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Abstract. Given the inorder and preorder traversal of a binary tree
whose labels are all distinct, one can reconstruct the tree. This article
examines two existing algorithms for rebuilding the tree in a functional
framework, using existing theory on function inversion. We also present
a new, although complicated, algorithm by trying another possibility not
explored before.

1 Introduction

It is well known that, given the inorder and preorder traversal of a binary tree
whose labels are all distinct, one can reconstruct the tree uniquely. The problem
has been recorded in [10, Sect. 2.3.1, Exercise 7] as an exercise; Knuth briefly
described why it can be done and commented that it “would be an interesting
exercise” to write a program for the task. Indeed, it has become a classic problem
to tackle for those who study program inversion. For example, see [5,15].

All of the above work on the problem is based on program inversion in an
imperative style. As van de Snepscheut noted in [15], one class of solutions at-
tempts to invert an iterative algorithm, while the other class delivers a recursive
algorithm. In this article we will look at the problem in a functional style, and
attempt to derive these algorithms using existing theory on function inversion.

2 Problem Specification

To formalise the problem, consider internally labelled binary trees defined by
the following datatype:

dataTree α = Null | Node (α,Tree α,Tree α)

Inorder and preorder traversal on the trees can then be defined as:

preorder , inorder :: Tree α → [α]
preorder Null = [ ]
preorder (Node (a, u, v)) = [a] ++ preorder u ++ preorder v
inorder Null = [ ]
inorder (Node (a, u, v)) = inorder u ++ [a] ++ inorder v
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Define pinorder to be the function returning both the preorder and inorder of a
tree:

pinorder :: Tree α → ([α], [α])
pinorder = fork (preorder , inorder)

where fork (f , g) a = (f a, g a). The task involves constructing the inverse of
pinorder . But what exactly does the inverse mean?

A function f :: α → β has inverse f -1 :: β → α if for all a :: α and b :: β we
have1:

f a = b ≡ f -1 b = a

This definition implies that f -1 is also a (possibly partial) function, a restriction
which we will relax in Sect. 4.1. This function f -1 exists if and only if f is an
injection – that is, for all b there exists at most one a such that f a = b. For
instance, id , the identity function, is inverse to itself. In the case of pinorder , its
inverse exists only when we restrict the domain of input trees to those containing
no duplicated labels. To be more formal, we should have included this constraint
as a predicate in the definition of pinorder . To reduce the amount of details,
however, we will allow a bit of hands waving and assume that pinorder is a
partial function taking only trees with labels all distinct.

3 The Compositional Approach

Most published work on program inversion is based on what we call the compo-
sitional approach, be it procedural [6,7,5,16,15,14] or functional [8]. The basic
strategy, from a functional perspective, is to exploit various distributivity laws.
In particular, provided that f -1 and g-1 both exist, we have that

(f · g)-1 = g-1 · f -1 (1)

and that

(f ∪ g)-1 = f -1 ∪ g-1 (2)

if f and g have disjoint ranges. Here the ∪ operator denotes set union, if we
see a function as a set of pairs of input and output. A function defined in many
clauses can be seen as the union of the separate clauses. Defining the product
operator on pairs of functions to be:

(f × g) (a, b) = (f a, g b)

(which generalises to triples in the obvious way), we also have that inverses
distribute into products:

(f × g)-1 = (f -1 × g-1) (3)
1 The symbol ≡ is read “if and only if”.
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Finally, we have (f -1)-1 = f and id -1 = id . In order to compute f -1, the com-
positional approach to function inversion starts with expanding the definition
of f and try to push the inverse operator to the leaves of the expression. The
process continues until we reach some primitive whose inverse is either prede-
fined or trivial. With this approach, a sequentially composed program is “run
backwards”. The challenging part is when we encounter conditionals, in such
cases we have somehow to decide which branch the result was from. This is the
approach we will try in this section.

