ; (2 g 2))

= { definition of pot′ and characterisation of nat }
(pot′→−nat ; 2)

The formula suggests a simple strategy to survive a shootout of increasing size: If the
circle is extended by one person, move two positions clockwise, unless the total number is
a power of two, in which case move to the first position.

4.1.3 Higher-order differences

An interesting pattern emerges, when we repeatedly apply the difference operator to a
stream. A few quick calculations give the following formulas for higher-order differences
(recall that f (n) is n-fold composition).

∆
(0) s = tail(0) s

∆
(1) s = tail(1) s− tail(0) s

∆
(2) s = tail(2) s−2∗ tail(1) s+ tail(0) s

∆
(3) s = tail(3) s−3∗ tail(2) s+3∗ tail(1) s− tail(0) s

The factors of the tails appear to be binomial coefficients with alternating signs. To reveal
the connection, let us rewrite ∆ in a point-free style.

∆ = tail− id

Subtraction is now doubly lifted: first to functions and then to streams, both of which
are idioms. Indeed, if we provide a Num instance for the environment idiom7, then the
definition above is even legal Haskell!

Under this view the formulas for higher-order differences are simply instances of the
Binomial Theorem lifted to stream operators.

(tail− id)(n) = ∑
k

repeat
(n

k

)
∗ (tail(k) · (−id)(n−k)) (21)

7 In principle, every idiom can be made an instance of Num, see Section 2.1.
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(The unbounded sum on the right is really finite, as all terms are zero except those with
0 6 k 6 n.) The Binomial Theorem is applicable, because tail and −id are linear operators
and because they commute with each other. To see where these two conditions originate,
let us prove the higher-order version of the Binomial Theorem for n = 2.

( f +g) · ( f +g)

= { · right-distributes over + }
f · ( f +g)+g · ( f +g)

= { f and g are linear }
f · f + f · g+g · f +g · g

= { f · g = g · f }
f · f +2∗ ( f · g)+g · g

4.2 Binomial transforms

Here is a little puzzle: continue the sequence u =〈0,1,4,12,32,80,192,448, . . .〉. Play a
bit with the numbers, before you proceed.

As noted before, a first routine step is to look at the higher-order differences. For in-
stance, if ∆(n) s is constant for some n, then the unknown stream s is a polynomial.

� ∆(0) u
〈0,1,4,12,32,80,192,448,1024,2304,5120,11264,24576,53248,114688,245760, . . .〉
� ∆(1) u
〈1,3,8,20,48,112,256,576,1280,2816,6144,13312,28672,61440,131072, . . .〉
� ∆(2) u
〈2,5,12,28,64,144,320,704,1536,3328,7168,15360,32768,69632,147456, . . .〉
� ∆(3) u
〈3,7,16,36,80,176,384,832,1792,3840,8192,17408,36864,77824,163840, . . .〉

Unfortunately, the higher-order differences do not become smaller. However, their heads
form a familiar sequence: B(−1) u = nat where

B(−1) :: (Num α)⇒ Stream α → Stream α

B(−1) = unfold head ∆ .

If we view the stream of higher-order differences iterate ∆ as a matrix, then B(−1) maps
the first row to the first column. As a first step towards solving the puzzle, let us derive
the inverse transformation, which maps the first column to the first row, characterised as
follows.

head ·B = head

∆ ·B = B · tail

The first row and the first column share the left, upper corner; transforming the tail of
the first column yields the second row, which is the difference of the first row. This data
uniquely determines B as a quick calculation shows.

B (tail s) = ∆ (B s)
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⇐⇒ { definition of ∆ }
B (tail s) = tail (B s)−B s

⇐⇒ { arithmetic }
tail (B s) = B s+B (tail s)

Factoring out B s for efficiency, we obtain the following definition of B.

B :: (Num α)⇒ Stream α → Stream α

B s = t where t = head s≺ t +B (tail s)

The stream operator B is known as the binomial transform8, as it sends 〈s0,s1,s2,s3, . . .〉
to 〈s0,s0 + s1,s0 +2∗ s1 + s2,s0 +3∗ s1 +3∗ s2 + s3, . . .〉. In general, we have

(B(−1) s)n = ∑
k

(n
k

)
∗ (s)k ∗ (−1)n−k

and (B s)n = ∑
k

(n
k

)
∗ (s)k . (22)

The first formula is simply the pointwise version of (21). The characterisation of B implies
that geometric progressions have a particularly simple binomial transform:

B cnat = (c+1)nat ,

which is, in fact, a special case of the Binomial Theorem. The property can also be shown
using the fact that the binomial transform is a linear transformation. (The proofs are left as
exercises to the reader.)

B (n∗ s) = n∗B s

B (s+ t) = B s+B t

We are finally in a position to tackle the puzzle.

B nat

= { definition of B and definition of nat }
0≺ B nat +B (nat +1)

= {B is linear }
0≺ 2∗B nat +B 1

= {B 1 = B (1nat) = 2nat }
0≺ 2∗B nat +2nat

We have to solve the recursion equation x = 0≺ 2∗x+2nat. We shall later show how to do
this systematically. For now, we just check that nat ∗2nat−1 is the solution of the equation
and hence of the puzzle.

nat ∗2nat−1

= { definition of ∗ and definition of nat }
0≺ (nat +1)∗2nat

8 There is another transformation that goes under the same name: Knuth (1998) defines a variant
where the tail is the difference of B s and B (tail s), rather than the sum.
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= { arithmetic }
0≺ 2∗ (nat ∗2nat−1)+2nat

4.3 Newton series

The binomial transform B(−1) is essentially the finite difference applied repeatedly. What
happens if we in turn apply the binomial transform repeatedly? This sounds a bit scary, but
it turns out that the operator is very well behaved. We consider its inverse first.

B (B s)

= { definition of B, twice }
head s≺ B (B s)+B (B s+B (tail s))

= {B is linear }
head s≺ B (B s)+B (B s)+B (B (tail s))

= { arithmetic }
head s≺ 2∗B (B s)+B (B (tail s))

The resulting recursion equation is identical to the definition of B, except for an additional
factor of two. If we apply B a third time, the factor increases to three. Abstracting away
from the constant, we define a parametric version of the binomial transform.

B :: (Num α)⇒ α → Stream α → Stream α

Bn s = t where t = head s≺ repeat n∗ t +Bn (tail s)

The derivation makes clear that Bn is the n-fold composition of the binomial transform:
Bn = B(n). Consequently, we have B0 = id and Bm ·Bn = Bm+n. The correspondence
can even be extended to the integers, in particular, B−1 = B(−1). The unique fixed-point
proof of this fact is too good to be missed: the calculation below shows that B−1 s satisfies
the recursion equation of B(−1) = unfold head ∆.

B−1 s

= { definition of B−1 }
head s≺ −B−1 s+B−1 (tail s)

= {B−1 is linear and definition of ∆ }
head s≺ B−1 (∆ s)

This in turn implies that B and B(−1) are mutually inverse.
In the introduction to Section 4.2 we remarked that if the unknown sequence is a polyno-

mial, it can be easily identified: the higher-order differences eventually become constant.
But can we reconstruct the polynomial from the data obtained? Let us tackle a concrete
example (p is some unknown polynomial).

� B(−1) p
〈0,1,14,36,24,0,0,0,0,0,0,0,0,0,0,0, . . .〉

Since every element following (B(−1) p)4 is zero, we know that the unknown sequence p
is a polynomial of degree 4. But which one? To answer the question, let us put together
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what we have found out so far.

s

= {B ·B(−1) = id }
B (B(−1) s)

= { extensionality (16) }
〈(B (B(−1) s))n | n← nat〉

= { pointwise characterisation of B (22) }
〈∑

k

(n
k

)
∗ (B(−1) s)k | n← nat〉

= { idioms, see below }

∑
k

(nat
k

)
∗ repeat (B(−1) s)k

= { definition of binomial coefficients:
(n

k

)
= nk / k! }

∑
k

repeat (B(−1) s/ fac)k ∗natk

(The second but last step is a bit daring, since we turn an infinite sum of elements into an
infinite sum of streams. However, infinite summation can be made precise (Rutten, 2005),
so let us not worry about this.) The calculation shows that if we divide the sequence B(−1) s
by fac, then we obtain the coefficients of a polynomial of falling factorial powers.

� B(−1) p/ fac
〈0,1,7,6,1,0,0,0,0,0,0,0,0,0,0,0, . . .〉

Table 2 then tells us that p = nat1 +7∗nat2 +6∗nat3 +nat4 = nat4.
As an aside, the sum of binomial coefficients in the second but last line of the derivation

is called the Newton series of s, which is the finite calculus counterpart of infinite calculus’
Taylor series. So, in a nutshell, B(−1) maps a sequence to the sequence of coefficients of
its Newton series.

