
Proving the Unique Fixed-Point Principle Correct
An Adventure with Category Theory

Ralf Hinze Daniel W. H. James
Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, England

{ralf.hinze, daniel.james}@cs.ox.ac.uk

Abstract
Say you want to prove something about an infinite data-structure,
such as a stream or an infinite tree, but you would rather not subject
yourself to coinduction. The unique fixed-point principle is an easy-
to-use, calculational alternative. The proof technique rests on the
fact that certain recursion equations have unique solutions; if two
elements of a coinductive type satisfy the same equation of this
kind, then they are equal. In this paper we precisely characterize the
conditions that guarantee a unique solution. Significantly, we do so
not with a syntactic criterion, but with a semantic one that stems
from the categorical notion of naturality. Our development is based
on distributive laws and bialgebras, and draws heavily on Turi and
Plotkin’s pioneering work on mathematical operational semantics.
Along the way, we break down the design space in two dimensions,
leading to a total of nine points. Each gives rise to varying degrees
of expressiveness, and we will discuss three in depth. Furthermore,
our development is generic in the syntax of equations and in the
behaviour they encode—we are not caged in the world of streams.

Categories and Subject Descriptors D.2.4 [Software/ Program
Verification]: correctness proofs, formal methods; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—specification techniques

General Terms Languages, Theory, Verification

Keywords unique fixed-points, bialgebras, distributive laws

1. Introduction
“Whence cometh this?” Our aim is to provide an elegant proof of
correctness for an elegant proof principle. Elegance comes, in large
part, through simplicity, and specifically we value the simplicity af-
forded by the notion of naturality and initial/final algebra/coalgebra
semantics. The key component for correctness of the unique fixed-
point principle is a sound characterization of what gives a recursion
equation a unique solution.
“Why does uniqueness matter?” Uniqueness has two complemen-
tary perspectives: programs and proofs. When read as a program,
the unique solution implies that it is well-defined. When the unicity
is utilized in a proof, we are able to show that two given solutions
are equal—the unique fixed-point principle (UFP).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

1/1

1/2

2/3

3/5

5/8
4/7

3/4

4/5
5/7

1/3

1/4

2/7
1/5

2/5

3/7
3/8

2/1

3/1

5/2

8/3
7/3

4/1

5/1
7/2

3/2

4/3

7/5
5/4

5/3

7/4
8/5

Figure 1. The Bird tree

“Why not a syntactic criterion?” In prior work [10] a simple
syntactic criterion, specific to stream equations, was proffered, but
this is unsatisfactory. A criterion must exclude all bad things and
accept as many good things as possible. As criteria are complicated
to accept more good things, so is the understanding and trust. Their
syntactic nature makes them intrinsically fragile. Just as it is often
easy to satisfy a criterion by a program transformation, it is just as
easy to lose the satisfaction.
“Category complex” Our theoretical underpinnings, distributive
laws and bialgebras, draw on Turi and Plotkin’s mathematical op-
erational semantics [21], and just as in theirs, the following pages
contain plenty of category theory. However, our concern throughout
is making the theory accessible. We do so by grounding it in an ap-
plication, and targeting the categorical parlance to readers who are
familiar with the Algebra of Programming [5]. This is the holy trin-
ity of categories, functors and natural transformations, along with
algebras and coalgebras, which we will summarize. For the cate-
gorically enlightened, we will note the more direct reasoning.
“Interpretation of categorical structures” We will introduce a se-
lection of categorical structures and discuss their interpretation in
this domain. It is well known that free monads can been seen as
terms with variables and cofree comonads as labelled trees, but we
will see how these and two other structures influence the expressiv-
ity of recursion equations, by the ‘language features’ they induce.
These features are positioned in two dimensions. We will focus on
just one, and we give a fuller account in the extended paper [11].
As a small exception, we will consider what Niqui and Rutten [16]
calls sampling functions, and what we would more loosely describe
as stream operators that consume more than they produce.
“Beauty and Elegance” We hope to showcase the beauty of the
unique fixed-point principle. Its elegance is due, in no small part,
to its calculational style, a style that proofs will follow throughout.

2. The Unique Fixed-Point Principle
2.1 Infinite Trees
In Figure 1 we can see the first five levels of the Bird Tree [9], an
infinite tree in which you can find every positive rational number
exactly once. It has several remarkable properties that come from

359

its nature as a fractal object—its subtrees are similar to the whole
tree. The tree can be transformed into its left subtree by increment-
ing and then taking the reciprocal of every element; the right sub-
tree is obtained by swapping these operations. This description can
be nicely captured by a corecursive definition (we will use Haskell
as a meta-language for the category of sets and total functions):

bird = Node 1 (1 / (bird + 1)) ((1 / bird) + 1) .

The picture suggests that taking the reciprocal of each element
is the same as mirroring the tree, mirror bird = 1 / bird, and this
is indeed the case. We shall see that we can prove this effortlessly
using the unique fixed-point principle.

Before we get to the proof, we must introduce some definitions.

data Tree x = Node {root :: x, left :: Tree x, right :: Tree x}
The type Tree x is a so-called coinductive datatype. Its defini-

tion is similar to the textbook definition of binary trees, except that
there are no leaves, so we cannot build a finite tree. And without
leaves, mirror is a one-liner:

mirror (Node x l r) = Node x (mirror r) (mirror l) .

The definition of bird uses + and / lifted to trees. We obtain
these liftings for free as Tree is a so-called idiom [14]:

class Idiom f where
pure :: x � f x
(�) :: f (x � y) � (f x � f y)

instance Idiom Tree where
pure x = t where t = Node x t t
t � u = Node (root t $ root u)

(left t � left u) (right t � right u) .

The call pure x constructs an infinite tree of xs; idiomatic applica-
tion � takes a tree of functions and a tree of arguments to a tree of
results. Using pure and �, we can lift arithmetic operations generi-
cally to idioms.

instance (Idiom f,Num x)⇒ Num (f x) where
fromInteger n = pure (fromInteger n)
negate u = pure negate � u
u + v = pure (+) � u � v . . .

Since the operations are defined pointwise, the familiar arith-
metic laws also hold for trees. Mirroring a tree preserves the id-
iomatic structure, the function mirror is an idiom homomorphism:
mirror (pure x) = pure x and mirror (x � y) = mirror x � mirror y.
This implies, for instance, that mirror (u+v) = mirror u+mirror v.

Let us return to the promised proof and the unique fixed-point
principle. Consider the recursion equation x = Node y l r, where l
and r possibly contain the variable x, but not the expressions root x,
left x or right x. Equations in this syntactic form possess a unique
solution. Uniqueness can be exploited to prove that two infinite
trees are equal: if they satisfy the same equation, then they are.

mirror bird

= { definitions of mirror and bird }
Node 1 (mirror ((1 / bird) + 1)) (mirror (1 / (bird + 1)))

= { mirror is an idiom homomorphism }
Node 1 ((1 / mirror bird) + 1) (1 / (mirror bird + 1))

∝ { x = Node 1 ((1 / x) + 1) (1 / (x + 1)) has a unique sol. }
Node 1 ((1 / (1 / bird)) + 1) (1 / ((1 / bird) + 1))

= { arithmetic }
1 / Node 1 (1 / (bird + 1)) ((1 / bird) + 1)

= { definition of bird }
1 / bird

The link ∝ indicates that the proof rests on the unique fixed-
point principle; the recursion equation is given within the curly
braces. The upper part shows that mirror bird satisfies the equation
x = Node 1 ((1 / x) + 1) (1 / (x + 1)); the lower part establishes
that 1 / bird satisfies the same equation. The symbol ∝ links the
two parts, effectively proving the equality of both expressions.

We mentioned that the Bird Tree contains every positive rational
exactly once. A proof that exclusively builds on the unique fixed-
point principle can be found in Hinze [9].

2.2 Streams
Let us consider a second coinductive type, one that will accompany
us for the rest of the paper: the type of streams, infinite sequences
of elements.

data Stream x = Cons {head :: x, tail :: Stream x}
(≺) :: x � Stream x � Stream x
x ≺ s = Cons x s

Like the type of infinite trees, Stream is an idiom.

instance Idiom Stream where
pure x = s where s = x ≺ s
s � t = (head s $ head t) ≺ (tail s � tail t)

Using this vocabulary, we can define, for instance, the stream of
Fibonacci numbers.

fib = 0 ≺ fib’
fib’ = 1 ≺ fib + fib’

The Fibonacci numbers satisfy a myriad of properties. For example,
if we form the stream of their partial sums and increment the result,
we obtain fib’. Again, we shall see that the UFP allows for a concise
proof. But first, we have to capture summation as a stream operator.

Σ s = 0 ≺ s + Σ s

Turning to the proof of Σ fib + 1 = fib’, we can either show that
Σ fib + 1 satisfies the defining equation of fib’, or that fib’ − 1
satisfies the recursion equation of Σ fib. Both approaches work, the
calculations are left as really (!) easy exercises to the reader.

A related property is the following: if we sum the Fibonacci
numbers at odd positions, we obtain the Fibonacci numbers at
even positions. The so-called sampling functions [16] even and odd
enjoy simple corecursive definitions.

even s = head s ≺ odd (tail s)
odd s = even (tail s)

Turning to the proof of Σ (odd fib) = even fib, we reason:

Σ (odd fib)

= { definition of Σ }
0 ≺ odd fib + Σ (odd fib)

= { definition of odd }
0 ≺ even fib’ + Σ (odd fib)

∝ { x = 0 ≺ even fib’ + x }
0 ≺ even fib’ + even fib

= { even is an idiom homomorphism and arithmetic }
0 ≺ even (fib + fib’)

= { definitions of fib’ and odd }
0 ≺ odd fib’

= { definitions of fib and even }
even fib .