3.1 Unfolding a Tree

Standard transformations yield the following recursive definition of pinorder :

pinorder Null = ([ ], [ ])
pinorder (Node(a, x , y)) = pi (a, pinorder x , pinorder y)

where pi :: (α, ([α], [α]), ([α], [α])) → ([α], [α])
pi (a, (x1, y1), (x2, y2)) = ([a] ++ x1 ++ x2, y1 ++ [a] ++ y2)

Notice first that the two clauses of pinorder have disjoint ranges – the second
clause always generates pairs of non-empty lists. According to (2), to construct
the inverse of pinorder we can invert the two clauses separately and join them
together. The first clause can simply be inverted to a partial function taking
([ ], [ ]) to Null . The second clause of pinorder can also be written in point-free
style as

pi · (a × pinorder × pinorder) · Node-1

where Node-1 corresponds to pattern matching. Its inverse, according to (1) and
(3), is

Node · (a × pinorder -1 × pinorder -1) · pi -1
We can invert pinorder if we can invert pi . In summary, define:

rebuild ([ ], [ ]) = Null
rebuild (x , y) = (Node · (id × rebuild × rebuild) · pi -1) (x , y)

The function rebuild is the inverse of pinorder if pi -1 exists.
Note that the wish that pi -1 exists is a rather strong one. Every injective

function f has a functional inverse f -1. As we shall see in Sect. 4.1, however,
it is possible that a non-injective function f does not have a functional inverse,
but its converse, the notion of inverse generalised to relations, reduces to a
function after being composed with something else. In the particular case here,
however, pi does have a functional inverse if its domain is restricted to triples
(a, (x1, y1), (x2, y2)) where a does not present in either y1 or y2, and that the
length of xi equals yi for i ∈ {1, 2} (it can be proved inductively that it is indeed
the case in the usage of pi in pinorder if the input tree has distinct labels). Such
a partial function pi has as its inverse:

pi -1 (a : x , y) = (a, (x1, y1), (x2, y2))
where y1 ++ [a] ++ y2 = y

x1 ++(len y1) x2 = x
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where the pattern x1++n x2 = x splits into two such that x1 has length n. Haskell
programmers would have written (x1, x2) = splitAt n x .

This is how in [10] Knuth explained why indeed the tree can be uniquely
constructed. However, a naive implementation would result in a cubic time al-
gorithm, because searching for an a in y and splitting x are both linear-time
operations. In the next sections we will remove this linear-time overhead by a
common functional program derviation technique.

3.2 Eliminating Repeated Traversals

Directly implementing rebuild as defined in the last section results in a slow
algorithm because the input lists are repeatedly traversed. For example, the list
x is split into x1 and x2. This requires traversing x from the front. In the next
level of recursion, however, x1 will also be split into two, and the prefix of x is
thus traversed again.

It is a common technique in functional program derivation to reorder the
splitting of lists such that the repeated traversal can be avoided by introducing
extra outputs and exploiting the associativity of ++. Define reb as a partial
function on non-empty x and y as:

reb a (x , y) = (rebuild (x1, y1), x2, y2)
where y1 ++ [a] ++ y2 = y

x1 ++(len y1) x2 = x

The aim now is to derive a recursive definition for reb. The case when y starts
with a is relatively simple:

reb a (x , a : y)
= {by definition, since [ ] ++ [a] ++ y = a : y}

(rebuild ([ ], [ ]), x , y)
= {by definition of rebuild}

(Null , x , y)

For the general case, we derive:

reb a (b : x , y)
= {by definition, let y1 ++ [a] ++ y2 = y

and x1 ++(len y1) x2 = x}
(rebuild (b : x1, y1), x2, y2)

= {by definition of rebuild , let y3 ++ [b] ++ y4 = y1
and x3 ++(len y3) x4 = x1}

(Node (b, rebuild (x3, y3), rebuild (x4, y4)), x2, y2)
= {since y3 ++ [b] ++ (y4 ++ [a] ++ y2) = y

and x3 ++(len y3) (x4 ++ x2) = x ; we have
(t3, x4 ++ x2, y4 ++ [a] ++ y2) = reb b (x , y) for some t3}
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(Node (b, t3, rebuild (x4, y4)), x2, y2)
= {let (t4, x2, y2) = reb a (x4 ++ x2, y4 ++ [a] ++ y2)}

(Node (b, t3, t4), x2, y2)

Denoting x4++x2 by x5 and y4++[a]++y2 by y5, we have just derived the following
recursive definition of reb:

reb a (x , a : y) = (Null , x , y)
reb a (b : x , y) = let (t3, x5, y5) = reb b (x , y)

(t4, x2, y2) = reb a (x5, y5)
in (Node (b, t3, t4), x2, y2)

The use of duplicated as in the first pattern is non-standard. In Haskell we would
need an explicit equality test.

