
Algorithmic Game Semantics and Software Model-Checking 1

Algorithmic Game Semantics

and

Software Model-Checking

Samson Abramsky

Oxford University Computing Laboratory

Algorithmic Game Semantics and Software Model-Checking 2

Background

• Game semantics has been successfully applied to modelling laguages

with a range of computational features: (higher-order) procedures,

locally-scoped imperative variables, control constructs

(continuations, exceptions), non-determinism, probability, . . .

• Current work is turning in an algorithmic direction, with applications

to software model-checking and program analysis in mind.

Advantages of the approach:

– Inherently compositional.

– Soundness coming from the underlying semantic analysis.

– Generality, good underlying mathematical structure.

Algorithmic Game Semantics and Software Model-Checking 3

Game Semantics: an informal introduction

Before proceeding to a detailed technical account, we will give an

informal presentation of the main ideas through examples, with the aim of

conveying how close to programming intuitions the formal model is.

Basic points:

• Two-player games (P andO) - corresponding toSystemand

Environment(or: TermandContext).

• O always moves first—the environment sets the system going—and

thereafter the two players alternate.

• Types will be modelled as games; aprogramof typeA determines

how the system behaves, so programs will be represented as

strategiesfor P,

Algorithmic Game Semantics and Software Model-Checking 4

Modelling Values

q

0 1 2 . . .

and the strategy for3 is “WhenO playsq, I will play 3.”

N

q O

3 P

In diagrams such as the above, time flows downwards: hereO has begun
by playingq, and at the next stepP has responded with3, as the strategy
dictates.

Algorithmic Game Semantics and Software Model-Checking 5

Expressions

Consider the expression

x : N, y : N ` x + y : N

The game involved in evaluating this expression is formed from “three

copies ofN”, one for each of the inputsx andy, and one for the

output—the result of evaluatingx + y. In the output copy,O may demand

output by playing the moveq andP may provide it. In the input copies,

the situation is reversed:P may demand input with the moveq. Thus the

O/P role of moves in the input copy is reversed.

Algorithmic Game Semantics and Software Model-Checking 6

A typical computation of a natural strategy interpreting this expression
has the following form.

N , N ` N

q O

q P

3 O

q P

2 O

5 P

The play above is a particular run of the strategy modelling the addition
operation:

“WhenO asks for output, I will ask for my first inputx; whenO

provides inputm for x, I will ask for my second inputy; whenO

provides the inputn for y, I will give outputm + n.”

Algorithmic Game Semantics and Software Model-Checking 7

Interaction: composition of strategies

Game semantics is intended to provide acompositionalinterpretation of

programs: just as small programs can be put together to form large ones,

so strategies can be combined to form new strategies. The fundamental

“glue” in traditional denotational semantics is function application; for

game semantics it isinteractionof strategies which gives us a notion of

composition.

Consider the example of addition again, with the type

x : N, y : N ` x + y : N

We would like to combine this with̀ 3 : N:

` 3 : N x : N, y : N ` x + y : N
y : N ` 3 + y : N

This is justsubstitutionof 3 for x, or in logical terms, the Cut rule.

Algorithmic Game Semantics and Software Model-Checking 8

In order to represent this composition, we let the two strategies interact
with one another. Whenadd plays a move in the first copy ofN
(corresponding to asking for the value ofx), we feed it as anO-move to
the strategy for3; conversely, when this strategy responds with3 in N, we
feed this move as anO-move back toadd.

N , N ` N

q

q

3

q

5

8

Algorithmic Game Semantics and Software Model-Checking 9

By hiding the action in the first copy ofN, we obtain the strategy

N ` N

q

q

n

n + 3

representing the (unary) operation which adds 3 to its argument, as

expected. So in game semantics, composition of functions is modelled by

CSP-style “parallel composition + hiding”.

Algorithmic Game Semantics and Software Model-Checking 10

Variables and copy-cat strategies

To interpret a variable

x : N ` x : N

we play as follows:

N ` N

q

q

n

n

This is a basic example of acopy-cat strategy. Note that at each stage the

strategy simply copies the preceding move byO from one copy ofN to

the other.

Algorithmic Game Semantics and Software Model-Checking 11

Formalization

Before we continue with the development of the semantics, we will set up

a simple framework in which we can make the definitions formal and

precise. We will interpret each type of the programming language by an

alphabetof “moves”. A “play” of the game will then be interpreted as a

word (string, sequence) over this alphabet. A strategy will be represented

by the set of complete plays following that strategy,i.e.as alanguage

over the alphabet of moves. For a significant fragment of the

programming language, the strategies arising as the interpretations of

terms will turn out to beregular languages, which means that they can be

represented by finite automata.