This completes our short survey. The UFP is not only easy-
to-use, but also surprisingly powerful: in prior work [10] we have

360

shown how to redevelop the theory of recurrences, finite calculus
and generating functions using streams and stream operators, build-
ing solely on the cornerstone of unique solutions.

What remains to be done? We have been somewhat vague about
the syntactic conditions that guarantee uniqueness. We shall see
that systems of recursion equations can be classified along two di-
mensions, leading to a total of nine different points of interest. The
system for fib falls into one (“consume one element, produce one”),
the system for even into another (“consume many, but don’t nest
calls”). When defining streams we cannot mix styles. For instance,
the equation x = 0 ≺ even x has infinitely many solutions. We
shall see that we can capture the conditions that guarantee unicity
semantically, using the categorical concept of naturality.

Furthermore, we abstract away from the type of infinite trees
and streams. The development is generic both in the syntax and in
the behaviour—which operations are defined and over which coin-
ductive type. An appropriate setting is provided by the categorical
notion of algebras and coalgebras which we introduce next. The re-
sulting proofs are not only more general, they are also shorter than
specific instances that have appeared in the literature [17, 19].

3. Initial Algebras and Final Coalgebras
We hope the reader has encountered the material of this section be-
fore, but we will reiterate it here as it serves as a simple demonstra-
tion of the power of duality. We will invoke the power to construct
‘the opposite thing’ time and time again.

Let F : C � C be an endofunctor. An F-algebra is a pair 〈A, a〉
consisting of an object A : C and an arrow a : FA � A : C . We say
that A is the carrier and a is the action of the algebra; however, we
often refer to the algebra simply by a as it determines the carrier. An
F-homomorphism between algebras 〈A, a〉 and 〈B, b〉 is an arrow
h : A � B : C such that h · a = b · F h.

FA F h //

a
��

FB

b
��

A
h

// B

A characteristic of functors is that they preserve identity and com-
position; this entails that F-homomorphisms compose and have an
identity. Consequently, F-algebras and F-homomorphisms form a
category, called F-Alg(C). If this category has an initial object, it
is called the initial F-algebra 〈µF, in〉. Initiality implies that it has a
unique F-homomorphism to any F-algebra 〈A, a〉, which is written
((a)) and called fold. It satisfies the uniqueness property

h = ((a)) ⇐⇒ h · in = a · F h . (3.1)

We will now seize the opportunity to dualize these constructions
to the opposite things: F-coalgebras and unfolds. An F-coalgebra
is a pair 〈C, c〉 of an object C : C and an arrow c : C � FC : C .
An F-homomorphism between coalgebras 〈C, c〉 and 〈D, d〉 is an
arrow h : C � D : C such that F h · c = d · h. In the same
way, we can form a category F-Coalg(C). If this category has
a final object, it is called the final F-coalgebra 〈νF, out〉. Being
the final object, it has a unique F-homomorphism to it from any F-
coalgebra 〈C, c〉, which is written [(c)] and called unfold. It satisfies
the following uniqueness property.

h = [(c)] ⇐⇒ F h · c = out · h (3.2)

In case you were wondering, final algebras and initial coalge-
bras are unexciting, although we will find a use for them. The final
algebra is 〈1, !F 1〉, and the initial coalgebra is 〈0, ¡F 0〉.

Let F,G : C � C be endofunctors, and α : F ←̇ G a natural
transformation. We can turn α into a functor α-Alg : F-Alg �

G-Alg between the categories of F- and G-algebras. (We use ←̇ to
highlight the contravariance between α and α-Alg.)

α-Alg 〈X, a : FX � X〉 = 〈X, a · αX : GX � X〉 α-Alg h = h

That α-Alg is a functor follows from a more general construction
given in Appendix B. We will see various instantiations of α-Alg
later on, where its functor properties will come in handy.

4. Meet Iniga and Finn
Once upon a time a teacher had a pair of bright and capable
students, who, for better or worse, were hooked on category theory.
The first, Iniga, was a go-getting student with plenty of initiative.
Interestingly, this was in stark contrast to Finn, a reserved character
who perceived the world with a sense of finality.

The teacher posed them the problem of demonstrating that a
system of stream equations has a unique solution. Owing to their
polar opposite outlooks, Iniga and Finn took divergent approaches
to tackling the problem, but as we will discover, their approaches
turned out to be two sides of the same coin.

The teacher started with a minimalistic example, asking them to
consider the following stream equations.

one = 1 ≺ one
plus (Cons m s,Cons n t) = (m + n) ≺ plus (s, t)

Streams of natural numbers are the resultant behaviour of these
equations, so the teacher provided the functor BX = N × X as
the behaviour functor. We can give this a Haskell rendering:

data B x = Cons (N, x) .

For simplicity, the teacher fixed the element type of streams. An
element of νB, the carrier of the final coalgebra of the behaviour
functor, is a stream of natural numbers: νB ∼= StreamN.

The stream constant one and the stream operator plus in the
example stream equations are also modelled categorically with the
functor SX = 1 + X× X as the syntax functor.

data S x = One | Plus (x, x)

An element of µS, the initial algebra carrier of the syntax functor,
is a finite, closed term, built from the syntax constructors of S.

Iniga (taking the initiative): Ok, given these definitions we can
model the stream equations by a simple function.

λ (One) = Cons (1,One)
λ (Plus (Cons (m, s),Cons (n, t))) = Cons (m + n,Plus (s, t))

Teacher: Observe that λ is really a natural transformation of
type S◦B →̇ B◦S. This is crucial: the syntactic requirements on
stream equations to ensure uniqueness of solutions are captured by
the naturality requirement on λ. Its type can be seen as a promise
that only the head of the incoming stream will be inspected and that
an element of the outgoing stream will be constructed. Can you see
how the slogan “consume one, produce one” translates?

Iniga: Yes! An interpretation of the syntax is then given by an
S-algebra a : S (νB) � νB whose carrier is the final B-coalgebra
〈νB, out〉. The algebra a takes a level of syntax over a stream and
turns it into a stream.

Teacher: How do we model that a respects the stream equations
captured by λ? Your algebra a has to satisfy the following law:

out · a = B a · λ (νB) · S out : S (νB) � B (νB) . (4.1)

The law states that unrolling the result of a is the same as un-
rolling the arguments of the syntax, S out, applying the stream
equations λ (νB), and then interpreting the tail, B a.

Iniga: Great, for our example I will rearrange the law to ob-
serve the Haskell convention of definition by pattern matching,

361

a · S out◦ = out◦ · B a · λ (νB). If I instantiate this law to our
running example, I obtain a definition of the algebra a:

a One
= Out◦ (Cons (1, a One))

a (Plus (Out◦ (Cons (m, s)),Out◦ (Cons (n, t))))
= Out◦ (Cons (m + n, a (Plus (s, t)))) .

With a, I can now define the semantic counterparts of One and Plus,
the stream constant one and the stream operator plus, underlined to
emphasize that they are semantic entities:

one = a One
plus (s, t) = a (Plus (s, t)) .

Teacher (interrupting): You are actually building upon the
isomorphism SX � X ∼= (1 � X) × (X × X � X) here: the pair of
functions, one and plus, is just another way of writing the algebra a.

Iniga: Using a ≺ s as a shorthand for Out◦ (Cons (a, s)), the
definition of a is the same as,

one = 1 ≺ one
plus (Cons m s,Cons n t) = m + n ≺ plus (s, t) ,

that is one and plus satisfy the original stream equations. Again,
the notation makes clear that we have to read the stream operators
semantically—one and plus are the entities defined by the system.

Teacher: We can wrap this up by showing that the law (4.1)
uniquely determines a:

out · a = B a · λ (νB) · S out

⇐⇒ { uniqueness of unfold (3.2) }
a = [(λ (νB) · S out)]

So [(λ (νB) · S out)] is the unique solution of the stream equations.
Furthermore, the fold ((a)) : µS � νB takes syntax to behaviour by
evaluating a term. Finn, what are your thoughts?

Finn: To start with, I would write the stream equations differ-
ently. I find them too Haskell-like, and I prefer what Jan Rutten
calls “behavioural differential equations” [17].

head one = 1
tail one = one
head (plus (s, t)) = head s + head t
tail (plus (s, t)) = plus (tail s, tail t)

A semantics is given by a B-coalgebra c : µS � B (µS) whose
carrier is the initial S-algebra 〈µS, in〉. The coalgebra c takes a term
and produces the first number of the defined stream, and a term to
generate the rest of the stream.

Teacher: Just as for Iniga, your coalgebra c has to satisfy the
following law:

c · in = B in · λ (µS) · S c : S (µS) � B (µS) . (4.2)

The law states that building a term and applying c is the same
as giving a semantics to the subterms, S c, applying the stream
equations λ (µS), and building a term in the tail of a stream, B in.