To be complete, we still need to work out a definition of rebuild in term of
reb. Since reb is defined on non-empty input only, we deal with the empty case
separately:

rebuild ([ ], [ ]) = Null

For the non-empty case, the following equivalence is trivial to verify:

rebuild (a : x , y) = let (t1, x ′, y ′) = reb a (x , y)
t2 = rebuild (x ′, y ′)

in Node (a, t1, t2)

A Haskell implementation of the algorithm is given in Fig. 1. We have actu-
ally reinvented the recursive algorithm in [15] in a functional style. In the next
section, we will continue to see how the other, iterative, class of algorithms can
be derived functionally.

data Tree a = Null | Node a (Tree a) (Tree a) deriving Show

rebuild :: Eq a => ([a],[a]) -> Tree a
rebuild ([],[]) = Null
rebuild (a:x, y) = let (t, x’, y’) = reb a (x,y)

in Node a t (rebuild (x’,y’))

reb :: Eq a => a -> ([a],[a]) -> (Tree a,[a],[a])
reb a (x@(˜(b:x1)),y)
| head y == a = (Null, x, tail y)
| otherwise = let (t1, x’, y’) = reb b (x1, y)

(t2, x’’, y’’) = reb a (x’, y’)
in (Node b t1 t2, x’’, y’’)

Fig. 1. Haskell code implementing pinorder -1.
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4 Two Folding Algorithms

In Sect. 3, we started from the original program, and constructed a program in
one go that builds a tree having both the specified inorder and preorder traversal.
The expressiveness of relations, on the other hand, allows us to deal with the
problem in a more modular way. In this section we will try a different approach,
by first constructing a non-deterministic program that builds a tree with the
specified inorder traversal, and then refine the program such that it generates
only the tree with the required preorder traversal.

To talk about a program that non-deterministically generates a possible re-
sult, we will introduce relations in Sect. 4.1. The development of the algorithm
will be presented in Sect. 4.2 and Sect. 4.3. The derived algorithm, expressed as
a fold on in the input list, turns out to be the functional counterpart of Chen
and Udding’s algorithm in [5]. Finally in Sect. 4.4, we will briefly discuss an
alternative algorithm dual to the on in Sect. 4.3.

4.1 From Functions to Relations

A relation of type α → β is a set of pairs (a, b), where a :: α is drawn from the
domain and b :: β from the range. A function is a relation that is simple (a value
in the domain is mapped to no more than one value in the range) and entire
(every value in the domain is mapped to something). Composition of relations
is defined by:

(a, c) ∈ R · S ≡ ∃b :: (a, b) ∈ S ∧ (b, c) ∈ R

If we relax the entireness condition, we get partial functions. A useful class
of partial functions is given by the coreflexsives. A coreflexive is a sub-relation of
id . It serves as a filter, letting through only those values satisfying certain con-
straints. We denote the conversion from predicates (boolean-valued functions)
to coreflexives by the operator ?. For a predicate p, we have

(a, a) ∈ p? ≡ p a

Given a relation R :: α → β, its converse, denoted by R◦ :: β → α, is obtained
by swapping the pairs in R:

(b, a) ∈ R◦ ≡ (a, b) ∈ R

It is the generalisation of inverse to relations.
Real programs are deterministic. Therefore the result of a derivation has to

be a function in order to be mapped to a program. Being able to have relations as
intermediate results, however, allows the derivation to proceed in a more flexible
way, as we will see in the incoming sections.

