Program optimisation, naturally

Richard Bird
Programming Research Group
Oxford University

Jeremy Gibbons
School of Computing and Mathematical Sciences
Oxford Brookes University

Geraint Jones
Programming Research Group
Oxford University

July 1999

Abstract

It is well-known that each polymorphic function satisfies a certain equational
law, called a naturality condition. Such laws are part and parcel of the basic
toolkit for improving the efficiency of functional programs. More rarely, some
polymorphic functions also possess a higher-order naturality property. One ex-
ample is the operation unzip that takes lists of pairs to pairs of lists. Surprisingly,
this property can be invoked to improve the asymptotic efficiency of some divide-
and-conquer algorithms from O(nlogn) to O(n). The improved algorithms make
use of polymorphic recursion, and can be expressed neatly using nested datatypes,
so they also serve as evidence of the practical utility of these two concepts.

1 Introduction

One of the first things that any functional programmer learns is how to turn the naive
quadratic algorithm for reversing a list into a linear-time algorithm by using an accumu-
lating parameter. In this paper we derive another, quite different linear-time algorithm
for reversing a list. The derivation relies on a higher-order naturality [4] property of
the function unzip, which turns a list of pairs into a pair of lists in the obvious way.
The final program uses polymorphic recursion [8], and can be expressed rather neatly
using nested datatypes [1]. Although neither feature is an essential component of the



fast algorithm, they do simplify it, providing more evidence of the practical utility of
these two concepts.

Hinze [3] presents another application of these techniques to the problem of com-
puting the bit-reversal permutation of a list. We describe this problem and its solution
briefly in Section 6. Indeed, it was Hinze’s application that inspired us to write this
paper in the first place. Whether or not the technique has wider application remains
to be seen.

2 Reversing a list

A divide-and-conquer algorithm for reversing a list can be constructed from the obser-
vation that the reverse of the concatenation of two lists is the concatenation, in the
opposite order, of their reverses. For simplicity in what follows, we restrict attention
to powerlists [7], a powerlist being a list with length a power of two. Then the function
revy,, which reverses a list of length 2%, is defined inductively by

revy [al = |[d]
reviyr (£ Hy) = revpy H revy x

It is assumed that both z and y have length 2* in the second equation. In a pointfree
style, we have:

rev = id
revky1 = cato swap o pair revy o uncat

Here, cat :: Pair [a] — [a] concatenates two lists of the same length to give a list
of twice the length, and wuncat is its inverse; pair is the action of the pairing functor
on functions; and swap :: Pair a — Pair a swaps the components of a pair. On a
non-singleton list, this algorithm involves two recursive calls on lists of half the length;
therefore the time taken to reverse a list of length n is O(nlogn). If we interpret uncat
as dividing a list of non-unit but otherwise arbitrary length into two, then the equation

rev = cat o swap o pair rev o uncat

remains valid. Consequently, the algorithm can be adapted to handle lists of arbitrary
length.

Here is another, less obvious, divide-and-conquer characterisation of reverse. Instead
of using concatenation and its inverse to combine and split the list, we use ‘riffle’ (what
Misra [7] calls ‘tie’) and its inverse. Informally, unriffle :: [a] — Pair [a] applied to
a non-singleton list puts the even-numbered elements (counting from zero) in the first
component of its result, and the odd-numbered elements in the second component; riffle
is the inverse operation. Again we restrict attention to powerlists. If one considers the
indices of the elements of the list in binary notation, then it becomes clear that riffie
is a dual to uncat: the former partitions on the least significant bit, the latter on the
most significant.

Assuming the definitions of riffle and unriffie, the algorithm is



revy = id
revgr1 = riffle o swap o pair revy, o unriffie

For example,
revs [0,1,2,3,4,5,6,7]
= { definition of rev }
riffle (swap (pair revs (unriffle [0,1,2,3,4,5,6,7])))
= { definition of unriffie }
riffle (swap (pair revs ([0,2,4,6],[1,3,5,7])))
= { induction }
riffle (swap ([6, 4, 2,0],[7,5, 3,1]))
= { definition of swap }
riffle ([7, 5, 3,1], 6,4, 2,0])
= { definition of riffie }
[7,6,5,4,3,2,1,0]
The function unriffle can be built from two components. The first, group :: [a] —

[Pair a], acts only on non-singleton powerlists; it groups the first two elements into a
pair, the third and fourth elements into a second pair, and so on. For example,

group [0,1,2,3,4,5,6,7] = [(0,1),(2,3),(4,5),(6,7)]

