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The Game Plan

• Overview of work in game semantics, including some recent

developments. Applied and algorithmic aspects.

• Some tentative thoughts about connections to specification and

refinement of components.
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Generalities

Game semantics is centrally concerned with the compositional

modelling of interactive systems.

Two faces of game semantics:

• Games as a highly structured mathematical universe, an

intensional analogue of domains as a setting for denotational

semantics.

• Games as concrete objects (representable as graphs,

automata etc.), suitable for algorithmic manipulation.
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Basic Ideas

• Types of a programming language are interpreted as 2-person

games: the Player is the System (program fragment) currently

under consideration, while the Opponent is the Environment or

context.

• Programs are strategies for these games.

So game semantics is inherently a semantics of open systems; the

meaning of a program is given by its potential interactions with its

environment.

• Compositionality. The key operation is plugging two strategies

together, so that each actualizes part of the environment of

the other. (Usual game idea corresponds to a closed system,

with no residual environment). This exploits the

game-theoretic P/O duality.



FMCO 2004

Types as Games

• A simple example of a basic datatype of natural numbers:

nat = {q · n | n ∈ N}

Note a further classification of moves, orthgonal to the P/O

duality; q is a question, n are answers. This turns out to be

important for capturing control features of programming

languages.

• Forming function or procedure types A⇒ B. We form a new

game from disjoint copies of A and B, with P/O roles in A

reversed. Thus we think of A⇒ B as a structured

interface to the Environment; in B, we interact with the caller

of the procedure, covariantly, while in A, we interact with the

argument supplied to the procedure call, contravariantly.
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Example

Strategy for λf : nat ⇒ nat. λx : nat. f(x) + 2.

( nat ⇒ nat ) ⇒ nat ⇒ nat
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Imperative variables

To interpret mutable variables, we will take an “object-oriented

view”, in which a variable (say for example being used to store

values of type nat) is seen as an object with two methods:

• the “read method”, for dereferencing, giving rise to an

operation of type var[nat] ⇒ nat;

• the “write method”, for assignment, giving an operation of

type var[nat] ⇒ nat ⇒ com.

We identify the type of variables with the product of the types of

these methods, setting

var[nat] = (nat ⇒ com) × nat.
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Now assignment and dereferencing are just the two projections, and

we can interpret a command x:=!x+1 as the strategy

(nat ⇒ com) × nat =⇒ com

run

read

n

write

q

n+ 1

ok

ok
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Block structure

The key point is to interpret the allocation of variables correctly,

so that if the variable x in the above example has been bound to a

genuine storage cell, the various reads and writes made to it have

the expected relationship. In general, a term M with a free variable

x will be interpreted as a strategy for var[nat] ⇒ A, where A is the

type of M . We must interpret new x in M as a strategy for A by

“binding x to a memory cell”. With game semantics, this is easy!

We just need to define a suitable strategy cell, and use our general

operation of composition of strategies:

Jnew x in MK = JMK ◦ cell.
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The General Picture

Games and strategies organize themselves into mathematical

structures (categories of various kinds) suitable for modelling

programming languages.

By imposing various structural constraints on strategies, exact

matches can be found with various computational features as

embodied in key programming language constructs, leading to full

abstraction results.
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The first success story: purely functional languages, fully abstract

models for PCF etc. (In retrospect, the least applicable results!)

Constraints: strategies have restricted information available

(“history-free” = memory-less, or “innocent”), corresponding to

statelessness; and also satisfy a properly nested call-return

discipline (no jumps).

Relaxing these constraints leads to fully abstract models for

languages with (locally scoped) state, or control operators, or both.
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The Game Semantics Landscape

Game semantics has proved to be a flexible and powerful paradigm

for constructing highly structured fully abstract semantics for

languages with a wide range of computational features:

• (higher-order) functions and procedures

• call by name and call by value

• locally scoped state

• general reference types

• control features (continuations, exceptions)

• non-determinism, probabilities

• concurrency (GM, FOSSACS 04)

• names and freshness (AGMOS, LiCS 04)
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In many cases, game semantics have yielded the first, and often still

the only, semantics construction of a fully abstract model for the

language in question.