4.2 Unflattening an Internally Labelled Binary Tree

Back to the problem of building trees from its traversals. Or aim was to construct
pinorder◦ = (fork (preorder , inorder))◦, which takes a pair of traversals and
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yields a tree. The familiar Haskell function curry converts a function on pairs to
a higher-order function, defined below2:

curry :: ((α, β) → γ) → α → β → γ
curry f a b = f (a, b)

When the function is the converse of a fork, we have the following property:

curry (fork (R, f ))◦ a = ((a ) · R)? · f ◦ (4)

To get an intuition of (4), let R, f and a have types γ → α, γ → β, and
α, respectively. The term (fork (R, f ))◦ thus has type (α, β) → γ. The left-hand
side of (4) takes a value b :: β, passes the pair (a, b) to (fork (R, f ))◦, and returns
c :: γ such that c is mapped to a by R and f c = b. The right-hand side does the
same by mapping b to an arbitrary c using f ◦, and taking only those cs mapped
to a by R. The proof of (4) relies on expressing forks as intersections of relations
and applying more primitive algebraic relational calculus. Interested readers are
referred to [12].

Define rebuild = curry pinorder . By (4), we have

rebuild x = ((x ) · preorder)? · inorder◦

The converse of inorder takes a list as the input, and maps it to an arbitrary tree
whose inorder traversal is the given list. The coreflexive ((x ) · preorder)? then
acts as a filter, picking the tree whose preorder traversal is the list x . Our aim
is to construct rebuild x , assuming that x does not contain duplicated elements.
Writing rebuild this way is possible only with the expressiveness of relations.

The aim of this section is to invert inorder . In [13], the same approach was
applied to solve similar problems, building trees under some optimal or validity
constraints. They all use the same core algorithm developed in this section but
differ in the refinement step to be described in the next section.

How does one build a tree with a given inorder traversal? In the compositional
approach, since inorder is defined as a fold, its inverse would be constructed as
an unfold, like what we did in Sect. 3.1.

Alternatively, one can build such a tree as a fold over the given list. So, given
a tree whose inorder traversal is x , how does one add another node to the tree,
such that the inorder traversal of the new tree is a : x? One way to do it is
illustrated in Fig. 2: we divide the left spine of the tree in two parts, move down
the lower part for one level, and attach a to the end. If we call this operation add ,
the relational fold foldr add Null constructs a tree whose inorder traversal is the
given list, i.e., foldr add Null is a sub-relation of inorder◦. But can we construct
all the legal trees this way? In other words, does inorder◦ equal foldr add Null?

The converse-of-a-function theorem [4,11,13] gives conditions under which
the converse of a function equals a fold. What matters is whether the function
satisfies certain properties, rather than its particular definition. Its specialised
version for lists reads:
2 Cautious readers would notice that f here is a function while curry in (4) takes

relational arguments. Factoring out the variable b and substitute f for R, we get
curry R a = R·fork (const a, id), which can be taken as its generalisation to relations.
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Fig. 2. Spine representation for internally labelled trees.

Theorem 1. Given a function f :: β → [α], if we can find a relation step :: α →
β → β and a value base :: β that are jointly surjective and :

f base = [ ]
f (step a x ) = a : f x

then we have:

f ◦ = foldr step base

By jointly surjectiveness we mean that base and the range of step covers all the
values in β.

Returning to add , we could have start with deriving inorder◦ directly using
Theorem 1. To allow an efficient implementation of add , however, it turns out
that it is preferable to introduce another representation for trees. The following
type Spine a represents the spine of an internally labelled binary tree:

typeSpine α = [(α,Tree α)]

For example, the tree on the left-hand side of Fig. 2 is represented by the list

[(b, t), (c, u), (d , v), (e,w)]

The conversion from a spine tree to the ordinary representation can be performed
by the function roll defined below:

roll :: Spine α → Tree α
roll = foldl join Null

where join u (a, v) = Node (a, u, v)

The reader is reminded that the introduction of Spine is merely for the sake of
efficiency. As we will see later, with Spine it is easier to attach leaves as shown
in Fig. 2. Without Spine, we still get the same algorithm, but on a different
datatype.

