
FotFS V

Game Semantics and Infinite Games

Samson Abramsky

Oxford University

http://web.comlab.ox.ac.uk/oucl/work/samson.abramsky/

FotFS V

The Game Plan

• Overview of work in Game Semantics, locating it the games

landscape.

• How infinite games arise naturally in game semantics, and the

distinctive game semantics perspective on them.

FotFS V

Compositionality

A methodological principle from Computer Science (and Logic) of

major potential importance for mathematical modelling

throughout the sciences.

Traditional aproach: whole-system (monolithic) analysis of given

systems. Key structuring templates, e.g. ‘Find the Hamiltonian’,

‘Find the Nash Equilibrium’, etc.

Compositional approach: start with a fixed set of basic (simple)

building blocks, and constructions for building new systems out

of given sub-systems, and build up the required complex system

with these.

The algebraic view:

S = ω(S1, . . . , Sn)

The logical view: S1 |= φ1, . . . , Sn |= φn

ω(S1, . . . , Sn) |= φ

FotFS V

Generalities

Game Semantics is centrally concerned with the compositional

modelling of interactive systems. This paradigm turns out to

be fruitful for modelling:

• Logics (Linear, Intuitionistic, Classical, . . .) and the

coresponding type theories.

• Programming languages with a wide range of features

(procedures, block structure, references, non-local control,

concurrency, . . .).

FotFS V

Two faces of game semantics

• Games as a highly structured mathematical universe, an

intensional setting for denotational semantics.

• Games as concrete objects (representable as graphs,

automata etc.), suitable for algorithmic manipulation, hence

providing a basis for compositional verification and program

analysis.

FotFS V

Basic Ideas

• Types of a programming language, or formulas of a logic,

are interpreted as 2-person games: the Player is the System

(program fragment, proof from assumptions) currently under

consideration, while the Opponent is the Environment or context.

• Programs, or proofs in a logic, are strategies for these games.

So game semantics is inherently a semantics of open systems; the

meaning of a program is given by its potential interactions with its

environment.

• Compositionality. The key operation is plugging two strategies

together, so that each actualizes part of the environment of the

other. (Usual game idea corresponds to a closed system, with no

residual environment). This exploits the game-theoretic P/O

duality.

FotFS V

Types as Games

• A simple example of a basic datatype of natural numbers:

nat = {q · n | n ∈ N}

Note a further classification of moves, orthgonal to the P/O

duality; q is a question, n are answers. This turns out to be

important for capturing control features of programming

languages.

• Forming function or procedure types A ⇒ B. We form a new

game from disjoint copies of A and B, with P/O roles in A

reversed. Thus we think of A ⇒ B as a structured

interface to the Environment; in B, we interact with the caller

of the procedure, covariantly, while in A, we interact with the

argument supplied to the procedure call, contravariantly.

FotFS V

Example

Strategy for λf : nat ⇒ nat. λx : nat. f(x) + 2.

(nat ⇒ nat) ⇒ nat ⇒ nat

FotFS V

Example

Strategy for λf : nat ⇒ nat. λx : nat. f(x) + 2.

(nat ⇒ nat) ⇒ nat ⇒ nat

O q

FotFS V

Example

Strategy for λf : nat ⇒ nat. λx : nat. f(x) + 2.

(nat ⇒ nat) ⇒ nat ⇒ nat

O q

P q

FotFS V

Example

Strategy for λf : nat ⇒ nat. λx : nat. f(x) + 2.

(nat ⇒ nat) ⇒ nat ⇒ nat

O q

P q

O q

FotFS V

Example

Strategy for λf : nat ⇒ nat. λx : nat. f(x) + 2.

(nat ⇒ nat) ⇒ nat ⇒ nat

O q

P q

O q

P q

FotFS V

Example

Strategy for λf : nat ⇒ nat. λx : nat. f(x) + 2.

(nat ⇒ nat) ⇒ nat ⇒ nat

O q

P q

O q

P q

O n

FotFS V

Example

Strategy for λf : nat ⇒ nat. λx : nat. f(x) + 2.

(nat ⇒ nat) ⇒ nat ⇒ nat

O q

P q

O q

P q

O n

P n

FotFS V

Example

Strategy for λf : nat ⇒ nat. λx : nat. f(x) + 2.

(nat ⇒ nat) ⇒ nat ⇒ nat

O q

P q

O q

P q

O n

P n

O m

FotFS V

Example

Strategy for λf : nat ⇒ nat. λx : nat. f(x) + 2.