In fact, our preferred means of specification of strategies will be by using

a certain class ofextended regular expressions.

Algorithmic Game Semantics and Software Model-Checking 12

Standard syntax of regular expressions

R · S R + S R∗ a ε 0

We briefly recall somee definitions: givenL, M ⊆ Σ∗,

L ·M = {st | s ∈ L ∧ t ∈ M}

L∗ =
⋃
i∈N

Li where L0 = {ε}, Li+1 = L · Li.

Algorithmic Game Semantics and Software Model-Checking 13

Extended regular expressions

The extended regular expressions we will consider have the additional
constructs

R ∩ S φ(R) φ−1(R)

whereφ : Σ1 −→ Σ∗2 is a homomorphism (more precisely, such a map
uniquely induces a homomorphism between the free monoidsΣ∗1 andΣ∗2;
note that, ifΣ1 is finite, such a map is itself a finite object). The
interpretation of these constructs is the obvious one:R ∩ S is intersection
of languages,φ(R) is direct image of a language under a homomorphism,
andφ−1(R) is inverse image.

L(R ∩ S) = L(R) ∩ L(S)

L(φ(R)) = {φ(s) | s ∈ L(R)}
L(φ−1(R)) = {s ∈ Σ∗1 | φ(s) ∈ L(R)}

Algorithmic Game Semantics and Software Model-Checking 14

Alphabet transformations

We will “glue” types together using disjoint union:

X + Y = {x1 | x ∈ X} ∪ {y2 | y ∈ Y }

We then have canonical maps arising from these disjoint unions.

X
inl-�
outl

X + Y �
inr

outr
- Y

inl(x) = x1 inr(y) = y2

outl(x1) = x outr(x1) = ε

outl(y2) = ε outr(y2) = y

Algorithmic Game Semantics and Software Model-Checking 15

Denotational semantics̀a la Hopcroft and Ullman

We now proceed to the formal description of the semantics.

Firstly, for each basic data type with set of data valuesD, we specify the
following alphabet of moves:

MD = {q} ∪D.

Note thatN andbool follow this pattern.

Note thatMN is an infinite alphabet. We will also consider finite
truncationsMNk

where the set of data values is{0, . . . , k − 1}.

To interpret
x1 : B1, . . . , xk : Bk ` t : B

we will use the disjoint union of the alphabets:

MB1 + · · ·+ MBk
+ MB

Algorithmic Game Semantics and Software Model-Checking 16

The “tagging” of the elements of the disjoint union to indicate which of

the gamesB1, . . . ,Bk, B each move occurs in makes precise the

“alignment by columns” of the moves in our informal displays of plays

such as

N ` N

q

q

n

n

The corresponding play, as a word over the alphabetMN + MN, will now

be written as

q2 · q1 · n1 · n2.

Algorithmic Game Semantics and Software Model-Checking 17

Our general procedure is then as follows. Given a term in context

x1 : B1, . . . , xk : Bk ` t : B

we will give an extended regular expression

R = Jx1 : B1, . . . , xk : Bk ` t : BK

such that the language denoted byR is the strategy interpreting the term.

As a first example, for a constant` c : B,

J` c : BK = q · c.

Algorithmic Game Semantics and Software Model-Checking 18

Addition revisited

The operation of addition, of typea

N1, N2 ` N3

is interpreted by

q3 · q1 ·
∑
n∈N

(n1 · q2 ·
∑
m∈N

(m2 · (n + m)3))

Note that this extended regular expression is over an infinite alphabet, and

involves an infinite summation.
aHere and in subsequent examples, we tag the copies of the type to make it easier to track

which component of the disjoint union—i.e. which “column”—each move occurs in.

Algorithmic Game Semantics and Software Model-Checking 19

Variables

A variable

x : B1 ` x : B2

is interpreted by

q2 · q1 ·
∑

b∈V (B)

b1 · b2

(here we useV (B) for the set of data values in the basic typeB).

Algorithmic Game Semantics and Software Model-Checking 20

Composition

Next, we show how to interpret composition.

Γ ` t : A x : A, ∆ ` u : B

Γ, ∆ ` u[t/x] : B

Our interpretation (of composition in this instance!) is, of course,

compositional. That is, we assume we have already defined

R = JΓ ` t : AK S = Jx : A, ∆ ` u : BK

as the intepretations of the premises in the rule for composition.

Algorithmic Game Semantics and Software Model-Checking 21

Next, we assemble the alphabets of the premises and the conclusion, and

assign names to the canonical alphabet transformations relating them.