Our aim now is to find a relation add and a value zero such that

(inorder · roll)◦ = foldr add zero
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According to the converse-of-a-function theorem, the above equality holds if

inorder (roll zero) = [ ] (5)
inorder (roll (add a us)) = a : inorder (roll us) (6)

To satisfy (5), we can choose zero = Null . To derive an add satisfying (6), we
will need a property distributing inorder into the subtrees on the spine:

inorder · roll = concat · map (cons · (id × inorder)) (7)

where the functor × is define by (f × g) (x , y) = (f x , g y). Starting from the
left-hand side of (6) and assume us = vs ++ ws, we derive:

a : inorder (roll (vs ++ ws))
= {(7)}

a : concat (map (cons · (id × inorder)) (vs ++ ws))
= {since concat and map distributes over ++}

a : concat (map (cons · (id × inorder)) vs)++
concat (map (cons · (id × inorder))ws)

= {(7)}
a : inorder (roll vs)++

concat (map (cons · (id × inorder))ws)

= {definition of concat and map}
concat (map (cons · (id × inorder)) ((a, roll vs) : ws))

= {(7)}
inorder (roll ((a, roll vs) : ws))

We therefore have add a (vs ++ ws) = (a, roll vs) : ws. The cases for add a [ ] and
add a [u] turn out to be absorbed by the above case, and the derivations are left
as exercises for the reader. Thus we choose:

add :: α → Spine α → Spine α
add a (us ++ vs) = (a, roll us) : vs

It is not a function because of the non-deterministic pattern us ++ vs.
It is also not difficult to see that Null and add are jointly surjective, since if

a tree is not Null , it must be a result of adding its leftmost element on the spine
to some tree. We therefore conclude that

(inorder · roll)◦ = foldr add Null

Since roll is an isomorphism, we have inorder◦ = roll · foldr add Null .
For some intuition what add does, consider Fig. 2 again. As mentioned be-

fore, the tree on the left-hand side is represented in the spine representation as
[(b, t), (c, u), (d , v), (e,w)]. The one on the right-hand side, on the other hand,
is represented by [(a, roll [(b, t), (c, u)]), (d , v), (e,w)] and results from splitting
the former list, one of the five ways to split it into two.
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4.3 Enforcing a Preorder

Now recall our the specification of rebuild

rebuild x = ((x ) · preorder)? · inorder◦

In the last section we have inverted inorder as a relational fold and switched to
a spine representation, yielding:

rebuild x
= ((x ) · preorder)? · roll · foldr add Null
= roll · (hasPreorder x )? · foldr add Null

where hasPreorder x = (x ) · preorder · roll . We now want to fuse
(hasPreorder x )? into the fold to efficiently generate the one tree which has the
correct preorder traversal. The fold-fusion theorem for lists says:

Theorem 2.

R · foldr S e = foldr T d ⇐ R · S a = T a · R ∧ ((e, d ′) ∈ R ≡ d ′ = d)

However, hasPreorder x is too strong an invariant to enforce within the fold:
it is impossible to make the constructed tree to have the same preorder traversal
in each iteration.

Instead, we will try to find a weaker constraint to fuse into the fold. Define
preorderF to be the preorder traversal of forests:

preorderF = concat · map preorder

Look at Fig. 2 again. The preorder traversal of the tree on the left-hand side is

[e, d , c, b] ++ preorderF [t , u, v ,w ]

that is, to go down along the left spine, then traverse through the subtrees
upwards. In general, given a spine tree us, its preorder traversal is

reverse (map fst us) ++ preorderF (map snd us)

We will call the part before ++ the prefix and that after ++ the suffix of the
traversal. Now look at the tree on the right-hand side. Its preorder traversal is

[e, d , a, c, b] ++ preorderF [t , u, v ,w ]

It is not difficult to see that when we add a node a to a spine tree us, the suffix
of its preorder traversal does not change. The new node a is always inserted to
the prefix.

With this insight, we split hasPreorder into two parts:

hasPreorder :: Eq α ⇒ [α] → Spine α → Bool
hasPreorder x us = prefixOk x us ∧ suffixOk x us
suffixOk x us = preorderF (map snd us) isSuffixOf x
prefixOk x us = reverse (map fst us) (x 	 preorderF (map snd us))
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where x 	 y removes y from the tail of x and is defined by:

x 	 y = z where z ++ y = x

The expression x isSuffixOf y yields true if x is a suffix of y . The use of boldface
font here indicates that it is an infix operator (and binds looser than function
applications). The plan is to fuse only suffixOk x into the fold while leaving
prefixOk x outside.