4.4 Summation

Finite difference ∆ has a right-inverse: the anti-difference or summation operator Σ. We
can easily derive its definition.

∆ (Σ s) = s

⇐⇒ { definition of ∆ }
tail (Σ s)−Σ s = s

⇐⇒ { arithmetic }
tail (Σ s) = s+Σ s

Setting head (Σ s) = 0, we obtain

Σ :: (Num α)⇒ Stream α → Stream α

Σ s = t where t = 0≺ s+ t .
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We have additionally applied λ -dropping (Danvy, 1999), turning the higher-order equation
for Σ into a first-order equation for Σ s with s fixed. The firstification of the definition
enables sharing of computations as illustrated below.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 · · · t

= = = = = = = = = = = · · · =

0 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 · · · 0 ≺ s
+ + + + + + + + + + · · · +
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 · · · t

The illustration also makes clear that (Σ s)n is the sum of the first n− 1 elements of s,
excluding (s)n. There is also a variant of Σ that includes (s)n.

Σ′ :: (Num α)⇒ Stream α → Stream α

Σ′ s = t where t = head s≺ tail s+ t

The two variants are related by Σ s = 0 ≺ Σ′ s and Σ′ s = tail (Σ s). Usually, Σ is prefer-
able over Σ′, as it has more attractive calculational properties. The following pointwise
characterisations relate the stream operators to summation.

(Σ s)n = ∑
i
(s)i ∗ [0 6 i<n ] and (Σ′ s)n = ∑

i
(s)i ∗ [0 6 i 6 n ]

The formulas on the right-hand sides make use of Iverson’s convention: the square brack-
ets9 turn a Boolean value into a number, with [false] = 0 and [true] = 1.

Here are some example summations (A004520, A000290, A011371, A002275).

� Σ (0 g 1)
〈0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7, . . .〉
� Σ (2∗nat +1)
〈0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225, . . .〉
� Σ carry
〈0,0,1,1,3,3,4,4,7,7,8,8,10,10,11,11, . . .〉
� Σ 10nat

〈0,1,11,111,1111,11111,111111,1111111,11111111,111111111,1111111111, . . .〉

The definition of Σ suggests an unusual approach for determining the sum of a sequence:
if we observe that a stream satisfies t = 0 ≺ s + t, then we may conclude that Σ s = t.
For example, Σ 1 = nat as nat = 0 ≺ nat + 1, Σ (2 ∗ nat + 1) = nat2 as nat2 = 0 ≺
nat2 + 2 ∗ nat + 1, and Σ (1 ≺ fib) = fib as fib = 0 ≺ (1 ≺ fib) + fib. This is summation
by happenstance. The latter example also shows that 1≺ fib solves the difference equation
x = 1≺ Σ x.

Of course, if we already know the sum, we can use the definition of Σ to verify our
conjecture. As an example, let us prove Σ fib′2 = fib∗fib′.

fib∗fib′

= { definition of fib and definition of fib′ }

9 Unfortunately, Iverson’s convention clashes with Haskell’s notation for singleton lists. Both
notations are used in this paper, but not simultaneously in the same section.
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(0≺ fib′)∗ (1≺ fib+fib′)

= { arithmetic }
0≺ fib′2 +fib∗fib′

The unique fixed-point proof avoids the inelegant case analysis of a traditional inductive
proof.

4.4.1 Laws

The Fundamental Theorem of finite calculus relates ∆ and Σ.

t = ∆ s ⇐⇒ Σ t = s− repeat (head s) (23)

The implication from right to left is easy to show using ∆ (Σ t) = t and ∆ c = 0. For the
reverse direction, we reason

Σ (∆ s)

= { definition of Σ }
0≺ Σ (∆ s)+∆ s

⊂ { x = 0≺ x+∆ s has a unique solution }
0≺ s− repeat (head s)+∆ s

= { definition of ∆ and arithmetic }
(head s≺ tail s)− repeat (head s)

= { extensionality (16) }
s− repeat (head s) .

For instance, Σ 2nat = 2nat−1, since 2nat = ∆ 2nat and head (2nat) = 1. Put differently, 2nat

solves the difference equation x = 1+Σ x.
In Section 3.2.5, we briefly discussed course-of-value recursion, where the value of gn

is defined in terms of all previous values: gn−1, gn−2, . . . , g0. If we implemented g naîvely,
how many recursive calls would gn actually generate? A moment’s reflection suggests that
the total number is given by the difference equation x = nat + Σ x, the number of direct
calls plus the sum of all indirect calls (note that map length · course = nat and map sum ·
course = Σ).

x = nat +Σ x

= { arithmetic }
Σ x = x−nat

= { Fundamental Theorem (23) and head (x−nat) = 0 }
x = ∆ (x−nat)

= { ∆ is linear and ∆ nat = 1 }
x = ∆ x−1

The resulting equation is solved by 2nat−1, which shows why a naîve implementation of g
is prohibitive.
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Table 4. Laws for summation (c, k and n are constant streams).

Σ (tail s) = tail (Σ s)− repeat (head s)
Σ (a≺ s) = 0≺ repeat a+Σ s
Σ (s g t) = (Σ s+Σ t) g (s+Σ s+Σ t)
Σ n = n∗nat
Σ (s∗∆ t) = s∗ t−Σ (∆ s∗ tail t)

− repeat (head (s∗ t))

Σ (n∗ s) = n∗Σ s
Σ (s+ t) = Σ s+Σ t
Σ cnat = (cnat−1)/ (c−1)
Σ (natn) = natn+1 / (n+1)
Σ

(nat
k

)
=

( nat
k+1

)

Using the Fundamental Theorem we can transform the rules in Table 3 into rules for
summation, see Table 4. As an example, the rule for products, summation by parts, can be
derived from the product rule of ∆. Let c = repeat (head (s∗ t)), then

s∗∆ t +∆ s∗ tail t = ∆ (s∗ t)

⇐⇒ { Fundamental Theorem (23) }
Σ (s∗∆ t +∆ s∗ tail t) = s∗ t− c

⇐⇒ { Σ is linear }
Σ (s∗∆ t)+Σ (∆ s∗ tail t) = s∗ t− c

⇐⇒ { arithmetic }
Σ (s∗∆ t) = s∗ t−Σ (∆ s∗ tail t)− c .

Unlike the others, this law is not compositional: Σ (s ∗ t) is not given in terms of Σ s and
Σ t, a situation familiar from infinite calculus.

The only slightly tricky derivation is the one for interleaving.

(t− s) g (tail s− t) = ∆ (s g t)

= { Fundamental Theorem (23) and head (s g t) = head s }
Σ ((t− s) g (tail s− t)) = (s g t)− repeat (head s)

At first glance, we are stuck. To make progress, let us introduce two fresh variables: x =
t− s and y = tail s− t. If we can express s and t in terms of x and y, then we have found
the desired formula.

t− s = x and tail s− t = y

⇐⇒ { arithmetic }
tail s− s = x+ y and t = x+ s

⇐⇒ { definition of ∆ }
∆ s = x+ y and t = x+ s

⇐= { ∆ (Σ s) = s }
s = Σ x+Σ y and t = x+Σ x+Σ y

Since head s = 0, the interleaving rule follows.
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4.4.2 Examples

Using the rules in Table 4 we can mechanically calculate summations of polynomials. The
main effort goes into converting between ordinary and falling factorial powers. Here is a
formula for the sum of the first n squares, the square pyramidal numbers (0≺ A000330).

Σ nat2

= { converting to falling factorial powers (Table 2) }
Σ (nat2 +nat1)

= { summation laws (Table 4) }
1
3 ∗nat3 + 1

2 ∗nat2

= { converting to ordinary powers (Table 2) }
1
3 ∗ (nat3−3∗nat2 +2∗nat)+ 1

2 ∗ (nat2−nat)

= { arithmetic }
1
6 ∗ (nat−1)∗nat ∗ (2∗nat−1)

Calculating the summation of a product, say, Σ (nat∗cnat) is often more involved. Recall
that the rule for products, summation by parts, is imperfect: to be able to apply it, we
have to spot a difference among the factors. In the example above, there is an obvious
candidate: cnat. Let us see how it goes.

