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Abstract

We study the semantic foundation of expressive probaibiliso-
gramming languages, that support higher-order functiomstinu-
ous distributions, and soft constraints (such as Angli€myrch,
and Venture). We define a metalanguage (an idealised veo$ion
Anglican) for probabilistic computation with the above tig@s,
develop both operational and denotational semantics, aomkp
soundness, adequacy, and termination. They involve measer
ory, stochastic labelled transition systems, and funcabegories,
but admit intuitive computational readings, one of whiclews
sampled random variables as dynamically allocated readvani-
ables. We apply our semantics to validate nontrivial eguatiun-
derlying the correctness of certain compiler optimisatiand in-
ference algorithms such as sequential Monte Carlo sinamalihe
language enables defining probability distributions orhaigorder
functions, and we study their properties.

1. Introduction

Probabilistic programming is the idea to use programs taipe
probabilistic models; probabilistic programming langesdlend
programming constructs with probabilistic primitives.igtelps
scientists express complicated models succinctly. Maeauch
languages come with generic inference algorithms, relgethe
programmer of the nontrivial task of (algorithmically) aresing
queries about her probabilistic models. This is usefut.ijm ma-
chine learning.

Several higher-order probabilistic programming langsaweve
recently attracted a substantial user base. Some lang(siges
as Infer.net|[21], PyMCL[26], and Stan [33]) are less expvess
but provide powerful inference algorithms, while otheracfs as
Anglican [34], Church|[12], and Venture [20]) have less ddfit
inference algorithms but more expressive power. We conside
more expressive languages, that support higher-ordertifunsc
continuous distributions, and soft constraints. More isedg, we
consider a programming languadB) with higher-order functions
(g6) as well as the following probabilistic primitives.

Sampling The commandample(t) draws a sample from a distri-
bution described by, which may range over the real numbers.

Soft constraints The commandcore(t) puts a score (a positive
real number) on the current execution trace. This is typical
used to record that some particular datum was observedrag bei
drawn from a particular distribution; the score describew h
surprising the observation is.

Normalisation The commandnorm(w) runs a simulation algo-
rithm over the program fragment This takes the scores into
account and returns a new, normalised probability disticipu
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The argument t@ample might be a primitive distribution, or
a distribution defined by normalizing another program. Tis
called anested queryby analogy with database programming.

Such languages currently lack formal exact semantics. Fhe a
of this paper is to provide just such a foundation as a basifofe
mal reasoning, improving the unsatisfactory current sibmaMost
expressive probabilistic programming languages are agiain
terms of their Monte Carlo simulation algorithms. The siegpl
such algorithm, using importance and rejection samplsthede
factosemantics against which other algorithms are ‘proved appro
imately correct’. Such ‘semantics’ are hard to handle andrek

We provide two styles of semantics, operational and denota-
tional. For first-order probabilistic programs, the detiotzal se-
mantics is straightforward: types are interpreted as mabb
spaces, and terms are interpreted as measurable fungffn©p-
erational semantics is more complicated. For discreteiloigions,
an operational semantics might be a probabilistic tramsiystem,
but for continuous distributions, it must be a stochastiatien (la-
belled Markov process). We resolve this by equipping theoet
configurations with the structure of a measurable spdge (

The advantage to the operational semantics is that it igyeasi
extended to higher-order progranigl(. Denotational semantics for
higher-order programs poses a problem, because meassipalbkes
do not support the usu@l/n theory of functions: they do not form
a Cartesian closed category (indeRf,does not exist as a measur-
able space [3]). Earlier semantics deal with this by eitiiehuling
higher-order functions or considering only discrete distions.
We resolve this by moving from the category of measurableespa
where standard probability theory takes place, to a furzategory
based on it {8). The former embeds in the latter, so we can still
interpret first-order concepts. But the functor categorgsdbave
well-behaved function spaces, so we can also interpreehigider
concepts. Moreover, by lifting the monad of probabilitytdisu-
tions [11] to the functor category, we can also interpreticoous
distributions. Finally, we can interpret observations bypsidering
probability distributions with continuous density, irpestive of the
categorical machineryj)).

The denotational semantics is sound and adequate withatespe
to the operational semantic§5(3[8.3), which means one can use
the denotational model to directly check program equatiinitst
respecting computational issues. For example:

e we demonstrate a key program equation for sequential Monte
Carlo simulation {4.7);

e we show that every term of first-order type is equal to one
without A-abstractions or application, and hence is interpreted
as a measurable function (Proposifion 8.3).
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2. Preliminaries
We recall basic definitions and facts of measure theory.

Definition 2.1. A c-algebraon a setX is a family X of subsets
of X, calledmeasurable (sub)setahich containsX and is closed
under complements and countable unionsnéasurable spads a
set with as-algebra.

A probability measurer probability distributionon a measur-
able spacg X, ¥) is a functionp: ¥ — [0, 1] to the unit interval
satisfyingp(X) = 1 andp(U,cy Ui) = >_,cn p(Us) for each se-
quencely, U, . . . of disjoint measurable sets.

A first example is to make a séf into a measurable space by
taking the full powerset oKX as¥, yielding adiscretemeasurable
space. WherX is countable, a probability distribution d, X)
is entirely determined by its values on singleton sets, ihalby
specifying a functiom: X — [0, 1] suchthad . p(z) = 1.

A second example is to combine a collection of measurable
spaceg X;, X;)icr by sumor product The underlying sets in this
case are the disjoint unidn;, ., X; and produc{ [, ., X; of sets.
The measurable sets in the sum afe_, U; for U; € ;. Theo-
algebra of the product is the smallest one containing alsthisets
I1.c; Ui whereU; € ¥; equalsX; but for a single index.

pose is to serve as a semantic metalanguage to which a ptactic
programming language compiles, and to provide a common-math
ematical setting for studying high-level constructs fashgabilistic
computation.

Types The language has types
AB u= RIPA)[1]AXB| > A

il
where I ranges over countable sets. A tyfestands for a mea-
surable spacgA]. For exampleR denotes the measurable space
of reals,P(A) is the space of probability measures Anand1
is the (discrete) measurable space on the singleton setoffiee
type constructors correspond to products and sums of nmagzsur
spaces. Notice that countable sums are allowed, enablitgers
press usual ground types in programming languages viaatand
encoding. For instance, the type for booleansk is 1, and that for
natural number$_, 1.

Terms We distinguish typing judgement$: 5 ¢: A for deter-
ministic terms, and”  ¢: A for probabilistic terms (see also
e.g.[19/ 25, 29]). In bothA is a type, and” is a list of variable/type
pairs. Variables stand for deterministic terms, making¢fiewing

For a third example, the real numbers form a measurable spacesubstitution rule derivable:

(R, Xr) under the smallest-algebra that contains the open inter-
vals; the measurable sets are calBamtel sets. Restricting to any
measurable subset gives a new measurable space, such padbe s
R>( of nonnegative reals and the unit inter{@|1].