Finn: I will follow Iniga’s lead and specialize the law to our
example, obtaining a definition of c:

c (In One)
= Cons (1, In One)

c (In (Plus (s, t)))
= Cons (head (c s) + head (c t),

In (Plus (tail (c s), tail (c t)))) ,

where head (Cons (a, s)) = a and tail (Cons (a, s)) = s. Given a
stream program, my c gives the head of the stream and a stream
program for the tail of the stream. I can now define the semantic
counterparts of head and tail:

head s = head (c s)
tail s = tail (c s) .

Teacher: You are building upon the isomorphism X � BX ∼=
(X�N)×(X�X) here: head and tail is just another way of writing c.

Finn: Using one as a shorthand for In One and plus (s, t) for
In (Plus (s, t)), the definition of c is the same as,

head one = 1
tail one = one
head (plus (s, t)) = head s + head t
tail (plus (s, t)) = plus (tail s, tail t) ,

that is, head and tail satisfy the original stream equations. The
notation emphasizes that we have to read the stream selectors
semantically—head and tail are the entities defined by the system.

Teacher: Again, we can show that the law (4.2) determines c:

c · in = B in · λ (µS) · S c

⇐⇒ { uniqueness of fold (3.1) }
c = ((B in · λ (µS)))

So ((B in · λ (µS))) is the unique solution of your stream equations.
And the unfold [(c)] : µS�νB takes syntax to behaviour by unrolling
a complete stream.

Iniga and Finn, you should reconcile your two viewpoints. Your
semantic functions are of type µS � νB, so is the fold of Iniga’s
algebra the same as the unfold of Finn’s coalgebra: ((a)) = [(c)]? Did
you notice that we made use of the naturality of λ: Iniga used λ
at type νB, while Finn required the µS instance? For now, we have
only discussed a minimalistic example, and we are not immediately
able to model stream equations such as the ones that define the
Fibonacci stream: there is more to this story.

Epilogue
Now that we have met Iniga and Finn and got a taste for the problem
that their teacher posed to them, we will move on to introduce the
infrastructure that is needed for the reconciliation.

5. Bialgebras
Let S,B : C � C be functors. A bialgebra is a triple 〈X, a, c〉
consisting of an object X : C , an arrow a : SX � X : C ,
and an arrow c : X � BX : C . It is an S-algebra and a B-
coalgebra with a common carrier. Let 〈X, a, c〉 and 〈Y, b, d〉 be
bialgebras and h : X � Y : C an arrow. Then h is a bialgebra
homomorphism if it is both an S-algebra homomorphism and a B-
coalgebra homomorphism.

SX

a
��

S h // S Y

b
��

X

c
��

h // Y

d
��

BX
B h

// B Y

Identity is a bialgebra homomorphism and homomorphisms com-
pose. Consequently, bialgebras and their homomorphisms form a
category, called Bialg(C).

We are concerned with λ-bialgebras, which are bialgebras
equipped with a so-called distributive law λ : S◦B →̇ B◦S. This
extra structure imposes a coherence condition on bialgebras.

c · a = B a · λX · S c (5.1)

362

The condition is also called the pentagonal law.

SX

a
��

S c
))
S (BX)

λX
��

X

c
��

B (SX)

B avv
BX

(5.2)

The category of bialgebras that satisfy the pentagonal law (5.2) is
denoted λ-Bialg(C). It is a full subcategory of Bialg(C).

6. Iniga and Finn with Bialgebraic-tinted Glasses
We will now use λ-bialgebras to explicate Iniga and Finn’s conver-
sation with their teacher, and begin to reconcile their solutions.

Let S,B : C � C be functors, and λ : S◦B →̇ B◦S be a natural
transformation. We will read these to imply syntax and behaviour
functors, and a distributive law modelling a set of equations. Using
λ-bialgebras, we will characterize the semantic function from syn-
tax to behaviour—the arrow from the least fixed-point of S to the
greatest fixed-point of B.

The algebra 〈µF, in〉 is the initial object in F-Alg. We will now
show that from this we can form the initial object in λ-Bialg. If
the carrier has been fixed as µS, then the coalgebra will have type
µS � B (µS). This is exactly Finn’s coalgebra, and his teacher has
derived it: ((B in ·λ (µS))). As one might guess, the laws the teacher
provided came from λ-bialgebras. Let us take a step back to re-
examine λ and the pentagonal law.

6.1 Lifting Endofunctors to Algebras
The pentagonal law confers a useful property both on the algebra
and the coalgebra component of a λ-bialgebra. Let us illustrate this
first for the coalgebra component by redrawing diagram (5.2).

SX

a

��

S c // S (BX)

λX
��

Bλ a

zz

B(SX)

B a
��

X c
// BX

Here we can see that c is not only a B-coalgebra, but also an S-
algebra homomorphism from 〈X, a〉 to 〈BX,B a · λX〉.

We can characterize this situation as lifting the endofunctor
B : C � C to a functor on S-algebras; we will give it the name
Bλ : S-Alg(C) � S-Alg(C), and define it as,

Bλ 〈X, a : SX � X〉 = 〈BX,B a · λX : S (BX) � BX〉 , (6.1)
Bλ h = B h . (6.2)

For notational simplicity, we shall employ lifted functors synec-
dochically: by Bλ a we mean Bλ 〈X, a〉, a is used pars pro toto, and
in certain contexts, Bλ a is used totum pro parte for the arrow of
the resultant algebra, B a · λX. That Bλ is a functor follows from a
more general construction given in Appendix B. For reference, we
record that it preserves S-algebra homomorphisms.

B h : Bλ a � Bλ b : S-Alg ⇐= h : a � b : S-Alg (6.3)

Therefore, we can give c, viewed as an algebra homomorphism, the
more succinct type c : a � Bλ a : S-Alg.

Dually, a is both an S-algebra and a B-coalgebra homomorph-
ism, with the type a : Sλ c � c : B-Coalg, where the lifted functor

Sλ : B-Coalg(C) � B-Coalg(C) is defined as,

Sλ 〈X, c : X � BX〉 = 〈SX, λX · S c : SX � B (SX)〉 , (6.4)

Sλ h = S h . (6.5)

By duality, Sλ is functorial, as well.

6.2 Initial and Final Objects
Our initial λ-bialgebra will be 〈µS, in, ((Bλ in))〉, as depicted below.

S (µS)

in
��

S ((a))
//

­

SX

a
��

µS

((Bλ in))

��

((a))
//

®

¬ X

c
��

B (µS)
B ((a))

// BX

We have three proof obligations. First we must show that the triple
〈µS, in, ((Bλ in))〉 is indeed a λ-bialgebra (¬)—it has the right types,
but it must also satisfy (5.1).

((Bλ in)) · in
= { fold computation (§A) }

Bλ in · S ((Bλ in))

= { definition of Bλ (6.1) }
B in · λ (µS) · S ((Bλ in))

The second obligation, that ((a)) is an S-algebra homomorphism
is by construction—the top half of the diagram commutes (­).
Moreover, the uniqueness of this arrow comes for free. Finally, we
must show that ((a)) is also a B-coalgebra homomorphism—that the
bottom half of the diagram commutes (®).

c · ((a)) = B ((a)) · ((Bλ in))

⇐⇒ { fold fusion (§A) with c : a � Bλ a : S-Alg }
((Bλ a)) = B ((a)) · ((Bλ in))

⇐= { fold fusion (§A) }
B ((a)) : Bλ in � Bλ a : S-Alg

⇐= { Bλ functor (6.3) }
((a)) : in � a : S-Alg

We can dualize the results above. We have just used Finn’s
coalgebra to construct the initial λ-bialgebra, so naturally we will
use Iniga’s algebra to construct the final λ-bialgebra. Indeed, 〈νB,
[(Sλ out)], out〉 is the final λ-bialgebra; and [(c)] is the unique homo-
morphism from any λ-bialgebra 〈X, a, c〉 to the final λ-bialgebra.
The duality extends to the satisfaction of the proof obligations.

We have defined the initial and final λ-bialgebras, and we are
now in a position to state the homomorphism between them—the
semantic function from syntax to behaviour µS � νB.

S (µS)

in
��

// S (νB)

[(Sλ out)]
��

µS

((Bλ in))
��

‖
(([(Sλ out)]))

[(((Bλ in)))]

// νB

out
��

B (µS) // B (νB)

363

The semantic arrow is unique, and we can give two justifications
for it being so: namely that it is the unique homomorphism both
from the initial λ-bialgebra and to the final λ-bialgebra. For the
same two reasons, we can give two definitions of this arrow, and
by uniqueness they are equal. And just like that, we have the basic
resolution of Iniga and Finn’s seemingly opposing points of view.

In a manner of speaking, Iniga and Finn’s personalities would
appear to be entwined. Iniga thought in terms of initial algebras
and folds, but ended up constructing the final λ-bialgebra, and vice
versa for Finn. This is not a coincidence as the category of λ-
bialgebras is isomorphic to a category of algebras over coalgebras.

