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Abstract—We propose a categorical foundation for the connec-
tion between pure and mixed states in quantum information and
quantum computation. The foundation is based on distributive
monoidal categories.

First, we prove that the category of all quantum channels is a
canonical completion of the category of pure quantum operations
(with ancilla preparations). More precisely, we prove that the
category of completely positive trace-preserving maps between
finite-dimensional C*-algebras is a canonical completion of the
category of finite-dimensional vector spaces and isometries.

Second, we extend our result to give a foundation to the
topological relationships between quantum channels. We do this
by generalizing our categorical foundation to the topologically-
enriched setting. In particular, we show that the operator norm
topology on quantum channels is the canonical topology induced
by the norm topology on isometries.

I. INTRODUCTION

A popular explanation of quantum theory says that, in real-
ity, everything is reversible (“pure quantum”), but conceptually
we can hide and prepare things, and this is what leads to
classical data, randomness and perceived irreversibility (“full
quantum”). In this paper we explain the passage from theories
of pure quantum to theories of full quantum in terms of
categorical completions.

We test this passage in several ways:

o Starting from pure quantum with preparations (isome-
tries), we recover quantum channels (completely positive
maps between C*-algebras) as a completion with hiding
— this is our main result (Thm. V.6);

« Starting from pure quantum (unitaries), we recover prepa-
ration of ancillas (isometries) as a completion with prepa-
rations (Thm. IIL.3);

o Also starting from pure quantum (unitaries), we recover
finite non-commutative geometry (finite-dimensional C*-
algebras and x-homomorphisms) as a different comple-
tion (Thm. IV.10);

o Starting from topologies on the isometries, we re-
cover topologies on quantum channels as a completion
(Thm. VL3).

All these require slightly different kinds of completion, and
in this introduction we discuss the kinds of categories and
completion at hand. First we consider the pure situation (§1-A),
then preparation of states (§I-B), and finally hiding of states
(81-C) and topology (§I-D). In what follows we use categorical
terminology, but the casual reader may prefer the following
informal picture of our main result.
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Informally, the outer ellipse contains all the possible the-
ories, including pure quantum theory with preparations. The
inner circle contains the theories that admit hiding. Our main
result is that of all the theories that admit hiding, quantum
channels are the ‘closest’ to pure quantum with preparations.
This notion of ‘closeness’ will be made precise using category
theory.

In [21] we presented a similar paradigm for the restricted
version of quantum channels between matrix algebras. We
proved that those quantum channels are the affine completion
of the category of isometries, both seen as monoidal cate-
gories. We go further here by considering all finite dimensional
C*-algebras which amounts to handling classical data.

A. Rudiments of pure / reversible computing

Before moving to categorical side, we recall some rudiments
of reversible computing, which is one perspective on pure
quantum theory. The basic idea is that a classical reversible
operation on an n-level system is a bijection n — n on
the natural number n considered as a finite set. A quantum
reversible operation is an n X n complex matrix that is
unitary. But the reader unfamiliar with quantum theory can
focus on the classical setting for now, because every bijection
can be thought of as a unitary matrix valued in {0,1}. For
example, there are two reversible classical operations on bits
2 — 2, identity and negation, and a reversible 2-bit operation
is a bijection 4 — 4. The natural numbers form a rig (aka
semiring) under addition and multiplication, and we find a
simple calculus for building reversible operations by noticing
that the bijections and unitaries can be composed but also they
can be combined according to these rig operations. Here we
write (®, N) and (®, I) instead of + and x to emphasise their
categorical nature.

e The multiplication of numbers corresponds to spatial
juxtaposition of systems. For example, given two bi-
jections on a bit, f,g : 2 — 2, we have a bijection



(f®g) 202 —>22o0n2®2 &' 4 on two bits.
In terms of matrices, this is the Kronecker product.

o The addition of numbers allows for conditional oper-
ations. Recall that most of the traditional logical op-
erations are not reversible, however, it is possible to
perform reversible controlled operations if the condi-
tion is kept. In terms of matrices, this is the block
diagonal matrix. For example, the controlled-not gate
is a bijection (id®-) : 262 — 2@ 2. Generally,
given two unitaries f,g : n — n, we can build a unitary
(f®g):n®n—>ndn. Since n®n =2 ®n, we can
think of (f ® g) : 2®n — 2 ® n as an operation that
will either apply f or g to n depending on the state of
the first qubit, which is retained.

The unit I = 1 represents a system with no levels. There
is only one classical bijection 1 — 1, but in quantum
computation, the unitaries 1 — 1 correspond to angles in the
interval [0,27), known as ‘global phase’. Here the addition
plays a further role, since the unitary (0® %) : 2 — 2 is
called the T-gate. The controlled gates can be used to induce
quantum entanglement in the product 2 ® 2. For example,
consider the following circuit, which is a quantum Fourier
transform on three qubits. It is a graphical notation for a
unitary 2 ® 2 ® 2 — 2 ® 2 ® 2. Vertical juxtaposition is ®;
horizontal juxtaposition is composition of unitaries. The first
gate H : 2 — 2 is the Hadamard unitary gate, the next is a
controlled 7" gate (id® T) : 2® 2 — 2 ® 2; the final gate is
the swap gate 2 ® 2 — 2 ® 2 which amounts to the symmetry
of ®.
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We could thus equally well describe this circuit just by
combining unitaries using the operations ®, @, o. (For more
details on this circuit see [34], Ch. 5.)

None of the above calculus requires that the operations in
question are reversible, rather, the point is that it applies even
when the operations are reversible. Overall the structure of the
calculus (®, @, 0) is that of a rig-category, in its strict form
known as a bipermutative category (e.g. [28], [33], [19]). This
is a category with two monoidal structures (®, I) and (&, N)
which distribute over each other appropriately.

B. Preparation and initial objects

There are no bijections or unitaries 1 — 2. However, it is
very useful to be able to prepare a bit or qubit from an empty
system. Thus we are led to consider injections between sets
or isometries between vector spaces. Both of these structures
again form a bipermutative category. There are two injections
1 — 2, corresponding to the two possible states of a bit. On
the quantum side, these do not correspond to unitary matrices,
but rather isometries. There are uncountably many isometries
1 — 2, obtained by composing the two injections 1 — 2 with
unitaries on 2. These isometries describe the possible pure
states of a qubit.