(nat ⇒ nat) ⇒ nat ⇒ nat

O q

P q

O q

P q

O n

P n

O m

P m + 2

FotFS V

Composition

Apply λf : nat ⇒ nat. λx : nat. f(x) + 2 to λx : nat. x2.

nat ⇒ nat (nat ⇒ nat) × nat ⇒ nat

FotFS V

Composition

Apply λf : nat ⇒ nat. λx : nat. f(x) + 2 to λx : nat. x2.

nat ⇒ nat (nat ⇒ nat) × nat ⇒ nat

q

FotFS V

Composition

Apply λf : nat ⇒ nat. λx : nat. f(x) + 2 to λx : nat. x2.

nat ⇒ nat (nat ⇒ nat) × nat ⇒ nat

q

q q

FotFS V

Composition

Apply λf : nat ⇒ nat. λx : nat. f(x) + 2 to λx : nat. x2.

nat ⇒ nat (nat ⇒ nat) × nat ⇒ nat

q

q q

q q

FotFS V

Composition

Apply λf : nat ⇒ nat. λx : nat. f(x) + 2 to λx : nat. x2.

nat ⇒ nat (nat ⇒ nat) × nat ⇒ nat

q

q q

q q

q

FotFS V

Composition

Apply λf : nat ⇒ nat. λx : nat. f(x) + 2 to λx : nat. x2.

nat ⇒ nat (nat ⇒ nat) × nat ⇒ nat

q

q q

q q

q

n

FotFS V

Composition

Apply λf : nat ⇒ nat. λx : nat. f(x) + 2 to λx : nat. x2.

nat ⇒ nat (nat ⇒ nat) × nat ⇒ nat

q

q q

q q

q

n

n n

FotFS V

Composition

Apply λf : nat ⇒ nat. λx : nat. f(x) + 2 to λx : nat. x2.

nat ⇒ nat (nat ⇒ nat) × nat ⇒ nat

q

q q

q q

q

n

n n

n2 n2

FotFS V

Composition

Apply λf : nat ⇒ nat. λx : nat. f(x) + 2 to λx : nat. x2.

nat ⇒ nat (nat ⇒ nat) × nat ⇒ nat

q

q q

q q

q

n

n n

n2 n2

n2 + 2

FotFS V

The Copy-Cat Strategy

Kasparov Short

FotFS V

Does Copy-Cat still work here?

Kasparov Short Short

B

W

W

B

W

B

·

OOOOOOOOOOOOO

nnnnnnnnnnnnn

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

FotFS V

And here?

Kasparov Kasparov Short

B

W

B

W

W

B

·

YYYYYYYYYYYYYYYYYYYYYYYYYYYYY

OOOOOOOOOOOOO

nnnnnnnnnnnnn

FotFS V

The General Picture

Games and strategies organize themselves into mathematical

structures (categories of various kinds) suitable for modelling

programming languages.

By imposing various structural constraints on strategies, exact

matches can be found with various logical disciplines, leading to

full completeness results, which characterize the ‘space of proofs’

of various logics.

Similarly, exact matches can be found with a wide range of

computational features as embodied in key programming

language constructs, leading to full abstraction results.

FotFS V

Full Completeness

Ordinary completeness speaks of provability; full (and faithful)

completeness speaks of proofs. A proof of Γ ` A will denote a

strategy

σ : JΓK −→ JAK.

This is (part of) soundness.

Completeness asks for a converse; that for every such σ, there

exists a proof Π of Γ ` A. Full completeness asks that moreover Π

denotes the σ we started with, i.e. that the mapping of proofs to

strategies is surjective. Faithfulness is the additional requirement

that different normal forms map onto distinct strategies.

These results give intrinsic semantic characterizations of the ‘space

of proofs’ of a logic.

FotFS V

The Game Semantics Landscape

Game semantics has proved to be a flexible and powerful paradigm

for constructing highly structured fully abstract semantics for

languages with a wide range of computational features:

• (higher-order) functions and procedures

• call by name and call by value

• locally scoped state

• general reference types

• control features (continuations, exceptions)

• non-determinism, probabilities

• concurrency (GM, FOSSACS 04)

• names and freshness (AGMOS, LiCS 04)

FotFS V

Algorithmic Game Semantics

We can take advantage of the concrete nature of game semantics.

A play is a sequence of moves, so a strategy can be represented by

the set of its plays, i.e. by a language over the alphabet of moves,

and hence by an automaton.

There are significant finite-state fragments of the semantics for

various interesting languages, as first observed by Ghica and

McCusker (ICALP 00).

This means we can compositionally construct automata as

(representations of) the meanings of open (incomplete) programs,

giving a powerful basis for compositional software model-checking.

FotFS V

Warm-up example

client : com -> exp -> com |-

new var v:= 0 in

let set be v:=1 in

let get be !v in

client (set, get): com.

0 1

run
2

client.run

3
client.done

41.client.run

5

2.client.q

6
done

7

1.client.done

2.client.0

client.done

1.client.run

8

2.client.q

2.client.1

FotFS V

Sorting: bubblesort
x:var |-

array a[\(n\)] in

new var i:=0 in

while !i < \(n\) do a[!i]:=!x; i:=!i+1 od;

new var flag:=1 in

while !flag do

new var i:=0 in

flag:=0;

while !i < \(n\) - 1 do

if !a[!i] > !a[!i+1] then

flag:=1;

new var temp:=!a[!i] in

a[!i]:=!a[!i+1]; a[!i+1]:=!temp

else skip fi;

i:=!i+1 od od;

new var i:=0 in

while !i < \(n\) do x:=!a[!i]; i:=!i+1 od : com.