The second component, unzip :: [Pair a]| — Pair [a], teases apart a list of pairs into two
lists, the first list consisting of the first components of each pair and the second list of
the second components. For example,

unzip [(0,1),(2,3), (4,5),(6,7)] = ([0,2,4,6],[1,3,5,7])
These two functions, which are easy to implement, have inverses ungroup and zip,
respectively. Now we can define
unriffle = unzip e group
riffle = ungroup o zip
Unlike the algorithm based on cat and uncat, the algorithm using riffle and unriffie
has to be modified to handle lists of arbitrary length. The equation
rev = riffle o swap o pair rev o unriffie
holds only for lists of even length. For lists of odd length, the corresponding equation
is
rev = riffle o pair rev o unriffie
in which the swap operation does not appear.
The second algorithm also takes O(n logn) steps to reverse a list of length n. How-

ever, as we shall see in the next section, we can exploit a law of unzip to combine the
two recursive calls into a single call, giving a linear-time algorithm.



3 A law of unzip

The function unzip :: [Pair a] — Pair [a] is a natural transformation, which is to say
that it satisfies the law

unzip e map (pair f) = pair (map f) o unzip

for all functions f. In words, since unzip does not inspect the elements of the input
list, one can change these elements systematically either before or after unzipping the
list, with exactly the same result in both cases. Wadler [10] has shown that every
polymorphic function satisfies a naturality law whose form is deducible simply from
its type. In the general case there are certain strictness conditions on the function f,
although they do not appear in the law for unzip.

However, unzip enjoys another naturality property. This states that, for any natural
transformation phi :: [a] — [a], we have

pair phiounzip = wunzip o phi

Formally, unzip is a higher-order natural transformation [4]. Informally, since phi is a
natural transformation, it does the same thing to any list. Therefore, unzipping a list
of pairs and doing phi to each list does the same to corresponding elements of the lists,
and so is equivalent to doing phi once to the list of pairs and then unzipping.

To prove this law we need to give some definitions. We define the type of pairs and
accompanying operations as follows:

type Paira = (a,a)

pair ' (a — b) — Pair a — Pair b
pair f (a,a') = (fa,f a')

fst . Paira—a

fst (a,a) = a

snd w Paira— a

snd (a,a’) = d

fork . Pair (a = b) — a — Pair b
fork (f,g)a = (fa,ga)

swap :» Pair a — Pair a

swap = fork (snd, fst)

The function unzip is defined by the equation
unzip = fork (map fst, map snd)
We can now reason:
pair f o unzip

I

{ definition of unzip }
pair f o fork (map fst, map snd)



= { pair-fork fusion }
fork (f o map fst, f e map snd)

{ naturality of f }
fork (map fstof, map sndo f)

{ fork distributes over composition }
fork (map fst, map snd) o f

= { definition of unzip }

unzip o f

In fact, with a little bit more notation, we can state a stronger result. For an arbitrary
functor F, define unzipr by

unzipp = F (Pair a) — Pair (F a)
unzipr = fork (F fst, F snd)

Then the higher-order naturality condition is that, for any natural transformation f :
F a — G a, we have

unzipgef = pair founzipp
The proof is almost identical. However, we do not need the extra generality for this
paper.

4 Applying the law

Returning to the problem of reversing a list, we see that
riffle o swap o pair revy o unriffie
= { definition of unriffie }
riffle o swap o pair revy o unzip o group
= { higher-order naturality (rev is natural) }

riffle o swap o unzip o revg o group

Hence
rev = id
revgr1 = Tiffle o swap o unzip o revyg o group

in which there is but a single recursive call on a list of half the length, giving a linear-
time algorithm.
We can simplify the algorithm a little further, since

riffle o swap o unzip
{ definition of riffle }

UNGroup o Zip o SWap © UNZLP



= { since swap o unzip = UNZLP °c Map SWap }
UNGTOUp © Zip o UNZip °© map SWap

= { zip and unzip are inverses }
ungroup o map Swap

Hence we can define

revy = id

reVkr1 = UNGroup o map Swap o revy o group
Note that there is something peculiar going on with the types here. On the left-
hand side of the second equation above, revy,; is acting on a list of elements of type
A for some A. However, on the right-hand side, rev; is acting on a list of pairs of
elements of type A. This is an instance of polymorphic recursion [8]. The latest versions
of Haskell allow polymorphic recursion like this, but they cannot infer the types of
polymorphically recursive functions because the type inference problem is undecidable.

As a consequence, the types need to be given by the programmer and merely checked
by Haskell.

5 Nested datatypes

The above definitions can be implemented perfectly well in Haskell using ordinary lists.
However, there is then no way to enforce the constraint that the lists should have
length a power of two. Such ‘structure invariants’ can often be expressed using nested
datatypes [1].