Injections (and isometries) again support a bipermutative
category structure. In this setting, the zero system N, the unit
for @, can be thought of as an absurd uninhabited system,
meaning that it is initial: there is a unique map ; : N — A
for all objects A. This induces the canonical basis injections
I =I®N EEINy @ I in every bipermutative category with
initial V.

Since preparation is arguably a conceptual abstraction in
quantum theory, and not ‘real’, it is reasonable to add it as
freely as possible to the pure quantum theory of the unitaries.
This is exactly what the isometries are, and this freeness is
captured by the following theorem. Here we write Unitary
and Isometry for the bipermutative categories of unitaries
and isometries respectively. A ‘bipermutative functor’ is a
functor that preserves all the bipermutative structure.

Theorem (I11.3). For every bipermutative category C with
initial N and every bipermutative functor F' : Unitary — C,
there is a unique bipermutative functor F : Isometry — C
that makes the following diagram commute:

Unitary —— Isometry
T, @
VF
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This theorem is a standard kind of universal property. For a
more familiar example, recall the property of the reals R as a
completion of the rationals Q: for any complete metric space
S and any short map f: Q — S there is a unique short map
f: R — S such that
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However, in (2), the objects (Unitary etc.) are themselves
bipermutative categories rather than spaces, and the diagram
is a diagram in the category of bipermutative categories.
Nonetheless, as is usual, the universal property uniquely
determines the bipermutative category Isometry up to iso-
morphism.

C. Hiding, terminal objects, coproducts and classical data

In many irreversible situations, there is a unique map from
any system to the empty system /. This is the operation of
hiding (aka discarding) the state of a system. In categorical
terms, I is terminal. This is not the case in the categories
of bijections, unitaries, injections or isometries, but it is the
case in the category of sets and all functions, and also in
the category of quantum channels. When [ is terminal, it
is a general fact that the additive structure (&, N) of a
bipermutative category is necessarily a categorical coproduct.

This means that the object 2 ' T @ I behaves like an
object of classical bits, and indeed all the classical logic gates
necessarily arise as morphisms 2" — 2. This is in stark

contrast to the reversible situation.



As with preparation, hiding is arguably an abstraction rather
than ‘reality’, and so it is reasonable to add it as freely as
possible to pure quantum theories. This requires some care,
as we now explain.

The basic idea is to move from pure, semi-reversible situ-
ations to full quantum channels with classical data by freely
turning I into a terminal object. There is a well-known functor

E : Isometry — CPTP

and we will show that it has a universal property. Here,
CPTP is the category of quantum channels: finite dimen-
sional C*-algebras as objects, and completely positive trace
preserving maps as morphisms (§II-B). For now, we do not
presume these definitions, and instead focus on the universal
property. Some care is needed: if we formulated a universal
property analogously to (2), we would lose all the quantum
structure, because the additive quantum construction ¢ would
be collapsed into a categorical coproduct. For example, when
1 becomes terminal, the global phases 1 — 1 are all collapsed,
which is desirable, but then the 7" gate (id @ §) would also
be collapsed with the identity gate, which is unacceptable.
To avoid this, we do not ask for a completion that strictly
preserves the additive @ structure, but only that there are
comparison maps e.g. E(A @ B) — E(A) ® E(B), in other
words, that the embedding be colax with respect to &. For
example, the comparison map E(I ® I) — E(I) ® E(I) takes
a qubit to a classical bit, and corresponds to the fundamental
operation of standard basis measurement.

In circuit notation, the measurement is notated with
the double-wire indicating a classical wire. For example, the
following phase estimation circuit is an extension of (1):
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and describes a quantum channel

E(I@I)®2 preparation E(I@I)®5 unitary E(IEBI)®5
measurement (E([) @E([))®3 ®E([EBI)®2

taking two qubits to three classical bits and two qubits. (For
more details on the circuit see e.g. [34], Ch. 5.)

This functor [E has the following universal property, which
is the main result of this paper. Here, we write ‘colax biper-
mutative functor’ for a functor that strictly preserves (®, 1)
but is colax for @, as E is.

Theorem (V.6). For every bipermutative category D
with terminal I and every colax bipermutative functor
F : Isometry — D there is a unique (strict) bipermutative

functor F : CPTP — D that makes the following diagram
commute:

Isometry B CPTP
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Thus the category CPTP is the completion of Isometry
with hiding.

As a step towards this theorem, we also consider a similar
result for unitaries (Thm. IV.10), for which the completion
is a category of non-commutative spaces (C*-algebras and *-
homomorphisms).

“4)

D. Topology quantum channels

Classical computation is discrete, but many results in
quantum computation and information are concerned with
continuous aspects of quantum channels. For example,

e circuit approximation: for any quantum channel F' over
qubits there is a sequence of quantum channels Fi, F5 . ..
that converges to F' such that each approximant Fj is only
built from standard basis measurement, preparations, and
the H, T and controlled-not gates (e.g. [34], §4.5).

e noisy quantum channels: in many situations it is desirable
for a quantum channel F' to leave a part of the system
untouched: thus we are interested in the distance between
the channel F' and the identity channel (e.g. [34], §9.3).
This may be non-zero because of imperfections in the
circuit manufacture.

e quantum topology: much inspiration for understanding
quantum theory is by studying the topology of the unitary
groups (e.g. [24]). On a related note, a simple topological
way of understanding the mixed states of a single qubit
is as homeomorphic to the 3-ball (Bloch sphere).

All these considerations require a notion of topology on the
quantum channels themselves.

Our final theorem is that the operator norm topology on
quantum channels is canonically induced by the spectral
topology on the isometries. To be precise, recall that for every
pair of numbers m, n, the commuting diagram (4) of functors
given in the universal property of CPTP induces in particular
a commuting diagram of functions between hom-sets

Isometry(m,n) LErn cpTP (E(m),E(n))

P
Fm,n

D(m,n)

®)

We can regard these hom-sets not just as sets but as topological
spaces, and to show that the topology on quantum channels is
canonical, we characterize when these functions are continu-
ous.

Theorem (VI.10, paraphrased). In diagram (5): E,, ,, is con-
tinuous, and if the hom-sets of D are equipped with a topology
that respects the bipermutative category structure and such
that F,, ,, is continuous, then me is also continuous.