〈X, a, c〉 : λ-Bialg(C)

⇐⇒ { definition of λ-bialgebra }
c · a = B a · λX · S c

⇐⇒ { definition of Sλ (6.4) }
c · a = B a · Sλ c

⇐⇒ { definition of B-coalgebra homomorphism }
a : Sλ 〈X, c〉� 〈X, c〉 : B-Coalg(C)

⇐⇒ { definition of an Sλ-algebra }
〈〈X, c〉, a〉 : Sλ-Alg(B-Coalg(C))

The proof shows that the objects are in one-to-one correspondence.
A similar calculation establishes a bijection between arrows.

h : 〈X1, a1, c1〉� 〈X2, a2, c2〉
⇐⇒ { definition of λ-bialgebra homomorphism }

h · a1 = a2 · S h ∧ B h · c1 = c2 · h
⇐⇒ { definition of B-coalgebra homomorphism }

h · a1 = a2 · S h ∧ h : 〈X1, c1〉� 〈X2, c2〉 : B-Coalg(C)

⇐⇒ { definition of Sλ-algebra homomorphism }
h : 〈〈X1, c1〉, a1〉� 〈〈X2, c2〉, a2〉 : Sλ-Alg(B-Coalg(C))

As a summary of our construction above, for the categorically
enlightened, the final λ-bialgebra is determined by the final Sλ-
algebra. Recall that the final S-algebra is 〈1, !S 1〉. Consequently,
the final Sλ-algebra is 〈1, !Sλ 1〉 = 〈〈νB, out〉, [(Sλ out)]〉 as 〈νB, out〉
is the final object in B-Coalg(C).

Dually, we can view a bialgebra as a coalgebra over algebras.

λ-Bialg(C) ∼=

{
Sλ-Alg(B-Coalg(C))

Bλ-Coalg(S-Alg(C))
(6.6)

The double isomorphism says that there are actually two ways to
determine initial and final objects in λ-Bialg(C). The reader is
encouraged to work out the details.

7. A Step along the Categorical Brick Road. . .
Distributive laws of type S◦B→̇B◦S are not sufficiently expressive
to model the recursion equations for bird and fib as their right-hand
sides consist of more than one layer of syntax. In general, we need
terms, elements of the free monad for the syntax functor. However,
rather than making a beeline for free monads, we will visit pointed
functors as a stepping stone. This is an adventure with category
theory after all, and the fun is in the journey.

Example 7.1. Suspend your disbelief and suppose that you need
the identity operator on streams, defined by the equation,

id (Cons m s) = m ≺ s .

A system containing this equation cannot be turned into a distribu-
tive law λ : S◦B →̇ B◦S as the stream s is not an element of the

syntax functor S. To solve this, we can allow for variables or con-
structors of S.

data P x = Var x | Con (S x)

data S x = Id x | One | . . .
A system of recursion equations is now captured by a natural
transformation ρ of type S◦B →̇ B◦P.

ρ (Id (Cons (m, s))) = Cons (m,Var s)
ρ (One) = Cons (1, Con One) . . .

Note that we have only replaced S on the right-hand side, where
there is a need. We shall later restore symmetry and show how
to turn ρ into a distributive law (Section 7.3). Furthermore, this
is a very limited introduction of variables: one can either have a
variable, or a constructor, but no variables as arguments.

The Haskell type P is the so-called free pointed functor of S [13].
We will discuss pointed functors in general and then return to the
free construction in Section 7.1.

Definition 7.2. We say that an endofunctor T : C � C is pointed
if it is equipped with a natural transformation η : Id →̇ T.

We are going to build on the picture we laid out in the previous
section by replacing the plain endofunctor with a pointed functor.
The extra structure that we have introduced with η has two impli-
cations: first with regards to the distributive law λ and second with
regards to constructing algebras of pointed functors.

Condition 7.3. A distributive law λ : T◦B →̇ B◦T for a pointed
functor T has an additional coherence condition to satisfy:

λ · η◦B = B◦η . (7.1)

Condition 7.4. If we construct an algebra 〈X, a : TX � X〉 of a
pointed functor T, then it must respect η:

a · ηX = idX . (7.2)

For full specificity we will say that (T, η)-Alg(C) is the cate-
gory of T-algebras that respect η. This is a full subcategory of T-
Alg(C). Henceforth, we will be working with λ-bialgebras based
on (T, η)-algebras and B-coalgebras.

The double isomorphism (6.6) succinctly tells the story of initial
and final objects in λ-Bialg. In a sense, Conditions 7.3 and 7.4
ensure that we can establish an analogous isomorphism for pointed
functors. The following two properties prepare the ground.

Property 7.5. Let c : X � BX be a B-coalgebra, then

ηX : c � Tλ c : B-Coalg(C) , (7.3)

is the lifting of η to a B-coalgebra homomorphism.

Proof.
Tλ c · ηX

= { definition of Tλ (6.4) }
λX · T c · ηX

= { η : Id →̇ T is natural }
λX · η(BX) · c

= { coherence of λ with η (7.1) }
B (ηX) · c

In other words, the lifted functor Tλ is pointed as well and we
can form (Tλ, η)-Alg(B-Coalg(C)).

Property 7.6. The functor Bλ preserves respect for η.

Bλ a · η(BX) = idB X ⇐= a · ηX = idX (7.4)

364

Proof.
Bλ a · η(BX)

= { definition of Bλ (6.1) }
B a · λX · η(BX)

= { coherence of λ with η (7.1) }
B a · B (ηX)

= { B functor and assumption a · ηX = idX }
idB X

In other words, Bλ is an endofunctor on (T, η)-Alg(C) and we
can form Bλ-Coalg((T, η)-Alg(C)).

Summary
Properties 7.5 and 7.6 imply that the double isomorphism (6.6)
carries over to the new setting.

λ-Bialg(C) ∼=

{
(Tλ, η)-Alg(B-Coalg(C))

Bλ-Coalg((T, η)-Alg(C))
(7.5)

7.1 Free Pointed Functor
Let S : C � C be an endofunctor. There is a canonical pointed
functor, with pleasant properties, that we can construct from S. This
is the free pointed functor of S [13], the categorical version of the
Haskell type P we saw in Example 7.1,

PX = X + SX . (7.6)

The natural transformation η : Id →̇ P that equips the free pointed
functor is simply η = inl. Our λ-bialgebras now have P-algebras,
but what about all the S-algebras that we have used previously? All
is not lost, in fact far from it.

Theorem 7.1. The category of algebras for the free pointed functor
is isomorphic to the category of S-algebras:

(P, η)-Alg(C) ∼= S-Alg(C) .

The following definitions are the witnesses to this isomorphism.

d〈X, a : SX � X〉e = 〈X, idX O a : PX � X〉 dhe = h (7.7)
b〈X, b : PX � X〉c = 〈X, b · inr : SX � X〉 bhc = h (7.8)

In particular, d−e preserves and reflects homomorphisms.

h : dae� dbe : (P, η)-Alg(C)⇐⇒ h : a � b : S-Alg(C) (7.9)

Proof. (i) Given an S-algebra a, we can cast it up to a P-algebra
dae. Likewise, we can cast a P-algebra b down to an S-algebra
bbc. The following proves both directions of the isomorphism.

bdaec
= { definition of d−e }
bidX O ac

= { definition of b−c }
(idX O a) · inr

= { join comp. (§A) }
a

dbbce
= { defs. of b−c and d−e }

idX O b · inr

= { b respects η (7.2) }
b · inl O b · inr

= { join fusion and refl. (§A) }
b

(ii) b−c is functorial as inr : S →̇ P and b−c = inr-Alg (cf. §3).
(iii) d−e maps S-homomorphisms to P-homomorphisms. For the

proof we refer to the full paper [11].
(iv) Finally, d〈X, a〉e has to be an algebra for the pointed functor.

That dae respects η (7.2), unfolds to (idO a) · inl = id, and this
is just an instance of the join computation law (§A).

7.2 Initial and Final Objects
The double isomorphism (7.5) immediately suggests how to define
initial and final objects in the new setting. Nonetheless, we will
slow down a bit and go through the construction step by step.

In Section 6 we explored λ-bialgebras over S and B, the functors
representing syntax and behaviour, respectively. Despite the fact
that we are now using the free pointed functor of S, the carrier of
the initial λ-bialgebra will remain the same, as we are not changing
our objects of syntax. Instead, we are generalizing the evaluation
of our syntax. The initial λ-bialgebra will be 〈µS, a : P (µS) �µS,
c : µS � B (µS)〉, for some a and c that we will now determine.

Previously the algebra component of the initial λ-bialgebra was
simply in : S (µS) � µS. This can no longer be the case; we need
an algebra a : P (µS) � µS. However, now that we can freely cast
between S and (P, η)-algebras, we can use dine : P (µS) � µS.

The previous coalgebra component was ((Bλ in)), and this also
no longer has the right type, as our λ has changed. Now Bλ lifts
the functor B to a functor on (P, η)-algebras, not S-algebras; ((−))
expects an S-algebra, and in is an S-algebra. We can satisfy these
expectations with selective usage of casting: we can cast in up to
a (P, η)-algebra so that we can apply Bλ, and furthermore, we
can cast the image of Bλ dine down so that it is an S-algebra
that we can fold. The claim is that 〈µS, dine, ((bBλ dinec))〉 is the
initial λ-bialgebra and ((bac)) is the unique homomorphism to any
λ-bialgebra 〈X, a, c〉. There are the three usual proof obligations
we must satisfy. For reasons that will become clear, we will start
by showing that ((bac)) is (P, η)-algebra homomorphism.

((bac)) : dine� a : (P, η)-Alg (7.10)

This is a direct consequence of Theorem 7.1.

((bac)) : dine� a : (P, η)-Alg

⇐⇒ { isomorphism (P, η)-Alg ∼= S-Alg (7.9) }
((bac)) : in � bac : S-Alg

Next we will show that 〈µS, dine, ((bBλ dinec))〉 is indeed a λ-
bialgebra, in that it satisfies the pentagonal law (5.1).