In particular, we can define the type of powerlists by

data Plist a = Zero a | Succ (Plist (Pair a))
For example, the powerlist of naturals from 0 to 7 is represented by the expression
Suce (Suce (Suce (Zero (((0,1), (2,3)), ((4,5), (6,7))))))

Notice how the constructors in the above expression encode in Peano numerals the
‘depth’ of the list. The type Plist a is a nested datatype because the occurrence of Plist
on the right-hand side of the type definition has a different argument to the defining
occurrence on the left-hand side.

The map operation on powerlists is given by

plist 2 (a — b) — Plist a — Plist b
plist f (Zero a) = Zero (f a)
plist f (Succz) = Succ (plist (pair f) z)
This is another instance of polymorphic recursion, because the occurrence of plist on the

right-hand side of the second equation is at a different type to the defining occurrence
on the left-hand side.



The other functions required for reversing a list are as follows.

group :: Plist a — Plist (Pair a)
group (Succ 1) = z

ungroup :: Plist (Pair a) — Plist a
ungroup T = Succzx

cat it Pair (Plist a) — Plist a

cat (Zero a, Zero b) = Succ (Zero (a, b))
cat (Succ z, Succy) = Succ (cat (z,y))

unzip :: Plist (Pair a) — Pair (Plist a)
UNZip = fork (plist fst, plist snd)

The fast reverse algorithm on powerlists is now implemented by
rev 2 Plist a — Plist a
rev (Zero a) = Zero a
rev (Succ £) = ungroup (plist swap (rev (group z)))

6 Bit-reversal permutations

Hinze [3] presents another application of the ideas above, to the problem of a bit-reversal
permutation of a powerlist. For each i, the element at position i moves to position j,
where the binary representation of j is the reverse of the binary representation of 7. For
example, the bit-reverse permutation of the list of characters “abcdefgh” is the string
“aecgbfdh”; “fallible” and “fillable” permute to each other, and “sixtieth” is a fixed
point. Bit-reversal permutations are a feature of in-place implementations [6] of the
Cooley-Tukey Fast Fourier Transform algorithm [2, 5].
One divide-and-conquer characterisation of the bit-reversal permutation is as fol-

lows:

brp (Zero a) = Zeroa

brp (Succ ) = cat (pair brp (unzip z))

This algorithm takes O(nlogn) steps; however, the same higher-order naturality law
applies (because brp is a natural transformation), and so we also have that

brp (Zero a) = Zeroa
brp (Succ z) = cat (unzip (brp z))

This implementation takes only linear time.

7 Conclusion

We have shown an O(nlogn) divide-and-conquer algorithm for reversing a powerlist,
and shown how to improve it to linear time using a higher-order naturality property
of the function wnzip. This linear-time algorithm relies on polymorphic recursion.

7



Powerlists can be defined as a nested datatype, enforcing the structure invariant; we
have therefore also provided some examples of programs on nested datatypes.

This is the first instance we have seen of a higher-order naturality property leading to
an asymptotic improvement in efficiency of an algorithm. There are many other divide-
and-conquer algorithms with similar patterns of recursion, and we are keen to find
other examples of such improvements. However, higher-order natural transformations
are rather thin on the ground; indeed, we have not been able to think of any non-trivial
functional examples apart from zips and unzips, which are the motivating examples
from Hoogendijk’s thesis.

References

[1] Richard S. Bird and Lambert Meertens. Nested datatypes. In Johan Jeuring,
editor, LNCS 1422: Proceedings of Mathematics of Program Construction, pages
52-67, Marstrand, Sweden, June 1998. Springer-Verlag.

[2] J. W. Cooley and J. W. Tukey. An algorithm for the machine computation of
complex Fourier series. Mathematics of Computation, 19:297-301, 1965.

[3] Ralf Hinze. Perfect trees and bit-reversal permutations. Universitdt Bonn, 1999.

[4] Paul Hoogendijk. A Generic Theory of Datatypes. PhD thesis, Technische
Universiteit Eindhoven, 1997.

[6] Geraint Jones. Deriving the fast Fourier algorithm by calculation. In Kei Davis
and John Hughes, editors, Functional Programming, Glasgow 1989.
Springer-Verlag, 1990.

[6] A. M. Macnaghten and C. A. R. Hoare. Fast Fourier Transform free from tears.
Computer Journal, 20(1):78-83, 1977.

[7] Jayadev Misra. Powerlist: A structure for parallel recursion. ACM Transactions
on Programming Languages and Systems, 16(6):1737-1767, November 1994. Also
in [9].

[8] Alan Mycroft. Polymorphic type schemes and recursive definitions. In LNCS 167:
International Symposium on Programming, pages 217-228. Springer-Verlag, 1984.

[9] A. W. Roscoe, editor. A Classical Mind: Essays in Honour of C. A. R. Hoare.
Prentice-Hall, 1994.

[10] Philip Wadler. Theorems for free! In Functional Programming Languages and
Computer Architecture, pages 347-359. ACM, 1989.