A fourth example is to make the sét(X) of all probability
measures on a measurable spgkeX x ) into a measurable space,
by letting X p(x) be the smallest-algebra containing the sets
{pe P(X)|p(U) e V}forallU € Ex andV € Yo 1.

Definition 2.2. Let (X,Xx), (Y,Xy) be measurable spaces. A
function f: X — Y ismeasurabléf f(U) € SforU € Sy

We canpush forwarda measure along a measurable function:
if p: ¥x — [0,1] is a probability measure oX,¥x) and
f: X — Y is a measurable function, theqU) = p(f*(U))
is a probability measure ofY, Xv).

Definition 2.3. A stochastic relatiorbetween measurable spaces
(X,Xx)and(Y,Xy) is a functionr: X x 3y — [0, 1] such that
r(z,—): ¥y — [0, 1] is a probability distribution for al: € X,
andr(—,V): X — [0, 1] is measurable for alV’ € Zy.

Giving a stochastic relation froffiX, X x ) to (Y, Xy ) is equiva-
lent to giving a measurable functi¢iX, Xx) — (P(Y), Xp(v))-
Stochastic relations: X x ¥y — [0,1] ands: Y x £z — [0,1]
compose associatively {eor): X x Xz — [0, 1] via the formula

(sor)(z,W) = /

Y

Finally, for a predicatey, we use the indicator expressify| to
denotel if ¢ holds, and) otherwise.

s(y, W) r(z,dy).

3. Afirst-order language

This section presents a first-order language for expre&aggsian
probabilistic models. The language forms a first-order ara

higher-order extension in Sectibh 6, and provides a singating
to illustrate key ideas. For example, the language inclunifési-

tary type and term constructors, constant terms for all omedde
functions between measurable spaces, and constructsdoifysp
ing Bayesian probabilistic models, namely, operations&npling
distributions, scoring samples, and normalizing distitms based
on scores. This highly permissive and slightly unusualayig not
meant to be a useful programming language itself. Rattsepuit-

Fe:Abu:B Tigt: A

Intuitively, probabilistic termsI” + ¢: A express computations
with effects from two different sources: during evaluatiormay
sample a value from a probability distribution, or it may afml
a variable storing the currersicore a nonnegative real number
expressing to what extent sampled values (from a prioridigton)
are compatible with observed data. Evaluating deterniénistms
T t: A, on the other hand, does not generate such effects.
Formally, a context” = (z1: A1,...,z.: A,) means a mea-
surable spacdI'] < [T ,[A:]. Both deterministic term&” fg
t: A and probabilistic term¥  ¢': A denote measurable func-
tions from[I'], but they have different codomains. The former has
codomain[A], whereas the latter has codomdifR>o x [A]).
Elements ofP(R>, x [A]) are probability distributions on pairs
(r,a) € R>o x [A], wherea is the value obtained through various
probabilistic choices, andthe corresponding score.

Sums and products The language includes variables, and stan-
dard constructors and destructors for sum and product.types

kt: A;
F'a(iﬂf): Zie]A’i
Tlgt: ZieIAi (T,z: A Fu: B)

Itz caset of {(i,2) = uitier: B

Nx: AT go: A

=L (z € {d,p})

Dhatj: Ajforallj € {0,1}  Tlgt: Ag x Ay
TFhx:1 Fh(t(),t1):A()XA1 F}‘dﬂ'j(t):A]‘
In the rules for sums] may be infinite. In the last rulg,is 0 or 1.

We use some standard syntactic sugar, su¢sissandtrue for the
injections in the typdool = 1+ 1, andif for case in that instance.

Sequencing We include the standard constructs (e.gl [19, 22]).
't A 'st:A Tax:Abu:B
T ks return(t): A Tletz=tinu: B

Language-specific constructsThe language has constant terms
for all measurable functions.

Iigt: AB (f: [A] — [B] measurable)

' f(t): @)
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In particular, all the usual distributions are in the langeiain-
cluding the Dirac distributiondirac(xz) concentrated on outcome
z, the Gaussian distributiopauss(u, o) with meany and stan-
dard deviatioro, the Bernoulli distributionbern (p) with success
probability p, the exponential distributioazp(r) with rater, and
the Beta distributiorbeta (v, 8) with parametersy, 30 For exam-
ple, from the measurable functiod.0: 1 — R, e(™): R - R,
gauss: R x R — P(R)and<: R x R — 1 + 1 we can derive:

'gt:R
I'tg42.0: R I'ket:R
F'Gpw:R T'ho: R I'gt:R Thu:R
I' kg gauss(p,0): P(R) 't < wu: bool

The following terms form the core of our language.
Tl t: P(A) Tht:R
I k5 sample(t): A It score(t): 1

The first term samples a value from a distributipand the second
updates the score variableusingt: if ¢ is nonnegative, the term
computes the multiplicatiohv and stores the result in the variable;
if ¢ is negative, it store9.0 instead. Since both of these terms
express effects, they are typed ungl@nstead ofg. The argument

t in score(t) is usually the density of a probability distribution at
an observed data point. For instance, in the example

score(density_gauss (2.0, (11, 0)))

the observed datum .0, the term computes the density of the
normal distribution at this datum, and multiplies it to thepe
variable. The result of this multiplication grows asapproaches

4. Denotational semantics

This section discusses the natural denotational semaoititise
first-order language. As described, typ&sand contextsl’ are
interpreted as measurable spagé} and[I'], whereas for terms:

e Deterministic termd” 5 ¢: A are interpreted as measurable
functions[¢]: [I'] — [A], providing a result for each valuation
of the context.

e Probabilistic terms” k5 ¢: A are interpreted as measurable
functions[t]: [I'] — P(Rxo x [A]), providing a probability
measure on (score,result) pairs for each valuation of thieegt

The basic idea can be traced back a long wayg.(17]) but our
treatment okcore andnorm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a didtisibicat-
egory €.9.[27]). For instance[l, z: A, T" kg z: A](v,a,7") L a,
and[T ks £(t): A](7) Z £([t](v)) for measurable : [A] — [B].
This interpretation is actually the same as the usual sefréhic
semantics of the calculus, as one can show by induction hieat t
induced functiondI'] — [A] are measurable.

Sequencing For probabilistic terms, we proceed as follows.

[return())](v)(U) £ [(L, [] (7)) € U],
andfletz = tinu](y)(V) is

[ (e ({055 € V) [0@ro).
R>ox[A]

As we will explain shortly, these interpretations come friveating

2.0. Thus the term scores an execution trace up to the term itself P(R>, x (—)) as a commutative monad, which essentially means

higher when the probabilistic choices makeloser t02.0.