((bBλ dinec)) · dine
= { ((bBλ dinec)) : dine� Bλ dine : (P, η)-Alg (7.10) }

Bλ dine · P ((bBλ dinec))

= { definition of Bλ (6.1) }
B dine · λ (µS) · P ((bBλ dinec))

Furthermore, (7.2) is satisfied since d−e creates such an algebra.
Finally, we will show that ((bac)) is a B-coalgebra homomorph-

ism. We know from the pentagonal law that c is a (P, η)-algebra
homomorphism, c : a �Bλ a : (P, η)-Alg. By (7.9) c is also an S-
algebra homomorphism, c : bac� bBλ ac : S-Alg, and as a direct
consequence of fold fusion (§A), c · ((bac)) = ((bBλ ac)).

c · ((bac)) = B ((bac)) · ((bBλ dinec))

⇐⇒ { fold fusion (§A) with c : bac� bBλ ac : S-Alg }
((bBλ ac)) = B ((bac)) · ((bBλ dinec))

⇐= { fold fusion (§A) }
B ((bac)) : bBλ dinec� bBλ ac : S-Alg

⇐⇒ { isomorphism (P, η)-Alg ∼= S-Alg (7.9) }
B ((bac)) : Bλ dine� Bλ a : (P, η)-Alg

⇐= { Bλ functor (6.3) }
((bac)) : dine� a : (P, η)-Alg

We have already shown that the last statement holds (7.10).

365

As before, the final λ-bialgebra is 〈νB, [(Pλ out)], out〉. The
unique λ-bialgebra homomorphism to the final λ-bialgebra from
any λ-bialgebra 〈X, a, c〉 is [(c)]. There is one final proof obligation:
we have to show that [(Pλ out)] respects η (7.2).

[(Pλ out)] · η(νB) = idνB

⇐⇒ { unfold reflection (§A) }
[(Pλ out)] · η(νB) = [(out)]

⇐= { unfold fusion (§A) }
η(νB) : out � Pλ out

The last statement holds as Pλ is pointed (7.3).
Putting things together, we can give a new statement of the

semantic function µS � νB.

P (µS)

dine
��

// P (νB)

[(Pλ out)]
��

µS

((bBλ dinec))
��

‖
((b[(Pλ out)]c))

[(((bBλ dinec)))]

// νB

out
��

B (µS) // B (νB)

We are in a more expressive setting, yet thanks to Theorem 7.1, we
can hold on to our resolution of Iniga and Finn’s viewpoints.

7.3 Constructing a Distributive Law
In Section 6 we modelled a stream program by a distributive law
of type S◦B →̇ B◦S. With the introduction of the free pointed
functor, stream equations have become slightly more expressive.
A program, such as in Example 7.1, now gives rise to a natural
transformation ρ : S◦B →̇ B◦P. The pointed functor appears only
on the right. On the left we keep S, as a stream equation defines a
constructor of S, not a variable. From ρ : S◦B →̇ B◦P we seek to
construct a distributive law λ : P◦B →̇ B◦P such that

c · dae = B dae ·λX ·P c ⇐⇒ c ·a = B dae ·ρX ·S c . (7.11)

Since P is a coproduct, λ has to be defined by a case analysis.
Though obvious, we will calculate λ from the specification above
as this will serve nicely as a blueprint for later sections.

c · a = B dae · ρX · S c

⇐⇒ { equality of joins }
c O c · a = c O B dae · ρX · S c

⇐⇒ { dae respects η (7.2) and B functor }
c O c · a = B dae · B (ηX) · c O B dae · ρX · S c

⇐⇒ { join fusion and functor fusion (§A) }
c · (id O a) = B dae · (B (ηX) O ρX) · (c + S c)

⇐⇒ { definitions of d−e (7.7) and P (7.6) }
c · dae = B dae · (B (ηX) O ρX) · P c

The specification (7.11) can be satisfied if we set λ = B◦η O ρ,
which is easily seen to satisfy the coherence condition (7.1).

8. . . . to Monad City
With pointed functors we made a limited introduction of variables.
The next step is to allow constructors to be nested. In this section
we are going to build on our picture of λ-bialgebras again, aug-
menting pointed functors to monads.

Example 8.1. Let us look at an example comparable to those of
Section 2. Here is a stream equation for the natural numbers.

nat = 0 ≺ nat + 1

We need more than a single syntax constructor to represent nat+1.
To solve this, we build terms with variables and constructors of S.

data M x = Var x | Com (S (M x))

data S x = One | Plus (x, x) | Nat

A system of recursion equations is now captured by a natural
transformation ρ of type S◦B →̇ B◦M.

ρ One
= Cons (1,Com One)

ρ (Plus (Cons (m, s),Cons (n, t)))
= Cons (m + n,Com (Plus (Var s,Var t)))

ρ Nat
= Cons (0,Com (Plus (Com Nat,Com One)))

Note that we only have terms on the right-hand side. Arguments of
Cons on the left can be embedded into variables on the right, and as
shown in the case of Nat, we can use more than one level of syntax.
Again, we shall restore symmetry later, showing how to derive a
distributive law from ρ (Section 8.3).

The Haskell type M is the so-called free monad of S. We will
discuss monads in general and then return to the free construction
in Section 8.1.

Definition 8.2. We say that T : C � C is a monad if there are
natural transformations η : Id →̇ T and µ : T◦T →̇ T such that

µ · η◦T = idT , (8.1a)
µ · T◦η = idT , (8.1b)
µ · µ◦T = µ · T◦µ . (8.1c)

A monad extends a pointed functor with a second natural trans-
formation µ : T◦T→̇T. In the previous section we saw that η must
be respected when constructing algebras and also by the distribu-
tive law of the λ-bialgebra; these same conditions extend to µ.

Condition 8.3. The following are the necessary coherence condi-
tions for a distributive law λ : T◦B →̇ B◦T over a monad T:

λ · η◦B = B◦η , (8.2a)
λ · µ◦B = B◦µ · λ◦T · T◦λ . (8.2b)

Condition 8.4. If we construct an algebra 〈X, a : TX � X〉 of a
monad T, then it must respect both η and µ.

a · ηX = idX , (8.3a)
a · µX = a · T a . (8.3b)

In the same manner as for pointed functors, we will say that
(T, η,µ)-Alg(C) is the category of T-algebras that respect η
and µ, a full subcategory of T-Alg(C). Henceforth, we will be
working with λ-bialgebras based on (T, η,µ)-algebras and B-
coalgebras.

As in Section 7, the additional conditions ensure that the double
isomorphism (6.6) is maintained. We have shown previously that η
can be lifted to a B-coalgebra homomorphism (7.3). There is an
analogous property for µ:

Property 8.5. Let c : X � BX be a B-coalgebra, then

µX : Tλ (Tλ c) � Sλ c : B-Coalg(C) , (8.4)

is the lifting of µ to a B-coalgebra homomorphism.

366

Proof.
Tλ c · µX

= { definition of Tλ (6.4) }
λX · T c · µX

= { µ : T◦T →̇ T is natural }
λX · µ(BX) · T (T c)

= { coherence of λ with µ (8.2b) }
B (µX) · λ (TX) · T (λX) · T (T c)

= { T functor and definition of Tλ (6.4) }
B (µX) · Tλ (Tλ c)

In other words, the lifted functor Tλ is a monad as well and we
can form (Tλ, η,µ)-Alg(B-Coalg(C)).

We also have shown that Bλ preserves respect for η (7.4). Again,
there is an analogous property for µ:

Property 8.6. The lifted functor Bλ preserves respect for µ.

Bλ a · µ(BX) = Bλ a · T (Bλ a) ⇐= a · µX = a · T a (8.5)

Proof.
Bλ a · µ(BX)

= { definition of Bλ (6.1) }
B a · λX · µ(BX)

= { coherence of λ with µ (8.2b) }
B a · B (µX) · λ (TX) · T (λX)

= { B functor and assumption a · µX = a · T a }
B a · B (T a) · λ (TX) · T (λX)

= { λ : T◦B →̇ B◦T is natural }
B a · λX · T (B a) · T (λX)

= { T functor and definition of Bλ (6.1) }
Bλ a · T (Bλ a)

Thus, Bλ is an endofunctor on (T, η,µ)-Alg(C) and we can
form Bλ-Coalg((T, η,µ)-Alg(C)).

Summary
As before the category of bialgebras can be seen as a category
of algebras over coalgebras or as a category of coalgebras over
algebras.

λ-Bialg(C) ∼=

{
(Tλ, η,µ)-Alg(B-Coalg(C))

Bλ-Coalg((T, η,µ)-Alg(C))
(8.6)

8.1 Free Monad
Let S : C � C be an endofunctor representing our syntax. There is
a canonical monad, with pleasant properties, that we can construct
from S. To do so we will first define the free S-algebra.

The free S-algebra over X is an algebra 〈MX, com〉 equipped
with an arrow var : X�MX. We think of elements of MX as terms
built from our syntax functor S and variables drawn from X. There
are two ways to construct a term: var embeds a variable into a term;
and com : S (MX) �MX constructs a composite term from a level
of syntax over subterms.

