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Abstract: This chapter is a tutorial about some of the key issues in se-
mantics of the first-order aspects of probabilistic programming languages
for statistical modelling – languages such as Church, Anglican, Venture and
WebPPL. We argue that s-finite measures and s-finite kernels provide a good
semantic basis.

1 Introduction

This Chapter is about a style of probabilistic programming for building
statistical models, the basis of languages such as Church (Goodman et al.,
2008), WebPPL (Goodman and Stuhlmüller, 2014), Venture (Mansinghka
et al., 2014), Anglican (Wood et al., 2014) and Hakaru (Narayanan et al.,
2016).
The key idea of these languages is that the model is a combination of

three things:

Sample: A generative model is described by a program involving not only
binary random choices but also by sampling from continuous real-
valued distributions. In Bayesian terms, we think of this as describing
the prior probabilities.

Observe: Observations about data can be incorporated into the model, and
these are typically used as weights in a Monte Carlo simulation. In
Bayesian terms, we think of this as describing the likelihood of the
data.

Normalize: Given a model, we run an inference algorithm over it to cal-
culate the posterior probabilities.

Probabilistic programming languages bring many of the abstract ideas of
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high-level programming to bear on statistical modelling. Perhaps the most
compelling aspect is the idea of rapid development, first of quickly creating
models, and second quickly combining them with inference algorithms.
There remain many practical and theoretical challenges with probabilis-

tic languages of these kinds. The purpose of this chapter is to explain, for
simple first order programs, how we can understand them as measures in a
compositional way.
We begin in Section 2 by introducing the general approach to probabilis-

tic programming and giving informal consideration to various aspects of the
semantics of probabilistic programs. We are led to the issue of unnormaliz-
able posteriors (§2.4). In Section 3 we develop the informal semantics from a
measure-theoretic perspective, demonstrating through examples why a naive
semantics is not so straightforward (§3.3).
In Section 4 we give a formal semantics for first order probabilistic pro-

grams as measures. We do this by understanding expressions with free vari-
ables as s-finite kernels (Def. 1.6). An s-finite kernel is, roughly, a param-
eterized measure that is uniformly built from finite measures. Once this
semantics is given, one can easily reason about probabilistic programs in a
compositional way by using measure theory, the standard basis of probabil-
ity. We give some simple examples in Section 5.

2 Informal semantics for probabilistic programming

2.1 A first example: discrete samples, discrete observation

To illustrate the key ideas of probabilistic programming, consider the follow-
ing simple problem, which we explain in English, then in statistical notation,
and then as a probabilistic program.

(i) I have forgotten what day it is.
(ii) There are ten buses per hour in the week and three buses per hour at the

weekend.
(iii) I observe four buses in a given hour.
(iv) What is the probability that it is the weekend?

This is a very simple scenario, to illustrate the key points, but in practice,
probabilistic programming is used for scenarios with dozens of intercon-
nected random parameters and thousands of observations.
We assume that buses arrive as a Poisson process, meaning that their

rate is given but they come independently. So the number of buses forms a
Poisson distribution (Figure 1). We model the idea that the day is unknown
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Figure 1 The Poisson distributions with rates 3 and 10.

by putting a prior belief that all the days are equiprobable. The problem
would be written in statistical notation as follows:

(i) Prior: x ⇠ Bernoulli(2
7
)

(ii) Observation: d ⇠ Poisson(r) where r = 3 if x and r = 10 otherwise;

(iii) d = 4;

(iv) What is the posterior distribution on x?

We describe this as a probabilistic program as follows:
1. normalize(
2. letx = sample(bernoulli(2

7
)) in

3. let r = if x then 3 else 10 in
4. observe 4 from poisson(r);
5. return(x))

Lines 2–5 describe the combination of the likelihood and the prior. First,
on line 2, we sample from the prior: the chance that it is the weekend is 2

7
;

this matches line (i) above. On line 3, we set the rate r of buses, depending
on whether it is a week day. On line 4 we record the observation that four
buses passed when the rate was r, using the Poisson distribution. So lines 3
and 4 match lines (ii) and (iii) above (but not individually). The normalize
command on line 1 is wrapped around the whole program up to the return
value on line 5, and corresponds to line (iv) above.

There are three naive ways to calculate the answer:

Posterior calculation 1: direct calculation using Bayes’ law. The
first approach is to calculate the posterior probability using Bayes’ law di-
rectly

Posterior / Likelihood⇥ Prior. (1)
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For a discrete distribution, the likelihood is the probability of the obser-
vation point d, which for the Poisson distribution with rate r is 1

d!r
de�r.

• The prior probability that it is the weekend is 2

7
, and then the likelihood

of the observation is 1

4!
34e�3 ⇡ 0.168; so the posterior probability that it

is the weekend is proportional to 0.168⇥ 2

7
⇡ 0.048 (likelihood⇥prior).

• The prior probability that it is a week day is 5

7
, and then the rate is 10

and the likelihood of the observation is 1

4!
104e�10 ⇡ 0.019. So the posterior

probability that it is a week day is proportional to 0.019⇥ 5

7
⇡ 0.014.

• The measure (true 7! 0.048, false 7! 0.014) is not a probability measure
because it doesn’t sum to 1. To build a probability measure we divide
by 0.048 + 0.014 = 0.062, to get a posterior probability measure (true 7!
0.22, false 7! 0.78). The normalizing constant, 0.062, is sometimes called
model evidence; it is an indication of how well the data fits the model.

Posterior Calculation 2: Monte Carlo simulation with rejection.

In more complicated scenarios, it is often impractical to manage a direct
numerical calculation like the above, and so people often turn to approximate
simulation methods. A simulation with rejection works as follows:

• We run through the inner program (lines 2–5) a large number of times
(say N).

• At a sample statement, we randomly sample from the given distribution. In
Line 2, there is a Bernoulli trial that produces true with probability 2

7
and

false with probability 5

7
. We might perform this by uniformly generating a

random number between 1 and 7 (the day of the week) and then returning
true if the number is 6 or 7.

• At an observe statement, we also randomly sample from the given distribu-
tion, but we reject the run if the sample does not match the observation.
In Line 4, we would sample a number k from the Poisson distribution
with rate either 3 or 10, depending on the outcome of Line 2 (according
to Line 3) and then reject the run if k 6= 4. This amounts to running a
simulation of the bus network, but then rejecting the run if the outcome
of the simulation did not match our observation. That is to say, we dis-
regard or ignore the runs where the prior sample is inconsistent with the
observation.

• Line 5 says that the result of the run is x = true if it is the weekend on
that run.

• Line 1, wrapped around the whole program, says that of the non-rejected
runs, we see what proportion of runs returns x = true. As N ! 1, the
ratio will tend towards (0.22 : 0.78), the true posterior distribution. Thus
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the normalize command converts the sampler described by Lines 2–5 into
a proper probability distribution.

Posterior Calculation 3: Monte Carlo simulation with weights. The
rejection method is rather wasteful, and doesn’t scale clearly to the contin-
uous situations that we turn to later. An alternative is a simulation with
likelihood weights, which works as follows:

• We run through the inner program (Lines 2–5) a large number N of times.
• As before, at a sample statement, we randomly sample from the given
distribution.

• At an observe statement, we do not sample. Rather, we use the density
function of the given distribution to weight the run. In Line 4, the density
function of the Poisson distribution is 1

d!r
de�r, so we weight the run by

either 0.168 or 0.019, depending on the outcome of Line 2. In a program
with multiple observations, we accumulate the weights multiplicatively.
(In practice it is numerically prudent to use log-weights and add them.)