Σ (nat ∗ cnat)

= { ∆ cnat = (c−1)∗ cnat }
Σ (nat ∗∆ cnat / (c−1))

= { Σ is linear }
Σ (nat ∗∆ cnat)/ (c−1)

= { summation by parts (Table 4) }
(nat ∗ cnat−Σ (∆ nat ∗ tail cnat))/ (c−1)

= { ∆ nat = 1, c is constant, and definition of nat }
(nat ∗ cnat− c∗Σ cnat)/ (c−1)

= { summation laws (Table 4) }
(nat ∗ cnat− c∗ (cnat−1)/ (c−1))/ (c−1)

= { arithmetic }
(((c−1)∗nat− c)∗ cnat + c)/ (c−1)2

That was not too hard.
The summation rule for interleaving is useful to solve summations that involve alternat-

ing signs.

Σ ((−1)nat ∗nat)

= { (−1)nat = 1 g−1 and characterisation of nat }
Σ (2∗nat g−(2∗nat +1))

= { summation laws (Table 4) }
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Σ (−1) g (2∗nat +Σ (−1))

= { summation laws (Table 4) and arithmetic }
−nat g nat

As a final example, let us tackle another sum that involves the interleaving operator:
Σ carry (A011371). The sum is important, as it determines the amortised running time
of the binary increment. Going back to the interactive session, Section 4.4, we observe
that the sum is always at most nat, which would imply that the amortised running time,
Σ carry / nat, is constant. That is nice, but can we actually quantify the difference? Let us
approach the problem from a different angle. The binary increment changes the number
of 1s, so we might hope to relate carry to ones. The increment flips the leading 1s to 0s
and flips the first 0 to 1. Now, since carry defines the number of leading 0s, we obtain the
following alternative definition of ones.

ones = 0≺ ones+1− carry

We omit the proof that both definitions are indeed equal. (If you want to try, use a⊂-proof,
showing that they both satisfy the recursion equation x = 0≺ 1≺ x+1−(carry g carry).)
Now we can invoke the summation by happenstance rule — the fact that Σ s is the unique
solution of x = 0≺ s+ x.

ones = 0≺ ones+(1− carry)

⇐⇒ { summation by happenstance }
Σ (1− carry) = ones

⇐⇒ { arithmetic }
Σ carry = nat−ones

Voilà. We have found a closed form for Σ carry.
That was fun. But surely, the interleaving rule would yield the result directly, wouldn’t

it? Let us try.

Σ carry

= { definition of carry }
Σ (0 g carry+1)

= { summation laws (Table 4) }
Σ (carry+1) g Σ (carry+1)

= { Σ is linear and Σ 1 = nat }
(Σ carry+nat) g (Σ carry+nat)

This is quite a weird property. Since we know where we are aiming at, let us determine
nat−Σ carry.

nat−Σ carry

= { property of nat and Σ carry }
(2∗nat g 2∗nat +1)− ((Σ carry+nat) g (Σ carry+nat))

= { arithmetic }
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(nat−Σ carry) g (nat−Σ carry)+1

Voilà again. The sequence nat−Σ carry satisfies x = x g x + 1, which implies that nat−
Σ carry = ones. For the sake of completeness, we should also check that head ones =
head (nat−Σ carry), which is indeed the case.

4.4.3 Perturbation method

The Fundamental Theorem has another easy consequence, which is the basis of the per-
turbation method. Setting t = tail s− s and applying the theorem from left to right we
obtain

Σ s = Σ (tail s)− s+ repeat (head s) . (24)

The idea of the method is to try to express Σ (tail s) in terms of Σ s. Then we obtain an
equation whose solution is the sum we seek. Let us try the method on a sum we have done
before.

Σ (nat ∗ cnat)

= { perturbation (24) and head (nat ∗ cnat) = 0 }
Σ (tail (nat ∗ cnat))−nat ∗ cnat

= { definition of nat }
Σ ((nat +1)∗ cnat+1)−nat ∗ cnat

= { summation laws (Table 4) }
c∗Σ (nat ∗ cnat)+ c∗Σ cnat−nat ∗ cnat

= { summation laws (Table 4) }
c∗Σ (nat ∗ cnat)+ c∗ (cnat−1)/ (c−1)−nat ∗ cnat

The sum Σ (nat∗cnat) appears again on the right-hand side. All that is left to do is to solve
the resulting equation, which yields the result we have seen in Section 4.4.2:

Σ (nat ∗ cnat)

= { see above }
(c∗ (cnat−1)/ (c−1)−nat ∗ cnat)/ (1− c)

= { arithmetic }
(((c−1)∗nat− c)∗ cnat + c)/ (c−1)2 .

As an aside, the perturbation method also suggests an alternative definition of Σ, this
time as a second-order fixed point.

Σ s = 0≺ repeat (head s)+Σ (tail s)

The code implements the naîve way of summing: the nth element is computed using
n additions not re-using any previous results.
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4.4.4 Example: Moessner’s Theorem

In the 1950s Alfred Moessner discovered the following intriguing scheme for generating
the natural nth powers (1951): From the sequence of natural numbers, delete every nth
number and form the sequence of partial sums. From the resulting sequence, delete every
(n−1)-st number and form again the partial sums. Repeat this step n−1 times.

If we repeat the transformation 0 times, we obtain the 1st powers of the naturals. The
second simplest instance of the process yields the squares by summing up the odd numbers.

1 2/ 3 4/ 5 6/ 7 8/ . . .

1 4 9 16 . . .

For generating the cubes we perform two deletion-and-summation steps.

1 2 3/ 4 5 6/ 7 8 9/ 10 11 12�� . . .

1 3/ 7 12�� 19 27�� 37 48�� . . .

1 8 27 64 . . .

(25)

The second sequence is probably unfamiliar — the numbers are the “three-quarter squares”
(A077043) — but the final sequence is the desired sequence of cubes. Actually, we can add
another deletion-and-summation step and start off with a sequence of ones.

1
0
0
0

1 1 1 1
1 2 3

1 3
1

1 1 1 1
4 5 6

7 12
8

1 1 1 1
7 8 9

19 27
27

· · · (26)

As before, we have replaced the deleted elements by spaces in the rows below, so that the
numbers form a sequence of triangles. To further emphasise the structure, we have shifted
the triangles to the right: � becomes @ — the following calculations are slightly more
attractive then. We have also added a ‘seed’ column to the left, so that every element of (25)
is the sum of its north-western and its western neighbour in (26). Note that the first triangle
is now a prefix of Pascal’s triangle rotated 90◦ counterclockwise.

Turning to the specification of Moessner’s process, the main challenge is to model the
deletion step. One approach is simply to name the elements.

1
0
...
0

a0
0,0 a0

1,0 · · · a0
n,0

a0
1,1 · · · a0

n,1
. . .

...
a0

n,n

a1
0,0 a1

1,0 · · · a1
n,0

a1
1,1 · · · a1

n,1
. . .

...
a1

n,n

a2
0,0 a2

1,0 · · · a2
n,0

a2
1,1 · · · a2

n,1
. . .

...
a2

n,n

· · ·

The index variable i in ak
i, j ranges over the columns of a triangle, j over the rows, and k

over the triangles (0 6 j 6 i 6 n and k > 0). The ‘name and conquer’ approach with its use
of three index variables is not too attractive, even though this is the approach taken by most
of the proofs in the literature (Perron, 1951; Paasche, 1952; Salié, 1952). Fortunately, since
the process generates an infinite number of triangles, we can eliminate the index variable k
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and define a triangle of streams instead:

r0 s0,0 s1,0 · · · sn,0

r1 s1,1 · · · sn,1
...

. . .
...

rn sn,n ,

where (si, j)k = ak
i, j. The streams r0, r1, . . . , rn model the columns to the left of the triangles:

their heads form the seed column (1, 0, . . . , 0) and their tails equal the last column of the
preceding triangles (sn,0, sn,1, . . . , sn,n).

r j = [ j = 0]≺ sn, j . (27)

(Recall that the square brackets are syntax for Iverson’s convention.) The following equa-
tions capture the manual process of calculating the sequences si, j.

si,0 = r0

si+1, j+1 = si, j + r j+1 ∗ [i = j ]+ si, j+1 ∗ [i> j ]
(28)

Each of the streams si+1, j+1 is the sum of its north-western (si, j) and its western neighbour
(r j+1 ∗ [i = j ]+ si, j+1 ∗ [i> j ]). Moessner’s Theorem then states that

rn = natn or, equivalently, sn,n = (nat +1)n .

Turning to the proof, first observe that r j depends on sn, j, which in turn (indirectly)
depends on r j. So, we have effectively turned the verbal description of Moessner’s process
into a system of recursion equations. To illustrate, here is the system for n = 3:

r0 = 1≺ s3,0;
r1 = 0≺ s3,1;
r2 = 0≺ s3,2;
r3 = 0≺ s3,3;

s0,0 = r0; s1,0 = r0; s2,0 = r0; s3,0 = r0;
s1,1 = s0,0 + r1; s2,1 = s1,0 + s1,1; s3,1 = s2,0 + s2,1;

s2,2 = s1,1 + r2; s3,2 = s2,1 + s2,2;
s3,3 = s2,2 + r3 .