Normalization Two representative tasks of Bayesian inference
are to calculate the so-callgabsterior distributionandmodel evi-
dence Let us illustrate these tasks.

let z = sample(bern(0.25)) in
let y = if = then score(5.0) else score(2.0) in
return(z)

Evaluation of this term generates two samplésD, true) and
(2.0, false), with probabilities0.25 and0.75. Calculating the pos-
terior distribution means normalizing the distributiortioése sam-
pled booleans according to their scores, giving a new bision
onbool that assign$0.25-5.0)/(0.25-5.0+0.75-2.0) ~ 0.45 to
true and(0.75-2.0)/(0.25 - 5.0+ 0.75- 2.0) ~ 0.55 to false. Cal-
culating the model evidence just averages scores accoralitige
original probabilities(0.25 - 5.0 4+ 0.75 - 2.0) = 2.75. Intuitively,
scores express that the sample= true matches an observation
better, and change the probability:of= true from 0.25 to 0.45.
The language includes a temorm(¢) denoting the results of
these posterior and model evidence calculations. This¢enverts
a probabilistic termt into a deterministic value, which is its normal-
ized distribution together with the model evidence. Theveosion
might fail because the model evidence can be zero or infimh&h
is notified bynorm(t) by returning an appropriate error.

'kt A
Fknorm(t): RxP(A)+1+1
This construct is being trialled in probabilistic programm lan-

guages (such as Anglican). Our first-order language andre&sa
give a clear formal meaning, enabling mathematical ingasin.

1The normal distribution is defined for positive standardialéans, but our
typing rule also uses the case< 0. We make the ad-hoc yet safe choice
gauss(p, o) = gauss(0.0,1.0), and assume such extensions throughout.

the following program equations hold.
[let z = tinreturn(z)] = [¢]
[lety = (letx = tinu)inv] = [letz = tinlety = winv]

[let x = return(z) inu] = [u]

[letz =tinlety = win(z,y)] = [lety = winletz = tin (z,y)]

The last equation justifies a useful program optimisatiachte

nigue [34,55.5].

Language-specific constructs We use the monad:
[sample()]()(V) Z el (v){a | (1,a) € U})

[score(t)[(v)(U) £ [(max([¢]) (), 0), %) € U]
Here are some program equations to illustrate the semautifzs.
[score(7.0); score(6.1)] = [score(42.7)]

H:itrztu:rr??; i'%(.%‘)ms (00 1’0))H = [sample(bern(0.5))]

let x = sample(gauss (0.0, 1.0))
inreturn(z > )

H = [return(false)]

Normalisation Interpretnorm(t) by the natural transformation
tx: PR>ox X) > (Rx P(X))+1+1 2

that computes posterior distribution and model evidencenday
malisation and summation. More precisely,(p) is

(1,%)
(2,%)
(0, (e, AU. L fRzoxX r-[zeU] p(d(r,x)))) otherwise
wheree & Sy x T P(A(r,), and[norm (#)] (v) LI R))-
Here are some examples:
[norm(score(0.0))] = (1, *)

ife=0
if e=0c0
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[norm(score(42.0); return(7.0))] = ( (42.0, dirac(7. O)))
norm(!et.m = sample(bern(0.5))]
'n('fﬁv:‘s‘znszzcr’;‘zgo?;; = (0, (5.0, bern(0.7)))
return(z)) ]
rm(letx = le(exp(1.0))]| _
oz a0
norm (

[[norm(letx = sample(beta(1,3))]

in score(x); return(x ) score(1/(1 + 3));

sample(beta(2, 3)))

In the third equation, a score of eith@0 or 3.0 is assigned de-

pending on the outcome of a fair coin toss. The model evidence

is 5.0 = (0.5-7.0) + (0.5 - 3.0), and the normalised distribu-
tion, taking the scores into account, isrn(237-2). The fourth
equation shows how infinite model evidence errors can arissmw
working with infinite distributions. In the last equatiohgtparame-
ter z of score(z) represents the probability ofue underbern(x).
The equation expresses the so called conjugate-prioimedip
between Beta and Bernoulli distributions, which has bee us
optimise probabilistic programs [35].

Monads The interpretation ofet andreturn given above arises
from the fact thatP(R>o x (—)) is a commutative monad on
the category of measurable spaces and measurable fun(sems
also [6, §2.3.1]). Recall that a commutative mondd, n, i, o)
in general comprises an endofunct@r together with natural
transformationsyx : X — T(X), ux: T(T(X)) — T(X),
ox,y: T(X)xY — T(X xY) satisfying some laws [16]. Using
this structure we interpretturn andlet following Moggi [22]:

[T 5 return(t): AJ () Zngag ([E1(+))
[Ckletz =tinu: B](y) d:ef,um]] (T([[U]])(U[[F]],[[A\]] (7, M(’Y))))

Concretely, we maké’(R>o x (—)) into a monad by combining
the standard commutative monad structure [11Foand the com-
mutative monoidRx>o, -, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation

The program equations above justify some simple progranstra
formations. For a more sophisticated one, consislequential
Monte Carlo simulatiorf7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there isseore, it is good to
renormalise and resample’. This increases efficiency bydag
too many program executions with low scores [24, Algoritim 1

The denotational semantics justifies the soundness ofr#ris-t
formation. For a term with top-levekore, i.e. a term of the form
(letz = tin (score(u);v)) whereu andv may haver free:

[norm(letz = tin (score(u); v))]
= [[norm(case (norm(let z = ¢ inscore(u); return(z))) of
(0, (e,d)) = score(e); let x = sample(d) inv
| (1, %) = score(0); return(w)
| (2,%) = letz = tin (score(u);v))]

W N =

Let us explain the right hand side. Line 1 renormalises thgiam

after thescore, and in non-exceptional execution returns the model

evidence: and a new normalised distributiahLine 2 immediately
records the evidenceas a score, and then resamplesising the
resampled value in the continuationLine 3 propagates the error

of 0: w is a deterministic term of the right type whose choice does

not matter. Finally, line 4 detects an infinite evidence eramd
undoes the transformation. This error does not arise in thet m
applications of sequential Monte Carlo simulation.

5. Operational semantics

In this section we develop an operational semantics for tisé fi
order language. There are several reasons to considerets,
though the denotational semantics is arguably straightfad.
First, extension to higher-order functions is easier inrapenal
semantics than in denotational semantics. Second, opeahte-
mantics conveys computational intuitions that are obgtimehe
denotational semantics. We expect these computationatiarts
to play an important role in studying approximate techniqfer
performing posterior inference, such as sequential MorigoCin
the future.

Sampling from probability distributions complicates aper
tional semantics. Sampling from a discrete distribution aa-
mediately affect control flow. For example, in the term

let z = sample(bern(0.5)) in if 2 then return(1.1) else return(8.0)

the conditional depends on the result of sampling the Befinou

distribution. The result i$.1 with probability0.5 (cf. [5, §2.3]).
Sampling a distribution o cannot affect control flow, but does

introduce another complication. Informally, there is ansidion

sample(gauss(0.0,1.0)) — return(r)

for every realr, but any single transition has zero probability. We
can assign non-zero probabilities to sets of transitiarfeyimally:

P]r(sample(gauss(O.O7 1.0)) — {return(r) | r < 0}) =0.5.