• Looking at all the runs, we see what weighted proportion of runs returns
x = true. As N ! 1, the ratio will tend towards (0.22 : 0.78).

In this discrete setting we can encode rejection sampling using a Monte
Carlo simulation with weights, by replacing Line 4 with

4
0
. let d = sample(poisson(r)) in observe 4 from dirac(d)

so that the weight will be either 1 (if d = 4) or 0 (if d 6= 4). When the weight
is zero the run is as good as rejected.

2.2 A second example: discrete samples, continuous observation

Now consider the following situation, which is almost the same but the
observation is di↵erent: we observe a 15 minute gap rather than four buses.

(i) I have forgotten what day it is.
(ii) There are ten buses per hour in the week and three buses per hour at the

weekend.
(iii) I observe a 15 minute gap between two buses.
(iv) What is the probability that it is a week day?

In this example, since the buses are run as a Poisson process, the gap between
them is exponentially distributed (Figure 2). The exponential distribution
is a continuous probability measure on the positive reals; when the rate is r
it has density function t 7! re�rt. which means that the probability that the
gap between events will lie in a given interval U is given by

R
U re�rt dt.
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Figure 2 The exponential distributions with rates r = 3 and r = 10.

In statistical notation, this example would be described as follows:

(i) Prior: x ⇠ Bernoulli(2
7
)

(ii) Observation: d ⇠ Exponential(r) where r = 3 if x and r = 10 otherwise;
(iii) d = 15

60
= 0.25;

(iv) What is the posterior distribution on x?

The program for this example di↵ers from the previous one only on Line 4:

4
00
. observe 0.25 from exponential(r);

Posterior calculation 1 (direct mathematical calculation) is easily adapted
to this situation. Here the likelihood of the observation (15mins) is
again the value of the density function, which is 3⇥ e�3⇥0.25 ⇡ 1.42
when it is the weekend and 10 ⇥ e�10⇥0.25 ⇡ 0.82 when it is a
week day. So the unnormalized posterior has (true 7! 2

7
⇥ 1.42 ⇡

0.405, false 7! 5

7
⇥ 0.82 ⇡ 0.586). In this example the normalizing

constant is 0.991, and the normalized posterior is (0.408 : 0.592).
Notice that likelihood is not the same as probability — it is not even
less than 1.

Posterior calculation 2 (rejection sampling) cannot easily be adapted to
this situation. The problem is that although sampling from an ex-
ponential distribution will often produce numbers that are close to
0.25, it will almost never produce exactly 0.25, so almost all the runs
will be rejected.

Posterior calculation 3 (weighted sampling) is easily adapted to this sit-
uation. The weight on Line 400 will either be 1.42 or 0.82.

Calculation Method 2 (Rejection) is perhaps the most intuitive, so it is
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Figure 3 Discontinuous density functions for the GPA problem. See also Wu et al. (2018)

and Section 3.2. The idea is this: suppose that grades are distributed uniformly, except

the top 1% are given the maximum grade, which is 4 in the US and 10 in India. The

problem is: given that I observe a GPA of 4, what is probable nationality of the student?

The answer: certainly US.

unfortunate that it does not apply to this situation – not even theoretically.
One way to resolve this is to say that our observation is not precisely 15
minutes, but 15± ✏ minutes. For all ✏ > 0 we can make a rejection sampling
algorithm which rejects all runs where the gap is not within 15 ± ✏. In an
analogous way to line 40, we can encode rejection sampling in an interval
with weighted sampling, by replacing line 400 by

4
000
a. let d = sample(exponential(r)) in

4
000
b. observe d from uniform(0.25� ✏, 0.25 + ✏)

As ✏ ! 0, in this example, the posterior probability from rejection sampling
tends to the posterior probability from weighted sampling.

(This is not a practical approach at all because, for small ✏, the vast
majority of runs will be rejected. One practical solution to soften the hard
rejection constraint using noise from a normal distribution, e.g.

4
000
b
0
. observe d fromnormal(0.25, ✏

2
)

Here we use ✏
2
as a small standard deviation.)

The correctness of this argument depends on some continuity issues, which
have been investigated in the setting of conditional probability by Tjur
(1980, §9.12) and Ackerman et al. (2015). On the other hand, densities that
arise in practice are not always continuous: the GPA problem is an example
of this that has been studied in the probabilistic programming context (see
e.g. Figure 3, and §3.2, and Nitti et al., 2016; Wu et al., 2018).

In order to describe a situation as a program in this way, especially in
a way that is amenable to Calculation Method 3 (Weighted sampling), the
likelihood function of the observation distribution must be known. Research
on automatic density calculation is ongoing (Bhat et al., 2017; Gehr et al.,
2016; Ismail and chieh Shan, 2016).
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Figure 4 The rate of bikes as a function of the current time. The function is fictitious

but based on real observations by “Bells on Bloor” in Toronto (Koehl et al., 2017).

2.3 A third example: continuous samples, continuous

observations

For a third example, we use a similar story but now with bikes rather than
buses, and rather than guess the day of the week we guess the time of day.

(i) I have forgotten what time it is.

(ii) The rate of bikes per hour is determined by a function of the time of day.

(iii) I observe a 1 minute gap between two bikes.

(iv) What time is it?

We model the idea that the time is unknown by picking the uniform distri-
bution on the continuous interval (0, 24). Suppose that we have some idea of
the number of bikes per hour; the rate f(t) will vary according to the time t.
A possible f is given in Figure 4. In statistics notation, we would write:

(i) Prior: t ⇠ Uniform(0, 24);

(ii) Observation: d ⇠ Exponential(f(t));

(iii) d = 0.0167;

(iv) What is t?

The program for this example has the same outline as the previous one:
1. normalize(
2. let t = sample(uniform(0, 24)) in
3. let r = f(t) in
4. observe 0.0167 from exponential(r);
5. return(x))

Now to make Calculation Method 3 (weighted sampling) work, we need to ac-
cept that the prior and posterior distributions are on an uncountable space.
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On a discrete computer it is not really possible to sample from an uncount-
able continuous distribution. One way to deal with this is to approximate
the prior (and hence the posterior) by discrete distributions; the finer the
granularity the closer the approximation is to the continuous distribution.
A secondary problem is that even a discretized sample space is too large

to explore naively; many runs will have low weights (i.e. improbable) which
is a waste of resources. There are Monte Carlo algorithms that perform this
more e�ciently, and can be applied to probabilistic programs, for example:

• Markov Chain Monte Carlo / Metropolis Hastings: with each run, we do
not resample all the random choices, but only some, and we randomly
reject or accept the resample depending on the change in weight. In other
words, we build a Markov chain from the program and perform a random
walk over it.

• Sequential Monte Carlo: we can run N times up to a checkpoint (typically
an observation), pause, and redistribute the e↵ort so that not too many
of the running threads have low weight.