The form of the equations does not quite meet the requirements of Section 2.3. This can be
remedied, however, if we repeatedly in-line the definitions of si, j. For n = 3, the resulting
equations for si, j are (for reasons of space we have omitted the multiplication symbol ∗):

s0,0 = 1r0; s1,0 = 1r0; s2,0 = 1r0; s3,0 = 1r0;
s1,1 = 1r0+1r1; s2,1 = 2r0+1r1; s3,1 = 3r0+1r1;

s2,2 = 1r0+1r1+1r2; s3,2 = 3r0+2r1+1r2;
s3,3 = 1r0+1r1+1r2+1r3 .

The coefficients in each column form a prefix of Pascal’s triangle rotated 90◦ clockwise.
In general, the streams si, j and r j are related by

si, j = ∑
k

( i−k
j−k

)
∗ rk . (29)

The proof that (29) is equivalent to (28) is a straightforward nested induction, making
essential use of the addition formula for binomial coefficients. It is worth noting that
relation (29) holds for arbitrary r j. (Also, r j and si, j do not have to be streams.) Using
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the relation we can simplify the original system of recursion equations, (27) and (28), to

r j = [ j = 0]≺ ∑
k

(n−k
j−k

)
∗ rk . (30)

For our running example (n = 3), we obtain the system on the left — we have simply
inlined the definitions of sn, j into the equations r j = [ j = 0]≺ sn, j.

r0 = 1≺ 1∗ r0;
r1 = 0≺ 3∗ r0 +1∗ r1;
r2 = 0≺ 3∗ r0 +2∗ r1 +1∗ r2;
r3 = 0≺ 1∗ r0 +1∗ r1 +1∗ r2 +1∗ r3;

r0 = 1;
r1 = Σ (3∗ r0);
r2 = Σ (3∗ r0 +2∗ r1);
r3 = Σ (1∗ r0 +1∗ r1 +1∗ r2) .

Having eliminated the doubly indexed stream variable si, j, we are left with the task of
solving a system of n equations. Since r0 is the constant stream 1 and since the other
streams are partial sums (see above on the right)

r j+1 = Σ (∑
k

( n−k
j+1−k

)
∗ rk ∗ [k 6 j ]) , (31)

we can systematically solve the recursion system top to bottom. Here are the calculations
for n = 3:

r0 = 1;

r1 = Σ (
(3

1

)
∗ r0) = 3∗Σ 1 = 3∗nat;

r2 = Σ (
(3

2

)
∗ r0 +

(2
1

)
∗ r1) = 3∗Σ (1+2∗nat) = 3∗nat2;

r3 = Σ (
(3

3

)
∗ r0 +

(2
2

)
∗ r1 +

(1
1

)
∗ r2) = Σ (1+3∗nat +3∗nat2) = nat3 .

The summations are easy to calculate by hand. In particular, we do not need to refer to
Table 4. (Do you see why?)

Actually, it is not too hard to prove Moessner’s Theorem in its full glory. The following
calculation, which attempts to show tail rn = (nat +1)n, motivates a formula for r j.

tail rn

= { characterisation of rn (30) }

∑
k

(n−k
n−k

)
∗ rk

= {
(i

i

)
= [0 6 i ] }

∑
k

rk ∗ [k 6 n ]

= { conjecture: r j =
(n

j

)
∗nat j }

∑
k

(n
k

)
∗natk ∗ [k 6 n]

= { Binomial Theorem }
(nat +1)n

Summarising our findings, we conjecture

r j =
(n

j

)
∗nat j and si, j = ∑

k

( i−k
j−k

)
∗
(n

k

)
∗natk .
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For the proof we show that the streams
(n

j

)
∗nat j are indeed the unique solutions of (30).

[ j = 0 ]≺ ∑
k

(n−k
j−k

)
∗
(n

k

)
∗natk

= { trinomial revision (Graham et al., 1994, p. 174) }
[ j = 0 ]≺ ∑

k

(n
j

)
∗
( j

k

)
∗natk

= { distributive law }
[ j = 0 ]≺

(n
j

)
∗∑

k

( j
k

)
∗natk

= { Binomial Theorem }
[ j = 0 ]≺

(n
j

)
∗ (nat +1) j

= { [ j = 0 ] = 0 j }
0 j ≺

(n
j

)
∗ (nat +1) j

= { definition of nat }(n
j

)
∗nat j

Since rn = natn, Moessner’s Theorem follows. The proof illustrates the importance of
avoiding unnecessary detail: the central step in the derivation is the elimination of the
stream variables si, j from the original system of recursion equations.

Section 5.3.3 presents an alternative proof of this theorem, which avoids double sub-
scripts and binomial coefficients. Instead, it builds on the theory of generating functions,
which we introduce next.

5 Generating functions (×, ÷)

In this section, we look at number sequences from a different perspective: we take the view
that a sequence, a0, a1, a2 . . . , represents a power series, a0 + a1z + a2z2 + a3z3 + · · ·, in
some formal variable z. It is an alternative view and we shall see that it provides us with
additional operators and techniques for manipulating numeric streams.

5.1 Power series

Let us put on the ‘power series glasses’. The simplest series, the constant function a0 and
the identity z (A063524), are given by

const :: (Num α)⇒ α → Stream α

const n = n≺ repeat 0

z :: (Num α)⇒ Stream α

z = 0≺ 1≺ repeat 0 .

The sum of two power series is implemented by lifted addition. The successor function,
for instance, is const 1+ z. The product of two series, however, is not given by lifted mul-
tiplication, since, for example, (const 1+ z)∗ (const 1+ z) = const 1+ z. Let us introduce
a new operator for the product of two series, say, × and derive its implementation. The
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point of departure is Horner’s rule for evaluating a polynomial, rephrased as an identity on
streams.

s = const (head s)+ z× tail s (32)

The rule implies z× s = 0≺ s. The derivation of × proceeds as follows — we assume that
× is associative and distributes over addition.

s× t

= { Horner’s rule (32) }
(const (head s)+ z× tail s)× t

= { arithmetic }
const (head s)× t + z× tail s× t

= { Horner’s rule (32) }
const (head s)× (const (head t)+ z× tail t)+ z× tail s× t

= { arithmetic }
const (head s)× const (head t)+ const (head s)× z× tail t + z× tail s× t

= { const a× const b = const (a∗b) and arithmetic }
const (head s∗head t)+ z× (const (head s)× tail t + tail s× t)

= { Horner’s rule (32) }
head s∗head t ≺ const (head s)× tail t + tail s× t

The first line jointly with the last one serves as a perfectly valid implementation. However,
× is a costly operation; we can improve the efficiency somewhat, if we replace const k× s
by repeat k ∗ s (this law also follows from Horner’s rule).

(×) :: (Num α)⇒ Stream α → Stream α → Stream α

s× t = head s∗head t ≺ repeat (head s)∗ tail t + tail s× t

Here are some examples (A014824, 0≺ A099670, tailA002275).

� nat×10nat

〈0,1,12,123,1234,12345,123456,1234567,12345678,123456789, . . .〉
� 9∗ (nat×10nat)
〈0,9,108,1107,11106,111105,1111104,11111103,111111102,1111111101, . . .〉
� 9∗ (nat×10nat)+nat′

〈1,11,111,1111,11111,111111,1111111,11111111,111111111,1111111111, . . .〉

The operator × is also called convolution product. The first example suggests a pointwise
characterisation: the convolution product of the streams 〈s0,s1,s2, . . .〉 and 〈t0, t1, t2, . . .〉 is
〈s0 ∗ t0,s0 ∗ t1 + s1 ∗ t0,s0 ∗ t2 + s1 ∗ t1 + s2 ∗ t0, . . .〉. In general, we have

(s× t)n = ∑
i, j

(s)i ∗ (t) j ∗ [i+ j = n] .

So the nth element of the convolution product is the sum of all products whose subscripts
add up to n.
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There is a nice non-mathematical explanation of the convolution product. Imagine two
rows of people shaking hands while passing in opposite directions. Firstly, the two leaders
shake hands; then the first shakes hand with the second of the other row and vice versa;
then the first shakes hand with the third of the other row and so forth.

. . . s3 s3 s1s0−→
∗

←−t0 t1 t2 t3 . . .

. . . s3 s2s1 s0−→
∗+ ∗

←−t0 t1 t2 t3 . . .