The usual way to understand categories whose hom-sets
have structure is by ‘enriched’ category theory, and this is
how we proceed in Section VI.

Summary: We have highlighted how the framework of
bipermutative categories (§I-A) can be used to give universal
properties to theories with preparation (§1-B), preparation and
hiding (§I-C), and to the topology of quantum channels (§I-D).

We now proceed to elaborate these matters, in Sections II,
III, V and VI respectively.

II. BIPERMUTATIVE CATEGORIES AS MODELS OF QT

In our introductory remarks (§I-A), we discussed the role
that bipermutative categories play in a general form of circuit-
like structure that is relevant even in the reversible setting. We
now recall the key definitions (§II-A) and explain how varia-
tions on quantum theory can be understood as bipermutative
categories (§II-B).

A. Rig categories and bipermutative categories

We begin by recalling the notion of rig category, before
discussing the stricter variant of bipermutative categories.

Definition II.1. A symmetric monoidal category is a tuple
(C,®,I,7v,a, A, p), where C is a category, ® : C x C — C
is a functor, oy pc : (A®B)@C - AR (B®C), A :
I®A A pa: A=Al andyap: ARB - B® A are
natural isomorphisms. They are also required to satisfy some
coherence conditions [30].

We will often omit «, A, p when the context is clear or when
they are identities.

A rig category is a category with two symmetric monoidal
structures, (9, N,~) and (®,I,~"), such that one distributes
over the other, that is, there are natural isomorphisms ¢ : (A®
B)®(A®C) - A®(B®C) and §* : (ARC)® (BRC) —
AeB)@C, \* : N > N@Aand p* : N - A® N
satisfying some coherence conditions [28].

Example I1.2. « Any rig R (aka semiring: ring except
no inverses for addition) can be seen as a rig category
whose objects are the elements of R and no non-identity
morphisms, with the two monoidal structures given by
the addition and multiplication of the rig.

o The category of sets and functions where @ is the disjoint
union and ® the Cartesian product.

o Also some variations: the category of finite sets and
functions between them; the category of finite sets and
bijections between them; the category of finite sets and
injections between them.

o ‘Skeletal’ variations on the above. e.g. The category of
natural numbers considered as sets n = {1...n} and
where morphisms are functions. In this example m®n =
m-+n, mRn=mn.

The 24 coherence conditions [28] are cumbersome, but
they are simplified in many cases. We can often choose
a strict monoidal structure and we can choose one of the
distributivity isomorphisms to be an identity morphism, but

the other distributivity isomorphism and the symmetries need
not be identities.

The skeleton category of the category of finite sets and
bijections is such an example. Its symmetries are not identities.
One of the distributivity isomorphisms can be identity, but the
other cannot be.

Every rig-category is equivalent to a bipermutative category
([33], Prop. 3.5).

Definition II.3. A
(C,®,I,v,a,\,p) is
natural transformations.

A bipermutative category is a rig category where both
symmetric monoidal structures are strict, and d, A* and p* are
identity natural transformations (but 6% need not be identity).

symmetric  monoidal
strict when o, \,p are

category
identity

Many of the coherence conditions for rig categories become
trivial for bipermutative categories, because of the identity
morphisms. Indeed 6* is uniquely determined by the symmetry
~'" in a bipermutative category.

1) Rig categories with coproducts: In many rig categories,
@ is a coproduct. Indeed, in a symmetric monoidal category
with coproducts +, one can always define canonical mor-
phisms

0+ A0 (A®B)+(A®C) = A® (B+C)

and symmetrically. If these are all isomorphisms, then the
coherence conditions for a rig category are automatically
satisfied. The category of bijections is not of this form, and nor
is the category of unitaries discussed below, but the category
of quantum channels does have coproducts.

In fact this coproduct scenario is unavoidable when the
multiplicative unit I is terminal. This is a common assumption
on I; in linear logic it is sometimes called affine logic
and amounts to allowing discarding but not duplication of
resources [22].

Proposition I14. Let (C,®,N,®,I) be a bipermutative
category where I is terminal. Then (®,N) is a categorical
coproduct when considered with the following left injection

A=Ae(BoN) 228 40 (Bol) = A0 B
and similar right injection.
Proof sketch. We could not find this result in the literature.
The unique copairing of A LodBis

AeBLE coc S genec S 100 S0l
The initial maps are N — A®@ N — AQ I — A. O

2) Bipermutative functors and categories of bipermutative
categories: In this work we are interested in the relationships
between variations on quantum theories, and these relation-
ships will be described as bipermutative functors of certain
kinds.

Definition II.5. A strict bipermutative functor is a
functor F:C — D Dbetween bipermutative categories



(C,®,N,v,®,1,7) and (D,®,N,7,® I,v’) that
strictly preserves all the structure: F(N) =N, F(I)=1,
F(A® B) = F(A) @ F(B), (A ® B) = ( ) & F(B),
F(ya,B) =vra,rB: F(Wa p) = Yrarp-

Definition II.6. A ®-colax bipermutative functor is a functor
F : C — D between bipermutative categories such that
F(I)=1, F(A® B) = F(A)® F(B), F(v') =4/, together
with natural transformations ¢ : F(A® B) — F(A) ® F(B)
and a morphism ¢ : F(N) — N such that the following
diagrams commute:

F(AeB) o FC— 2" _(FA® FB)o FC
F((A® C)® (B® C)) —> (FA® FC) & (FB® FC)
FNoFA" S No FA
FN N

together with the coherence diagrams making (F, ¢, ) a sym-
metric colax monoidal functor ([30, X1.2], [29]) for (&, N).

(When there are natural transformations F'(A) @ F(B) —
F(A @ B) instead, with similar coherence conditions, then F’
is called a @-lax bipermutative functor, but we have less use
for this notion.)

Strict/colax bipermutative functors compose, and so we can
build categories of bipermutative categories and strict/colax
bipermutative functors. Because there are various categories
that we consider, we introduce the following notation.