FotFS V

2-element array of integers %2

0 1
run

2
x.q

3

x.1

4
x.0

5

x.-1

6x.q

7
x.q

8

x.q

9
x.1

10

x.0

11

x.-1

x.1

12

x.0

13

x.-1

x.1

x.0

14

x.-1

15

x.1write

x.0write

x.-1write

16

x.0write

x.-1write

17x.-1write

18

x.ok

19
x.ok

20x.ok

21

x.1write

x.0write

x.-1write
22

x.ok
23

done

FotFS V

20-element array of integers %2

FotFS V

On modeling sorting programs

“[...] it seems impossible to use model-checking to verify that a

sorting algorithm is correct since sorting correctness is a

data-oriented property involving several quantifications and data

structures.” [Bandera user manual]

Why does it work?

• program state-space: 5.5 × 1012 states

• model: 6, 393 states

• max space: 1, 153, 240 states

Hiding local state!

FotFS V

Game Semantics in the Games landscape

Some comparisons:

• Hintikaa GTS and IF logic. GS is more compositional; a proper

analysis of implication!

• Lorenzen school of dialogue games. An ancestor; more

compositional, ‘syntax-free’, much wider scope.

• Blass games. Another ancestor. Overcomes problems with

compositionality.

Our main focus (to date) has been on structural aspects,

(categories of) games in extensive form, rather than fine-grained

analysis of winning strategies, or solution concepts and equilibria.

Our key equilibria are ‘logical’, e.g. the copy-cat strategy.

FotFS V

Infinite Games in Game Semantics

Infinite games arise in modelling even the simplest function (or

procedure) types, because of the possibility of repeated evaluation

of arguments, and the fact that each interaction with a (free)

argument is made observable:

λx : bool.

if x then

if x then
...
...

denotes

bool ⇒ bool

q

q

q
...

FotFS V

For untyped calculi:

D ∼= [D ⇒ D]

· · · ⇒ D) ⇒ D) ⇒ D

q

q

q

. . .

FotFS V

Programs vs. Proofs

Proofs can be seen as programs (the Curry-Howard isomorphism),

but not all programs are proofs. Proofs in logical systems, as

opposed to programs in general, should terminate/normalize,

they should define total functions. Programs in general can

diverge.

How can we make this distinction in terms of Game Semantics?

FotFS V

First attempt: Totality

We would like to find a condition on strategies generalizing totality

of functions. The obvious candidate is to require that at each stage

of play, a strategy σ on A has some response to every possible move

by opponent. Call a strategy total if it satisfies this condition.

This is ok if games are finite; but as we have seen, in general they

are not. When games are infinite, total strategies are not closed

under composition.

FotFS V

Infinite Chattering

A
σ
→ B B

τ
→ C

c1

b1

b1

b2

b2

...
...

bk

bk

...

FotFS V

Winning strategies

We need to expand our concept of game by specifying which

infinite plays of the game are wins for Player. Then we say that a

strategy is winning if at each finite stage when it is Player’s turn

to move it has a well defined response, and moreover every infinite

play following σ is a win for Player.

FotFS V

We introduce an expanded of refined notion of game as a pair

(A, WA), where A is a game as before, and WA ⊆ P∞

A
is the

designated set of winning infinite plays for Player. A winning

strategy for (A, WA) is a strategy for A which is winning with

respect to WA.

We now extend the definitions of connectives such as ⇒ to act on

the winning set specifications:

(A, WA) ⇒ (B, WB) = (A ⇒ B, WA⇒B)

where

WA⇒B = {s ∈ P∞

A⇒B
| s � A ∈ PA ∪ WA ⇒ s � B ∈ WB}

Again, this definition can be seen as expressing a suitable notion of

logical equilibrium. The important point to be proved is that

winning strategies are closed under all the operations on

strategies corresponding to constructions of proofs.

FotFS V

Example: the Copy-Cat Strategy

A ⇒ A

a1

a1

a2

a2

...

FotFS V

Example: Composition

A
σ
→ B B

τ
→ C

c1

b1

b1

b2

b2

...
...

bk

bk

...

FotFS V

Proof that winning strategies compose

Suppose then that

σ : (A, WA) → (B, WB), τ : (B, WB) → (C, WC).

We want to prove that σ; τ is total, i.e. that there can be no

infinite chattering in B.

Suppose for a contradiction that there is an infinite play

t = sb0b1 · · · ∈ σ‖τ

with all moves after the finite prefix s in B. Then t � A, B is an

infinite play in A ⇒ B following σ, while t � B, C is an infinite play

in B (C following τ . Since σ is winning and t � A is finite, we

must have t � B ∈ WB. But then since τ is winning we must have

t � C ∈ WC , which is impossible since t � C is finite.

FotFS V

These ideas lead to game-semantical proofs of normalization

for various logical calculi.

Some references (available from my web page):

• Semantics of Interaction.

• Full Completeness for Multiplicative Linear Logic (with Radha

Jagadeesan).

• Concurrent Games and Full Completeness (with Paul-André

Melliès).

• A Game Semantics for Generic Polymorphism (with Radha

Jagadeesan).