Where sufficient computational features (typically state or control)

are present, the game semantics captures the fully abstract model

directly, without the need for any quotient.
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Algorithmic Game Semantics

We can take advantage of the concrete nature of game semantics.

A play is a sequence of moves, so a strategy can be represented by

the set of its plays, i.e. by a language over the alphabet of moves,

and hence by an automaton.

There are significant finite-state fragments of the semantics for

various interesting languages, as first observed by Ghica and

McCusker (ICALP 00).

This means we can compositionally construct automata as

(representations of) the meanings of open (incomplete) programs,

giving a powerful basis for compositional software model-checking.
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The Algorithmic Game Semantics Project

EPSRC-funded project at Oxford University Computing

Laboratory

S.A., Luke Ong, Dan Ghica and Andrzej Murawski

• Theoretical results on complexity, decidability of various

fragments.

• Extending the games model, e.g. for concurrency (Idealized

Parallel Algol), names and freshness, etc.

• Implementation of a ‘game semantics compiler’, which compiles

Finitary IA programs into FSM’s.

• Case studies using the compiler.
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Implementation notes

• parser + type inference + (some) back-end processing: CAML

• (most) back-end RL processing: AT&T FSM Library

• output: AT&T GraphViz and dot packages
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Warm-up example

client : com -> exp -> com |-

new var v:= 0 in

let set be v:=1 in

let get be !v in

client (set, get): com.

 
0 1

run
2

client.run

3
client.done

41.client.run

5

2.client.q

6
done

7

1.client.done

2.client.0

client.done

1.client.run

8

2.client.q

2.client.1
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Case studies [SAVCBS’03, TACAS’04]

• safety properties for ADTs

• models of algorithm implementations (sorting)

• models of protocol implementations

• etc (not problem specific)
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Modeling ADTs: a stack module

empty : com, overflow : com, m : exp, CONTEXT : com -> exp -> com |-

array buffer[\(n\)] in

let size be \(n\) in

new var crt := 0 in

let isempty be !crt = 0 in

let isfull be !crt = size in

let push be fun x : exp.

new var temp := x in

if isfull then overflow

else buffer[!crt] := !temp;

crt := !crt + 1 fi in

let pop be

if isempty then empty; 0

else crt := !crt - 1; !buffer[!crt] fi in

CONTEXT(push (m), pop): com.
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Model of size-2 unary data stack

 

0 1
run

2
CONTEXT.run

3

CONTEXT.done

4PUSH.run

5

POP.q

6
done

7PUSH.done

8
empty.run

CONTEXT.done

9PUSH.run

10

POP.q

empty.done

11PUSH.done

POP.0

CONTEXT.done

12
PUSH.run

13

POP.q

14

overflow.run

POP.0

overflow.done
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Modeling safety properties

• safety properties = RLs [Manna & Pnueli 90]

• safety properties = assertions (standard in SMC)

let assert be fun a:exp.

if a then skip else error fi

• traces containing error actions are counterexamples
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ADT invariants as safety properties

...

VERIFY(push (m), pop,

assert(

new var x := m in

push(!x);

pop = !x

))

: com.
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Extracting the shortest diagnostic trace
0 1 run

1 2 VERIFY.run

2 3 1.VERIFY.run

3 4 m.q

4 5 m.1

5 6 1.VERIFY.done

6 7 1.VERIFY.run

7 8 m.q

8 9 m.1

9 10 1.VERIFY.done

10 11 3.VERIFY.run

11 12 m.q

12 13 m.0

13 14 overflow.run

14 15 overflow.done

15 16 error.run

16 17 error.done [...]