There is a slight problem, however. The invariant suffixOk x does not prevent
the fold from generating, say, a leftist tree with all null along the spine, since the
empty list is indeed a suffix of any list. Such a tree may be bound to be rejected
later. Look again at the right-hand side of Fig. 2. Assume we know that the
preorder traversal of the tree we want is x = [.. d , c, b] ++ preorderF [t , u, v ,w ].
The tree in the right-hand side of Fig. 2, although satisfying suffixOk x , is bound
to be wrong because d is the next immediate symbol but a now stands in the way
between d and c, and there is no way to change the order afterwards. Thus when
we find a proper location to insert a new node, we shall be more aggressive and
consume as much suffix of x as possible. The following predicate lookahead x
ensures that in the constructed tree, the next immediate symbol in x will be
consumed:

lookahead :: Eq α ⇒ [α] → Spine α → Bool
lookahead x us = length us ≤ 1 ∨

(map fst us) !! 1 �=last x ′

where x ′ = x 	 preorderF (map snd us)

Apparently lookahead x is weaker than hasPreorder x . Define

ok x us = suffixOk x us ∧ lookhead x us

which will be our invariant in the fold, we have

hasPreorder x us = prefixOk x us ∧ ok x us (8)

The derivation goes:

rebuild
= {definition}

((x ) · preorder)? · inorder◦

= {inverting inorder , moving roll to the left}
roll · (hasPreorder x )? · foldr add null

= {by (8)}
roll · (prefixOk x )? · (ok x )? · foldr add null

= {fold fusion, assume nodup x}
roll · (prefixOk x )? · foldr (add ′ x )null

To justify the fusion step, it can be shown that if x contains no duplicated
elements, the following fusion condition holds:

(ok x )? · add a = add ′ x a · (ok x )?
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where add ′ is defined by:

add ′ :: Eq α ⇒ [α] → (α,Spine α) → Spine α
add ′ x (a, us) = up a null (us, x 	 preorderF (map snd us))

up :: Eq α ⇒ α → Tree α → (Spine α, [α]) → Spine α
up a v ([ ], x ) = [(a, v)]
up a v ((b, u) : us, x ++ [b′])

| b b′ = up a (node (b, (v , u)) (us, x )
| otherwise = (a, v) : (b, u) : us

In words, the function up traces the left spine upwards and consume the values
on the spine if they match the tail of x . It tries to roll as much as possible before
adding a to the end of the spine.

As a final optimisation, we can avoid re-computing x 	
preorderF (map snd us) from scratch by applying a tupling transforma-
tion, having the fold returning a pair. The Haskell implementation is shown
in Fig. 3. The fold in rebuild returns a pair of a tree and a list representing
x 	 preorderF (map snd us). Since the list is consumed from the end, we
represent it in reverse. The function rollpf implements roll · (prefixOk x )?.

data Tree a = Null | Node a (Tree a) (Tree a)
deriving (Show,Eq)

rebuild :: Eq a => [a] -> [a] -> Tree a
rebuild x = rollpf . foldr add’ ([],reverse x)

where add’ a (us,x) = up a Null (us,x)
up a v ([],x) = ([(a,v)],x)
up a v ((b,u):us, b’:x)

| b == b’ = up a (Node b v u) (us, x)
| otherwise = ((a,v):(b,u):us, b’:x)

rollpf :: Eq a => ([(a,Tree a)],[a]) -> Tree a
rollpf (us,x) = rp Null (us,x)
where rp v ([],[]) = v

rp v ((b,u):us, b’:x)
| b == b’ = rp (Node b v u) (us,x)

Fig. 3. Rebuilding a tree from its traversals via a fold.

Figure 4 shows an example of this algorithm in action. The part in boldface
font indicates preorderF (map snd us). Notice how the preorder traversals on of
the trees under the spine always form a suffix of the given list [a, b, c, d , e, f ].
We have actually reinvented the algorithm proposed in [5], but in a functional
style.
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Fig. 4. Building a tree from preorder abcdef and inorder bdcaef. The preorder traver-
sals of the trees under the spine is written in boldface font.