If we have an algebra a : SX � X, we can evaluate a term with
(((a))) : MX � X (pronounce “eval”). Given an arrow g : Y � X
to evaluate variables and an S-algebra a to evaluate composites,
evaluation of terms is characterized by the uniqueness property,

f = (((a))) ·M g ⇐⇒ f · var = g ∧ f · com = a · S f , (8.7)

for all f : M Y � X. The equivalence states that a compositional
evaluation of a term, second conjunct, is uniquely defined by an
evaluation of variables, first conjunct. (For the clued-in reader,
all of this information comes from the adjunction of the free and
forgetful functors between S-Alg(C) and C .)

The initial algebra emerges as a special case: µS ∼= M 0. It
represents the closed terms. Modulo this isomorphism, we have
in = com0 and ((a)) = (((a))) ·M ¡A. (Again, this relation is induced
by the aforementioned adjunction.)

There are two simple consequences of the uniqueness property.
If we set the evaluation of variables to the identity (g = id), we get
the computation laws:

(((a))) · var = id , (8.8a)
(((a))) · com = a · S (((a))) . (8.8b)

As var and com are the constructors of terms, we can read these
as defining equations of (((−))). The uniqueness property also implies
that var and com are natural in X and that (((−))) preserves naturality.

The free monad of the functor S is 〈M, η,µ〉, where η = var
and µ = (((com))). The µ : M◦M →̇M of the monad flattens a term
whose variables are terms. It does so by evaluating the term with
the composite constructor—the action of the free algebra.

Theorem 8.1. The category of algebras for the free monad of S is
isomorphic to the category of S-algebras:

(M, η,µ)-Alg(C) ∼= S-Alg(C) .

The following definitions are the witnesses to this isomorphism.

d〈X, a : SX � X〉e = 〈X, (((a))) : MX � X〉 dhe = h , (8.9)
b〈X, b : MX � X〉c = 〈X, b · θX : SX � X〉 bhc = h , (8.10)

where θ = com · S◦η : S →̇M, which turns a level of syntax into a
term. The map d−e preserves and reflects homomorphisms.

h : dae� dbe : (M, η,µ)-Alg(C)

⇐⇒ h : a � b : S-Alg(C) (8.11)

Proof. (i) bd〈X, a〉ec = 〈X, a〉:
bdaec

= { definitions of d−e (8.9) and b−c (8.10) }
(((a))) · com · S (ηX)

= { eval computation (8.8b) and S functor }
a · S ((((a))) · ηX)

= { eval computation (8.8a) and S functor }
a

An instance of this property is com = bdcomec = µX ·θ(MX).
In the opposite direction, db〈X, b〉ce = 〈X, b〉:

dbbce = b

⇐⇒ { definitions of d−e (8.9) and b−c (8.10) }
(((b · θX))) = b

⇐⇒ { uniqueness of eval (8.7) }
b · ηX = id ∧ b · com = b · θX · S b

The first conjunct follows from the fact that b respects η (8.3a).
For the second conjunct we reason:

b · θX · S b

= { θ : S →̇M is natural }
b ·M b · θ(MX)

= { b respects µ (8.3b) }

367

b · µX · θ(MX)

= { µX · θ(MX) = com, see above }
b · com .

(ii) b−c is functorial as θ : S →̇M is natural and b−c = θ-Alg.
(iii) d−e maps S-homomorphisms to M-homomorphisms.

h · (((a))) = (((b))) ·M h

⇐⇒ { uniqueness of eval (8.7) }
h · (((a))) · ηX = h ∧ h · (((a))) · com = b · S (h · (((a))))

The first conjunct is a direct consequence of computation (8.8a).
For the second conjunct we reason:

h · (((a))) · com

= { eval computation (8.8b) }
h · a · S (((a)))

= { assumption h : a � b : S-Alg and S functor }
b · S (h · (((a))))

(iv) Finally, d〈A, a〉e is an algebra for the monad. That dae re-
spects η (8.3a), unfolds to, (((a))) · ηX = id, which is the first
computation law (8.8a). That dae respects µ (8.3b), unfolds to,
(((a))) · µX = (((a))) ·M (((a))), and this follows from part (iii)

(((a))) · µX = (((a))) ·M (((a)))

⇐= { d−e maps S- to M-homomorphisms and µ = (((com))) }
(((a))) · com = a · S (((a)))

and the second computation law (8.8b).

8.2 Initial and Final Objects
Now that we have completed another round of generalization, from
free pointed functors to free monads, it is appropriate to examine
what the new initial and final λ-bialgebras are. Again, they can
be derived from the double isomorphism (8.6), and again, we will
highlight the salient details.

Superficially, the initial λ-bialgebra has not changed: it re-
mains 〈µS, dine, ((bBλ dinec))〉. What has changed are the defini-
tions of d−e and b−c. The usual three proof obligations are all
discharged by the proofs provided in previous section. All of the
proof steps have analogues in this section—in particular, Theorem
7.1 has been succeeded by Theorem 8.1.

The final λ-bialgebra is 〈νB, [(Mλ out)], out〉; the single change
is replacing Pλ with Mλ. The unique λ-bialgebra homomorphism
to the final λ-bialgebra from any λ-bialgebra 〈X, a,C〉 is still [(c)].
Just as in Section 7.2, there is one final proof obligation: we have
to show that [(Mλ out)] is an algebra for M. Previously we showed
that [(Pλ out)] respects η, and this proof suffices to show the same of
[(Mλ out)] (8.3a). It remains to show that µ is respected (8.3b):

[(Mλ out)] · µ(νB) = [(Mλ out)] ·M [(Mλ out)]

⇐⇒ { unfold fusion (§A)

with µ(νB) : Mλ (Mλ out) � Mλ out (8.4) }
[(Mλ (Mλ out))] = [(Mλ out)] ·M [(Mλ out)]

⇐= { unfold fusion (§A) }
M [(Mλ out)] : Mλ (Mλ out) � Mλ out

⇐= {Mλ functor }
[(Mλ out)] : Mλ out � out .

Finally, we can give another statement of the semantic function
µS � νB, in the setting of λ : M◦B →̇ B◦M.

M (µS)

dine
��

// M (νB)

[(Mλ out)]
��

µS

((bBλ dinec))
��

‖
((b[(Mλ out)]c))

[(((bBλ dinec)))]

// νB

out
��

B (µS) // B (νB)

We have upgraded pointed functors to monads and Theorem 8.1
ensures that Iniga and Finn still see eye to eye. However, we will
need to repeat the exercise of Section 7.3.

8.3 Constructing a Distributive Law
Given a program that is modelled by a natural transformation of
type ρ : S◦B →̇ B◦M, we seek to derive a distributive law λ :
M◦B →̇ B◦M such that

c · dae = B dae ·λX ·M c ⇐⇒ c ·a = B dae ·ρX ·S c . (8.12)

Let us calculate.

c · a = B dae · ρX · S c

⇐⇒ { isomorphism (M, η,µ)-Alg ∼= S-Alg (8.11) }
c · dae = dB dae · ρXe ·M c

⇐⇒ { see below }
c · dae = Bλ dae ·M c

⇐⇒ { definition of Bλ (6.1) }
c · dae = B dae · λX ·M c

The specification (8.12) holds if Bλ dae = dB dae · ρXe. To
turn this property into a definition for λ, we have to delve a bit
deeper into the theory. Applegate [3] discovered that distributive
laws λ : M◦B →̇ B◦M are in one-to-one correspondence to lifted
functors B̄ : (M, η,µ)-Alg� (M, η,µ)-Alg, where a functor B̄ is
a lifting of B if its action on carriers and homomorphisms is given
by B. It is useful to make explicit what it means for B̄ to preserve
algebra homomorphisms (as before, B̄ a is synecdochic, see §6.1).

B h · B̄ a = B̄ b ·M (B h) ⇐= h · a = b ·M h (8.13)

This property immediately implies that B̄ takes natural algebras of
type M◦F →̇ F to natural algebras of type M◦B◦F →̇ B◦F.

Looking back, we note that we have already made extensive use
of the correspondence in one direction, turning a distributive law
into a lifting Bλ; now we need the opposite direction. Given a lift-
ing B̄, we can construct a distributive law as follows. The unique-
ness property (8.7) states that homomorphisms of type MX�A are
in one-to-one correspondence to arrows of type X � A. We aim to
construct λ : M◦B →̇B◦M, so we need a natural transformation of
type B →̇ B◦M. The composition B◦η will do nicely. We obtain:

λB̄ = B̄µ ·M◦B◦η , (8.14)

where B̄µ : M◦B◦M→̇B◦M is the M-algebra for the carrier B◦M.
We must show that λB̄ coheres with η and µ per equations (8.2a)
and (8.2b). For the proof we refer to the full paper [11].

The mappings λ 7→ Bλ and B̄ 7→ λB̄ then establish the one-to-
one correspondence between distributive laws and lifted functors.

Returning to the task at hand, constructing a distributive law
from ρ, we use the property Bλ dae = dB dae · ρXe to define:

B̄ 〈X, b : MX � X〉 = 〈BX, dB b · ρXe : M (BX) � BX〉 ,
B̄ h = B h .

368

This defines a lifting because d−e = (((−))) is one that lifts S (BX)�
BX to M (BX) � BX. Putting things together, the distributive law
λ = λB̄ expressed as a composition of natural transformations is:

λ = (((B◦µ · ρ◦M))) ·M◦B◦η . (8.15)

8.4 Distributive Laws à la Carte
Distributive laws can be constructed modularly from a system of
recursion equations. In this modular development we will have dif-
ferent syntax functors S and we need to construct the free monad
for each, so we will replace the notation M by the more informa-
tive S∗. The mapping (−)∗ is actually a higher-order functor whose
arrow part takes a natural transformation α : S →̇ T to a natural
transformation α∗ : S∗ →̇ T∗. Think of α∗ as a term converter.