To make this precise we need-algebra on the set of terms, which
can be done usingonfigurationsrather than individual terms. A
configuration is aclosure (cf. [13, §3]): a pair (¢,y) of a termt
with free variables and an environmentgiving values for those
variables as elements of a measurable space.

Sampling a distributiop on R+ R exhibits both complications:

let z = sample(p) in case z of (0, r) = return(r + 1.0)
|(1,7) = return(r — 1.0)

®)

The control flow in thecase distinction depends on which sum-
mand is sampled, but there is potentially a continuousibigton
over the return values. We handle this by instantiating thace
of summand in the syntax, but keeping the value of the summand
in the environment, so that expressidh (3) can make a stepeto t
closure

( let z = return(0,y) in
casez of (0,r) = return(r + 1.0)
|(1,r) = return(r — 1.0)

Ly > 42.0).

A type isindecomposabléf it has the formR or P(A), and a
contextI" is canonicalif it only involves indecomposable types.

Configurations Letz € {d, p}. A z-configurationof type A is a

triple (T', ¢,v) comprising a canonical contekt a derivable term
I' k£ t: A, and an element of the measurable spadé&]. We

identify contexts that merely rename variables, such as

((z: R,y: P(R)), f(z,y), (x — 42.0, y — gauss(0.0,1.0)))
~((u: R,v: P(R)), f(u,v), (u— 42.0,v — gauss(0.0,1.0))).

We call d-configurationdeterministic configurationsnd p-config-
urationsprobabilistic configurationsthey differ only in typing. We
will abbreviate configurations t¢,~) when the context” is ob-
vious. Each configuration has a unique type, because thadgeg
does not include any structural typing rules.

Valueswv in a canonical context' are well-typed deterministic
terms of the form

vyw = x; | x| (vyw) | (4,0) 4
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where z; is a variable inl". Similarly, a probabilistic termt in
contextl is calledprobabilistic valueor p-valueif ¢ = return(wvo)

for some valuayy. Remember from Sectidd 4 that the denotational

semantics of values is simple and straightforward.

Write Cong(A) andCon,(A) for the sets of deterministic and
probabilistic configurations of typ&, and make them into measur-
able spaces by declariig C Con,(A) to be measurable if the set
{y €[] | (t,~) € U} is measurable for all judgemerifs; ¢: A.

Cony(A)= > [I1] (5)
(T,t)

T" canonical,
Tk t:A

Further partitionCon,(A) into ConV,(A) and ConN,(A)
based on whether a term in a configuration is a value or not:

ConV4(A) = {(I',t,~v) € Cong(A) | tisavalug
ConNg(A) = {(I',t,v) € Cong(A) | tisnotavalué
ConVp(A) = {(I',t,~v) € Cony(A) | tisap-valug
ConNp(A) = {(I', t,~v) € Cony(A) | tisnota p-valug

Particularly well-behaved values are thielered valued™ 5 v: A,
where each variable appears exactly once, and in the sameasd
inT.

Lemma 5.1. Consider a canonical contekt, a typeA, an ordered
valueT tz v: A, and the induced measurable function

[v] « [T — [A].
The collection of all such functions for givénis countable, and
forms a coproduct diagram.

Reduction of deterministic terms Define a type-indexed family
of relations— C ConNg4(A) x Cong(A) as the least one that is
closed under the following rules.

<F,7Tj(’Uo,’U1),’7> — <Fvvj77>

(T, case (', v) of {(i,z) = ti}ier,y) — (T, ty[v/x],7)

(T, f(w),y) — ((,T),v, (v,7"))
(wavalueA TV g v: A an ordered value f([w](v)) =[v](v))
(I, norm(t),y) — (', z:R, y:P(B)), (0, (z,y)), y[z—>r, y—pl)
(A=P(B) Avs((L,1,7)) = (0, (r,p)) A z,y & dom(I'))
(T, norm(t),~v) — (T, (4, %),7)
(A: P(B) A V]B(<F7t7’y>) = (7:7 *)7 (XS {17 2})

(Lt y) — (I ¢,9)
(T,Clt],y) — (I, C[t], ")
The rule for f(w) keeps the original contexdt and the closurey

because they might be used in the continuation, even thdweh t
are not used im. The rules obey the following invariant.

Lemma 5.2. If (T',¢,vy) — (I, ¢',+’), thenT” = ([',T") and
v = (v,~") for somel” and~" € [I']".

(Cl-]is not(—))

Proof. By induction on the structure of derivations. a

This lemma allows us to confirm that our specification of atrete
— C ConNg(A) x Cong(A) is well-formed (‘type preserva-
tion’).

Proof. By induction on the structure of types. The key fact is that
every type is a sum of products of indecomposable ones, becau
the category of measurable spaces is distributigethe canonical

Proposition 5.3. The induced relation is a measurable function.

Proof. There are three things to show: that the relation is entire

map) .. (A x B;) = A x >, B; is an isomorphism. O

For exampleA = (R x bool) 4+ (R x R) has 3 ordered values,
first(z: R kg (0, (z,true)): A),secondz: R g (0, (z, false)): A),
andthird(z: R,y: Rk (1, (z,y)): A), inducing a canonical mea-
surable isomorphisik + R + R x R == [A].

Evaluation contexts We distinguish three kinds oévaluation
contextsC[—] is a context for a deterministic term with a hole for
deterministic termsPD[—] and£[—] are contexts for probabilistic
terms, the former with a hole for probabilistic terms, thitdawith

a hole for deterministic terms.

Cl-] == (=) [mCl=] | (C[-].t) | (v,C[=]) | (4, C[-])

| case C[—] of {(i,x) = ti}icr | F(C[-])
D[-] == (=) |letz =D[-]int (6)
&[] == Dilreturn[—]] | D[sample[—]] | D[score[—]]

| case D[—] of {(i,x) = t; }ier
wheret, t; are general terms andis a value.

5.1 Reduction

(‘progress’); that the relation is single-valued (‘detaracty’); and
that the induced function is measurable. All three are shbwn
induction on the structure of terms. The case of applicatibn
measurable functions crucially uses Lenima 5.1. O

Reduction of probabilistic terms Next, we define the stochastic
relation — for probabilistic terms, combining two standard ap-
proaches: for indecomposable types, which are uncountabie
labelled Markov processebe. give a distribution on the measur-
able set of resulting configurations; for decomposablesypems,
productsetc), probabilistic branching is discrete and so a transition
system labelled by probabilities suffices.

Proposition 5.4. Let (X;)icr be an indexed family of measurable
spaces. Suppose we are given:

¢ a functiong: I — 0, 1] that is only nonzero on a countable
subsetly C I, and such thaEz.eIO q(i) =1;
e a probability measure; on X; for each: € Ij.