Notation 11.7. The bipermutative functors that will be consid-
ered hereafter are required to strictly preserve the unit N of
@, that is, ¥ = id. We denote by

o B(® 19N the category of bipermutative categories and
strict bipermutative functors

o B(© 19N the category of bipermutative categories and
@-colax bipermutative functors

o B(®I190) the category of bipermutative categories for
which the unit of ¢ is an initial object, and strict
bipermutative functors

o B(©190) the category of bipermutative categories for
which the unit of @ is an initial object, and &-colax
bipermutative functors

o B(21+%0) the category of bipermutative categories for
which the unit of ® is a terminal object and @ is a

coproduct, and strict bipermutative functors

(By using bipermutative categories instead of rig categories,
we are able to work with 1-categories such as B(® 1@ )
instead of 2-categories and bicategories, which would be a

distraction in this paper.)

B. Models of Quantum Theory

We can now express variations of quantum theory as biper-
mutative categories.

Definition II.8. An n X n complex matrix U is unitary if
U*U = UU* = I, where U* is the conjugate transpose.
The bipermutative category of unitaries is formed as follows.
The objects are natural numbers (including zero). There is a
morphism n — n for each n X n unitary and the set of n = n
unitaries is usually denoted by U(n).

o Composition of morphisms is matrix multiplication.

¢ On objects, @ is addition of numbers. On morphisms it
leads to control gates. Given unitaries U : n — n and
Vim —>m,welet U®V :ndm — ndm be

the block diagonal matrix (({ 3} The unit IV is the
number zero.

e On objects, ® is multiplication of numbers. On mor-
phisms, given unitaries U : n =+ nand V : m — m,
welet U ®V : n®@m — n ®m be the Kronecker
product of matrices, with (U @ V)in+k,jnt+1 = Ui ; Vi,
The unit [ is the number 1.

C? is to be thought as the state space of qubits. With this in
mind, C2" is the state space for n qubits. Then the symmetry
Yoo : 2®2 — 2® 2 represents the swap gate and 711 :
1®1— 11 the not gate. Intuitively, id, ® V : nm — nm
represents the transformation where V' acts on the subsystem
m of mm without perturbing the subsystem n. Whereas ®
keeps separate (untangled) systems separate, & is a source of
entanglement as for instance ids @ v1,1 : 4 — 4 represents
the controlled-not gate, which performs a non-trivial unitary
transformation on the second qubit depending on the state of
the first one.

Definition I1.9. An isometry is a linear map C” — C" which
preserves the inner product metric. In other words, an isometry
is an n X m complex matrix V" such that V*V = I. Note that
necessarily m < n and m = n precisely when an isometry
is unitary. We form the bipermutative category of isometries
in the same way as the one for unitaries. The unit N is the
number zero; it is an initial object, as witnessed by the empty
matrices i, : 0 — n.

C*-algebras: The idea of von Neumann’s full quantum
theory is that mixed states are understood as operators, for
example, density matrices, or more generally elements of C*-
algebras. Recall that a complex algebra is a vector space V'
over C with an additional binary operation - : V. xV — V
that is linear in each argument. The n X n complex matrices
M,,(C) are an example of such an algebra where - is given
by matrix multiplication. We also consider direct sums of
matrix algebras ;. ; M., (C) where J is a finite set for the
corresponding vector space which inherits the algebra structure
componentwise.

A complex x-algebra A is a complex algebra with an
additional operation * : A — A such that x** = x,



(ax)* = ax*, (x+y)  =x*+y*, (xy)* =y*x*and 1* =1
for all complex numbers a and all x,y € A, where a is the
complex conjugate of a.

M,,(C) have a x-algebra structure given by the conjugate
transpose and P, ; M,,; (C) again inherits *-algebra struc-
ture componentwise. Such algebras can be equipped with the
spectral norm and they are complete with respect to this norm.
These are finite dimensional C*-algebras and every finite
dimensional C*-algebra is of this form, up to isomorphism.
We will therefore from now on use ‘C*-algebra’ to mean a
finite dimensional C*-algebra of the form ;. ; M., (C).

A positive element A in a C*-algebra is such that there
exists an element B such that A = B* B, or equivalently if it
is self-adjoint and its spectrum o (A) consists of non-negative
real numbers.

A linear map f : A — B between two C*-algebras is
positive if it maps positive elements to positive elements. A
linear map f : A — B between two C*-algebras is completely
positive (CP) if for every k the map id, () ® f : Mi(C) ®
A — My (C) ® B is positive.

If we denote by Tr the trace operator, then a linear map
f @ Mp(C) — Mp,(C) is said to be trace-preserving
if for all M € M,(C), Tr(f(M)) = Tr(M). We can
extend the trace operator to C*-algebras by Tr(A1,..., Ag) =
Tr(A;)+... Tr(Ay) which is to say we embed €D, ; M., (C)
into My~ ,,(C) as block diagonal matrices ((Aq, ..., Ag) —
A1 @ ...@® Ag) and then apply the usual trace operator.

In von Neumann’s model, a state is represented by a positive
element of trace 1. For instance, a state of a qubit is a density
matrix in Mz (C), and a state of a classical bit is a positive
element of trace 1 in C @ C (there are only two).

A valid transformation of states is a linear map that must
satisfy the following properties. First, it should send states
to states, so it should send positive elements to positive
elements and preserve trace. In addition, as it may act on
a subsystem only, the total system should remain a state,
hence a positive element. It means tensoring the map with
the identity should also be a positive map and so the function
is asked to be completely positive. (The transpose map is a
typical example of a positive but not completely positive map.)
Thus, completely positive trace preserving maps (CPTP) are
sometimes called quantum channels.

We note that for commutative C*-algebras C™,C™, a CPTP
map is the same thing as a stochastic n X m matrix, i.e. a
positive-real valued matrix where each column sums to 1.
(See e.g. [17].) This is a standard model of finite probabilis-
tic classical computation and information, and so the non-
commutative C*-algebras are a natural quantum generalization
of this.

Definition II.10. The bipermutative category of completely
positive trace-preserving (CPTP) maps is defined as follows.
Its objects are finite lists of positive natural numbers and a
morphism f : [n1,...,ng] = [m1,...,m,] is a CPTP map
[+ My, (C) = @, M, (C). For instance M(C) is the
state space of qubits and C & C is the space for bits.