MΓ + MA

in1-�
out1

MΓ + MA + M∆ + MB
�in2

out2
- MA + M∆ + MB

MΓ + M∆ + MB

out

?

in

6

The central type in this diagram combines the types of both the premises,

including the typeA, which will form the “locus of interaction” betweent

andu. The type of the conclusion arises from this type by “hiding” or

erasing this locus of interaction, which thereby is made “internal” to the

compound system formed by the composition. Thus the interpretation of

composition is by “parallel composition plus hiding”.

Algorithmic Game Semantics and Software Model-Checking 22

Formally, we write

JΓ,∆ ` u[t/x] : BK = out(out−1
1 (R∗) ∩ out−1

2 (S)).

This algebraic expression may seem somewhat opaque: note that it is

equivalent to the more intuitive expression

{s/MA | s/(M∆ + MB) ∈ L(R∗) ∧ s/MΓ ∈ L(S)}

Heres/X means the strings with all symbols fromX erased. This set

expression will be recognised as essentially the definition of parallel

composition plus hiding in the trace semantics for CSP. Although less

intuitive, the algebraic expression we gave as the “official” definition has

the advantage of making it apparent that regular languages are closed

under composition, and indeed of immediately yielding a construction of

an automaton to recognise the resulting language.

Algorithmic Game Semantics and Software Model-Checking 23

Commands

Firstly, we consider commands. In our language, we have a basic type

com, with the following operations:

skip : com

seq : com× com → com

cond : bexp× com× com → com

while : bexp× com → com

More colloquial equivalents:

seq(c1, c2) ≡ c1; c2

cond(b, c1, c2) ≡ if b then c1 else c2

while(b, c) ≡ while b do c

Algorithmic Game Semantics and Software Model-Checking 24

The game interpreting the typecom is extremely simple:

run

done

This can be thought of as a kind of “scheduler interface”: the environment

of a command has the opportunity to schedule it by playing the move

run. When the command is finished, it returns control to the environment

by playingdone.

The strategies interpreting the operations are also disarmingly simple.

Firstly, note thatskip is the unique constant for the unit type:

J` skip : comK = run · done.

Algorithmic Game Semantics and Software Model-Checking 25

Now the following strategy interprets sequential composition.

seq : com ⇒ com ⇒ com

run

run

done

run

done

done

Formally, this is just

seq : com1 × com2 → com3

JseqK = run3 · run1 · done1 · run2 · done2 · done3.

Algorithmic Game Semantics and Software Model-Checking 26

Imperative variables

To interpret mutable variables, we will take an “object-oriented view” as

advocated by John Reynolds. In this view, a variable (say for example

being used to store values of typeN) is seen as an object with two

methods:

• the “read method”, for dereferencing, giving rise to an operation of

typevar⇒ N;

• the “write method”, for assignment, giving an operation of type

var⇒ N ⇒ com.

We identifythe type of variables with the product of the types of these

methods, setting

var = (N ⇒ com)× N.

Algorithmic Game Semantics and Software Model-Checking 27

Now assignment and dereferencing are just the two projections, and we

can interpret a commandx:=!x+1 as the strategy

(N ⇒ com) × N =⇒ com

run

read

n

write

q

n + 1

ok

ok

Algorithmic Game Semantics and Software Model-Checking 28

In fact, we shall slightly simplify this description. Our alphabet for the

typevar[D] of imperative variables which can have values from the setD

stored in them, is given by

Mvar[D] = {read} ∪D ∪ {write(d) | d ∈ D} ∪ {ok}

The operations for reading and writing have the form

assign : var[D]× exp[D] → com assign(v, e) ≡ v := e

deref : var[D] → exp[D] deref(v) ≡ !v

The strategy for assign is:

assign : var[D]1 × exp[D]2 → com3

JassignK = run3 · q2 ·
∑
d∈D

(d2 ·write(d)1) · ok1 · done3

Algorithmic Game Semantics and Software Model-Checking 29

Block structure

The key point is to interpret theallocationof variables correctly, so that if

the variablex in the above example has been bound to a genuine storage

cell, the various reads and writes made to it have the expected

relationship. In general, a termM with a free variablex will be

interpreted as a strategy forvar⇒ A, whereA is the type ofM . We

must interpretnew x in M as a strategy forA by “bindingx to a memory

cell”. With game semantics, this is easy! The strategy forM will play

some moves inA, and may also make repeated use of thevar part.

Algorithmic Game Semantics and Software Model-Checking 30

The play in thevar part will look something like this.

var

write(d1)

ok

write(d2)

ok

read

d3

read

d4

...