This determines a probability measyren ), X; by
p(U) =3icra(@)ai({a | (i,a) € U})

Using the tools developed so far, we will define a measurable for U a measurable subset 5f . ; X,

function for describing the reduction of d-configuratiomsd a
stochastic relation for describing that of p-configurasion

— : ConNg(A) — Cong(A),

— : ConNp(A) x TRy o x Conp(A) — [0, 1],
parameterised by a family of measurable functions

va : Conp(A) = (Rxo x P([A])) +1+1 (7)
indexed by typed\.

We will use three entities to define the desired stochadttioa
—_— COHNP(A) X ERzoxConp(A) — [0, 1].

1. A countably supported probability distribution on thet se
{{T,t) | T & t: A} for eachC € ConNy(A). We write
Pr(C — (T, t)) for the probability of(T", ¢).

2. A probability measure on the spdd¢] for eachC € ConN,(A)
and(T, t) with Pr(C — (T, t)) # 0. Write Pr(C' — 1+ U)
for the probability of a measurable subseiC [I].
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Pr — (T, E[E) € [(Tyt,7) —

s (1, D)) E (T, 1,7) —
Pr((T, letz = return(v)int,v) —

(T, &[], y) —

(«

(« (T, tlv/a])) €1
(«

(«

(«

Pr((I', D[t],v) —

— (T, t',7)]

— (I',t))

Pr((T', case (j, v) of {(i, @) = ti}ier,y) — (T, t5[v/2])) £1
Pr((I, score(v),~) — (T, return(x))) €1

Pr((T, sample(v),v) — ((T',T”), return(v’)))
ao {[M]( NAW'TO) [+ €M]}) Tl o': A ordered

0 otherwise
(d<l: g[] > —>(F’,£[t’]) U)
(Tyt,y) — (I, ¢, 4") Ay €U]

Pr((T" D[t] ’7> — (1, D[t']) U) PI‘((F t7’y> —(I,t) U)
[y € U]

'[yeU]

(
Pr((I', letz = return(v)int,y) —(r i[v/a)) e
Pr(

Pr((T', score(v), 7) —(r return(»)) U) &

(

(

(

(T, case (j,v) of {(i,2) = titicr, ) —r .t [u/a) U) =
{ [y e U]
I

Pr((T', sample(v),y) — (1) retun(v')) U)

s PI(N{VTIG) | ' € [T A (v, 7)) €U}
[T [ € [T}

Sc((T, €[], ) €1 Se((T', D[t], 7))

« d:”Sc((F,t,’y))
Sc((I', sample(v), 7)) £'1
Sc((T, score(v), 7)) £ max([v](7),0)

(

(r,

Sc((T', letz = return(v) int,v)) =1

f

Sc((T, case (j, v) of {(i,2) = ti}icr, 7)) =1

Figure 1. Entities used to define reduction of probabilistic terms

3. A measurable functiofc: ConN,(A) — R>¢, representing
the score of the one-step transition relation. (For onp-stn-
sitions, the score is actually deterministic.)

These three entities are defined by induction on the streictithe
syntax ofA-typed p-configurations in Figute.1. We combine them
to define a stochastic relation as follows.

Proposition 5.5. The mapConNy(A) X Tg_ x Conp(a) — [0,1]
that send§C, U) to Pr(C — U), defined as

> Pr(C — (I,1))Pr(C —r {7 | (Se(C), (T, t,7)) €U}),
(T',¢)

is a stochastic relation.

Proof. For each p-configuratiod' = (_, ¢, _), use induction ort
to see that the probability distributiddr(C' — (—)) on pairs
(I'",t") and the distributioPr(C —(_) (—)) indexed by such
pairs satisfy the conditions in Propositibn]5.4. It followst the
partial evaluatiorPr(C' — (—)) of the function in the statement
is a probability measure, so it suffices to establish meéadityeof
the other partial evaluatiofir((—) — U). Recall thatConN, (A)

use induction on the term shared by all p-configurations & th
summand to see that the restriction®f((—) — U) to each
summand is measurable.

5.2 Termination

To see that the reduction process terminates, we first ddime t
transitive closure. This is subtle, as sampling can intcedtount-
ably infinite branching; although each branch will term&ahe
required number of steps might not be bounded across altbhean

We use the deterministic transition relation to define arueva
ation relation| C Cong(A) x ConVg4(A), by settingC' |} D if
In.C |" D, where

DY{"E C—D
cl’c cCy"t'E

To define evaluation for probabilistic configurations, weahsub-
stochastic relationsfunctions f: X x Yy — [0,1] that are
measurable inX, satisfyf(a: Y) < 1 for everyz € X, and
are countably additive i, i.e. f(z,U,cnUi) = > en f(UI)
for a sequencd/,,Us,... of dISJOInt measurable sets. Thus a
stochastic relation (as in Definitibn 2.3) is a sub-stodbastation
with f(z,Y) = 1. Define a sub-stochastic relation

Pr(— |

by Pr(C |} U)E S Pr(C |* U), wherePr(C {|°
by [(1,C) € U], andPr(C "' U) is

(C € ConVy4(A))

=) : Conp(A) X I xconv,(a) = [0,1]

U) is given

/( o) Pr(DY" {(s,E)|(r-s,E) € U}) Pr(C — d(r,D)).

Proposition 5.6 (Termination) Evaluation of deterministic terms
is a function:vC. 3D. C || D. Evaluation of probabilistic terms is
a stochastic relationYC. Pr(C || (R>o x ConV,(A))) = 1.

Proof. By induction on the structure of terms. |

Termination is hardly surprising because we do not haveeany r
cursive constructions. Probabilistic recursion is insérg, e.g.the
program(while (sample(bern(0.5))) do skip) almost surely termi-
nates. But we omit recursive constructs for now, becauseseur
mantic model does not yet handle higher-order recursiahpasb-
abilistic while-languages are already well-understoed).(17]).
(See also the discussion about domain theof8ih

5.3 Soundness

For soundness, extend the denotational semantics to cratfimus:

o definesq: Cong(A) — [A] by (I', t,v) — [t](7);

e defines, : Conp(A) X Xp.x[a] [0,1] similarly by
(T, t,7v), U) — [t] (7)(U). We may also use this stochastic re-
lation as a measurable functiep: Cony(A) — P(R>o x [A]);

o definesy,, : ConV,(A) — [A] by (T, return(v), v) — [v] (7).
Note that in this first-order languagey, is a surjection which

equates two value configurations iff they are related by weak
ening, contraction or exchange of variables.

Assumption 5.7. Throughout this section we assume that the nor-

malisation functionv on configurations{|7) is perfedte. it corre-
sponds ta, the semantic normalisation functidd (2):

va((L,8,7)) = ¢qag(se (T, £,7)))-
Lemma 5. 8(Context extension) Letz € {d,p}. Suppose that

is defined in terms of the sum of measurable spaces, and that al (T £,%) and (I,1"), ¢, (v, )) are configurations inCon,(A).

p-configurations in each summand have the same term. Einally Thensz((F t,7) = s((T, 1), ¢, (v

7))
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Proposition 5.9 (Soundness) The following diagrams commute
(in the category of measurable functions, and stochastations,
respectively).