@ is given on objects by concatenation of lists and on
morphisms f : A — B,g : A’ — B’ by (f @ g)(a,b) :=
(f(a),g(b)). & is a coproduct in this category. The empty list

is the initial object. ® is given on objects by [ni,...,ng] ®
ma,...,mp] = [naima,...,naiMp,..., MM, ..., MMy
and on morphisms f : A — [n],g : B — [m] by

(f®g): A®B — [nm] : (a®b) — f(a) ® f(b) where
® is the Kronecker product. The object [1], to be thought as
C, is terminal and the terminal map !4 : A — [1] is given by
the trace operator. The map !, ® id,, : [nm] — [m] is usually
called the partial trace.

Definition II.11. We define an ®-colax-bipermutative functor
E : Isometry — CPTP which sends n — [n] and V :
m —nto Ady : M — VMV* : [m] — [n]. The colax ®-
morphism ¢, p, : My (C) = M, (C) & M,,,(C) is then

defined by {é g] — (A, D).

Intuitively, pon on @ Mant1(C) — (C & C) ® Man(C)
measures the first qubit of a system of n + 1 qubits, so the
resulting system consist of a bit and n qubits. Those n qubits
are in the state Tr(A)~1A if 0 is measured, which happens
with probability Tr(A), and Tr(D)~*D otherwise.

III. ISOMETRIES AS A COMPLETION OF UNITARIES

We recall some basic category theory before characterizing
the category of Isometries as a completion (Thm. IIL.3). In
the introduction (§I-B) we motivated universal completions by
considering the inclusion @Q — R of the rationals in the reals,
which satisfies a universal property (3). In general:

Definition IIL.1. If F: C — Disafunctorande: X — F(Y)
is such that for every f: X — F(Z) there is a unique
f:Y — Z such that the following diagram commutes:

X —5F(Y) Y
F(2) z

then we say that e : X — F(Y) is a completion w.rt. F.
(Other terminology: e is universal for F'; e is free w.r.t. F.)

In particular the inclusion Q < R is a completion w.r.t. the
forgetful functor CMet — Met, where Met is the category
of metric spaces, and CMet the category of complete metric
spaces.

The main results of the paper are completions in this sense
and we now give our first. The category of isometries is the
initial object completion of the category of unitaries, both seen
as bipermutative categories. The completion then may be read
as saying that the category of isometries is the simplest model
for pure quantum theory with ancillas (and no discarding).

The following proposition is the key point in the proof of
the completion:



Proposition IIL.2. If V : m — n is an isometry then there
is a unitary U : n — n such that V. = U(I,, @ j,), where
n=m-+p.

Moreover, U is essentially unique: if Uy, Us : n — n are
such that Uy(I;m @ j,,) = Ua(Iy, © j,), then there is a unique
unitary W : p — p such that Uy = Uy (I, @ W).

Proof. Note that (I, ®;,,) is the isometry (/) : m — m+p,
and the requirement V' = U(I,, ®,) means that U = (V|V’)
for some n x p matrix V.

For the existence part, note that the columns of V' form a
set of orthonormal vectors in C™ which we can thus extend
to an orthonormal basis for C", which forms the columns of
a unitary U. One way to do this is by picking p vectors in
C™ that are linearly independent of V, and then using the
Gram-Schmidt process to turn this into a basis.

Now suppose we have two such U; and Us. Note that Uy
and Us can be written as block matrices U; = (é gll) and
Uy, = (ggz), where A is m x m, B is p x m, C; and Cy
are m x p, and Dy and D, are p x p. Note that V = ().
Since U; and U, are unitaries, we have for ¢ = 1, 2:

A*A+ B*B A*C; + B*D;
CrA+ DB C;C;+ Di*Di>
In particular, A*A+B*B =1, C;A+D;B =0, and A*Cy+
B*D, = 0. Now we use these three facts to calculate
Ul — A*A+ B*B A*Cy + B*D,
1727 \CtA+ DB CiCy+ DD,

Iwm(

(I 0
“\0 CfCs+ DiDs
Let W = C{Cy+ D7 D». It is a unitary because its columns are

orthonormal. We have (I®&W) = U;Us, so U1 (I®W) = Us,
as required. O

We can now state the theorem of the section:

Theorem IIL.3. The functor Unitary — Isometry is a
completion w.rt. the embedding B(© 1 9©0) — B(® 1 &N
That is:

Unitary —— Isometry

EN
vF <

v

where F € B(2 19 N) and F € B(9199). See notation
11.7.

IV. FULL QM WITHOUT ANCILLAS

Unitaries are a model of pure quantum theory without
ancillas. We are building up to a model of quantum theory
with ancillas in Section V, but as a first step we consider
what happens when we complete unitaries with hiding. As we
show (Thm. IV.10), this results in the dual Cstar®® of the
bipermutative category of finite dimensional C*-algebras and
*-homomorphisms.

If the reader is unfamiliar with Cstar®?, they may think
of it as a ‘quantum’ or ‘non-commutative’ extension of the

category of finite sets and functions. Indeed, the full subcat-
egory CCstar®® C Cstar®® of commutative C*-algebras is
equivalent to the category of finite sets and functions. This
is because the finite-dimensional commutative C*-algebras
are all of the form C", and every function m — n induces
a *-homomorphism C" — C™ by reindexing, and every *-
homomorphism arises in this way. (This is a starting point for
‘non-commutative geometry’.)

The key step in our proof of Theorem IV.10, which gives a
canonical status to Cstar®®, is a combinatorial characteriza-
tion of the *-homomorphisms due to Bratteli [6].

A. Duality

Definition IV.1. A linear map 7 : A — B between C*-
algebras is called a *-homomorphism if:

o Vz,y€ Aym(x-y) = w(x) - w(y)

o Vo € A w(z*) = m(x)*
It is unital if it preserves the unit of the C*-algebra.

Definition IV.2. We have a bipermutative category Cstar
of unital *-homomorphisms. Its objects are finite lists of
positive natural numbers and a morphism f : [n1,...,n;] —
[m1,...,mp) is a unital x-homomorphism f : @, M, (C) —
D, M, (C). &,® are given similarly to those in CPTP
(See 1I-B).

Similarly, we define the bipermutative category CPU of
completely positive unital maps. Its objects are those of Cstar
and its morphisms are completely positive unital maps. &, ®
are again given similarly to those in CPTP.

Cstar is a non-full subcategory of CPU and we have the
following known result from Choi which is key to the duality:

Proposition IV.3. (Choi [10]) f : M,,(C) = M,,(C) is com-
pletely positive iff it admits an expression f(A) =, V;*AV;
where V; are n X m matrices.