Algorithmic Game Semantics and Software Model-Checking 31

Of course there is nothing constraining the reads and writes to have the

expected relationship. However, there is an obvious strategycell : var:

cell = (
∑
n∈N

(write(n) · ok · (read · n)∗))∗

which plays like a storage cell, always responding to aread with the last

value written. Once we have this strategy, we can interpretnew by

composition withcell, so

[[new x in M]] = JMK ◦ cell.

Algorithmic Game Semantics and Software Model-Checking 32

Two important properties of local variables are immediately captured by

this interpretation:

Locality Since the action invar is hidden by the composition, the

environment is unaware of the existence and use of the local variable.

Irreversibility As M interacts withcell, there is no way forM to undo

any writes which it makes. Of courseM can return the value stored

in the cell to be the same as it has been previously, but only by

performing a newwrite.

Algorithmic Game Semantics and Software Model-Checking 33

Commands revisited

We can now get a better perspective on how command combinators work.

Suppose that we have a sequential composition

x : var ` c1 : com x : var ` c2 : com
x : var ` c1; c2 : com

The game semantics of this command, formed by the composition of the

seq combinator with the commandsc1 andc2, can be pictured as follows.

Algorithmic Game Semantics and Software Model-Checking 34

var ` com × com → com

run

run

c1

...

done

run

c2

...

done

done

Algorithmic Game Semantics and Software Model-Checking 35

Note that the simple behaviour of the sequential composition combinator

can be used, via composition of strategies, to sequence arbitrarily

complex commandsc1 andc2.

This should be contrasted with the traditional denotational semantics of

imperative state

State = ValLoc

in which states are modelled as mappings from locations to values, i.e. as

“state snapshots”. Programs are then modelled as state transformers, i.e.

as functions or relations on these state snapshots, and sequential

composition as function or relation composition. It turns out to be hard to

give accurate models of locally scoped imperative state with these

models; one has to introduce functor categories, and even then full

abstraction is hard to achieve. SeeAlgol-like Languages, ed. O’Hearn

and Tennent, Birkhauser 1997.

Algorithmic Game Semantics and Software Model-Checking 36

The Finitary sub-language

We define the finitary fragment of our procedural language to be that in

which onlyfinitesets of basic data valuesD are used. For example, we

may consider only the basic types overbool andNk, omittingN.

The following result is immediate from the above definitions.

Proposition 1 The types in the finitary language are intepreted by finite

alphabets, and the terms are interpreted by extended regular expressions

without infinite summations. Hence terms in this fragment denote regular

languages.

Algorithmic Game Semantics and Software Model-Checking 37

Model checking

TermsM andN are defined to beobservationally equivalent, written

M ≡ N , just in case for any contextC[·] such that bothC[M] andC[N]
are programs (i.e. closed terms of typecom), C[M] converges

(i.e. evaluates toskip) if and only if C[N] converges. (Note that the

quantification over allprogramcontexts takes side effects ofM andN

fully into account.) The theory of observational equivalence is rich; for

example, here are some non-trivial observationally equivalences (Ω is the

divergent program):

Algorithmic Game Semantics and Software Model-Checking 38

Observation equivalences for Algol-like programs

P : com ` new x in P ≡ P(1)

P : com → com ` new x:=0 in P (x:=1);

if !x = 1 then Ω else skip

≡
P (Ω)

(2)

P : com → com ` new x:=0 in

P (x:=!x + 2); if even(x) then Ω

≡
Ω

(3)

Algorithmic Game Semantics and Software Model-Checking 39

P : com → bexp → com ` new[int] x:=1 in P (x:=− x)(x > 0)

≡
new[bool] x:=true in P (x:=¬x)x

(4)

Algorithmic Game Semantics and Software Model-Checking 40

Theorem 1

Γ ` t ≡ u ⇐⇒ L(R) = L(S)

whereR = JΓ ` t : T K, S = JΓ ` u : T K.

Moreover,L(R) = L(S) (equality of (languages denoted by) regular

expressions) is decidable. Hence observation equivalence for the finitary

sub-language is decidable.

If R 6= S we will obtain a witnesss ∈ JRK4JSK, which we can use to

construct a separating contextC[·], such that

eval(C[t]) 6= eval(C[u]).

Algorithmic Game Semantics and Software Model-Checking 41

Model checking behavioural properties

The same algorithmic representations of program meanings which are

used in deciding observational equivalence can be put to use in verifying a

wide range of program properties, and in practice this is where the

interesting applications are most likely to lie. The basic idea is very

simple. To verify that a term-in-contextΓ ` M : A satisfies behavioural

propertyφ ⊆ M∗
Γ,A amounts to checkingJΓ ` M : AK ⊆ φ, which is

decidable ifφ is, for example, regular. Such properties can be specified in

temporal logic, or simply as regular expressions.