First let us consider an alternative definition of fib (cf. §2.2).

fib = 0 ≺ (1 ≺ fib) + fib

Note that there is a nested occurrence of ≺. We can support nested
stream constructors if we embed the behaviour into the syntax. The
new syntax-with-behaviour functor is TX = BX + SX. Given a
system of recursion equations ρ : S◦B →̇ B◦T∗, we can construct
a symmetric system σ as,

σ = B◦inl∗ · B◦θB O ρ = B◦(θT · inl) O ρ : T◦B →̇ B◦T∗ ,
where inl : B →̇ T and θF : F →̇ F∗. A distributive law λ :
T∗◦B →̇ B◦T∗ can then be constructed by Section 8.3.

Embedding behaviour into syntax is a special case of extending
a system of recursion equations. Specifically, given a base system
ρ1 : S1◦B →̇ B◦S∗1 and an extension ρ2 : S2◦B →̇ B◦S∗, where
SX = S1 X + S2 X, we can form a combined system as follows:

ρ = B◦inl∗ · ρ1 O ρ2 : S◦B →̇ B◦S∗ .
The idea is that ρ2 can use the operators of S1 and S2 to define
the operators of S2. Compare this with Example 8.1: we can model
One and Plus with an S1 and ρ1, and Nat with an S2 and ρ2, where
Nat is defined in terms of itself as well as One and Plus.

Returning to the embedding of behaviour into syntax, by setting
S1 = B and ρ1 = B◦θB, the embedding emerges as a special case.
A minor variation is the merge of two independent systems of re-
cursion equations,

ρ = B◦inl∗ · ρ1 O B◦inr∗ · ρ2 ,

where ρ1 : S1◦B →̇ B◦S∗1 and ρ2 : S2◦B →̇ B◦S∗2. We can further
modularize our modelling of Example 8.1 as the recursion equa-
tions for One and Plus are independent. It is clear that we can de-
velop distributive laws modularly: if we have a collection of re-
cursion equations with acyclic dependencies, then we can combine
them into a single system using the two techniques described above.
In the same fashion as Swierstra’s Data types à la carte [20], we
can create distributive laws à la carte.

There is one final thing to be said on this topic. The embedding
of behaviour makes the constructors of B available in the syntax.
Often, one also wishes to embed an element of νB: consider the
equation x = 0 ≺ even fib’ + x from Section 2. The stream
even fib’ is defined by a previous system, in fact, two systems; we
wish to reuse it at this point. This can be accommodated by setting
S1 X = νB and ρ1 = B◦com · out. Here S1 is a constant functor—
elements of νB are embedded as constants. It is important to note
that merging the systems for fib’, even and x is not an option as even
uses a different definitional style and, as we have pointed out, we
cannot mix styles. Of course, we have to show that even is uniquely
defined and this is what we do in Section 9.

8.5 Proving the Unique Fixed-Point Principle Correct
Let us now return to our original problem of proving the unique
fixed-point principle correct. Also, a brief summary is perhaps not

amiss. A system of recursion equations is modelled by a natural
transformation ρ : S◦B →̇ B◦S∗, where S is the syntax functor
and B the behaviour functor. The type of ρ captures the slogan
consume at most one, produce at least one. Using the trick of
embedding behaviour into syntax we can consume nothing (the
argument is reassembled on the right) and we can produce more
than one. Systems of this form are quite liberal; most, but not all
of the examples in the literature satisfy the restrictions. We will get
back to this point in Section 9.

A solution of a system modelled by ρ consists of an S-algebra
and a B-coalgebra over a common carrier that satisfies:

c · a = B dae · ρX · S c .

We can now replay the calculations of Section 4. If the coalgebra is
final, then a is uniquely determined, which establishes the UFP:

out · a = B dae · ρ (νB) · S out

⇐⇒ { λ given by (8.15) which satisfies (8.12) }
out · dae = B dae · λ (νB) ·M out

⇐⇒ { definition of Mλ and uniqueness of unfold (3.2) }
dae = [(Mλ out)]

⇐⇒ { isomorphism (M, η,µ)-Alg ∼= S-Alg (8.1) }
a = b[(Mλ out)]c .

Conversely, if the algebra is initial, then c is fixed: c = ((bBλ dinec)).
Since the data defines initial and final objects in λ-Bialg(C),
we can furthermore conclude that the two ways of defining the
semantic function of type µS � νB coincide: ((a)) = [(c)].

9. Echoes from the Second Dimension
Thus far, we have been living in a single dimension: we have
incrementally augmented the syntax functor S, first to P, the free
pointed functor of S, and then to M, the free monad of S. A second
dimension arises as the dual of the first; just as we replaced S with
P, we can do so dually with B and C, the cofree copointed functor
of B. Of course, the progression continues predictably on to N, the
cofree comonad of B. The developments of C and N are the duals
of Sections 7 and 8, respectively; the details are spelled out in [11].

Let us take a moment to characterize the natural transformations
with which we are modelling recursion equations: they take the
general form of ρ : S◦lhs →̇ B◦rhs. In Section 6 we took the
simplest case, where lhs = B, rhs = S, and thus ρ was exactly our
distributive law λ. The duality of the dimensions can be seen in how
they affect the expressive power of these natural transformations.

The first dimension, the one we have focused on hitherto, corre-
sponds to the sophistication with which we can build syntax on the
right-hand side of equations; the progression first replaced a con-
structor by a constructor or a variable, and then by terms, nested
constructors with variables. This culminated in a ρ where lhs = B,
rhs = M, and λ is defined in terms of ρ using the structure of M.

The second dimension corresponds to the left-hand side of equa-
tions, and rather than constructing syntax, this is about destructing
or patterning matching on behaviour. The cofree copointed func-
tor C, defined as CX = X × BX, gives a categorical modelling
of Haskell’s as-patterns, where var@pat gives the name var to the
value being matched by pat—B represents a level of behaviour and
C gives a label to that level. Therefore, a ρ, where lhs = C, mod-
els an equation that consumes at most one, rather than strictly one.
This can also be achieved, albeit in an indirect way, by embedding
behaviour in syntax, as described in Section 8.4. For example, con-
sider the stream operator that interleaves two streams:

interleave (Cons m s) (Cons n t) = m ≺ interleave (n ≺ t) s .

369

The result of interleave (0 2 4 . .) (1 3 5 . .) is 0 1 2 3 . ., the natural
numbers. In this definition we are unnecessarily deconstructing the
second parameter into its head and tail, we simply need the whole
stream. A more natural definition is:

interleave (Cons m s) t = m ≺ interleave t s .

Sometimes we want the head, tail, and the whole stream. Consider
the stream operator that performs an ordered merge of two streams:

merge s@(Cons m s′) t@(Cons n t′)
= if m 6 n then m ≺ merge s′ t else n ≺ merge s t′ .

From this we are able to construct a natural transformation ρ :
S◦C →̇ B◦S to model interleave and merge without the need to
reconstruct behaviour on the right-hand side.

data C x = As x (B x)

ρ (Interleave (As (Cons (m, s)),As t))
= Cons (m, Interleave (t, s))

ρ (Merge (As s (Cons (m, s′)),As t (Cons (n, t′))))
= if m 6 n then

Cons (m,Merge (s′, t))
else

Cons (n, Merge (t, t′))

Finally, the cofree comonad permits the inspection of behaviour
to an arbitrary depth—unlimited consumption. This is exactly what
we need to model the equations that consume more than they pro-
duce, such as the stream operator even, which we saw in Section 2.

even (Cons m (Cons n u)) = m ≺ even u

We can render the cofree comonad in Haskell as,

data N x = Root x (B (N x)) ,

and even is captured by a natural transformation ρ : S◦N →̇ B◦S,

ρ (Even (Root s (Cons (m,Root t (Cons (n,Root u))))))
= Cons (m,Even u) .

We can form a distributive law λ : S◦N→̇N◦S from ρ, by following
the dual of the derivation outlined in Section 8.3.

There are three points in each dimension, leading to a total of
nine different instantiations of ρ : S◦lhs →̇ B◦rhs, which corre-
spond to nine combinations of expressive power. A natural trans-
formation ρ : S◦N →̇ B◦M is the most general: it captures recur-
sion equations that have an arbitrary depth of pattern matching on
the left-hand side, with an arbitrary term on the right-hand side.
And in some sense it is too general, as it unclear how to derive the
corresponding distributive law λ : M◦N →̇N◦M, or if there should
be such a derivation. We leave this determination as future work.

The sweet spot of expressivity is ρ : S◦C →̇ B◦M, where M is
the free monad of syntax with embedded behaviour, which captures
the slogan mentioned in Section 8.5: consume at most one, produce
at least one. The use of C makes the nature of the consumption
more explicit. Let us showcase this sweet spot.

There is a sequence of numbers called the Hamming numbers,
which can be characterized as the numbers that only have 2, 3
or 5 as prime factors. They are named after the Turing award
winner Richard Hamming, who posed the problem of generating
these numbers in ascending order. Dijkstra [6] presented a solution
in SASL, attributed to J. L. A. van de Snepscheut, and proved its
correctness. Here we will replicate the same solution, which is in
fact a slightly simplified version for numbers that only have 2 and 3
as prime factors. The stream is,

ham = 1 ≺ merge (times 2 ham, times 3 ham) ,

where the definition of merge is given above and times is,

times n (Cons m s) = n× m ≺ times n s .

