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Themes

• Abstract scalars.

• Free strongly compact closed categories.

• ∼ The logic of strongly compact closed categories, proof nets.
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Scalars in monoidal categories

Monoidal category (C,⊗, I). A scalar is a morphism s : I → I.

Examples: (FdVecK,⊗), (Rel,×).

(1) C(I, I) is a commutative monoid

I ======== I ⊗ I ====== I ⊗ I ======== I

I

s

6

======== I ⊗ I

s⊗ 1

6

s⊗ t- I ⊗ I

1 ⊗ t

?
======== I

t

?

I

t

?
======== I ⊗ I

1 ⊗ t

?
====== I ⊗ I

s⊗ 1

6

======== I

s

6
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(2) Each scalar s : I → I induces a natural transformation

sA : A
'- I ⊗A

s⊗ 1A- I ⊗A
'- A .

A
sA - A

B

f

?

sB

- B

f

?

We write s • f for f ◦ sA = sB ◦ f . Note that

s • (t • f) = (s ◦ t) • f

(s • g) ◦ (r • f) = (s ◦ r) • (g ◦ f)

(s • f) ⊗ (t • g) = (s ◦ t) • (f ⊗ g)
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Compact closed categories

A compact closed category is a symmetric monoidal category with,

for each object A:

• a dual A∗,

• a unit ηA : I → A∗ ⊗A

• and a counit εA : A⊗ A∗ → I.

Triangular identities:

A
1A ⊗ ηA - A⊗ A∗ ⊗A

εA ⊗ 1A - A = 1A

A∗ ηA ⊗ 1A- A∗ ⊗A⊗A∗ 1A ⊗ εA - A∗ = 1A∗

“Every object (1-cell) has an adjoint”

But also: ∗-autonomous with ⊗ =O, ⊥ = I.
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Examples

• Sets, relations and cartesian product (Rel,×). Here

ηX ⊆ {∗} × (X ×X) and we have

ηX = εcX = {(∗, (x, x)) | x ∈ X} .

• Vector spaces over a field K, linear maps and tensor product

(FdVecK,⊗). The unit and counit in (FdVecC,⊗) are

ηV : C → V ∗ ⊗ V :: 1 7→
i=n∑

i=1

ēi ⊗ ei

εV : V ⊗ V ∗ → C :: ej ⊗ ēi 7→ 〈ēi | ej〉
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Duality, Names and Conames

For each morphism f : A→ B in a compact closed category we can

construct a dual f∗ : A∗ → B∗:

f∗ = B∗ ηA ⊗ 1- A∗ ⊗ A⊗B∗ 1 ⊗ f ⊗ 1- A∗ ⊗B ⊗B∗ 1 ⊗ εB- A∗

a name

pfq : I → A∗ ⊗B = I
η- A∗ ⊗A

1 ⊗ f- A∗ ⊗B

and a coname

xfy : A⊗B∗ → I = A⊗B∗ f ⊗ 1- B ⊗B∗ ε - I

The assignment f 7→ f∗ extends A 7→ A∗ into a contravariant

endofunctor with A ' A∗∗. In any compact closed category, we

have

C(A⊗B∗, I) ' C(A,B) ' C(I, A∗ ⊗B).
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Why compact closure does not suffice

In inner-product spaces we have the adjoint:

A
f- B

A �f
†

B

〈fφ | ψ〉B = 〈φ | f†ψ〉A

N.B. not the same as the dual.

In “degenerate” CCC’s in which A∗ = A, e.g. Rel, real

inner-product spaces, we have f∗ = f†.

In complex inner-product spaces, Hilbert spaces, the inner product

is sesquilinear

〈ψ | φ〉 = 〈φ | ψ〉

and the isomorphism A ' A∗ is not linear, but conjugate linear:

〈λ • φ | −〉 = λ̄ • 〈φ | −〉

and hence does not live in the category Hilb at all!
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Solution: Strong Compact Closure

The conjugate space of a Hilbert space H: same additive group of

vectors, scalar multiplication and inner product “twisted” by

complex conjugation:

α •H̄ φ := ᾱ •H φ 〈φ | ψ〉H̄ := 〈ψ | φ〉H

We can define H∗ = H̄, since H, H̄ have the same orthornormal

bases, and we can define the counit by

εH : H⊗ H̄ → C :: φ⊗ ψ 7→ 〈ψ | φ〉H

which is (bi)linear!