Recall that every linear map A — B between finite
dimensional spaces has a dual B — A. From Proposition IV.3,
a linear map A — B between C*-algebras is completely
positive if and only if its dual B — A is completely positive. A
completely positive linear map is furthermore trace preserving
(CPTP) if its dual is furthermore unit preserving (CPU).

Corollary IV4. (CPU)? = CPTP.

Furthermore, the functor Isometry — CPTP restricts to
a functor Unitary — Cstar®P.

The following is an explicit characterisation of unital -
homomorphisms in finite dimension:

Proposition IV.5. (Bratteli [6]) [ : @ cijc) Mn,(C) —
M, (C) is a x-homomorphism iff there exist a p X p unitary U
and natural numbers sy, ..., s, such that Y |, niS; = p
and o

f(Aq, ..

(Here & denotes the block diagonal matrix.) If moreover the
n; are all non-zero, then the sequence si .. .Sy is unique.

LA =UA @1d,, @ ... 0 A, @1d,, )U*



Notation IV.6.  « Given a tuple of natural numbers n :=

(n1,...,mk), let vz : P; My, (C) = My 5, (C) be
the canonical injection sending (Mj, ..., M) to My ®
LB My).

o Let A, : M, (C) = M, (C)®* be the duplication map
given by the universal property of the product, which
sends A to s copies of A. In particular A, ,, = id,, and
Non =n.

e Let Ady : M — UMU* be the adjoint operator.

For brevity and clarity of reading, we will often omit

indices.

Rephrasing the characterisation of Bratteli, we get:
Corollary IV.7. Cstar([nl, AR [p}) consists exactly of
the unital x-homomorphisms of the form Ady opn o@D, Ay, n,
for some p x p unitary U and ), s;n; = p.

B. Completion of Unitary
The completion theorem IV.10 is the main result of the

section and rests upon a few lemmas:

Lemma IV.8. AdyopoA, , = Adyropol; p, : My — Moy
iff there exists an s x s unitary V such that Uo(V ®1d,,) = U’.

Proof. For the converse, notice that A, ,, = Ag; ® I,,. Also
note that ¢, ,, = ¢1,1 ® Idy. Then for all U : ns — ns,V :
s — s we have, using the fact that 1 is the initial object:
Ady o Adygig, oo Agp
=Ady o (Ady ®1d,) o (p ®1d,) o (As1 ®1d,,)
=Ady o ((Adv 0pols1)® Idn)
=Ady o (((p 0A;1)® Idn)
::AdU()¢O‘A&n
We now prove the first part. Let M := E(KK” Ejtfim, jtim-
Then for all k ¢ {j +im | i =0...n — 1} we have
0= Mg =UMU ik = Y GhjrimmMy;ar;tim
0<i<n
hence > o;., lakjriml> = 0 so Vi € {0,...,n — 1},
ag,j+im =0
For arbitrary M and (¢, j) where m; ; is not necessarily 0
we have:

Mg = D GoibkmMi; 4 km
0<k<n
hence > o <jcp, @i itkm@;jtkm = 1.
Using Cauchy-Schwarz inequality we get:

1= E Qi i+ kmQj j+km

0<k<n
= <(ai,i7 cee 7ai,i+(n—1)m)7 (aj,ja ceey a’j,j+(n—1)m)>
2 2
S |(a’i,i7 v 7ai,i+(’n*1)7‘ﬂ)|| H(a]J’ R 7aj,j+(nfl)m)“
=1

Again by Cauchy-Schwarz theorem, there exists A € C such
that

(Qiyis s i (n=1)m) = M@ 4,5 5 jp(n—1)m)

Replacing in the equality above leads to 1 =
Y o<kenAMaiivem|> = A hence A = 1. Consider
V' = (a14im,14jm)o<ij<n. It is a unitary matrix and it
verifies V ® I,, = U. O

Lemma IV.9. If Ady o pn o @, As,n, = ¥ © D; Asinis
then U = @Z U; for some s;n; X s;n; unitaries Uj.

Proof. 1t suffices to show that U = U; ®U, with Uy : s1nq; —
s1n1 and then conclude by induction on the size of I, the set
of indices in the sum.

Let M =)
obtain:

E; ;. Then, for 1 < k < syiny, we

E ag,; Mj jar,;

s1m1<j<p

s1m1<j<p

OZM]C7]€:

Hence for all 1 < k < s1ng,s1n1 < j < p we have ai ; = 0.

As U*MU = M, we get UMU* = M hence for all 1 <
k < sini,sin1 < j < p, we have aj, = 0. This indeed
shows that U = U; & Us, as desired. O

Theorem IV.10. The functor Unitary — (Cstar)? is a
completion w.rt. the embedding B(¢ 1 19) — B(¢ L& N)
That is:
E,
Unitary (Ee) (Cstar)°P
vC
where (F,) € B($ 19 Y) and F e B(% 11 9).

Proof notes. Uniqueness: using corollary IV.7 it’s easier to

show the categorical dual statement with in particular F .
Cstar — C°P and ¢, being lax instead of colax, and
conclude by a careful duality. F' has to strictly preserve ®,$
and has to make the triangle commute so it must satisfy:

. F([nl,,nk]):@lF(nl) N

o If f=Adypogpo@P,A; € Cstar then F(f) =F (U)o

Yo @z A;

Existence: we define F is the unique possible way and it is
shown to be well defined by Lemmas IV.8 & IV.9. F' is proven
to be a functor by a long but straightforward rewriting. It’s easy
to show that F' preserves @ and ® on morphisms. O

V. QUANTUM CHANNELS

In this Section we prove our main theorem (Thm. V.6):
von Neumann’s model for full QM, CPTP, is a canonical
completion of the usual model of pure quantum theory with
ancilla preparation, Isometry. The main technical tool is
Stinespring’s theorem which characterises completely positive
maps.