There are elaborations and combinations of these methods, together with
other methods (such as variational ones). The introduction by van de Meent
et al. (2018) covers many of these di↵erent methods.
For Posterior Calculation 1 (direct mathematical calculation), in this in-

stance, we can give a posterior probability in terms of a probability density
function. Recall that the meaning of density functions applied to probabil-
ities (as opposed to likelihoods) is as follows: although the probability that
the time is exactly 05:30 is zero, we can give a probability that the time is
in some interval (more generally, a measurable set), as the integral of the
density function. For instance, the posterior probability that the time is be-
tween 4am and 7am is shaded in Figure 5. The density function in this case
is given by multiplying the likelihood function by the density of the prior
distribution, which is uniform:

Posterior / Likelihood ⇥ Prior
posterior-pdf(t) / f(t)e�0.016⇥f(t) ⇥ 1

24

The density function t 7! f(t)e�0.016⇥f(t)⇥ 1

24
is not normalized, but we can

divide by the normalizing constant to get a true posterior density function:

t 7!
f(t)e�0.016⇥f(t) ⇥ 1

24R
24

0
f(t)e�0.016⇥f(t) ⇥ 1

24
dt

=
f(t)e�0.016⇥f(t)

R
24

0
f(t)e�0.016⇥f(t) dt

(2)

In general, we cannot naively use density functions for a full compositional
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Figure 5 Posterior density for the current time given that I noticed a one minute gap

between bikes when the rate is as shown in Figure 4. The probability that the time is

between 4am and 7am is the purple area.

semantics because some basic programs do not have density functions. We
return to this point in Section 3.

Aside on probabilistic programming for rapid prototyping

To briefly demonstrate the power of probabilistic programming for rapid
prototyping, we consider a few elaborations on the last example. Supposing
that the frequency f(t) is uncertain, say we only know the frequency ±1,
then we can quickly introduce an extra random variable by changing line 3
to

3’. let r = sample(normal(f(t), 1)) in . . .
If the error in the frequency f(t) is itself unknown, we can introduce yet
another random variable � for the error, for example,

3”a. let� = sample(inv -gamma(2, 1)) in
3”b. let r = sample(normal(f(t),�)) in . . .

2.4 Unnormalizable posteriors

This chapter is about semantics of probabilistic programs and so it is in-
formative to consider some corner cases. Recall that when we calculate a
posterior we must divide by a normalizing constant. If this constant is 0 or
1, we cannot find a posterior. In practice, if the constant is very low or very
high, it suggests the model is bad, and it is numerically inconvenient to find
the posterior, but if it is 0 or 1 it is impossible even in theory.
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Zero normalizing constant

A normalizing constant of 0 occurs when an observation is not only improb-
able, but impossible. For example, in the first example, suppose that we say
that we claim to observe (�42) buses – a negative number of buses. This is
impossible, nonsense, and the likelihood is not just very small but 0. In the
rejection sampling semantics, all runs will be rejected.
Whether a normalizing constant is 0 is undecidable in general. For ex-

ample, consider a Turing machine M with initial tape, and the following
scenario.

(i) We toss a coin repeatedly until the outcome is heads. Call the number of
tosses k.

(ii) We observe that Turing machine M terminates after exactly k steps.
(iii) What is k?

The prior distribution on k is a geometric distribution. The normalizing
constant is non-0 if and only if the machine M terminates, in which case
the posterior probability is the Dirac distribution on the number of steps
required. For this reason, finding the normalizing constant is undecidable in
general.
This manifests in practice as follows. For many Monte Carlo methods, it

is guaranteed that sampling will converge eventually. However, it is di�cult
in practice to know when a Monte Carlo process has converged, and as this
example shows, it may be impossible to know.

Infinite normalizing constant

Very high normalizing constants can occur when the observations are consid-
erably more likely for improbable prior parameters. To demonstrate this we
consider a scenario of a similar shape to the previous stories. An astronomer
has invented a telescopic device which she is using to measure the distance
between two stars, which are in fact precisely 1 light-year apart.

(i) The device is unreliable and breaks down every hour on average.
(ii) Every 2.89 hours that she uses the device, she is able to double the

precision (inverse variance) of her measurement; the initial precision is
6.3 ly�2. At the point that the machine breaks down, she estimates that
the distance is 1 light-year – coinciding with the true distance.

(iii) How long was the scientist using the machine for?

The story is set up so that the likelihood is inverse to the prior. The numbers
have been chosen so that the initial precision (6.3) is approximately 2⇡, and
the precision doubles every 2

ln 2
hours (⇡ 2.9), so that the precision ⌧t at time
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t is approximately ⌧t = 2⇡e2t. If we model the measurement inaccuracy by
a normal distribution, the likelihood function of data d is

p
⌧t
2⇡e

� 1
2 (d�1)

2⌧t .
When d = 1, the likelihood is et. So the prior density is e�t, but the likelihood
is et.
In statistical notation:

(i) Prior: t ⇠ Exponential(1);

(ii) Likelihood: d ⇠ Normal(1, (2⇡e2t)�
1
2 ), with d = 1;

(iii) What is the posterior probability on t?

As a probabilistic program:
1. normalize(
2. letx = sample(exponential(1)) in

3. observe 1 fromnormal(1, (2⇡e2t)�
1
2 );

4. return(x))

In the Posterior Calculation Method 3, the problem is that we are very
unlikely to pick long times, but when we do they receive very high weights.
In the Calculation Method 1, the unnormalized posterior density is

Posterior / Likelihood ⇥ Prior
posterior-pdf(t) / et ⇥ e�t

and so the probability that the time lies in a set U is
Z

U
ete�t dt =

Z

U
1 dt (3)

which is the Lebesgue measure. For instance, on an interval (a, b), the un-
normalized posterior is b � a. Across the entire positive reals (0,1), the
normalizing constant is infinite. So the question does not have an answer.
We cannot form a posterior probability on the time that the scientist used
the device: every time is equiprobable.
There are several contrivances in the story, the most ridiculous of which is

that the observed distance happens to perfectly match the true distance. If
the observed distance had been even slightly di↵erent from the true distance,
the infinite normalization constant would not occur. Indeed, if the observed
distance was very di↵erent from the true distance, we could easily conclude
that the device broke quickly (see Fig. 6). This means that in practice we do
not need to worry about the story, because a problem-causing observation
almost never occurs. In principle, however, we do need to consider infinite
measures like this, in part because they can legitimately arise as fragments of
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Figure 6 The posterior distribution on time spent using the device t given the observa-

tion d, in the context of the story about the scientist measuring the distance between

stars. Notice that when d = 1 the unnormalized posterior density is constant, and the

normalization constant is infinite.

reasonable programs, as we now discuss. (For further examples of improper
posteriors such as this, see e.g. Robert, 2007, Ex. 1.49–1.52.)

Improper priors and posteriors

When a normalizing constant is infinite, this is sometimes called an ‘im-
proper’ distribution. Although an improper distribution is problematic as
the end result of an inference problem, the distributions are incredibly
useful when used as part of a model. To analyze this we consider a con-
struction score(r) which weights the current run by r. This is equivalent to
observe 0 from exponential(r).

Suppose for a moment that we have a program Lebesgue, such as Lines 2-4
of our astronomy example, that behaves as the Lebesgue measure. Suppose
too that we have a probability distribution on [0,1) that has a probability
density function f : [0,1) ! [0,1), and we want to sample from it. We can
do this by:

letx = Lebesgue in score(f(x)); return(x)

since this is the definition of density functions. This composite program has
normalizing constant 1. In fact, when we expand the definition of Lebesgue
as above, this becomes the “importance sampling algorithm”:

letx = sample(exponential(1)) in score(ex); score(f(x)); return(x)

In words: to build a sampler for one distribution from a sampler for another
distribution, sample from the first distribution and then weight each run by
the ratio of the density functions.

So although infinite normalizing constants are problematic at the top level,
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it is often useful to reason about programs where subexpressions do have
infinite normalizing constants.