ConNg(A) . ConNp(A) ——> = Rso x [A]
was T s | motptcaion
Cond (A) ¢ RZO X COHP(A) ? RZO X RZO X HAH

1 Sp

Proof. By induction on the structure of syntax. The inductive steps
with evaluation contexts use the extension Lenimé 5.8, whjeh
plies by the invariant Lemnia5.2. O

Adequacy The denotational semantics is adequate, in the sense:
[t](%) = P(Rxo0 X svp) (Pr((0,t,%) I (—))) forallts ¢: A.

That is, the denotatiofi¢] () is nothing but pushing forward the
probability measurér({(,¢,*) | (—)) from the operational se-

mantics along the functiosy,. This adequacy condition holds be-
cause Propositidn 5.9 ensures that

(D Pr((0,t,%) U {(r,C) | (r,5v5(C)) € U})) < [E)(+)(V)
k<n

for all n and U, and Propositioi 516 then guarantees that the left-
hand side of this inequality converges to the right-hane sisin
tends to infinity.

6. A higher-order language

This short section extends the first-order language witletfans
and thunks [18], allowing variables to stand for prograngfin@nts.
In other words, ‘programs are first-class citizens’.

Types Extend the grammar for types with two new constructors.
AB == RIPA)[1|AxB| > A|A=B|T(A)
iel
Informally, A = B contains deterministic functions, and(A)
contains thunkedi.g. suspended) probabilistic programs. Then

A = T(B) contains probabilistic functions. A type iiseasurable
if it does notinvolve=- or T, i.e.if itis in the grammar of Sectidnl 3.

Terms Extend the term language with the following rules. First,
the usual abstraction and application of deterministictioms:
Tz:Akt: B F't:A=B TPu:A
'z t: A=DB F'Gtu:B

Second, we have syntax for thunking and forciegy([1&,/22, 25]).

Tkt A Tkt T(A)
T k5 thunk(t): T(A) T force(t): A
All the rules from Sectiofi]3 are also still in force, excepttfor
rule (@) to still make sense, we restrict it to only includens@nt

terms for measurable functions [A] — [B] between measur-
able typesA andB.

Examples One reason for higher types is to support code struc-
turing. The separate function types and thunk types alloto e
flexible about calling conventions. For example, sampliag be
reified as the ground term

fa Az.thunk(sample(z)): P(A) = T(A),

which takes a probability measure and returns a suspendgcaon
that will sample from it. On the other hand, to reify the nolime
tion construction, we use a different calling convention.

g Az.norm(force(x)): T(A) = R xP(A)+1+1

This function takes a suspended probabilistic program ehdns
the result of normalizing it.

Example: higher-order expectation Higher types also allow us
to consider probability distributions over programs. Forexam-
ple, consider this term.

En & X, f): T(A) x (A= R).
case (norm(let a = force(d) inscore(f(a)))) of

(0, (e,y)) = e
| (1,%) = 0.0 | (2,%) = 0.0

It has typeT(A) x (A = R) = R. Intuitively, given a thunked
probabilistic termt and a functionf that is nonnegativel;, treats

t as a probability distribution oA, and computes the expectation
of f on this distribution. Notice thaf can be a higher type, so
E} generalises the usual notion of expectation, which hasewt b
defined for higher types because the category of measuigdntes
is not Cartesian closed.

7. Higher-order operational semantics

In this section we consider operational semantics for tighdr-
order extension of the language. In an operational intujfioce(t)
forces a suspended computatioto run. For example,

ta thunk(sample(gauss(0.0,1.0))): T(R)
is a suspended computation that, when forced, will sampe th
normal distribution.

Assumption 7.1. From the operational perspective it is unclear
how to deal with sampling from a distribution over functiofer
this reason, in this section, we only allow the typE\) whenA is a
measurable type. We still allow probabilistic terms to hbhigher-
order types, and we still alloW(A) whereA is higher-order.

7.1 Reduction

We now extend the operational semantics from Sedtion 5 with
higher types. Value§14) are extended as follows.

v i= ... | Az.t | thunk(t)
Evaluation context$ [6) are extended as follows.
Cl—] == ... |C[-]¢t|vC[-] E[-] == ... | Dlforce[—]]

There are two additional redexeS\x.t) v and force(thunk(¢)).
The deterministic transition relation is extended witlstBirule:

(T, (A\z.t)v,v) — (L, t[v/x], 7).
Extend the probabilistic transition relation with the @lling rules.
Pr((I", force(thunk(t)),7) — (T',t)) =1
Pr((T", force(thunk(t)),7) — ) U) = [y € U]
Sc((T', force(thunk(t)),v)) =1
7.2 Termination

The evaluation relations for deterministic and probatidison-
figurations of the higher-order language are defined as in Sub
section[5.2. The resulting rewriting system still termasateven
though configurations may now include higher-order terms.

Proposition 7.2 (Termination) Evaluation of deterministic terms
is a function:vC. 3D. C || D. Evaluation of probabilistic terms is
a stochastic relationyC. Pr(C || (R>o x ConV,(A))) = 1.

Proof. We sketch an invariant of higher-order terms that implies th
termination property, formulated as unary logical relasizia sets

R('LA) C{t|kt: A},
RW(CEA)C{t|Tkt: AAtaz-value},
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for each canonical contek, type A, andz € {d, p}, defined by:
R(T R A) = {t | Vy. (D, t,7) I (T, ¢/,4') At € Ro(I" kg A)}
R A) = {t|Vy.Pr((I,t,7) U

(R0 x 2o Re(I" 15 A) x [I'])) = 1}

Rv(T' k5 A) = {return(v) | v € Ry(T' kg A)}
R (T Ia A)={z]|(z: A) eT} for A indecomposable
Ry(I'ta 1) = {x}
(F A1 x Az) {(1)1,1)2) |V] v; € RV(F k A])}
Ry(Tla > Aj)={(i,v) | v € Rv(T'ta Ai)}
R.(I'RT(A)) = {thunk( )|te RIT A)}
R/ Tk A=B)={\z.t|VI' DI, uec R, kA).
tlu/z] € R(I' ta B)}

Induction on the structure of aterMz1: A1,...2n: Ap 5 t: B
forz € {d, p} now proves that; € R,(I' g A;) fori =1,...
impliest[v/Z] € R(T" k& B).

Os

8. Higher-order denotational semantics

This section gives denotational semantics for the higheéerdan-
guage, without using Assumptién ¥.1. We are to interprenthe
constructsT(A), thunk, andforce. We will interpret probabilis-
tic judgements as Kleisli morphlsnﬁf]] — T([A]) for a certain
monadT’, and sef[ T(A4)] £ T([A]), sothunk andforce embody
the correspondence of mafis] — T'([A]) and[I'] — [T(A)].