Notation V.1. e Given natural numbers ¢ > p, let R, :
M4(C) — M, (C) denote the projection to the first p
rows and columns A — A,

o Given a category with an initial object 0, we denote by
i4:0— A the unique morphism to A

o Similarly, !4 : A — 1 denotes the unique morphism from
A to the terminal object



A. Stinespring’s theorem

In finite dimension and in the case of CPU maps the theorem
can be stated as follows:

Theorem V.2 (Stinespring, e.g. [35]). Let p be a natural
number. If f : A — M,(C) is a completely positive and
unital map, then there is a natural number q > p and a unital
x-homomorphism m making the following diagram commute:

Y

Mq((c) H) Mp((c)

Moreover, q can chosen to be the minimal such number: if
r > p and a x-homomorphism h : A — M, is such that
h(=)|p = f(=) then r > q and there is a unitary U such that
w(—) = (Uh(=)U*)|q. In a diagram:

M (C) o M (C) —— My (C) —— M,(C)

Ady Ryr.q q,P
W

In other words, every CPU map can be written as a unital *-
homomorphism followed by a restriction map, and possibly in
a sort of minimal but non unique way. In categorical language
this leads to the following:

Corollary V.3. CPU([ny,...,ng),[p]) are exactly mor-
phisms of the form Rq, 0 Ady opo@D, Ag, n, for some q x q
unitary U and ), sin; = q > p.

Remark V.4. Recall that we have a functor E
(Isometry)?? — CPU. We have R,, = E(id,®!_,).
Because of this, R,  is sometimes called purification ([8],

[13D).

B. Completion of Isometry

We need a few key lemmas which are summed up in
the proposition below, which gives essentially unique normal
forms to the morphisms in CPTP as follows:

Proposition V.5. R, ,o Adyopo@, ;. As;n, = Rmpo
Ady o po @ cicr Asims + B, My, = My, iff there exist
unitary matrices P,Q1, ..., Qy such that

(Idp—p ® P)oUo (Q1 ®1dy,) &+ & (Qr ®1dy,)) = U’

Proof notes. Suppose f = Ady; o1 = Ady; o ma for
unital *-homomorphisms 7;. There exists a minimal dilation
f = Ady~ o m. Using the corollary of the uniqueness in
Stinespring’s theorem, there exists two isometries Wi, Ws
such that Adyy, om; = my and W, U =V;.

We now mimic the proof of Lemma IV.9 and we get that
W, = @j W;, ;. Indeed, one can write 1o = Adpogpo@, Ay
for some unitary 7" and m; = Adg o ¢ o @, A, for some
unitary (. Without loss of generality we can take 7y to be

pofD; Ay and 71 to be poP,; Ay, for instance by changing
W; into (T*)~*W,;(Q*)~1. Let W be either of W or Wh.
Then, as in the proof of Lemma IV.9, we get that

Mij = E E , Wi, kME,pWj,p

1<p<n 1<k<n

Taking M to be ones on the diagonal after the first block (of
size syn1) and 0 elsewhere gives that for all 1 < ¢ < s1nq,
Y sy <p<n WipWip = 0 hence w;, = 0 for all 1 < i <
s1n1, and for every nis; < p < n. Doing this for the other
blocks as well shows that TV is of the form W = @, W; as
desired.

Now precomposing by the injection M,,; — &, M,,, and
using the known result for quantum channels (see for instance
[42]) and the characterisation of isometries (Proposition II1.2),
Wiyj = (Pi’j ® Id) o (Id@ ‘)

Putting everything together, there is a permutation 7 inde-
pendant of ¢ such that W; = (P,1 @ Id® --- ® P, ® Id) o
Yo (Id® ;). Hence

(PLaPyi @Id@®--- @ PPy ®@1d)oVy
= (P11 Py @Id® -+ @ PPy @ Id) o WoU
= (PLaPy) @Id® - & PPy, @ Id)

0 (P @Id® - @ Py @Id)oyo(Id®i)oU
=Pa1@Id®---®Pp@Id)oyo(Idd)oU
=WioU=W

and we conclude by Proposition II1.2. O

Theorem V.6. The functor Isometry — CPTP is a
completion w.rt. the embedding B(® 11 9) — B(¢190)
That is:

(E,p)
Isometry —— CPTP

m 2

vC

where (F,1) € B(®1®N)and F e B(®1+9).

S

Proof notes. 1t’s not hard to show_uniqueness using Stine-
spring’s theorem and the fact that F' has to be a functor and
has to preserve @, ®. N N
Existence: there is a unique way to define F' on objects. F
is defined on morphisms essentially by using Proposition V.5.
Note that it’s important that we don’t define F' on minimal
dilations only as the composition of two minimal dilations
does not trivially reduce to a minimal dilation. Again using
Proposition V.5, one can show that £’ preserves composition.
It is then easy to show that F' preserves & and ®. O

Remark V.7. We have the following picture:
(Unitary)°” —— Cstar

| v

(Isometry)”” —> CPU



Both horizontal arrows express the same completion, and
the left vertical arrow is a different completion. The dotted
arrow is then given by the universal property of Cstar as a
completion of Unitary (Thm. IV.10). Using Theorem II1.3,
this sheds a new light on Stinespring’s theorem which can now
be understood as the lifting to the operator-algebra level of the
completion of unitaries into isometries (§III). Intuitively, what
makes the dotted functor non-full is the image by the bottom-
horizontal completion of what is added by the left vertical one,
and Stinespring’s theorem makes this precise.

Remark V.8. It is perhaps perplexing that ever since Nota-
tion I1.7 we have considered bipermutative functors that are
colax with respect to @ but strict for N. However, for any
@-colax bipermutative functor, when N is initial and F'(I) is
terminal, we have that F'(IN) is necessarily also initial, because

for any object A there is a morphism F' (V) NS A (To
show that this morphism is unique we must use the terminality
of F(I)). So in this situation, colax for N implies F(N) = N.

VI. COMPLETION AS TOPOLOGICALLY ENRICHED
CATEGORIES

We now extend our algebraic framework and consider the
context of topologically-enriched category theory. The main
goal is to show analogues of Theorems IV.10 & V.6 in
the topologically-enriched setting. This means that the norm
topology on unital *-homomorphisms is the canonical one
induced by the norm topology on unitaries and that the norm
topology on CPTP maps is the canonical one induced by the
norm topology on isometries.

The basic theory of enriched category theory is for instance
covered in [25].