The crucial observation is this: ()∗ has a covariant functorial

extension f 7→ f∗, which is essentially identity on morphisms; and

then we can define

f† = (f∗)∗ = (f∗)
∗.
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Axiomatization of Strong Compact Closure

It suffices to require the following structure on a symmetric

monoidal category (C,⊗, I, σ):

• A monoidal involutive assignment ()∗ on objects.

• An identity on objects, contravariant, involutive, strictly

monoidal functor ()† (so we take the adjoint as primitive).

• An assignment of units ηA : I → A∗ ⊗A such that

ηA∗ = σA∗,A ◦ ηA.

We can then define εA = η
†
A ◦ σA,A∗ , and we need only one

triangular identity, which can be given in the form of a Yanking

axiom:

A
ηA ⊗ 1A- A∗ ⊗A⊗A

1 ⊗ σA,A- A∗ ⊗A⊗A
η
†
A ⊗ 1- A = 1A
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Standard triangular identities diagrammatically

=

=

1

1

1

1
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Yanking diagrammatically
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Free Constructions

Cat

FS -
⊥�
US

S−Cat

M monoidal lists

SM symmetric monoidal permutations

Tr traced symmetric monoidal loops

CC compact closed polarities

SCC strong compact closed reversals

Take FS(1) for ‘pure’ picture (one generator, no relations).
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Monoidal Categories

Objects of FM (C): lists of objects of C. Monoidal structure given

by concatenation; the tensor unit I is the empty sequence.

Arrows:

A1 A2 An
• • · · · •

•

f1
?

•

f2
?

· · · •

fn

?

B1 B2 Bn

fi : Ai → Bi

FM (1) = (N,=,+, 0).
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Symmetric Monoidal Categories

Same objects as in monoidal case.

An arrow [A1, . . . , An] −→ [B1, . . . , Bn] is given by (π, λ), where

π ∈ S(n), and λ(i) : Ai → Bπ(i), 1 ≤ i ≤ n.

A1 A2 A3 A4
• • • •

•� •

-

•? •
-

B1 B2 B3 B4

FSM (1) =
∐

n S(n).
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Composition in FSM(C)

Form paths of length 2, compose the arrows from C labelling these

paths.
• • •

•�
f 2

•

...........................-

•?

.....................

•�
...
...
...
...
...
...
...
...
...
...
.

•?

.....................
•

g
1

-

=

• • •

•�
...
...
...
...
...
...
...
...
...
...
.

•

...........................-

•

g
1
◦
f
2

-
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Traced Symmetric Monoidal Categories

Feedback operation (or “tracing out” part of a morphism, cf.

contraction of tensors):

A⊗ U
f - B ⊗ U

A
Tr

U
A,B(f)

- B

· · · · · ·
A U

· · · · · ·
B U
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Is FSM (C) traced? Yes!

|A| + |U | = |B| + |U | ⇒ |A| = |B|

Any path starting in A will pass some number (maybe 0) of times

through U , but can never revisit any node in U , hence must

eventually land in B. (Note that there may very well be cycles

starting in U !) Moreover, any orbits starting from distinct nodes in

A must be disjoint, hence must end in different places in B. So by

following paths, we end up with a well-defined bijection between A

and B. Composing the sequences of arrows labelling each path, we

get a morphism in FSM (C) from A to B, as required.
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However . . .

FSM (C) is not the free traced monoidal category over C. Note that

FSM (C)(I, I) = 1I: this category only has one scalar!

So given f : A→ A, we are forced to assign Tr
A
I,I(1 ⊗ f) = 1I: all

loops are collapsed to have the same value.