Algorithmic Game Semantics and Software Model-Checking 42

Example

Consider the sequent

x : var[D], p : com ` com.

Suppose we wish to express the property

“x is written beforep is (first) called”.

The alphabet of the sequent is

M = M1
var[D] + M2

com + M3
com.

The following regular expression captures the required property:

X∗ ·
∑
d∈D

write(d)1 ·X∗ · run2 ·M∗

whereX = M \M2
com.

Algorithmic Game Semantics and Software Model-Checking 43

As a more elaborate example, consider the sequent

p : exp[D] → exp[D], x : var[D] ` com

and the property:

“wheneverp is called, its argument is read fromx, and its result

is immediately written intox”.

This time, the alphabet is

M = (M1
exp[D] + M2

exp[D]) + M3
var[D] + M4

com

and the property can be captured by the regular expression

(X∗ · (q1 · read3 ·
∑
d∈D

(d3 · d1) · Y ∗ ·
∑
d∈D

(d2 · write(d)3) · ok3 · Z∗)∗)∗

for suitable choices of sets of movesX, Y , Z.

Exercise Find suitable choices forX, Y andZ.

Algorithmic Game Semantics and Software Model-Checking 44

This example illustrates the inherent compositionality of our approach,
being based on a compositional semantics which assigns meanings to
terms-in-context.

Our approach combines gracefully with the standard methods of
over-approximationanddata-abstraction. The idea of
over-approximation is simple and general:

JΓ,` M : AK ⊆ S ∧ S ⊆ φ =⇒ JΓ,` M : AK ⊆ φ.

This means that we can “lose information” in over-approximating the
semantics of a program while still inferring useful information about it.
This combines usefully with the fact that all the regular expression
constructions used in our semantics aremonotone, which means that if we
over-approximate the semantics of some sub-termst1, . . . , tn, and
calculate the meaning of the contextC[·, . . . , ·] in which the sub-terms are
embedded in the standard way, then the resulting interpretation of
t = C[t1, . . . , tn] will over-approximate the “true” semanticsJtK.

Algorithmic Game Semantics and Software Model-Checking 45

An important and natural way in which over-approximation arises is from

data abstraction. Suppose, for a simple example, that we divide the

integer data typeZ into “negative” and “non-negative”. Since various

operations (e.g. addition) will not be compatible with this equivalence

relation, we must also add a set “negativeor non-negative”—i.e. the

whole ofZ. Now arithmetic operations can be defined to work on these

three “abstract values”. To define boolean-valued operations on these

values, we must extend the typebool with “true or false”, which we

write as?. These extended booleans must in turn be propagated through

conditionals and loops, which we do using thenon-determinismwhich is

naturally present in our regular expression formalism.

Algorithmic Game Semantics and Software Model-Checking 46

For example, the conditional of type

exp[bool]1 → exp[bool]2 → exp[bool]3 → exp[bool]4

can be defined thus:

q4 · q1 · (true1 ·R + false1 · S + ?1 · (R + S))

where

R = q2 ·
∑

b∈bool

(b2 · b4), S = q3 ·
∑

b∈bool

(b3 · b4).

This over-approximates the meaning in the obvious way (which is of

course quite classical in flow analysis): if we don’t know whether the

boolean value used to control the conditional is really true or false, then

we take both branches.

Algorithmic Game Semantics and Software Model-Checking 47

We can then use the monotonicity properties of the semantics to compute

the interpretations of theλ-calculus constructs as usual, and conclude that

the meaning assigned to the whole term over-approximates the “true”

meaning, and hence that properties inferred of the abstraction hold for the

original program. This gives an attractive approach to many of the

standard issues in program analysis, e.g. inter-procedural control-flow

analysis and reachability analysis.

Of course, all of this fits into the framework ofabstract interpretation(P.

and R. Cousot) in a very natural way.

Algorithmic Game Semantics and Software Model-Checking 48

There is an on-going research project at Oxford University Computing

Laboratory on Algorithmic Game Semantics with Luke Ong, Dan Ghica

and Andrzej Murawski.

Some references:

• S.A. ‘Algorithmic Game semantics: a tutorial introduction’. In

Proceedings of Marktoberdorf 2001. (Also available from my home

page).

• Dan Ghica and Guy McCusker. ‘Reasoning about Idealized Algol

using Regular Languages’. In Proceedings of ICALP 2000.

• Luke Ong. ‘Observation equivalence for third-order Idealized Algol

is undecidable’. In Proceedings of LiCS 2002.