2.5 Summary of informal semantics

We have discussed three approaches to semantics for probabilistic programs:

• mathematical semantics defined using densities and measures;

• Monte Carlo semantics with rejection;

• Monte Carlo semantics with weighting.

In Section 2.4, we have seen that, no matter what approach is taken, some
care is needed because the normalizing constant may be infinite or zero.

3 Introduction to measurability issues

In Section 4 we will give a formal semantics for probabilistic programs in
terms of measures. In this section, we introduce the basics of a measure-
theoretic approach to probability (see also Pollard, 2002) and use it to illus-
trate why such a formal semantics is not entirely trivial.
The idea of weighted simulation already gives us an interpretation of a

probabilistic program. We define an underlying probability space ⌦ = [0, 1]d

where d is the number of sample statements in the program. If the program
includes recursion, d may be countably infinite, but that is not a problem.
We can think of each element of ⌦ as a list of random seeds. Given such
a list, we can execute a program deterministically, leading to a weight (the
product of all the observes) and a deterministic result, because the results
of the sample statements are fixed.
(Here we are using the fact that uniform random numbers in [0, 1] are a

su�cient seed for sampling from any probability distribution with parame-
ters. For example, sampling from a Bernoulli distribution can be simulated
by testing the position of a uniform random number,

sample(bernoulli(r)) = letx = sample(uniform) in return(x < r)

and more generally, sampling from a general distribution can be simulated
using the inverse-cdf method, e.g.:

sample(normal(m, s)) =

letx = sample(uniform) in return(norm-invcdf(m, s, x)).)
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Figure 7 A dartboard with the areas scoring 20 highlighted in black.

Thus a probabilistic program of type X determines two functions:

result : ⌦ ! X weight : ⌦ ! [0,1) (4)

and each run of the weighted simulation corresponds to randomly picking
seeds ! 2 ⌦ and returning the pair (weight(!), result(!)).
In general this (4) is a very intensional representation of a probabilistic

program: programs that describe the same probabilistic scenarios have di↵er-
ent di↵erent representations, because the functions result and weight will dif-
fer. For example, the following two programs implementing sample(bernoulli2/7):

letx = sample(uniform) in return(x < 2

7
)

letx = sample(uniform) in return(x > 5

7
)

will have di↵erent representations; introducing redundant sample statements
will give di↵erent representations; and so on. What we ultimately care about
is the posterior probability on the results. In general, this will be a measure.
Measure theory generalizes the ideas of size and probability distribution

from countable discrete sets to uncountable sets. To motivate, think of the
game of darts. No matter how good a player I am, the chance of hitting
the point at the centre of the dartboard is zero. The chance of hitting any
given point is zero. Nonetheless I will hit a point when I throw. We resolve
this apparent paradox by giving a probability of hitting each region. The
probability of scoring 20 points is the sum of the probabilities of hitting
one of the three regions that score 20 points (Figure 7). And so on. We
can think of these regions of the dartboard as measurable sets with positive
probability.
With this in mind, we are interested in the posterior probability that the
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result of a probabilistic program is within a certain set; for example, that
the day is a weekend day, or that the time is between 4am and 7am, or that I
scored 20 on the dartboard. If we run a weighted simulation k times, picking
seeds !1 . . .!k 2 ⌦, we obtain an empirical posterior probability that the
result is in the set U :

Pk
i=1

[result(!i) 2 U ] · weight(!i)Pk
i=1

weight(!i)
(5)

(Here and elsewhere we regard a property, e.g. [x 2 U ], as its characteristic
function X ! {0, 1}.) Although this empirical probability is itself random,
in that it depends on the choices !i, we would like to use the law of large
numbers to understand that as k ! 1 the empirical posterior (5) converges
to a true posterior

R
⌦
[result(!) 2 U ] · weight(!) d!R

⌦
weight(!) d!

. (6)

Then two programs should be regarded as the same if they give the same
posterior probability measure. There are two issues:

• We need to understand why the integrals in (6) exist;
• We need to also understand program fragments in this way, so that we
can reason about program equality bit by bit, compositionally.

To address these, we interpret probabilistic programs as unnormalized mea-
sures and kernels.

3.1 Rudiments of measure-theoretic probability

We recall some basic definitions of measure theory. These are well-motivated
by the illustration in Figure 7: the probability of scoring 20 is the sum of
the probabilities of hitting the three regions shown. Thus countable disjoint
unions are crucial for formulating measures.

Definition 1.1 A �-algebra on a set X is a collection of subsets of X
that contains ; and is closed under complements and countable unions. A
measurable space is a pair (X,⌃X) of a set X and a �-algebra ⌃X on it. The
sets in ⌃X are called measurable sets.

For example, we equip the set R of reals with the Borel sets. The Borel
sets are the smallest �-algebra on R that contains the intervals. The plane
R2 is equipped with the least �-algebra containing the rectangles (U ⇥ V )
with U and V Borel. For example, the dartboard (Fig 7) is a subset of R2,
and the set of points that would score 20 points is measurable.
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Definition 1.2 A measure on a measurable space (X,⌃X) is a function
µ : ⌃X ! [0,1] into the set [0,1] of extended non-negative reals that is
�-additive, i.e. µ(;) = 0 and µ(

U
n2N Un) =

P
n2N µ(Un) for any N-indexed

sequence of disjoint measurable sets U . A probability measure is a measure
µ such that µ(X) = 1.

For example, the Lebesgue measure � on R is determined by saying that
the measure of a line segment is its length (�(a, b) = b�a), and the Lebesgue
measure on R2 is determined by saying that the measure of a rectangle is
its area. For any x 2 X, the Dirac measure �x has �x(U) = [x 2 U ]. To
give a measure on a countable discrete measurable space X it is su�cient to
assign an element of [0,1] to each element of X. For example, the counting
measure � is determined by �({x}) = 1 for all x 2 X.
Measures can be equivalently understood as integration operators. A func-

tion between measurable spaces, f : X ! Y , is said to be measurable if
f -1(U) 2 ⌃X when U 2 ⌃Y . If f : X ! [0,1] is measurable and µ is a
measure on X then we can integrate f with respect to µ, written

R
µ f(x) dx,

giving a number in [0,1].

3.2 Relationship to Bayesian statistics

The measure-theoretic semantics that we discuss in this chapter is inspired
by Bayes’ law, but it is not tied to it. Indeed, sometimes a language for
weighted Monte Carlo simulation is useful without a formal Bayesian in-
tuition; for example, one might use weights coming from image similarity
without making a formal connection to likelihood. Nonetheless in this sec-
tion we make a connection with the measure-theoretic treatment of Bayes’
law.
Measures are closely related to density functions.

Definition 1.3 If f : X ! [0,1] is measurable, and µ is a measure on X,
then

⌫(U) =

Z

µ
[x 2 U ]f(x) dx

is also a measure. We say that ⌫ has density f with respect to µ. A density is
sometimes called a Radon-Nikodym derivative. If ⌫(X) = 1, it is a probability
density. If a measurable function f : X ⇥ Y ! [0,1] has the property thatR
µ f(x, y) dx = 1 for all y then it is a conditional probability density with
respect to µ.

For example, the density function of the exponential distribution (r, x) 7!
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re�x is a conditional density with respect to the Lebesgue measure, and this
induces the exponential probability measures on R. The Dirac measure has
no density with respect to the Lebesgue measure, but it does have a density
with respect to itself, as does every measure.