4.4 Building a Tree with a Given Preorder

The reader might justifiably complain that the derivation works because, by
luck, we choose to invert inorder first. Had we started with defining pinorder =
fork (inorder , preorder), we would have come up with

((x ) · inorder)? · preorder◦

We would then have to invert preorder , and then enforce, on the resulting fold,
the constraint that the tree built must have a given inorder traversal. Does the
alternative still work? In fact, it does, and the result is a new, though more
complicated, algorithm. We sketch an outline of its development in this section.

We first seek to invert preorder . For this problem it turns out that it makes
more sense to work on forests rather than trees. Recall preorderF :: [Tree α] →
[α] defined by preorderF = concat · map preorder . The reader can easily ver-
ify, with the converse-of-a-function theorem, that preorderF can be inverted as
below:

preorderF ◦ = foldr step [ ]
step a us = tip a : us

� lbr (a, head us) : tail us � rbr (a, head us) : tail us
� node(a, (us!!0, us!!1)) : tail (tail us)

where the � operator denotes non-deterministic choice. The helper functions tip,
lbr and rbr respectively creates a tip tree, a tree with only the left branch, and
a tree with only the right branch. They are defined by:

tip a = Node (a,Null ,Null)
lbr (a, t) = Node (a, t ,Null)
rbr (a, t) = Node (a,Null , t)

In words, the relation step extends a forest in one of the four possible ways:
adding a new tip tree, extending the leftmost tree in the forest by making it a
left-subtree or a right-subtree, or combining the two leftmost trees, if they exist.
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The next step is to discover a guideline which of the four operations to
perform when adding a new value. We need to invent an invariant to enforce in
the body of the fold. To begin with, we reason:

((x ) · inorder)? · preorder◦

= {since preorder = preorderF · wrap, where wrap a = [a]}
((x ) · inorder)? · wrap◦ · preorderF ◦

= {some trivial manipulation}
wrap◦ · ((x ) · concat · map inorder)? · preorderF ◦

Again, the condition (x ) · concat · map inorder is too strong to maintain.
Luckily, it turns out that the weaker constraint

(isSubSeqOf x ) · concat · map inorder

will do, where (isSubSeqOf x ) y = y isSubSeqOf x yields true if y is a subse-
quence of x . That is, we require that during the construction of the forest, the
inorder traversal of each tree shall always form segments of x , in correct order.
Figure 5 demonstrates the process of constructing the same tree as that in Fig.
4. This time notice how the inorder traversal of the constructed forest always
forms a subsequence of the given list [b, d , c, a, e, f ].
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Fig. 5. Yet another way to build a tree from preorder abcdef and inorder bdcaef.

After some pencil-and-paper work, one will realise that to decide how to
extend the forest while maintaining the invariant above, it is necessary to take
into consideration two more entities in the given inorder traversal: the skipped
segments between the trees in the current forest (the underlined parts in Fig.
5), and the element immediately next to the first tree (e.g., a in (2) and d in (3)
of Fig. 5).

The algorithm is implemented in Fig. 6, where the functions add and join
reflect the rules. In each step of the fold in rebuild , the variable x represents
the reversed prefix of the given inorder traversal to the left of the first tree, i.e.,
the “unprocessed” prefix. The function isNext x a tests whether a is the next
element. The skipped segments, on the other hand, is paired with each tree in
the forest. The fold thus yields the type ([α], [(Tree α, [α])]).
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Let a be the new node to add to the forest. When the forest is empty, the
function newtree is called to create a new singleton tree. Otherwise denote by
t the leftmost tree in the forest. If a is the next element in x , the function
rbr is called to make t a right branch of a. If a equals the first element in the
skipped segment next to t , on the other hand, the function join is called to
decide whether to attach t as a left subtree or to attach two subtrees to a. When
none of the cases hold, we make a a separate singleton tree by newtree, which
also computes the new x and the new skipped segment.