FMCO 2004

Sorting: bubblesort
x:var |-

array a[\(n\)] in

new var i:=0 in

while !i < \(n\) do a[!i]:=!x; i:=!i+1 od;

new var flag:=1 in

while !flag do

new var i:=0 in

flag:=0;

while !i < \(n\) - 1 do

if !a[!i] > !a[!i+1] then

flag:=1;

new var temp:=!a[!i] in

a[!i]:=!a[!i+1]; a[!i+1]:=!temp

else skip fi;

i:=!i+1 od od;

new var i:=0 in

while !i < \(n\) do x:=!a[!i]; i:=!i+1 od : com.
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2-element array of integers %2

0 1
run

2
x.q

3

x.1

4
x.0

5

x.-1

6x.q

7
x.q

8

x.q

9
x.1

10

x.0

11

x.-1

x.1

12

x.0

13

x.-1

x.1

x.0

14

x.-1

15

x.1write

x.0write

x.-1write

16

x.0write

x.-1write

17x.-1write

18

x.ok

19
x.ok

20x.ok

21

x.1write

x.0write

x.-1write
22

x.ok
23

done
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20-element array of integers %2
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On modeling sorting programs

“[...] it seems impossible to use model-checking to verify that a

sorting algorithm is correct since sorting correctness is a

data-oriented property involving several quantifications and data

structures.” [Bandera user manual]

Why does it work?

• program state-space: 5.5 × 1012 states

• model: 6, 393 states

• max space: 1, 153, 240 states

Hiding local state!
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Further Directions

• Extend compiler to handle concurrency and other features.

• Use FDR (CSP model-checker) as a back end.
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Reactive Refinement

We shall now look at how a simple approach to components leads

very naturally to Game semantics ideas.

We will also look at a natural game notion of reactive refinement,

which seems promising for use with reactive components.
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A simple model of ‘components’ or ‘objects’

Basic data types D, e.g. int, bool.

Method types:

T = D1 × · · · ×Dk −→ D′

1 × · · · ×D′

l

Signature (of a closed component)

` m1 : T1, . . . ,mk : Tk
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Examples

• A counter component has a method

inc : unit −→ nat

• A stack component has methods

push : D −→ unit

pop : unit −→ unit

top : unit −→ D
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Component Environment

m1

...

mk

Basic ‘events’ or ‘actions’ of a component

m : D1 × · · · ×Dk −→ D′

1 × · · · ×D′

l

Action type Notation Performed by

Method call m?(d1, . . . , dk) Environment

Method return m!(d′1, . . . , d
′

l
) Component
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A trace or history of the component is a sequence

〈m1?(~d1),m1!(~d′1), . . . ,mk?(~dk),mk!(~d′k)〉

of alternating calls and returns.

We can specify a component in terms of the set of its possible

histories. This allows state-dependent behaviour to be

captured (even though no variables appear explicitly in our model).

Example Possible histories for the counter module have the form

〈inc?, inc!0, inc?, inc!1, . . .〉
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Open Components

The general case: open components

An open component both:

• uses some methods to be supplied by the Environment

• provides some methods which can be used by the

Environment

General component signature:

Uses ` Provides

m1 : T1, . . . ,mk : Tk ` m′

1 : T ′

1, . . . ,m
′

l
: T ′

l



FMCO 2004

General classification of action types

There are now four kinds of action or event:

• Environment call of a provided method

• Component return “

• Component call of a used method

• Environment return “
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The general structure of a component history is now as follows: a

sequence of ‘blocks’

B1 · · ·Bk

where each block has the form

m?(~d) Environment call

m1?(~d1) Component call

m1!(~d
′

1) Environment return
...

mk?(~dk) Component call

mk!(~d′
k
) Environment return

m!(~d′) Component return

NB: this is really a bit over-simplied - does not allow for

re-entrancy, concurrent activations ...
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Composition: plugging components together

Given component specifications

C1 : Γ1,Θ1 ` ∆1,Θ2

C2 : Γ2,Θ2 ` ∆2,Θ1

we want to form a new component C with signature

Γ1,Γ2 ` ∆1,∆2

Here

Θ1 are the methods which C1 requires and C2 provides.

Θ2 are the methods which C2 requires and C1 provides.
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The histories of C are obtained in two stages:

1. ‘Parallel Composition’: form all histories in the signature

Γ,Θ ` ∆,Θ

(where X = X1 ∪X2, X ∈ {Γ,∆,Θ})

such that:

• The restriction to Γ1,Θ1 ` ∆1,Θ2 is a history of C1

• The restriction to Γ2,Θ2 ` ∆2,Θ1 is a history of C2.

2. ‘Hiding’: erase all events in Θ.
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Connection with game semantics

Environment calls Opponent Questions

Component returns Player Answers

Component calls Player Questions

Environment returns Opponent Answers

The structure of histories falls out from the game semantics for

first-order procedures.