Throughout the above analysis, we have used densities as weights. The
observed data has been fixed in our examples, for example, 4 buses or 15
minutes, but it would be reasonable to make the function weight : ⌦ ! [0,1)
parametrized in the data. Thus, supposing our data lies in a space D, the
data-parameterized weight function is a measurable function likelihood : D⇥
⌦ ! [0,1), such that weight(!) = likelihood(d,!) where d is the specific
data that is hard-coded into the program. The Bayesian approach is that
likelihood should be a conditional probability density with respect to some
measure � on D.

The posterior (6) can then be made a measurable function of y 2 D, i.e.
a regular conditional probability:

qy(U) =

R
⌦
[result(!) 2 U ] · likelihood(y,!) d!R

⌦
likelihood(y,!) d!

.

This can also now be connected formally to Bayes’ theorem of conditional
probability, see e.g. Schervish (1995, Thm. 1.31). In Section 2.4 we discussed
the point that although the denominator may be 0 or 1, for a whole pro-
gram, this almost-never happens. This can now be made precise:

�(U0,1) = 0

where �(V ) =
R
D

R
⌦
[y 2 V ] · likelihood(y,!) d! dy is the prior predictive

measure, and U0,1 = {y |
R
⌦
likelihood(y,!) d! 2 {0,1}}.

We conclude by mentioning, as an aside, that in complex situations, the
Bayesian requirement of a single base measure � on D can be subtle. The
density functions for the GPA problem in Figure 3 are densities with respect
to the mixed measure (lebesgue + �4 + �10). The theory of conditional prob-
ability densities requires a single common base measure for all the di↵erent
parameters. The following program will only give the right result if we use
the same base measure (lebesgue+�4+�10) on R for the likelihood functions
for all the di↵erent if-then-else branches.
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let american = sample(bernoulli(0.5)) in

let brilliant = sample(bernoulli(0.01)) in

ifamerican then

ifbrilliant then observe 4 from dirac(4) else observe 4 from uniform(0, 4)

else

ifbrilliant then observe 4 from dirac(10) else observe 4 from uniform(0, 10)

return(american)

This is subtle because the density of the Indian distribution uniform(0, 10)
with respect to the base lebesgue measure is the constant 0.1 function, but
the density of uniform(0, 10) with respect to the base measure (lebesgue +
�4 + �10) must take value 0 at 4, as in Figure 3. Overall, then, the program
is a Dirac measure at american = true.

In summary, the meaning of a closed probabilistic program is an unnor-
malized measure, thought of as the nominator in Bayes’ rule. For a program
expression that has free variables, its interpreation should be measurable in
the valuation of those variables.

• Sampling from a probability measure is a measure.
• An observation observex from d is a one point measure whose value is the
density of d at x.

• The sequencing letx = t inu means, roughly, integration:
R
t u dx.

• The simple statement return(t) means the Dirac delta measure.

We make this precise in Section 4.

3.3 Obstacles to measurability

We now illustrate why measurability of programs is not entirely trivial. Our
counterexamples are based on the counting measure on the real numbers.
This is an unnormalized distribution that assigns 1 to every singleton set.
It turns out that although some infinite measures are definable in a proba-
bilistic programming language, the counting measure on R is not definable
– we show this in Section 5.2. But for now let us suppose that we add it
to our language, as a command counting , and see what chaos ensues. (For
now, we retain an intuitive view of measurability; precise definitions are in
Section 4, with a precise version of the arguments in this section given in
Section 5.2.)
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As before, for any set U we can consider a function [x 2 U ] which re-
turns true if x 2 U and false otherwise. For example, we might write
[x 2 {0, 1, 2, 3}], [x > 0], [x = 42], and so on. The following lemma gives
some intuition for the counting measure.

Lemma 1.4 For any (measurable) set U , the program

let r = counting in return[r 2 U ]

gives weight #U to true and #(R \ U) to false, where #U is the cardinality

of U if U is finite, or 1 otherwise.

In this extended language, the fundamental law of exchangeability is vi-
olated: the order of draws matters, as we now explain. Notice that let s =
counting in return[r = s] has the same semantics as return(true), for all r,
because there is exactly one s that is equal to any given r (Lemma 1.4). So

let r = uniform(0, 1) in let s = counting in return[r = s] (7)

is an equivalent program to return(true). But

let r = uniform(0, 1) in return[r = s]

has the same semantics return(false), for all s, because any r is almost surely
di↵erent from a given s. So

let s = counting in let r = uniform(0, 1) in return[r = s] (8)

has the same semantics as return(false). Comparing (8) to (7), we see that
programs involving the counting measure cannot be reordered.
In fact, the measure-theoretic semantics of the language extended with

counting is not always even fully defined. For an example of this, we recall
that there exist Borel-measurable subsets U of the plane R2 for which the
projection ⇡[U ]

def
= {x | 9y. (x, y) 2 U} is not Borel-measurable in R. (In

general ⇡[U ] is called ‘analytic’.) Now the program

let s = counting in return[(r, s) 2 U ]

puts a non-zero weight on true if and only if r 2 ⇡[U ]. So this program is
not measurable in r, and so programs built from it, such as

let r = uniform(0, 1) in let s = counting in return[(r, s) 2 U ]

are not well defined.
As we will see in Section 4 (Lemma 1.7), this problem cannot arise in

the language without the counting measure: every term is compositionally
well-behaved.
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4 Formal semantics of probabilistic programs as measures

We now turn to give a precise semantics of probabilistic programs. To this
end we set up a typed language with a precise syntax.
In the previous section we have considered programs as Bayesian statisti-

cal models. However, this is only an intuition, and the semantics is given in
terms of weighted simulations and measure theory. Moreover, some applica-
tions of weighted simulation are beyond the realms of Bayesian statistics.
For these reasons, the precise language that we now consider will have

the keyword score(r), which weights the run by r, instead of the keyword
observe. The two are inter-definable:

observe r from p = score(f(r)), where f is the density of p

score(r) = observe 0 from exponential(r)

4.1 Types

In what follows it is helpful to consider a typed programming language. We
will consider types such as natural numbers, real numbers, tuples of real
numbers, and lists of real numbers. In practice many probabilistic program-
ming languages do not perform type checking, but having a type greatly
simplifies the mathematical semantics. Moreover, types play an intuitive
role, because a probabilistic program may describe a measure on the space
of natural numbers, or the space of real numbers, or on the real plane. With
this intuition, a type is just a syntactic description of a space. For instance,
we can understand an expression of real type as a measure on the real line;
an expression of integer type as a measure on the space of integers, and so
on.
Our types are generated by the following grammar:

A,B ::= R | P(A) | 1 | A⇥ B |
`

i2I Ai

where I ranges over countable, non-empty sets. The type
`

i2I Ai is some-
times called a labelled variant or a tagged union. The type P(A) is a type
of distributions on A. Here are some examples of types in the grammar:

• The type R of the real line, and type R⇥ R of the plane;
• The type (1 + 1) of booleans (true/false), the type

`
i2N 1 of natural

numbers;
• The type

`
i2N Ri of sequences of reals of arbitrary length;

• The type P(1 + 1) of probability distributions over the booleans, and the
type P(R) of probability distributions on the reals.
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To keep things simple we do include function types such as (R ! R) and
(R ! R) ! R. Also, this is not a type system that can be automatically
checked in a computer because we include infinite sum types rather than
recursion schemes. We do this primarily because countably infinite disjoint
unions play such a crucial role in classical measure theory, and constructive
measure theory is an orthogonal issue (but see e.g. Ackerman et al. (2011)).