type AForest a = [(Tree a, [a])]

rebuild :: Eq a => [a] -> [a] -> Tree a
rebuild x = fst . unwrap . snd . foldr add (reverse x, [])
where add :: Eq a => a -> ([a],AForest a) -> ([a],AForest a)

add a xu@(x, []) = newtree a xu
add a xu@(x, (t,[]):us)
| isNext x a = (tail x, (rbr a t, []):us)
| otherwise = newtree a xu

add a xu@(x,(t,b:bs):us)
| a == b = (x, join a (t,bs) us)
| isNext x a = (tail x, (rbr a t, b:bs):us)
| otherwise = newtree a xu

join a (t,[]) [] = [(lbr a t,[])]
join a (t,[]) ((u,y):us) = (Node a t u, y) : us
join a (t,bs) us = (lbr a t, bs):us

newtree a (x,us) = (x’, (tip a, y):us)
where (x’,y) = skip x a

isNext [] a = False
isNext (b:bs) a = a == b

skip x a = locate a [] x
where locate a y [] = ([],y)

locate a y (b:x) | a == b = (x,y)
| otherwise = locate a (b:y) x

Fig. 6. An implementation of the second folding algorithm.

All functions called by add , apart from skip, are constant-time operations,
and each element in x is skipped only once. Therefore, the program runs in linear
time, but with a bigger constant overhead than that in Sect. 4.3. To the best
of our knowledge, this algorithm is new. However, the rules consists of totally
eight cases and are relatively complicated comparing to other algorithms in this
article. It is due to that we have four possible operations to choose from, while
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in Sect. 4.3 there are only two – either to walk upward along the spine or to stop
and attach a new node. For that reason we will not go into more detail but just
present the result.

5 Conclusion and Related Work

We have looked at two classes of algorithms for the problem of building a binary
tree from its traversals. The recursive algorithm turns out to be a result of
the compositional approach to function inversion and a technique to eliminate
repeated traversals. In [15], similar transform was presented in a procedural style.

The iterative algorithm, on the other hand, is related to the converse-of-a-
function theorem. It allows us to consider inorder and preorder traversals sepa-
rately. The first step in [5] was to transform the recursive definition of pinorder
into an iteration by introducing a stack. The same effect we achieved by intro-
ducing the spine representation. By exploiting symmetricity, we also discovered
a new, but complicated, linear-time algorithm. In both cases, the actions we
perform on the spine or the forest resemble a shift-reduce parser. In fact, the
one of the early motivating example of the converse-of-a-function theorem was
precedence parsing [11]. It is certainly possible to derive a full shift-reduce parser
using the theorem, although it will be a laborious exercise.

The reader might complain that introducing a spine representation is too
inventive a step, if not itself the answer to the problem. Our defence is that
the spine representation is there to enable traversing the tree upwards from the
left-most tip, which is more a concern of efficiency than an algorithmic one. In
fact, for some applications in [12], where the converse-of-a-function theorem is
also applied, we actually prefer not to use Spine. Some earlier algorithms solve
problems similar to that addressed in this paper without the use of the spine
representation, at least not explicitly. The derivation of [5] introduced a stack
represented by a list, which served the same purpose of the spine we use. In
[9] another similar problem was considered. The resulting algorithm does not
use the spine explicitly. Instead, the author introduced pairs using a tupling
transform. One might see it as implicitly storing the spine in the machine stack.

One of the purposes of this article is to advocate relational program deriva-
tion. So far, its most successful application area is probably in dealing with op-
timisation problems [3,4]. Program inversion may be another application where
a relational approach is useful [12]. An alternative way to talk about inverses
is by set-valued functions[8]. At least within the two application fields, the re-
lations provide a natural and concise framework, avoiding having to take care
of the bookkeeping details of maintaining a set of results. The algebra of rela-
tions, however, is notorious for having too many rules, and it remains to see
whether the complexity can be kept within a manageable scale. See [2,4] for a
fuller introduction to the relational theory of program derivation.

This article concerns only manual program derivation, where the algorithm
is the delivered result. Complementarily, [1] introduced their universal resolving
algorithm to construct an inverse interpreter that actually compute the values
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delivered by the inversed function. Furthermore, the inverse interpreter can be
partially evaluated to produce a program that performs the inverted task.
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