. . . s3s2 s1 s0−→
∗+ ∗+ ∗

←−t0 t1 t2 t3 . . .

The handshake corresponds to a multiplication, the results of which are added up.
Unfortunately, the symmetry of the description is lost in the implementation above.

There are, at least, two other ways to set up the corecursion (we abbreviate head s by s0

and tail s by s′).

s0

t0

s′

t ′
∗ ∗

×

s0
s1

t0 t1

s′′

t ′′
∗
∗

∗

∗ ∗

×

s0

t0

s′

t ′
∗

∗ ×

The first element of the convolution product is s0∗t0. Then we can either add repeat s0∗t ′ to
s′× t (diagram on the left) or s× t ′ to s′ ∗ repeat t0 (diagram on the right). For a symmetric
definition (diagram in the middle), we have to expand s and t twice. Fortunately, since
addition is associative, all three variants are equivalent (Hinze, 2009b).

Let us complete our repertoire of arithmetic operators with reciprocal and division.
Convolution was a little more complicated than the other operations, so it is wise to derive
reciprocal from a specification (recip is a member of the class Fractional).

s× recip s = const 1

We reason

head s∗head (recip s) = 1

⇐⇒ { arithmetic }
head (recip s) = recip (head s)

and

const (head s)× tail (recip s)+ tail s× recip s = 0

⇐⇒ { arithmetic }
−const (head s)× tail (recip s) = tail s× recip s

⇐⇒ { arithmetic }
tail (recip s) = const (−recip (head s))× tail s× recip s .

Again replacing const k× s by repeat k ∗ s, we obtain

recip s = t where a = recip (head s)
t = a≺ repeat (−a)∗ (tail s× t)

s÷ t = s× recip t .
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Note that recip s is not defined if head s = 0. We use sbnc, where n is a natural number, to
denote iterated convolution with sb0c = const 1 and set sb−nc = (recip s)bnc. Like recip s,
the negative power sb−nc is not defined if head s = 0. For instance, zb−1c does not exist.

5.2 Laws

The familiar arithmetic laws also hold for const n, +,−,× and÷. Perhaps surprisingly, we
can reformulate the numeric streams we have introduced so far in terms of these operators.
In other words, we view them with our new ‘power series glasses’. Mathematically speak-
ing, this conversion corresponds to finding the generating function (gf) of a sequence. The
good news is that we need not leave our stamping ground: everything can be accomplished
within the world of streams. The only caveat is that we have to be careful not to confuse
const n, ×, and sbnc with repeat n, ∗, and sn.

As a start, let us determine the generating function for repeat a.

repeat a = a≺ repeat a

⇐⇒ { Horner’s rule (32) }
repeat a = const a+ z× repeat a

⇐⇒ { arithmetic }
const 1× repeat a− z× repeat a = const a

⇐⇒ { arithmetic }
(const 1− z)× repeat a = const a

⇐⇒ { arithmetic }
repeat a = const a÷ (const 1− z)

The form of the resulting equation, s = const h÷ (const 1− u), is quite typical reflecting
the shape of stream equations, s = h≺ t.

Geometric sequences are not much harder.

(repeat a)nat

= { definition of exponentiation and definition of nat }
1≺ repeat a∗ (repeat a)nat

= { Horner’s rule (32) and repeat k ∗ s = const k× s }
const 1+ z× const a× (repeat a)nat

Consequently, (repeat a)nat = const 1÷ (const 1− const a× z).
We can even derive a formula for the sum of a sequence.

Σ s = 0≺ Σ s+ s

⇐⇒ { Horner’s rule (32) }
Σ s = z× (Σ s+ s)

⇐⇒ { arithmetic }
Σ s = s× z÷ (const 1− z)
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Table 5. Streams and their generating functions.

repeat a = const a÷ (const 1− z)
(repeat a)nat = const 1÷ (const 1− const a× z)
Σ s = s× z÷ (const 1− z)
Σ(n) s = s× zbnc÷ (const 1− z)bnc

nat = z÷ (const 1− z)b2c

nat +1 = const 1÷ (const 1− z)b2c( n
nat

)
= (const 1+ z)bnc( n

nat
)
∗ (repeat a)nat = (const 1+ const a× z)bnc(nat

k
)

= zbkc÷ (const 1− z)bk+1c

This implies that the generating function of the natural numbers is nat = Σ (repeat 1) =
z÷ (const 1− z)b2c. If we repeatedly sum the stream of ones, then we obtain the columns
of Pascal’s triangle. (nat

k

)
= zbkc÷ (const 1− z)bk+1c

The formula for a row is an immediate consequence of the Binomial Theorem.( n
nat

)
= (z+ const 1)bnc

Repeated summation of an arbitrary stream is not any harder.

Σ
(n) s = s× zbnc÷ (const 1− z)bnc

Table 5 summarises our findings.
Of course, there is no reason for jubilation: the formula for the sum does not immediately

provide us with a closed form for the coefficients of the generating function. In fact, to be
able to read off the coefficients, we have to reduce the generating function to a known
stream, for instance, repeat a, (repeat a)nat or nat. This is what we do in the next sections.

5.3 Examples

5.3.1 Vandermonde’s convolution

Many identities between binomial coefficients have straightforward explanations in terms
of generating functions. Vandermonde’s convolution serves as a particularly beautiful il-
lustration of this observation. Graham et. al. (1994) phrase the identity as a sum of products
of binomial coefficients.

∑
k

( r
m+k

)
∗
( s

n−k

)
=

( r+s
m+n

)
The bound variable k appears in two sub-terms, m + k and n− k, whose sum is constant.
In other words, the expression on the left-hand side is a convolution product in disguise.
Using this insight, we can rephrase the identity as an equation over streams.( r

nat

)
×

( s
nat

)
=

(r+s
nat

)



54 R. Hinze

The proof of the law is a breeze, if we express the streams in terms of generating functions.( r
nat

)
×

( s
nat

)
= { Table 5 }

(const 1+ z)brc× (const 1+ z)bsc

= { arithmetic: laws of exponentials }
(const 1+ z)br+sc

= { Table 5 }(r+s
nat

)

5.3.2 Repunits

The session in Section 5.1 shows an intriguing way to generate the sequence of repunits
〈1,11,111, . . .〉, where a repunit contains only the digit 1. The example is based on the
decimal number system, but it can be readily generalised to an arbitrary base b.

repeat (b−1)∗ (nat× (repeat b)nat)+nat +1 = tail (Σ (repeat b)nat)

The sum on the right-hand side models the sequence of base b repunits 〈1b,11b,111b, . . .〉.
The proof of the identity again uses generating functions (we abbreviate const 1 by 1̇).

repeat (b−1)∗ (nat× (repeat b)nat)+nat +1

= { repeat k ∗ s = const k× s }
const (b−1)×nat× (repeat b)nat +nat +1

= { Table 5 }
const (b−1)× z÷ (1̇− z)b2c× 1̇÷ (1̇− const b× z)+ 1̇÷ (1̇− z)b2c

= { arithmetic }
1̇÷ (1̇− z)× 1̇÷ (1̇− const b× z)

= { tail (z× s) = s }
tail (z÷ (1̇− z)× 1̇÷ (1̇− const b× z))

= { Table 5 }
tail (Σ (repeat b)nat)

5.3.3 Moessner’s Theorem, revisited

In Section 4.4.4 we have presented a proof of Moessner’s Theorem, which involved some
binomial wizardry. In this section we follow an alternative route, tackling the problem
using convolutions and generating functions. The resulting proof is more calculational, in
particular, it avoids double subscripts and binomial coefficients. For the calculations, it
will be convenient to abbreviate const (s)n by (s)n and const [b] by [b], where the square
brackets are syntax for Iverson’s convention.
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As a reminder, here is the process that generates the cubes.

1 1 1 1 1 1 1 1 1 1 1 1 1 . . .

0 1 2 3 4 5 6 7 8 9 . . .

0 1 3 7 12 19 27 . . .

0 1 8 27 . . .

The verbal description suggests that the sequences are formed from top to bottom. An
alternative view is that they are formed from left to right: We start with the sequence
〈1,0,0,0,0 . . .〉 (leftmost column read from top to bottom). The sequence goes through
a triangle transformation, which yields the sequence 〈1,3,3,1,0 . . .〉. This sequence goes
through the same transformation yielding 〈1,6,12,8,0 . . .〉, and so forth. The sequence of
elements at position 3 are the cubes. In a sense, we have already justified this alternative
view in Section 4.4.4, when we showed that the streams si, j can be defined solely in terms
of r j — recall that the streams r j model the columns to the left of the triangles. The slight
twist here is that we switch from row-major to column-major order.