4.2 Types as measurable spaces

Types A are interpreted as measurable spaces JAK, by induction on their
structure, as follows. To be precise we distinguish between the syntactic
name of the type A and the space JAK which interprets it.

• JRK is the measurable space of reals, with its Borel sets. The Borel sets
are the smallest �-algebra on R that contains the intervals. We will always
consider R with this �-algebra.

• J1K is the unique measurable space with one point.

• JA ⇥ BK is the product space JAK ⇥ JBK. The �-algebra ⌃JA⇥BK is the
least one containing the rectangles (U ⇥ V ) with U 2 ⌃JAK and V 2 ⌃JBK
(e.g. Pollard, 2002, Def. 16)).

• J
`

i2I AiK is the coproduct space
U

i2IJAiK, the disjoint union. The �-algebra
⌃J`i2I AiK is least one containing the sets {(i, a) | a 2 U} for U 2 ⌃JAiK.
For example, the type N is interpreted as the space JNK of natural numbers
with the discrete �-algebra, where all sets are measurable.

• We let JP(A)K be the set P (JAK) of probability measures on JAK together
with the least �-algebra containing the sets {µ | µ(U) < r} for each U 2
⌃X and r 2 [0, 1] (the ‘Giry monad’ (Giry, 1982)).

4.3 Typed program expressions

We consider programs built from the following grammar:

t, t0, t1 ::= (i, t) | case t of {(i, x) ) ui}i2I | () | (t0, t1) | projj(t) | f(t) | x
| return(t) | letx = t inu | sample(t) | score(t) | normalize(t)

(9)
The first line of (9) contains standard deterministic expressions, for example
destructing union and product types, with intended equations such as the
following:

⇣
case (j, t) of {(i, x) ) ui}

⌘
= uj [t/x] projj(t0, t1) = tj .
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We also include some basic functions f , and in fact, we may as well include
all measurable functions in our language, including arithmetic operations
and constants (e.g. +, ⇥, k10), comparison predicates (e.g. =, <), and pa-
rameterized probability measures (e.g. normal , bernoulli). There are also
variables x that are bound by case and let.
In a real computer language, operations over infinite structures such as

lists and numbers are given by induction or recursion. In this chapter, rather
than worry about this, we simply allow the programmer to give a di↵erent
case for every index into the infinite structure. This means that the case
syntax is potentially infinite, since the set I might be (countably) infinite. It
is routine to build a finite language with inductive primitives and translate
it into this one.
The second line of (9) contains ways of combining programs (let) and

sequencing, as well as the three crucial primitives of probabilistic program-
ming: sample, score and normalize.
In this simple language, there is little syntactic sugar, and so the program

about buses in Section 2.1 would be written:

1. normalize(
2. letx = sample(bernoulli(2

7
)) in

3. let r = casex of {(1, ) ) return(k3()) , (2, ) ) return(k10())} in
4. let = score( 1

4!
r4e�r) in

5. return(x))
(10)

where k3, k10 : 1 ! R are the obvious constant functions, which are measur-
able.

Typed terms. We distinguish typing judgements: � d̀ t : A for determin-
istic terms, and � p̀ t : A for probabilistic terms. Here the context � is of
the form (x1 : B1, . . . , xn : Bn). The intuition is that if � z̀ t : A then the free
variables of t are contained in x1 . . . xn, and given values of the right type
for each free variable, then the expression t will return something of type A,
either deterministically or probabilistically. For example, the entire program
in (10) is a deterministic term returning a distribution, whereas lines 2–5
form a probabilistic term of type (1+1). Neither have any free variables. The
term score( 1

4!
r4e�r) is a probabilistic term with a real free variable r : real,

so we write r : real p̀ score( 1

4!
r4e�r) : 1.

We have already explained that each type A is understood as a measurable
space. Formally, a context � = (x1 : A1, . . . , xn : An) is also interpreted as a
measurable space J�K def

=
Qn

i=1
JAiK of well-typed valuations for the variables.
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As will be seen in the next section, deterministic terms � d̀ t : A denote
measurable functions from J�K ! JAK, closed probabilistic terms p̀ t0 : A
denote measures on JAK, and open probabilistic terms � p̀ t0 : A denote
kernels J�K JAK. We give a syntax and type system here, and a semantics
in Section 4.4.
We specify the valid judgements � d̀ t : A and � p̀ t : A as the least

relations closed under the following rules.

Sums and products. The type system allows variables, and standard con-
structors and destructors for sum and product types.

�, x : A,�0
d̀ x : A

� d̀ t : Ai

� d̀ (i, t) :
`

i2I Ai

� d̀ t :
`

i2I Ai (�, x : Ai z̀ ui : B)i2I
� z̀ case t of {(i, x) ) ui}i2I : B

(z 2 {d, p})

� d̀ () : 1
� d̀ t0 : A0 � d̀ t1 : A1

� d̀ (t0, t1) : A0 ⇥ A1

� d̀ t : A0 ⇥ A1

� d̀ projj(t) : Aj

If the reader is not familiar with type systems, they might consult the early
chapters of Harper (2016). We give an example of a typing derivation later,
in (12). For instance, the rule for (t0, t1) says that “if term t0 has type A0

and term t1 has type A1 then the pair (t0, t1) has type (A0 ⇥ A1)”.
In the rules for sums, I may be infinite. In the last rule, j is 0 or 1. We use

some standard syntactic sugar, such as false and true for the injections in
the type bool = 1+ 1, and if for case in that instance. The continuations of
case expressions may be either deterministic or probabilistic, as indicated.

Sequencing. We include the standard constructs for sequencing (e.g. Levy
et al., 2003; Moggi, 1991).

� d̀ t : A
� p̀ return(t) : A

� p̀ t : A �, x : A p̀ u : B
� p̀ let x = t in u : B

Notice that, in this simple language, everything probabilistic must be
explicitly sequenced. For example, if � p̀ t0 : A0 and � p̀ t1 : A1, we cannot
conclude that � p̀ (t0, t1) : A0 ⇥ A1. Rather, we have to explicitly write

� p̀ letx0 = t0 in letx1 = t1 in return(x0, x1) : A0 ⇥ A1

or � p̀ letx1 = t1 in letx0 = t0 in return(x0, x1) : A0 ⇥ A1

Later (§5.1) we will show that the order of evaluation doesn’t matter, so we
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could use (t0, t1) as an unambiguous syntactic sugar, but it makes the formal
semantics simpler to insist that the order of evaluation is given explicitly.

Language-specific constructs. We also include constant terms for all
measurable functions. Recall that a function f : X ! Y between measurable
spaces is itself measurable if the inverse image of a measurable set is again
measurable.

� d̀ t : A
� d̀ f(t) : B (f : JAK ! JBK measurable) (11)

Thus we assign suitable types to the arithmetic operations and constants
(e.g. + : R ⇥ R ! R, k10 : 1 ! R), predicates (e.g. (=) : R ⇥ R ! bool)
and probability measures (e.g. normal : R ⇥ R ! P (R)). For instance, we
have a judgement µ : R,� : R d̀ normal(µ,�) : P(R). (Some families are not
defined for all parameters, e.g. the standard deviation should be positive,
but we make ad-hoc safe choices throughout rather than using exceptions
or subtyping.)
For example, the expression (if x then 3 else 10) is shorthand for

(casex of {(1, ) ) k3() ; (2, ) ) k10()})

We derive that the expression has type R when x has type bool, by deriving
it from the rules as follows.