On which category can the mondH live? Interpreting \-
abstraction and application needs a natural ‘curryingdiipn be-
tween morphism$l'] x R — R and morphism§I'] — [R = R].

But measurable functions cannot do this: it is known that @m
surable spacgR = R] can support such a bijection [3].

We resolve the problem of function spaces by embedding the
category of measurable spaces in a larger one, where cgrryin
is possible, and that still has the structure to interpret first
order language as before. As the larger category we will take
category of functordVleas®® — Set from a categoryMeas
of measurable spaces and measurable functions to the patego
Set of sets and functions. This idea arises from two traditions.
First, we can think of a variable of tyge as a read-only memory
cell, as in the operational semantics, and functor categdrave
long been used to model local memom.d. [23]). Second, the
standard construction for building a Cartesian closedgoaieout
of a distributive one is based on functor categoreeg.(28]).

Other models of higher-order programs Semantics of higher-
order languages wittiscreteprobability are understood well. For
terminating programs, there are set-theoretic modelsdbarea
distributions monad, and for full recursion one can use abdls-
tic powerdomains [14] or coherence spaces [9]. It is alsagitde
one could model continuous distributions in domain thesiryce

it supports computable real analysesg.[g]); this could be inter-
esting because computability is subtle for probabilistiogoam-
ming (e.g.[1]). Nonetheless, we contend it is often helpful to ab-
stract away computability issues when studying probatuligro-
gramming languages, to have access to standard theoremasbef p
ability theory to justify program transformations.

8.1 Semantic model

Fix a categoryMeas of measurable spaces and measurable func-
tions that is essentially small but large enough for the pseg of
Sectior . For exampléyleas could be the category aftandard
Borel space§4,|32]: one can show thd#\] is standard Borel by in-

duction onA, and the class of all standard Borel spaces is countable
up to measurable isomorphism.

In Section[# we interpreted first-order typdés as measur-
able spacegA]. We will interpret higher-order typea as func-
tors (A): Meas®® — Set. Informally, whenA is a first-order
type andl is a first-order context, we will havéA))([I']) =
Meas([T'],[A]) =~ {¢ | k& t: A}. For a second order type
(A = B), we will have

(A = B)([T']) = Meas([I'] x [A], [B]) = {¢t |,z : Ak ¢t: B}

so that8/n equality is built in. To put it another wagA)) (R™) mod-
els terms of type\ havingn read-only real-valued memory cells.

Lemma 8.1. For a small categoryC with countable sums, con-
sider the categoryC of countable-product-preserving functors
C°P — Set, and natural transformations between them.

e C has all colimits;

e C is Cartesian closed ifC has products that distribute over
sums;

e There is a full and faithful embedding : C — C, given by
yv(c) —efC( ¢), which preserves limits and countable sums.

Proof. Seee.g. [28, §7], or |15, Theorems 5.56 and 6.25]. The
embeddingy is called theYoneda embedding |

For a simple example, consider the categ8§et of countable
sets and functions. It has countable sums and finite produat$s
not Cartesian closed. Because every countable set is aatibent
sum of singletons, the catego@Set is equivalent tBet.

Our semantics for the higher-order language will take place
the categoryMeas. Note that products ifMeas are pointwise,
eg.(F x G)(X)=F(X)x G(X)forall F,G € Meas and all
X € Meas, but sums are not pointwise,g. (1 + 1) € Meas
is the functor that assigns a measurable spad® the set of its
measurable subsets. This is essentiayfto preserve sums.

Distribution types We have to interpret distribution typd¥A)

in our functor categorMeas. How can we interpret a probability
distribution on the typ® = R? We can answer this pragmatically,
without puttingo-algebra structure on the set of all functions. If
[R = R] were a measurable space, a random variable valued
in [R = R] would be given by a measurable spgc€, Xx),

a probability distribution on it, and a measurable functiin—

[R = R]. Despite there being no such measurable sfiice- R],

we can speak of uncurried measurable functi@nsR — R. Thus

we might define a probability distribution i = R] to be a triple

(X,2x), f: X xR =R, p: Tx — [0,1])

of ameasurable spa¢&, ¥ x ) of ‘codes’, a measurable functigh
where we think off (x, r) as ‘the function coded evaluated at’,

and a probability distributiop on the codes. These triples should
be considered modulo renaming the codes. This is exactly the
notion of probability distribution that arises in our functategory.

Lemma 8.2. For a small categoryC with countable sums:

e any functor: C — C extends to a functoF': C — C
satisfyingF oy 2 yo F,given by

(Z G(a) x C(b, Fla )))/N

where the equivalence relatior is the least one satisfying
(alvvag © f) ~ (a,Gg(:ch);

e similarly, any functorF': C x C — C in two arguments
extendstoafunctaF: CxC — C,withFo(y xy) X yoF:

F(G, H)(©) = (3,,Gla) x H®) x C(c, F(a,))) /~
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e any natural transformation: F — G between functors
F,G: C — C lifts to a natural transformatiore: F — G,
and similarly for functora<C x C — C;

e and this is functorial, i.eGo F 2 Go F andfoa = B o @.

Proof. F(G) is the leftkan extensiomf G along F, seee.g.[15].
Direct calculation show#'(G) preserves products @¥ does. O

Thus the commutative monad3andT = P(R>o X (—)) on
Meas lift to commutative monad® andT = P(yRso x (—))
on Meas. The latter monad captures the informal importance-
sampling semantics advocated by the designers of Anglgéh [

8.2 Conservativity

We interpret the types of the higher order language as abjact
Meas using its categorical structure.

def def
qzz'el AiD:ZiEIinD (R) =yR
(A xB)=(A) x (B)  (1)Z1
(4 = B) = (A) = (B)
We extend this interpretation to contexts.
(z1: Aryeey i An) ETT, (A)
Deterministic termd” k5 ¢: A are interpreted as natural transfor-
mations(I') — (A) in Meas, and probabilistic termB 5 ¢: A as
natural transformation§l’) — T'(A), by induction on the struc-
ture of terms as in Sectidd 4. Application andabstraction are
interpreted as usual in Cartesian closed categaries [2inH and
force are trivial from the perspective of the denotatiomamhantics,
becausgTA) = T(A). To interpretnorm(¢), use Lemm&38I2 to
extend the normalisation functiof{ X)) — Rxo x P(X)+1+1
between measurable spadés (2) to natural transformatighis —
y(Rso) x P(F)+1+1.
Note that all measurable typds have a natural isomorphism

(A) = y[A]. This interpretation conserves the first-order seman-
tics of Sectiol#:

Proposition 8.3. For z € {d, p}, and first-orderl” and A:

o for first-orderT" & ¢, u: A, [t] = [u] if and only if (t) = (u));
e every ternT’ iz ¢: A has(t) = (u]) for afirst-orderI"  u: A.