If we view the columns through our ‘power series glasses’, the summation steps can be
modelled by a simple multiplication: if gi is some column, then gi× (1̇ + z) is the next
column (again we abbreviate const 1 by 1̇). Recall that each element of a triangle is the
sum of its western and its north-western neighbour; gi represents the former and gi× z the
latter (gi shifted a row downwards). Additionally taking the ‘input column’, called f , into
account, the columns g1, . . . , gn of a triangle are related by

g0 = ( f )0× zb0c;

gi+1 = ( f )i+1× zbi+1c+gi× (1̇+ z) .

For n = 3, we obtain the system of equations on the left. For instance, if the input
column f is 〈1,6,12,8,0 . . .〉, then the output column g3 is 〈1,9,27,27,0 . . .〉.

g0 = ( f )0× zb0c

g1 = ( f )1× zb1c + g0× (1̇+ z)
g2 = ( f )2× zb2c + g1× (1̇+ z)
g3 = ( f )3× zb3c + g2× (1̇+ z)

f g0 g1 g2 g3

1 1 1 1 1
6 7 8 9

12 19 27
8 27 .

Distributing the products over the sums, it is not hard to see that the generating functions
satisfy the invariant

gi+1× (1̇+ z)bm−(i+1)c = ( f )i+1× zbi+1c× (1̇+ z)bm−(i+1)c+gi× (1̇+ z)bm−ic ,

which allows us to define gi solely in terms of f :

gi = ∑
k

( f )k× zbkc× (1̇+ z)bi−kc× [k 6 i ] .

The factor (1̇ + z)bi−kc indicates that binomial coefficients are lurking behind the scenes
and, indeed,

(gi) j = ∑
k

( f )k ∗
(i−k

i− j

)
∗ [k 6 i] = ∑

k
( f )k ∗

( i−k
j−k

)
,
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which is Equation (29) modulo naming of variables. Fortunately, we do not need the
pointwise characterisation in what follows. The central idea is to view the triangle trans-
formation as a function that maps the input column f to the output column gn:

`
n f = ∑

k
( f )k× zbkc× (1̇+ z)bn−kc× [k 6 n ] .

Moessner’s process can be formalised by repeatedly applying the triangle transformation
to the power series 1̇; the coefficients at position n then form the sequence of nth powers.

moessner n = 〈( f )n | f ← 1̇,
`

n f . .〉

Turning to the proof of Moessner’s Theorem, let us first study the stream operator
`

n
in more detail. The formula for

`
n looks a bit daunting, but, as we shall see, the triangle

transformation enjoys a number of pleasant properties. The first non-trivial instance gives
`

1 1̇ = 1̇+ z ;
`

1 z = z .

Furthermore, it is not hard to see that the operator is a linear transformation:
`

n (const k× f ) = const k×
`

n f ;
`

n ( f +g) =
`

n f +
`

n g .

For instance, using const 2 rather than const 1 as the initial seed yields the natural powers
doubled. Perhaps surprisingly, the triangle transformation also distributes over the convo-
lution product: if ( f )i = 0 for i>m and (g) j = 0 for j >n, then

`
m+n ( f ×g) =

`
m f ×

`
n g .

The side condition requires that f is a polynomial of degree at most m and, likewise,
that g has degree at most n. Table 6 displays the proof of this property. An immediate
consequence is

`
n 1̇ =

`
n (1̇bnc) = (

`
1 1̇)bnc = (1̇+ z)bnc, or, more generally,

`
n ((1̇+ const i× z)bnc) = (

`
1 (1̇+ const i× z))bnc = (1̇+ const (i+1)× z)bnc . (33)

For instance, the cube-generating process yields

1̇ (1̇+ z)b3c (1̇+ 2̇× z)b3c (1̇+ 3̇× z)b3c . . .

1 1 1 1 1 1 1 1 1 1 1 1 1 . . .

0 1 2 3 4 5 6 7 8 9 . . .

0 1 3 7 12 19 27 . . .

0 1 8 27 . . .

In general, after i triangle transformations we obtain the sequence (1̇+ const i× z)bnc:

iterate
`

n 1̇ = 〈(1̇+ const i× z)bnc | i← nat〉 .

Here is a simple unique fixed-point proof of this fact. We show that the right-hand side
satisfies the equation x = 1̇≺ map

`
n x.

〈(1̇+ const i× z)bnc | i← nat〉
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Table 6. Proof that
`

distributes over ×.

`
m+n ( f ×g)

= { definition of
`
}

∑
k

( f ×g)k× zbkc× (1̇+ z)bm+n−kc× [k 6 m+n ]

= { pointwise characterisation of × }

∑
k

(∑
i
( f )i× (g)k−i)× zbkc× (1̇+ z)bm+n−kc× [k 6 m+n]

= { distributive law and interchanging the order of summation }

∑
i,k

( f )i× (g)k−i× zbkc× (1̇+ z)bm+n−kc× [k 6 m+n]

= { replace k by i+ j }

∑
i, j

( f )i× (g) j× zbi+ jc× (1̇+ z)bm+n−(i+ j)c× [i+ j 6 m+n]

= { assumption: ( f )i = 0 for i>m and (g) j = 0 for j >n }

∑
i, j

( f )i× (g) j× zbi+ jc× (1̇+ z)bm−i+n− jc× [i 6 m ∧ j 6 n]

= { laws of exponentials and [b ∧ c ] = [b]× [c] }

∑
i, j

( f )i× zbic× (1̇+ z)bm−ic× [i 6 m]× (g) j× zb jc× (1̇+ z)bn− jc× [ j 6 n]

= { distributive law }
(∑

i
( f )i× zbic× (1̇+ z)bm−ic× [i 6 m])× (∑

j
(g) j× zb jc× (1̇+ z)bn− jc× [ j 6 n])

= { definition of
`
}

`
m f ×

`
n g

= { definition of nat }
(1̇+ const 0× z)bnc ≺ 〈(1̇+ const i× z)bnc | i← nat +1〉

= { arithmetic and functor law (4) }
1̇≺ 〈(1̇+ const (i+1)× z)bnc | i← nat〉

= { (33) }
1̇≺ 〈

`
n (1̇+ const i× z)bnc | i← nat〉

= { functor law (4) }
1̇≺ map

`
n 〈(1̇+ const i× z)bnc | i← nat〉

We are now in a position to re-prove Moessner’s Theorem. Since the kth coefficient of
(1̇+ const i× z)bnc is

(n
k

)
∗ ik, see Table 5, we have

moessner n

= { definition of moessner }
〈( f )n | f ← iterate

`
n 1̇〉
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= { see above }
〈( f )n | f ← 〈(1̇+ const i× z)bnc | i← nat〉〉

= { functor law (4) }
〈((1̇+ const i× z)bnc)n | i← nat〉

= { ((1̇+ const i× z)bnc)n =
(n

n

)
∗ in = in }

〈in | i← nat〉
= { extensionality (16) }

natn .

Voilà. The introduction of the stream operator
`

n illustrates the important idea of avoiding
unnecessary detail. The triangle transformation hides away the generating functions of the
intermediate columns, which are not immediately needed to establish the overall result.

5.4 Solving recurrences

Generating functions are jolly useful to solve numeric recurrences, that is, to turn a recur-
sive stream definition into a non-recursive one. Let us illustrate the approach using a simple
recurrence, the closed form of which we can determine with an informed guess.

hanoi = 0≺ hanoi+1+hanoi

The stream hanoi yields the number of moves to solve the Tower of Hanoï problem with
nat discs. It is not hard to see that hanoi = 2nat−1.

As a first step, we express hanoi in terms of × and friends.

hanoi = 0≺ hanoi+1+hanoi

= { Horner’s rule (32) }
hanoi = z× (hanoi+1+hanoi)

= { Table 5 }
hanoi = z× (hanoi+(const 1÷ (const 1− z))+hanoi)

= { arithmetic }
hanoi = z÷ ((const 1− z)× (const 1− const 2× z))

To reiterate, we have to be careful not to confuse const n and × with repeat n and ∗. In
particular, recall that the numeral 1 is shorthand for repeat 1, so its generating function is
const 1÷ (const 1− z), not const 1.

For the second step, we have to turn the right-hand side of the resulting equation into
a generating function or a sum of generating functions whose coefficients we know. The
following algebraic identity points us into the right direction (α 6= β ).

x
(1−αx)(1−βx)

=
1

α−β

(
1

1−αx
− 1

1−βx

)
(34)

Inspecting Table 5 we realise that we know the stream expression for the right-hand side:

repeat (1/α−β )∗ ((repeat α)nat− (repeat β )nat) .
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For our running example, α = 1 and β = 2. Substituting the values and applying some
algebraic simplifications, we obtain the expected result.

hanoi = 2nat−1

A noteworthy feature of the derivation is that it stays entirely within the world of streams.
Now, let us try to find a closed form for our all-time favourite, the Fibonacci sequence.