Again, we can capture the recursion equations merge, times and
ham by a natural transformation ρ : S◦C →̇ B◦M:

ρ (Merge (As s (Cons (m, s′)),As t (Cons (n, t′))))
= if m 6 n then

Cons (m,Com (Merge (Var s′,Var t)))
else

Cons (n, Com (Merge (Var t, Var t′)))
ρ (Times n (As (Cons (m, s))))

= Cons (n× m,Com (Times n (Var s)))
ρ Ham

= Cons (1,Com (Merge (Com (Times 2 (Com Ham)),
Com (Times 3 (Com Ham))))) .

The details of the construction of the distributive law λ : M◦C →̇
C◦M can be found in Hinze and James [11]. By the naturality of ρ
and thus the constructed λ, we have a proof (as an alternative to
Dijkstra’s) that ham uniquely defines a stream.

10. Related Work
The theoretical foundations of our work exist in the literature,
originally in Turi and Plotkin [21] and refined in Lenisa et al. [13].
We see our work as an application of, and an exercise in, this theory.

The work that is closest in spirit to ours is Bartels [4]. It is
centered around the coinduction proof principle, in contrast to the
UFP. Bartels looks at two out of the nine points that we have
identified, the simplest λ : S◦B →̇ B◦S, and our sweet spot
λ : M◦C→̇C◦M, but for space reasons does not explore any others.
Bartels introduces a construction homomorphism up-to, which is a
homomorphism from a coalgebra to a bialgebra, and uses it as a
definitional principle. We simply use bialgebra homomorphisms,
following the original theory of Turi and Plotkin [21], which nicely
exhibits the duality of Iniga and Finn’s viewpoints.

Rutten and Silva have presented two coinductive calculi, one for
streams [17] and one for binary trees [19], also using coinduction
as a proof principle. They have a uniqueness proof for each: The-
orem 3.1 and Appendix A in Rutten [17]; and Theorem 2 in Silva
and Rutten [19]. Our approach treats streams and infinite trees, and
behaviour in general, in a datatype generic way—the same proofs
apply, only varying in the chosen functors for syntax and behaviour.
Moreover, we emphasize a compositional, functional style.

Our task of determining that a recursion equation has a unique
solution is related to the task of determining that corecursive def-
initions are productive [18]. This is crucial in dependently typed
programming and proof languages, where the logical consistency
of the system requires it. In Coq this is enforced by the guardedness
condition [8], which is particularly conservative: it has no means to
propagate information through function calls, so corecursive calls
are forbidden to appear anywhere other than as a direct argument of
a constructor. Compositionality is the first casualty. The situation is
similar in Agda [2].

Hughes et al. [12] were the first to talk about the notion of sized-
types, and used it as part of a type-based analysis that guarantees
termination and liveness of embedded functional programs. Fol-
lowing this, there have been a whole host of proposed type sys-
tems incorporating size annotations. MiniAgda [1, 15] is a tangible
implementation of a dependently typed core language with sized
types, able to track the productivity of corecursive definitions. Type
signatures are mandatory and contain sizes explicitly, which is in
contrast to our ρ functions, the naturality of which is easy to infer.

Specific to streams, Endrullis et al. [7] introduce what they call
data-oblivious productivity: productivity that can be decided with-
out inspecting the stream elements. They present three classes of
stream specifications. Their analysis is provably optimal for the flat
class, where stream functions cannot contain nested function appli-
cations. Our slogan “consume at most one, produce at least one”

370

corresponds to their friendly nesting class. A competing approach
appears in Zantema [22], who reduces the determination of unique-
ness to the termination of a term rewriting system (TRS). A stream
specification has a unique solution if its observational variant TRS
is terminating, a TRS that is very like Rutten’s stream definitions.

Acknowledgements
Ralf would like to thank Jan Rutten for pointing him to distributive
laws and bialgebras. Daniel is funded by a DTA Studentship from
the Engineering and Physical Sciences Research Council.

References
[1] A. Abel. MiniAgda: Integrating Sized and Dependent Types. Elec-

tronic Proceedings in Theoretical Computer Science, 43:14–28, 2010.

[2] A. Abel and T. Altenkirch. A predicative analysis of structural recur-
sion. JFP, 12(1):1–41, 2002.

[3] H. Applegate. Acyclic models and resolvent functors. PhD thesis,
Columbia University, 1965.

[4] F. Bartels. Generalised coinduction. Mathematical Structures in
Computer Science, 13(2):321–348, 2003.

[5] R. S. Bird and O. De Moor. Algebra of Programming, volume 100 of
International Series in Computing Science. Prentice Hall, 1997.

[6] E. W. Dijkstra. Hamming’s exercise in SASL. Personal Note
EWD792, 1981.

[7] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-oblivious stream
productivity. In Logic for Programming, Artificial Intelligence, and
Reasoning, volume 5330 of LNCS, pages 79–96. Springer, 2008.

[8] E. Giménez. Codifying guarded definitions with recursive schemes. In
Types for Proofs and Programs, volume 996 of LNCS, pages 39–59.
Springer, 1995.

[9] R. Hinze. The Bird tree. JFP, 19(5):491–508, 2009.

[10] R. Hinze. Concrete stream calculus—an extended study. JFP, 20(5–
6):463–535, 2010.

[11] R. Hinze and D. W. H. James. Proving the Unique-Fixed Point Prin-
ciple Correct. Technical Report RR-11-03, Department of Computer
Science, University of Oxford, 2011.

[12] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive
systems using sized types. In POPL, pages 410–423. ACM, 1996.

[13] M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors,
pointed and co-pointed endofunctors, monads and comonads. Elec-
tronic Notes in Theoretical Computer Science, 33:230–260, 2000.

[14] C. McBride and R. Paterson. Applicative programming with effects.
JFP, 18(1):1–13, 2008.

[15] K. Mehltretter. Termination checking for a dependently typed lan-
guage. Master’s thesis, LMU Munich, 2007.

[16] M. Niqui and J. J. M. M. Rutten. Sampling, splitting and merging in
coinductive stream calculus. In MPC, volume 6120 of LNCS, pages
310–330. Springer, 2010.

[17] J. J. M. M. Rutten. Fundamental study: Behavioural differential
equations: A coinductive calculus of streams, automata, and power
series. Theoretical Computer Science, 308:1–53, 2003.

[18] B. A. Sijtsma. On the productivity of recursive list definitions. ACM
Trans. Program. Lang. Syst., 11(4):633–649, 1989.

[19] A. Silva and J. J. M. M. Rutten. A coinductive calculus of binary trees.
Information and Computation, 208:578–593, 2010.

[20] W. Swierstra. Data types à la carte. JFP, 18(04):423–436, 2008.

[21] D. Turi and G. Plotkin. Towards a mathematical operational semantics.
In Logic in Computer Science, pages 280–291. IEEE, 1997.

[22] H. Zantema. Well-definedness of streams by transformation and ter-
mination. Logical Methods in Computer Science, 6(3:21), 2010.

A. Miscellaneous Laws
id = inl O inr join reflection

(g1 O g2) · inl = g1 join computation

(g1 O g2) · inr = g2 join computation

k · (g1 O g2) = k · g1 O k · g2 join fusion

(g1 O g2) · (h1 + h2) = g1 · h1 O g2 · h2 join functor fusion

((a)) · in = a · F ((a)) fold computation

h · ((a)) = ((b)) ⇐= h · a = b · F h fold fusion

[(out)] = id unfold reflection

[(d)] = [(c)] · h ⇐= F h · d = c · h unfold fusion

B. Lifting
The underlying or forgetful functor U : F-Alg(C) � C is defined

U 〈A, a〉 = A , U h = h .

A functor H̄ : F-Alg(C)�G-Alg(D) is a lifting of H : C �D
if U◦H̄ = H◦U.

F-Alg(C)

U
��

H̄ // G-Alg(D)

U
��

C
H

// D

Given a natural transformation λ : G◦H →̇ H◦F, we can define
a lifting Hλ : F-Alg(C) � G-Alg(D) of H as follows:

Hλ 〈X, a : FX � X〉 = 〈HX,H a · λX : G (HX) � HX〉 , (B.1)
Hλ h = H h . (B.2)

Since Hλ’s action on carriers and homomorphisms is given by H, it
preserves identity and composition. It remains to show that it takes
F-homomorphisms to G-homomorphisms.

H h : Hλ a � Hλ b : G-Alg(D) ⇐= h : a � b : F-Alg(C) ,

where a : FX � X and b : F Y � Y. (As throughout this paper, and
as explained in Section 6.1, we use lifted functors synecdochically.)
We reason

H h · Hλ a

= { definition of Hλ (B.1) }
H h · H a · λX

= { H functor and assumption h : a � b : F-Alg(C) }
H b · H (F h) · λX

= { λ : G◦H →̇ H◦F is natural }
H b · λ Y · G (H h)

= { definition of Hλ (B.1) }
Hλ b · G (H h) .

The functor α-Alg emerges as a special case with H = Id and
λ = α. Also, Sλ is an instance of the scheme with F = G, which
consequently restricts H to endofunctors.

The construction dualizes to categories of coalgebras.

371