�
x : bool d̀ x : bool

�
x : bool, z : 1 d̀ () : 1

x : bool, z : 1 d̀ k3() : R

�
x : bool, z : 1 d̀ () : 1

x : bool, z : 1 d̀ k10() : R
x : bool d̀ casex of {(1, z) ) k3() ; (2, z) ) k10()} : R

(12)
The core of the language is the constructs corresponding to the terms in

Bayes’ law: sampling from prior distributions, recording likelihood scores,

� d̀ t : P(A)
� p̀ sample(t) : A

� d̀ t : R
� p̀ score(t) : 1

and calculating the normalizing constant and a normalized posterior.

� p̀ t : A
� d̀ normalize(t) : R⇥ P(A) + 1 + 1

As we discussed in Section 2.4, normalization will fail if the normalizing
constant is zero or infinity; so it produces either a normalization constant
together with a normalized posterior distribution (R⇥ P(A)), or exception-
ally one of the two failure possibilities (+1 + 1). In a complex model the
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normalized posterior could subsequently be used as a prior and sampled
from. This is sometimes called a ‘nested query’ (see for instance Stuhlmuller
and Goodman, 2014), but it remains to be seen whether it is computationally
practical (Rainforth et al., 2018).

4.4 Expressions as s-finite kernels, programs as measures

In this section we will give an interpretation of closed programs p̀ t : A as
measures on A. To do this, we must also interpret open programs � p̀ t : A,
which will be families of measures on JAK that are indexed by the valuations
of the context J�K. These are called kernels. (Warning: the word kernel is
over-used and has other meanings.)

s-Finite kernels

A kernel k from X to Y is a function k : X ⇥ ⌃Y ! [0,1] such that each
k(x,�) : ⌃Y ! [0,1] is a measure and each k(�, U) : X ! [0,1] is mea-
surable. Because each k(x,�) is a measure, we can integrate any measurable
function f : Y ! [0,1] to get

R
k(x) f(y) dy 2 [0,1]. We write k : X  Y

if k is a kernel. We say that k is a probability kernel if k(x, Y ) = 1 for all
x 2 X.
We need to further refine the notion of kernels, because arbitrary kernels

do not behave well. The following result is a step towards the central notion
of s-finite kernel.

Proposition 1.5 Let X,Y be measurable spaces. If k1 . . . kn · · · : X  Y
are kernels then the function (

P1
i=1

ki) : X ⇥ ⌃Y ! [0,1] given by

(
P1

i=1
ki)(x, U)

def
=

1X

i=1

(ki(x, U))

is a kernel X  Y . Moreover, for any measurable function f : Y ! [0,1],
Z

(

P1
i=1

ki)(x)
f(y) dy =

1X

i=1

Z

ki(x)
f(y) dy.

Definition 1.6 Let X,Y be measurable spaces. A kernel k : X  Y is
finite if there is finite r 2 [0,1) such that, for all x, k(x, Y ) < r.
A kernel k : X  Y is s-finite if there is a sequence k1 . . . kn . . . of finite

kernels and
P1

i=1
ki = k.

Note that the bound in the finiteness condition, and the choice of sequence
in the s-finiteness condition, are uniform, across all arguments to the kernel.
If the reader is familiar with the notion of �-finite measure, they will
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note that this is di↵erent. In fact, an s-finite measure is the same thing as
the push-forward of a �-finite measure (Getoor, 1990; Sharpe, 1988). The
definition of s-finite kernel is not so common but appears in recent work by
Kallenberg (2014) and Last and Penrose (2016, App. A). It was proposed as
a foundation for probabilistic programming by the author (Staton, 2017),
but it has since attracted further use and development (e.g. Bichsel et al.,
2018; Ong and Vákár, 2018).

Composition of kernels

Before we give the semantics of our language, we need a lemma which is
central to the interpretation of let.

Lemma 1.7 Let X,Y, Z be measurable spaces, and let k : X⇥Y  Z and

l : X  Y be s-finite kernels (Def. 1.6). Then we can define a s-finite kernel

(k ? l) : X  Z by

(k ? l)(x, U)
def
=

Z

l(x)
k(x, y, U) dy

so that Z

(k?l)(x)
f(z) dz =

Z

l(x)

Z

k(x,y)
f(z) dz dy

A proof is given in (Staton, 2017), building on a well-known fact that
the the property holds for finite kernels (e.g. Pollard, 2002, Thm. 20(ii)).
The example in Section 3.3 shows that if we generalize to arbitrary kernels,
we cannot construct k ? l in general. In detail, let X = Y = R and let
Z = 1 = {⇤}. Pick a Borel subset U ✓ R⇥R whose projection is not Borel.
Let k(x, y, {⇤}) = [(x, y) 2 U ], and let l(x,�) be the counting measure on
R. Then (k ? l)(x, {⇤}) is non-zero if and only if x 2 ⇡[U ], and so it is not
measurable in x, and so it is not a kernel.

Semantics

Recall that types A are interpreted as measurable spaces JAK. We now ex-
plain how to interpret a deterministic term in context, � d̀ t : A, as a mea-
surable function JtK : J�K ! JAK, and how to interpret a probabilistic term
in context, � p̀ t : A, as an s-finite kernel JtK : J�K JAK.
The semantics of the language, beginning with variables, sums and prod-

ucts, is roughly the same as a set-theoretic semantics. For each typed term
� d̀ t : A, and each valuation � 2 J�K of values for variables, we define an
element JtK� of A, in such a way that the assignment is measurable in �. We



28 Staton

do this by induction on the structure of typing derivations:

JxK�
def
= �x J(i, t)K�

def
= (i, JtK�)

Jcase t of {(i, x) ) ui}i2IK�
def
= JuiK�,d if JtK� = (i, d)

J()K�
def
= () J(t0, t1)K�

def
= (Jt0K� , Jt1K�) J⇡j(t)K�

def
= di if JtK� = (d0, d1)

Here we have only treated the case expressions when the continuation ui is
deterministic; we return to the probabilistic case later.

For each typed probabilistic term � p̀ t : A, and each valuation � 2 J�K,
and each measurable set U 2 ⌃JAK, we define a measure JtK�;U 2 [0,1], in
such a way that JtK is an s-finite kernel J�K JAK (Def. 1.6). The semantics
of sequencing are perhaps the most interesting: return is the Dirac delta
measure, and let is integration.

Jreturn(t)K�;U
def
=

(
1 if JtK� 2 U

0 otherwise
Jletx = t inuK�;U

def
=

Z

JtK�
JuK�,x;U dx

The interpretation Jreturn(t)K is finite, hence s-finite. The fact that Jletx =
t inuK is an s-finite kernel is Lemma 1.7: this is the most intricate part of
the semantics.

We return to the case expression where the continuation is probabilistic:

Jcase t of {(i, x) ) ui}i2IK�;U
def
= JuiK�,d;U if JtK� = (i, d).

We must show that this is an s-finite kernel. Recall that JuiK : J�⇥ AiK JBK,
s-finite. We can also form JuiK : J�K ⇥

U
jJAjK JBK with

JuiK�,(j,a);U
def
=

(
JuiK�,a;U i = j

0 otherwise

and it is easy to show that JuiK is an s-finite kernel. Another easy fact is
that a countable sum of s-finite kernels is again an s-finite kernel, so we can
build an s-finite kernel (

P
i JuiK) : J�K ⇥

U
jJAjK  JBK. Finally, we use a

simple instance of Lemma 1.7 to compose (
P

i JuiK) with JtK : J�K !
U

jJAjK
and conclude that Jcase t of {(i, x) ) ui}i2IK is an s-finite kernel.
The language specific constructions are straightforward.