Composition of components is composition of strategies.
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However: game semantics focusses on types and programs —

modelled as games and strategies respectively.

We wish to have a broader range of specifications, with a

spectrum

[Types · · · · · ·Programs
︸ ︷︷ ︸

Specifications

]

mediated by a suitable notion of Refinement.



FMCO 2004

Standard view of refinement

(See e.g. the books by Carroll Morgan and by Back and Von

Wright).

A specification can be regarded as a contract between a “client”

and a “programmer”. Consider firstly the case of relational

specifications. We think of a program as a relation R ⊆ I ×O

between a set of input values I and a set of output values O. A

specification for such a program can be expressed as a

precondition-postcondition pair (φ, ψ) where φ is a predicate on

inputs, φ ⊆ I, and ψ is a predicate on outputs, ψ ⊆ O. The

intended interpretation is:

when the input satisfies φ, then the output must satisfy ψ

or more formally

∀x. x ∈ φ ⇒ R(x) ⊆ ψ.
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Note that the programmer and the client have different—in fact

complementary—aspects of the situation under their control. The

client can control which inputs are supplied to the program when it

is put into use; while the programmer’s code will determine, for a

given input, which outputs can be produced. We can say that the

client generates the inputs, but then can only observe the outputs,

while the programmer’s view is dual: he observes the inputs, and

must then generate the outputs. From the client’s point of view,

the less the specification constrains the inputs, and the more it

constrains the outputs, the more chances he has to show that the

program is at fault; the better his interests are protected. The

programmer’s view is again dual: the more the specification

constrains the inputs, and the less it constrains the outputs, the

easier his task becomes.

Cf. also subtyping.
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This leads to the following standard notion of refinement of

specifications:

(φ1, ψ1) v (φ2, ψ2) ⇐⇒ φ1 ⇒ φ2 ∧ ψ2 ⇒ ψ1.

Thus (φ2, ψ2) refines (φ1, ψ1) if, whenever the client is happy with

(φ1, ψ1), then he will certainly be happy with (φ2, ψ2). In passing

to the refined specification, the programmer is not allowed to make

his task easier, either by over-constraining the environment in

which the program will run—in this case, just the inputs which

may be supplied to it—or by under-constraining the behaviour of

the system—in this case the outputs which may be produced from

given inputs.
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Reactive refinement for component specifications

Suppose that S and T are component specifications over the same

signature. We say that S is refined by T if:

The Environment is less constrained by T than by S

The Component is more constrained by T than by S.

With repeated interactions between the component and the

environment, we need appropriate conditioning of the constraints.
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Definition of Reactive Refinement

Fix a signature Γ ` ∆, and let H be the set of all possible histories

over this signature. A is the set of all actions (of all four types).

Note that each history is an alternating sequence of moves by

the Environment (at odd-numbered positions in the sequence) and

by the Component (at even-numbered positions). We write Heven

for the set of even-length sequences in H, and Hodd for the set of

odd-length sequences.

We define

S v T ⇐⇒

∀s ∈ Heven, ∀a ∈ A. s · a ∈ S ∧ s ∈ T ⇒ s · a ∈ T

∧

∀t ∈ Hodd, ∀a ∈ A. t · a ∈ T ∧ t ∈ S ⇒ t · a ∈ S

‘At Environment moves, S ⊆ T , and at Component moves, S ⊇ T ’.
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The Refinement Lattice

Given a family {Si}i∈I of specifications, we can form their meet

under the refinement ordering by the following inductive definition:

d
i∈I

Si = µX. {ε}

∪ {s · a | s ∈ Xeven ∧ ∀i ∈ I. s ∈ Si ⇒ s · a ∈ Si}

∪ {s · a | s ∈ Xodd ∧ ∃i ∈ I. s ∈ Si ∧ s · a ∈ Si}

This lattice strcture has already been used in giving semantics of

polymorphism and sub-typing (SA, Semantics of Interaction,

Juliusz Chroboczek Ph.D. thesis).

Current direction (SA, Jan Jurjens): study general use in

component refinement, applications to security properties.