In any traced monoidal category, given

f : A⊗ V → B ⊗ V, g : W →W

we have

Tr
V ⊗W
A,B (f ⊗ g) = s • Tr

V
A,B(f),

where s = Tr
W
I,I(g). So in the free case, our previous construction is

what the trace must be, up to evaluation of loops as scalars.
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Loops

The loops of a category C, written L[C], are the endomorphisms of

C quotiented by the following equivalence relation: a composite

A1

f1 - A2

f2 - · · · Ak

fk - A1

is equated with all its cyclic permutations. A trace function on C is

a map on the endomorphisms of C which respects this equivalence.
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Description of FTr(C)

Objects as for FSM (C). A morphism is now (π, λ, µ), where (π, λ)

are as in FSM(C), and µ is a multiset of loops in L[C], i.e. an

element of M(L[C]), the free commutative monoid generated by

L[C].

Composition of (π1, λ1, µ1) with (π2, λ2, µ2) extends the definition

for FSM(C) by taking the multiset union of µ1 and µ2.

The trace is defined as in our first attempt, but in general new

loops will be formed, and must be added to the multiset.

Note that FTr(C)(I, I) = M(L[C]).
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Compact Closed Categories

We know these are constructed freely from traced categories by the

G or (Int) construction of Joyal-Street-Verity.

Adjoints compose, so FCC(C) = G ◦ FTr(C). We can easily relate

this to Kelly-Laplaza’s description of FCC(C).

Objects are now polarized; each dot is labelled with + or −, as well

as an object from C. ()∗ flips polarities. Thus we can write an

object as ( ~A+, ~A−), where we partition the elements into those

labelled + or −.

A morphism ( ~A+, ~A−) −→ ( ~B+, ~B−) has the form (β, λ, µ), where:

• β : ~A+ ~B−
∼=
−→ ~A− ~B+ is a signed bijection

• λ(i) : Ci −→ Dβ(i) is a C-arrow, where Ci is the i’th −ve

object, and Dj is the j’th +ve object.

• µ is a multiset of loops, as in FTr(C).
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Compact Closed Categories Ctd.

Composition is given by the ‘execution formula’ (already in

Kelly-Laplaza, but not easy to spot!): i.e. , chase paths, and

compose (in C) the morphisms labelling the paths to get the labels.

In general, loops will be formed, and must be added to the multiset.
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-�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA ?

?

?

?

??

??

~C+

~C−

~B−

~B+

~B+

~B−

~A−

~A+

gf
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Note that identities, units and counits are really all the same(!),

except that the polarities allow variables to be transposed freely

between the domain and codomain.

Identity:

•+
1 -
` •+

Unit:

` •−
1 - •+

Counit:

•+ 1 - •− `
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Strongly Compact Closed Categories

We describe an adjunction

InvCat

FSCC -
⊥�

USCC

SCC−Cat

InvCat: categories with a specified involution, i.e. an identity on

objects, contravariant, involutive functor.

Our previous construction of FCC lifts directly to this setting. The

main point is to define ()† on FCC(C), under the assumption that

we are given a primitive ()† on the generating category C.

Given

(β, λ, µ) : ( ~A+, ~A−) → ( ~B+, ~B−),

we can define

(β, λ, µ)† = (β−1, ()† ◦ λ, µ†)
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Here

β−1 : ~B+ ~A− ∼=
−→ ~B− ~A+,

and if

Ci

f- Dβ(i)=j

then

Dj

f†- Cβ−1(j)=i.
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Parameterizing on the monoid

There is a forgetful functor UV : SCC−Cat −→ V where V has

objects (C,M, τ):

• C is a category with involution

• M is a commutative monoid with an involution

• τ : L[C] →M is a trace function respecting the involution.

We can construct an adjunction

V
-

⊥�
UV

SCC−Cat

which builds the free SCC on a category with prescribed scalars.

(For example, we can force the scalars to be the complex numbers).

This essentially acts by composition with the trace function τ on

the free construction FSCC given previously.