Jsample(t)K�;U
def
= JtK�(U) Jscore(t)K�;U

def
=

(
|JtK� | if U = {()}
0 if U = ;.

In the semantics of sample, we are merely using the fact that to give a
measurable function X ! P (Y ) is to give a probability kernel X  Y .
Probability kernels are finite, hence s-finite.
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The semantics of score is a one point space whose measure is the argument.
(We take the absolute value of JtK� because measures should be non-negative.
An alternative would be to somehow enforce this in the type system.) We
need to show that Jscore(t)K is an s-finite kernel. Although Jscore(t)K�;1 is
always finite, Jscore(t)K is not necessarily a finite kernel because we cannot
find a uniform bound. To show that it is s-finite, for each i 2 N0, define a
kernel ki : J�K 1

ki(�, U)
def
=

(
Jscore(t)K�;U if Jscore(t)K�;U 2 [i, i+ 1)

0 otherwise

So each ki is a finite kernel, bounded by (i + 1), and Jscore(t)K =
P1

i=0
ki,

so it is s-finite.
We give a semantics to normalization by finding the normalizing constant

and dividing by it, as follows. Consider � p̀ t : A and let evidence�,t
def
= JtK�;JAK.

Jnormalize(t)K�
def
=

8
>><

>>:

(0, (evidence�,t,
JtK�;(�)

evidence�,t
)) evidence�,t 2 (0,1)

(1, ()) evidence�,t = 0

(2, ()) evidence�,t = 1

5 Reasoning with measures

Once a formal semantics of probabilistic programs as measures is given, one
can reason about programs by reasoning about measures. Moreover, since
the semantics is compositional, one can build up properties of programs in
a compositional way. We consider two examples.

5.1 Reasoning example: Commutativity

We can quickly verify the following law

letx0 = t0 in letx1 = t1 in return(x0, x1)

= letx1 = t1 in letx0 = t0 in return(x0, x1)
(13)

whenever � p̀ t0 : A0 and � p̀ t1 : A1. To do this we recall that Jt0K�;� and
Jt1K�;� are measures on A0 and A1 respectively, and calculate that

Jletx0 = t0 in letx1 = t1 in return(x0, x1)K�;U

=

Z

Jt0K(�)

Z

Jt1K(�)
[(x0, x1) 2 U ] dx1 dx0
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is the definition of the product measure on A0 ⇥ A1. Product measures are
not well-defined in general, but they are well-defined for finite measures, and
this extends to s-finite measures. Indeed to conclude (13), one would notice
that for any s-finite measures µ0, µ1 on A0 and A1, the product measures
on A0 ⇥ A1 are equal:

Z

µ0

Z

µ1

[(x0, x1) 2 U ] dx1 dx0 =

Z

µ1

Z

µ0

[(x0, x1) 2 U ] dx0 dx1

This is known as the Fubini-Tonelli theorem, which holds for s-finite mea-
sures (e.g. Sharpe, 1988; Staton, 2017).

5.2 Reasoning example: Non-definability

We have seen in Section 3.3 that the counting measure on R, which as-
signs to each set its size, is problematic for a probabilistic programming
language. We now show that it is not definable. It is su�cient to show
that it is not s-finite, since every definable program describes an s-finite
measure. To show this we show that for every s-finite measure µ, the set
{r | µ({r}) > 0} is countable. The counting measure violates this invariant.
Since a countable union of countable sets is countable, it su�ces to show
that {r | µ({r}) > 0} is countable when µ is a finite measure. To see this,
notice that for each positive integer n the set {r | µ({r}) > 1

n} must be
finite, and so {r | µ({r}) > 0} =

S
n2Z+{r | µ({r}) > 1

n} must be countable.

6 Other approaches to semantics and open questions

6.1 Di↵erent approaches to semantic definitions

In other work (Staton et al., 2016) we have considered a semantics based on
a monad

X 7! P ([0,1)⇥X)

on the category of measurable spaces. This arises from combining the writer
monad for the monoid ([0,1),+, 0) of scores with the probability monad P .
This naturally matches the two constructions (score for [0,1) and sample for
P ), and it fits the weighted simulation semantics: the meaning of a program
is a distribution over runs, each of which has a weight and a result. This
semantics distinguishes things that should arguably be considered equal. For
example, the semantics will distinguish

letx = sample(bernoulli(0.5)) in if x then score(4) else score(6); return(42)
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from

score(5); return(42)

This semantics can be translated to the less discriminating semantics in this
chapter as follows. Every measurable function

f : Y ! P ([0,1)⇥X)

can be translated to an s-finite kernel f ] : Y  X where

f ](y, U) =

Z

f(y)
r · [x 2 U ] d(r, x).

In fact, every s-finite kernel arises in this way. This translation preserves
all the structure. Thus the monadic interpretation of the language can be
translated into the s-finite semantics compositionally.
In Section 3 we considered an even more fine-grained approach, where a

program � p̀ t : A is interpreted as a measurable function ⌦ ! JAK, i.e. a
random variable on some basic probability space, together with a separate
likelihood function ⌦ ! [0,1). (See also e.g. Holtzen et al., 2018; Hur et al.,
2015). By considering the law of the pairing ⌦ ! [0,1)⇥ JAK we arrive at a
probability measure in P ([0,1)⇥ JAK), and every such probability measure
arises as the law of some such pairing. Another way to include weightings is
to consider ⌦ to be a subset of some plane Rn with an unnormalized Lebesgue
measure. It turns out that an s-finite measure on a standard Borel space X
is the same thing as the pushforward measure of a Lebesgue measure along
a measurable function ⌦ ! X, where ⌦ ✓ Rn. So these di↵erent semantic
methods all agree on what can be considered.
Although s-finite measures and kernels behave very well and have many

characterizations, it is currently an open question whether the category of
s-finite kernels is itself the Kleisli category for a monad. Recently we have
proposed to use quasi-Borel spaces as generalized measurable spaces. S-
finite kernels between quasi-Borel spaces do form the Kleisli category for a
monad (Scibior et al., 2018).

6.2 Other semantic issues

In this chapter we have focused on giving a simple, measure-theoretic se-
mantics to the programs in the simple first-order language through s-finite
kernels. The semantics is clear, but subtle, because of issues of infinite nor-
malization constants and measurability issues. But this simple semantics is
only a very first step. Beyond:
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• Statisticians and probabilists are interested in other issues such as con-
vergence and relative entropy, which might also be analyzed in a com-
positional way, together with their relationships to computability (e.g.
Ackerman et al., 2011; Huang and Morrisett, 2017).

• We might also add di↵erent modes of conditioning, such as conditioning
by disintegration rather than density (e.g. Shan and Ramsey, 2016).

• We might add other typical language features such as higher order func-
tions (e.g. Staton et al., 2016; Heunen et al., 2017), higher order recur-
sion (e.g. Ehrhard et al., 2018; Vákár et al., 2019), and abstract types (e.g.
Staton et al., 2018).

• Other languages have additional, non-functional primitives, based on logic
programming (e.g. Nitti et al., 2016; Wu et al., 2018).
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