The first step, determining the generating function, is probably routine by now.

fib = 0≺ (1≺ fib)+fib

= { Horner’s rule (32) }
fib = z× ((const 1+ z×fib)+fib)

= { arithmetic }
fib = z÷ (const 1− z− zb2c)

To be able to apply (34), we have to transform 1− z− z2 into the form (1−αz)(1−β z). It
turns out that the roots of z2− z−1 are the reciprocals of the roots of 1− z− z2. (The trick
of reversing the coefficients works in general, see (Graham et al., 1994, p. 339).) A quick
calculation shows that φ = 1

2 (1 +
√

5), the golden ratio a+b
a = a

b , and φ̂ = 1
2 (1−

√
5) are

the roots we seek: z2−z−1 = (z−φ)(z− φ̂). Consequently, 1−z−z2 = (1−φz)(1− φ̂z).
Since furthermore φ − φ̂ =

√
5, we have inferred that

fib = repeat (1/ sqrt 5)∗ ((repeat φ)nat− (repeat φ̂)nat) .

We can reformulate the result in more familiar terms

Fn =
1√
5

(
φ

n− φ̂
n) ,

but this is only cosmetics.
Many recurrences can be solved along those lines. In general, the main effort goes into

finding the partial fraction expansion of the rational function obtained as the result of the
first step. Very briefly, every rational function (which is defined at 0) can be expressed as
the sum of a polynomial and a linear combination of functions of the form

const 1÷ (const 1− const a× z)bk+1c =
(nat+k

k

)
∗ (repeat a)nat . (35)

For the details, we refer the interested reader to (Graham et al., 1994, Section 7.3). As a
quick example, consider the recursion equation x = 0 ≺ 2 ∗ x + 2nat, which captures the
puzzle posed in Section 4.2. Its generating function is z÷ (const 1−const 2× z)b2c, which
by (35) is equal to

z× (
(nat+1

1

)
∗2nat) = 0≺ (nat +1)∗2nat = nat ∗2nat−1 .

5.5 Counting

In Section 3.2.1 we have turned a context-free grammar (in Backus-Naur Form) into a
system of stream equations — for each non-terminal X we introduced a stream x whose
nth element specified the number of words of length n produced by X. Using generating
functions we can nicely mechanise the translation: the grammar equation X = E is turned
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into the stream equation x = e whose right-hand side is formed according to

BNF expression /0 const 0 stream expression
ε const 1
a z
X x

E1 | E2 e1 + e2

E1 E2 e1× e2 .

Each terminal symbol a is replaced by z — we are only interested in the length of the
words — each non-terminal symbol X is replaced by the corresponding stream variable x.
Alternation corresponds to lifted addition and concatenation to the convolution product. To
illustrate, here is the original grammar

Nao = ε | 0 Nao | 1 Nap ;
Nap = ε | 0 Nao ,

and here is the corresponding system of stream equations

nao = const 1+ z×nao+ z×nap ;
nap = const 1+ z×nao .

Horner’s rule (32) immediately gives us the stream equations of Section 3.2.1.
There is one caveat, however. The translation tacitly assumes that E1 | E2 is a disjoint

union. Otherwise, we do not count the number of words of some length, but rather the
number of their parse trees. Fortunately, in our example, the languages generated by ε ,
0 Nao and 1 Nap are clearly disjoint.

Essentially the same technique can also be applied to parametric datatypes, so-called
container types, to count the number of containers of some given size. Consider as an
example the inductive datatype of binary trees.

data Tree α = Empty | Node (Tree α,α,Tree α)

There is one tree of size 0, one tree of size 1, two trees of size 3, five trees of size 4, and so
forth. In general, the number of trees of a given size satisfies

tree = const 1+ tree× z× tree .

Using Horner’s rule (32) this specification translates into the executable stream equation

tree = 1≺ tree× tree .

The correspondence between datatype declarations and stream equations can be seen
more clearly if we write the former in a point-free or functorial style:

Tree = K 1 +̇Tree ×̇ Id ×̇Tree ,

where K is the constant type constructor, K α β = α , Id is the identity, Id α = α , and +̇ and
×̇ are lifted sum and product, (ι +̇κ) α = Either (ι α) (κ α) and (ι ×̇κ) α = (ι α,κ α).
As a second example, the functional programmer’s favourite datatype, the inductive type
of lists,

data List α = Nil | Cons (α,List α)
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enjoys the following point-free definition.

List = K 1 +̇ Id ×̇List

The corresponding stream equation is then

list = const 1+ z× list .

Horner’s rule implies list = 1≺ list and, consequently, list = repeat 1. For each size, there
is exactly one list container, as expected.

Quite amazingly, the technique also works for so-called non-regular or nested datatypes
(Bird & Meertens, 1998). Consider as an example the type of perfect trees (Hinze, 2000a).

data Perfect α = Zero α | Succ (Perfect (α,α))

A perfect tree of height 0 is a singleton; a perfect tree of height h + 1 is a perfect tree of
height h whose elements are pairs. Thus, a tree of the form Succh (Zero t) has exactly 2h

elements. It will be interesting to see how this property translates into the world of streams.
As a first step, we put the type definition into a point-free form:

Perfect = Id +̇Perfect ◦ (Id ×̇ Id) ,

where ◦ is type composition, (ι ◦ κ) α = ι (κ α). Now, which stream operator models
composition of type constructors? A moment’s reflection reveals that the corresponding
operator is simply composition of generating functions. Loosely speaking, the composition
s◦ t replaces the formal variable z in s by t, for instance, (z× z)◦ t = t× t. Let us postpone
the implementation of composition and first return to our application. The number of
perfect trees of some size then satisfies the stream equation

perfect = z+perfect ◦ (z× z) . (36)

As an intermediate summary, to count containers we transform the functor equation X = E
into the stream equation x = e whose right-hand side is formed according to

functor expression K 0 const 0 stream expression
K 1 const 1
Id z
X x

F1 +̇F2 e1 + e2

F1 ×̇F2 e1× e2

F1 ◦F2 e1 ◦ e2

This time there is no caveat, since +̇ forms a disjoint union by definition. Of course, there
is no guarantee that the resulting system of stream equations has a unique solution or even a
solution at all: x = x has infinitely many solutions, x = const 1+z×x has a unique solution,
and x = z+ x has no solution.

Now, let us derive an implementation of composition assuming the laws listed in Table 7
(◦ binds more tightly than ×).

s◦ t

= { Horner’s rule (32) }
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Table 7. Properties of composition.

z◦ s = s
s◦ z = s
(s◦ t)◦u = s◦ (t ◦u)
const a◦u = const a
(s+ t)◦u = s◦u+ t ◦u

(s× t)◦u = s◦u× t ◦u
(s÷ t)◦u = s◦u÷ t ◦u
recip s◦u = recip (s◦u)
sbnc ◦u = (s◦u)bnc

s g t = (s◦ zb2c)+ z× (t ◦ zb2c)

(const (head s)+ z× tail s)◦ t)

= { ◦ right-distributes over + and × }
const (head s)◦ t + z◦ t× tail s◦ t

= { const a◦u = const a and z◦u = u }
const (head s)+ t× tail s◦ t

= { assumption: head t = 0 }
const (head s)+ z× tail t× tail s◦ t

= { Horner’s rule (32) }
head s≺ tail t× tail s◦ t

In order to make progress, we have to assume that head t = 0. In general, the first coefficient
of s ◦ t is given by an infinite sum, which possibly exists, but which we cannot compute
mechanically in Haskell. Like recip, composition is a partial operation.

(◦) :: (Num α)⇒ Stream α → Stream α → Stream α

s◦ t = head s≺ tail t× tail s◦ t

Composition is associative with z as its neutral element; and it right-distributes over the
arithmetic operations (+, ×, ÷). Furthermore, there is an intriguing cross-connection to
interleaving. Consider the generating function s ◦ zb2c; its even coefficients are those of s,
its odd coefficients are zero. Consequently, we can express interleaving using composition:

s g t = (s◦ zb2c)+ z× (s◦ zb2c) .

Table 7 summarises our findings.
We can use the properties to turn the specification of perfect into an executable form.