Proof. We treatz = d; the other case is similar. By induction on the
structure of termst) = y[t]: (I') — (A). The first point follows
from faithfulness ofy; the second from fullness arid (1). O

One interesting corollary is that the interpretation of entef
first-order type is always a measurable function, even ifeha in-
volves thunking\-abstraction and application. This corollary gives
a partial answer to a question by Patk al. on the measurability
of all A\-definable ground-type terms in probabilistic programg [25
(partial because our language does not include recursion).

8.3 Soundness

The same recipe as in Section]5.3 will show that the highéeror
denotational semantics is sound and adequate with respéioe t
higher-order operational semantics. This needs Assumitih.

A subtle point is that configuration spacgk (5) involve umtou
able sums: the set of terms of a given type is uncountabley but
only preserves countable sums. This is not really a probleralse
only countably many terms are reachable from a given program

Definition 8.4. For a typeA, the binaryreachabilityrelation~}
on{(T',t) | ' lg t: AAT canonica} is the least reflexive and tran-
sitive relation with(T',¢) ~j (I, u) if (T, t,v) — (T, u,v")
for v € [I'], v € [I']. Similarly, ~ is the least reflexive

and transitive relation od(I',¢) | ' 5 t: A A T" canonica} with
(D, t) ~p (I, u) if Pr((T',t,7) — (I, u)) # 0forvy € [I'].

Proposition 8.5. Letz € {d, p}. For any closed tern: ¢: A, the
set of reachable term§T", u) | (0,¢) ~»; (T, u)} is countable.

Proof. One-step reachability is countable by induction on terms.
Since all programs terminate by Proposition] 7.2, the reaeha
terms form a countably branching well-founded tree. |

We may thus restrict to the configurations built from a cobleta
set U/ of terms that is closed under subterms and reachability.
Extend the denotational semanticsMieas to configurations by
definingsqy: y(Cong(A)) — (A), sp: y(Cony(A)) — T(A), and
svp: ¥y(ConV,(A)) — T(A); use the isomorphisms

y(Con(a) = 3 (D)

(Th t:A)eU

o

to define sq, sp, svp by copairing the interpretation morphisms
TRt A): () — (A)and(I' b u: A): (T) — T'((A)).

Proposition 8.6(Soundness) The following diagrams commute.

y(ConNu(4)) y(ConNp(4))
y(reduction)\L ;d QAD y(reduction)i/ ; TQAD
y(Cong(A)) T(Congp(A)) 7Tl

Adequacy It follows that the higher denotational semantics re-
mains adequate, in the sense that for all probabilisticgérm A,

()1 () = (T(sve))1 (Pr((0,t,%) 4 (-)))-

Adequacy is usually only stated for first-order types. Attforder
types A the functionsy, does very little, since global elements
of (A) correspond bijectively with value configurations modulo
weakening, contraction and exchange in the context. Atdrigh
types, the corollary still holds, but, is not so trivial because we
do not reduce undethunk or .

9. Continuous densities

Several higher-order probabilistic programming langsagech as
Anglican) provide constructs to build probability distitions with
continuous densitiesThe probability densities are given with re-
spect to well-understood base measures, such as Lebesgserme
for R and counting measures on countable §@sir language eas-
ily extends to accommodate such distributions. Just adtlection
density typeso the syntax.

D ::= R|bool |[N|1|DxD A = ... | D(D)

TheD in this grammar denotes a measurable space that: (i) carries
a separable metrisable topology that generatesthkgebra; and
that (i) comes with a chosem-finite measure.. An example iR
with its usual Euclidean topology and the Lebesgue measure.

The typeD(D) denotes a measurable spgBeD)] of continu-
ous functionsf : [D] — Rxo with [ fdu = 1, where continuity
and integration are taken with respect to the topology aadtse
measure. of [D]]. Theo-algebra of D(D)] is the least one making
{f | f(z) <r} measurable for allz,r) € [D] x R>o.

2 A measureon a measurable spa¢&, ¥) is a functiony: ¥ — R>o U
{oo} such thatu(UJ,cy Ui) = >2;enm(Us) for a disjoint sequence
Ui, Us, ... of measurable sets. It is-finite when X = U,L.eN U, with

U; € ¥ andu(U;) < oo. The Lebesgue measuper, maps an interval
to its size. Thecounting measurg.~ maps finite measurable sets to their
cardinality, and infinite sets tso. A densityfor n is a measurable function
[: X — Rsatisfyingu(U) = [;; fdp.
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Insisting on continuity in the definition d (D) ensures that
ev: [DD)] x [D] = R>o  ev(f,2) = f(2)

is a measurable function. This would have been impossible if
we had included noncontinuous densities, regardless ofothe
algebra [3]. Because of the measurability eaf, a common way

to impose a soft constraint in probabilistic programmingplaages
(such as Anglican) can be encoded in our first-order langaage

score(ev(f,x)),

where the datum is observed with a probability distribution with
density f. Thus the categorical machinery used to interpret higher-
order functions is not needed for such soft constraints.

There is a limit to this use of continuity: probability meess
produced byhorm(¢) need not have continuous density. For exam-
ple, norm(return(42.0)) produces a discontinuous Dirac measure.

Density types can be incorporated into the higher order lan-
guage straightforwardly. The only subtlety is that denotetl se-
mantics now needs the base category to corftaiiD)].

Probability densities are often usedibyportance samplers.et
distp be the function that converts continuous densifiesn [D]
to probability measures:

disto(F)(U) & /U fdu,

wherey is the base measure 8f This function is measurable, so
it is a constant term in our language. The importance sanggler
erates samples gf € [D(R)] by first sampling from a proposal
distributiong where sampling is easy, and then normalizing those
samples: from g according to their importance weigfitz)/g(x).

The following equivalence in our semantics expresses thecon
ness of this sampling strategy where we use the standardahorm
distribution as a proposal distribution.

[norm(sample(distr(f)))]
__ [[norm(let z = sample(gauss(0.0,1.0)) in
- [[ score (f(x)/density_gauss(x, (0.0, 1.0))); retu rn(m))ﬂ

10. Conclusion and future work

We have defined a metalanguage for higher-order probabjfisi-
grams with continuous distributions and soft constraiatg] pre-
sented operational and denotational semantics, togetitienuae-
ful program equations justified by the semantics. One istere
ing next step is to use these tools to study other old or new lan
guage features and concepts (such as recursion, functioroime
sation [30], measure-zero conditioning [5], disintegmt|2,/31],
and exchangeability. [10, 20, 134]) that have been experietent
with in the context of probabilistic programming. In padiiar,
our tools may reveal new insights into how these featuresact
with higher-order functions. Another future direction ésformu-
late and prove the correctness of inference algorithmsosity
those based on Monte Carlo simulation. In particular, it lddae
interesting to see whether our semantic techniques carecszine
insights from|[[1B] to be extended to higher-order languages
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