First of all, the stream equation is ambiguous as it does not determine the head of perfect.
Since there is no empty perfect tree, we set head perfect = 0. For the tail, we reason

tail perfect

= { specification of perfect (36) }
tail (z+perfect ◦ zb2c)

= { definition of z and ◦ }
const 1+ z× (tail perfect ◦ zb2c)

= { s◦ zb2c = s g 0 (Table 7) }
const 1+ z× (tail perfect g 0)
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= { Horner’s rule (32) }
1≺ tail perfect g 0 .

Thus, tail perfect is essentially pot — if we identify 0 with false and 1 with true.

perfect = 0≺ perfect′

perfect′ = 1≺ perfect′ g 0

It is high time to see the definitions in action (A000012, A000108, not listed).

� list
〈1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, . . .〉
� tree
〈1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440, . . .〉
� perfect
〈0,1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, . . .〉

The stream tree captures a well-known combinatorial sequence, the Catalan or Segner
numbers. Can you derive a closed form?

5.6 Exponential generating functions

The implementation of the convolution product exhibits an unpleasant asymmetry. There
is a related operator, called shuffle product, whose definition is perfectly symmetric.

s⊗ t = head s∗head t ≺ tail s⊗ t + s⊗ tail t

The two-dimensional illustration of the corecursion scheme below shows that the shuffle
products in the tail overlap, in a way reminiscent of the recurrence underlying Pascal’s
triangle (the picture is rotated 45◦ degrees clockwise to emphasise the correspondence).

s0 t0

s′ t ′
∗

⊗⊗

For instance, the term s1 ∗ t1 appears once in tail s⊗ t and once in s⊗ tail t, and hence twice
in s⊗ t.

The shuffle product implements the product of two exponential generating functions
(egfs). An egf is similar to a gf except that the nth coefficient is additionally divided by
n factorial: a0 + a1z + a2z2/2! + a3z3/3! + · · ·. Like the convolution product, the shuffle
product is associative, commutative, it distributes over sums, const 1⊗ s = s, and further-
more (c∗ s)⊗ t = c∗ (s⊗ t) = s⊗ (c∗ t).

To turn a stream representing a gf into a stream representing an egf, we simply have to
multiply the former by fac.

Λ s = s∗ fac
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The two products are then related by

Λ (s× t) = Λ s⊗Λ t .

The formula enables the derivation of the following pointwise characterisation of the shuf-
fle product, which links in with the earlier observation that the corecursion scheme of ⊗ is
related to Pascal’s triangle. Since (i+ j) !/(i !∗ j!) =

(i+ j
i

)
, we have

(s⊗ t)n = ∑
i, j

(n
i

)
∗ (s)i ∗ (t) j ∗ [i+ j = n] .

So, the shuffle product is similar to the convolution product, except that each point-level
product is multiplied by a binomial coefficient (which suggests a more efficient implemen-
tation of ⊗). Because of that, there is a revealing cross-connection to binomial transforms:

Bn s = nnat⊗ s .

Indeed, if we unfold nnat⊗ s, we obtain the recursion equation of Bn. In particular, B s =
1⊗s. All the properties of the binomial transform listed in Section 4.2 follow directly from
this correspondence.

First of all, here is the stream version of the Binomial Theorem.

mnat⊗nnat = (m+n)nat

Egfs are well-behaved, when their coefficients are geometric progressions, hence the name.
The unique fixed-point proof of the above property is remarkable, as it does not mention
binomial coefficients at all.

mnat⊗nnat

= { definition of ⊗ }
m0 ∗n0 ≺ mnat+1⊗nnat +mnat⊗nnat+1

= { arithmetic and (c∗ s)⊗ t = c∗ (s⊗ t) = s⊗ (c∗ t) }
1≺ (m+n)∗ (mnat⊗nnat)

Back to the correspondence between shuffle product and binomial transforms: Proving,
for instance, that B and B(−1) are mutually inverse is now a breeze.

B (B(−1) s) = 1nat⊗ (−1)nat⊗ s = 0nat⊗ s = const 1⊗ s = s

The other laws can be shown using similar arguments.
The moral of the story is that the right generalisation often makes our life easier.

6 Related work

As mentioned in the introduction, the two major sources of inspiration were Rutten’s work
on stream calculus (2003; 2005) and the textbook on concrete mathematics (Graham et al.,
1994). Rutten introduces streams and stream operators using coinductive definitions, which
he calls behavioural differential equations. As an example, the Haskell definition of lifted
addition

s+ t = head s+head t ≺ tail s+ tail t
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translates to

(s+ t)(0) = s(0)+ t(0) and (s+ t)′ = s′+ t ′ ,

where s(0) denotes the head of s, its initial value, and s′ the tail of s, its stream derivative.
(The notation goes back to Hoare.) Rutten shows the existence and uniqueness of solutions
for a particular system of behavioural differential equations (2003, Theorem 3.1). (The
conference version of this paper rephrases the proof using type classes and generalised
algebraic data types (Hinze, 2008).) Bartels proves uniqueness for the general case in a
categorical setting (2003).

Interestingly, Rutten relies on coinduction as the main proof technique and emphasises
the ‘power series’ view of streams. In fact, we have given power series and generating
functions only a cursory treatment, as there are already a number of papers on that subject,
most notably, (Karczmarczuk, 1997; McIlroy, 1999; McIlroy, 2001). Both Karczmarczuk
and McIlroy mention the proof technique of unique fixed points in passing by: Karczmar-
czuk sketches a proof of iterate f · f = map f · iterate f and McIlroy shows 1/ex = e−x.
As an aside, both use lazy lists to represent streams, resulting in additional code to cover
the empty list.

Various proof methods for corecursive programs are discussed by Gibbons and Hutton
(2005). The technique of unique fixed points is not among them.10 Unique fixed-point
proofs are closely related to the principle of guarded induction (Coquand, 1994), which
goes back to the work on process algebra (Milner, 1989). Loosely speaking, the guarded
condition ensures that functions are productive by restricting the context of a recursive call
to one ore more constructors. For instance,

nat = 1≺ nat +1

is not guarded as + is not a constructor. However, nat can be defined by iterate (+1) 0
as iterate is guarded. The proof method then allows us to show that iterate (+1) 0 is the
unique solution of x = x≺ x+1 by constructing a suitable proof transformer using guarded
equations. Indeed, the central idea underlying guarded induction is to express proofs as lazy
functional programs.

Recently, Niqui and Rutten introduced various operations for partitioning, projecting
and merging streams (2010). While the operators generalise even, odd and g, it is not clear
under which conditions they can be used in other definitions — as we have pointed out, the
equation x = 0≺ even x, for instance, has infinitely many solutions.

The use of different structural views — idioms, tabulations and final coalgebras —
to organise operations, laws and proofs appears to be original. Categorically, idioms are
lax monoidal functors (Mac Lane, 1998) with strength. Programmatically, idioms arose
as an interface for parsing combinators (Röjemo, 1995). McBride and Paterson (2008)
introduced the notion to a wider audience. Idioms capture the notion of lifting. The type
of streams is a very special idiom in that a lifted operator inherits the properties of the
base-level operator. The recent paper by the author (2010a) abstracts away from streams

10 The minutes of the 2003 Meetings of the Algebra of Programming Research Group, 21st
November, seem to suggest that the authors were aware of the technique, but were not
sure of constraints on applicability, see http://www.comlab.ox.ac.uk/research/pdt/ap/
minutes/minutes2003.html#21nov.



66 R. Hinze

and answers the questions: “What base-level identities can be lifted through any idiom?”
and “Which idioms satisfy every lifted base-level identity?” I previously discussed memo
tables in a datatype-generic setting (2000b; 2010b). The observation that the memo table
of an inductive datatype is given by a coinductive datatype is due to Altenkirch (2001).

This paper features two different proofs of Moessner’s Theorem: the first is loosely
modelled after a proof by Salié (1952), the second is based on a proof by Paasche (1952).
A third alternative proof can be found in a recent paper of mine (2009b), which generalises
the number-theoretic operators Σ and × to polymorphic, higher-order combinators —
scans and convolutions. In fact, the paper proves Paasche’s generalisation of Moessner’s
Theorem (1952).

The proof techniques presented in this paper can be readily generalised to other coinduc-
tive datatypes. Silva and Rutten adopt coinductive definition and proof principles to infinite
binary trees (2010). Independently, the author adopted the unique fixed-point techniques
to the same structures, applying the techniques to the problem of enumerating the rationals
(Hinze, 2009a).

7 Conclusion

I hope you enjoyed the journey. Lazy functional programming has proven its worth: with
a couple of one-liners we have built a small domain-specific language for manipulating
infinite sequences. Suitably restricted, stream equations possess unique fixed points, a
property that can be exploited to redevelop the theory of recurrences, finite calculus and
generating functions.
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