A. Topologically enriched bipermutative categories

Definition VI.1. Given a symmetric monoidal category V, a
V-category C is given by the following:

« a set of objects Obj(C)

o for each pair of objects (a,b) of C an object C(a,b) €
Obj(V)

« for each triple (a, b, ¢) of objects of C a morphism o 4, .. :
C(b,c)®C(a,b) — C(a,c) in V - called the composition
morphism

o for each object a € Obj(C) a morphism j, : I —
C(a,a) in V — called the identity morphism such that
composition is unital and associative.

Example VI.2. Every (locally small) category is Set-
enriched, where Set is the category of sets and functions,
seen as a Cartesian monoidal category.

Given a monoidal category V, a V-bipermutative category
is a category C enriched over V with V-enriched bifunctors
®,® : C x C — C and V-enriched natural isomorphisms
v,7', 6% such that the coherence conditions of bipermutative
categories are satisfied. There is a category of V-bipermutative
categories and V-bipermutative functors between them.

Here, we consider V to be the Cartesian monoidal category
(Top, x) of topological spaces and continuous maps equipped

with the Cartesian product as monoidal tensor product. We
note that early applications of bipermutative categories [33]
also make use of topological categories and topological en-
richment, although those applications in algebraic topology
are different from ours.

If we equip C™ with the Euclidean norm ||(z1, ..., 2,)| ==
>;|xil* then we can equip matrix spaces M., (C) with

the spectral norm |—||, which is defined as |M]|, :=
SUP|ju)j=1||Mul].
Every norm ||—|| on a space M induces a topology on M

where opens are given as follows. For every x € M and every
non negative real r the set {y € M | ||y — z|| < r} is open.
Then an arbitrary open is given by arbitrary unions and finite
intersections from such sets. Hence we can see the homsets
in Unitary and in Isometry as topological spaces whose
topology is induced by the spectral norm.

Morphisms in CPTP, CPU, Cstar can be equipped
with the operator norm |—||,, defined as |[f|,, =
sup|al|,=1/f(a)||,- The homsets in these categories can thus
also be seen as topological spaces whose topology is induced
by the operator norm. The topology gives a lot of information
on the space. For instance CPTP ([1],[1,1]) is homeomor-
phic to the unit interval [0,1] and is to been understood as
a probability. CPTP ([1],[2]) can be understood as the state
space for qubits, the Bloch sphere, and is homeomorphic to the
3-ball. On the other hand, Cstar®”([2], [1,1]) is homeomor-
phic to the 2-sphere plus two points: computationally, given a
qubit, we must either measure it on some axis of the Bloch
2-sphere, or discard it and return a classical bit (0 or 1).

Lemma VIL.3. With the topology given above, Unitary,
Isometry, CPTP, CPU, Cstar are Top-enriched biper-
mutative categories. That is for all objects A, B, C the compo-
sition map o5 p.c : C(B,C)®C(A, B) — C(A,C), the first
tensor product <A®(7))B,C :C(B,C) - C(A®B,A®C),
and the second tensor product (A ® (—)) : C(B,C) —

B.C
C(A@® B, A® C) are continuous maps.

Notation V1.4. Similarly to Notation 1.7 we denote by
o Top-B(® IO N) the category of Top-bipermutative cat-

s 8§ ¢Cc s

egories and @-colax Top-bipermutative functors

o Top-B(® 190 for the category of Top-bipermutative
categories for which NV is an initial object and &-colax
Top-bipermutative functors

o Top-B(2 110 for the category of Top-bipermutative
categories for which @ is a coproduct and I is terminal,
and strict Top-bipermutative morphisms between them

o Top-C any of the categories C from Lemma VI.3 seen

as Top-enriched

where all the bipermutative functors actually strictly preserve
the unit N of .

B. Topologically enriched completion for Cstar

The main lemma we use is proved in [4, Lemma 3.7], which
requires an important lemma from Glimm [18]:



Lemma VL5 ([4]). Let ¢,v A — DB be unital *-
homomorphisms between finite dimensional C*-algebras such
that || — ||, < 1. Then there is a unitary U in B such that
(b = AdU o 1[}

Definition VL.6. Given n,m := (my,...,my), a (n,m)-
Bratteli tuple (sq,...,sg) is a tuple of natural numbers such
that ), s;m; = n. The set of (n,m)-Bratteli tuples is denoted
by BI". Given (s1,...,s;) € B" we define a group

Gsmn ={u1 ®Ids, ®... ux ®1ds, : u; € Ulmy)} C U(n)

Given a lax bipermutative functor (F, 1)) : Unitary — C and
5:= (s1,...,8,) € B, there is a canonical map that sends

F(U)to F(U)oyofD; As, m, given by precomposition, which
we denote by cansm,n : [F'n, Fn] — [@, Fm;, Fn|.

G5.m.n 1s a subgroup of U(n) and acts on it by right multi-
plication and we can thus consider the quotient U(n)/Gs m n.
See for instance [16] for more on quotients by an action of a
group. One can show that cang m »0Fy, ,, : Unitary(n,n) —
C( P, Fni, Fn) respects the quotient by G’ m . n.

The following lemma is the key point to show that the lifted
bipermutative morphism — written F' in Sections IV & V —is
continuous whenever the colax one (F, ) is:

Lemma VL7. The following spaces are homeomorphic:

Cstar([my,...,my], [n]) = H U(n)/Gsmn
seBm™
The lemma implies that Cstar([mi,...,my],[n]) has a

connected component for each Bratteli tuple in B™. Each
of these connected components is a smooth manifold — a
space locally homeomorphic to an Euclidean space — but they
usually have different dimensions. For instance we recover that
Cstar([1, 1], [2]) has 3 connected components, two of which
are points so 0-dimensional and the other one is the 2-sphere.

With those ingredients at hand we show an analogue of
Theorem IV.10 in the Top-enriched setting. Informally, this
says that topology on unital x-homomorphisms is the canonical
one induced by the one on unitaries.

Theorem VL8. The functor Top-Unitary —
Cstar)°? is a completion w.rt. the
Top-B( L +0) = Top-B(9 L SN That is:

S s s ¢c s

(Top-
embedding

Top-Unitary (Ee) (Top-Cstar)°P

m\ VEI!F

vC

where (F,1) € Top-B(2 1% Y) and F € Top-B($119).
See Notation VIA4.

Theorems IV.10 & VI.8 then combined say that for every
function F, ,, : Unitary(n,n) — [Fn, F'n] there is a unique
lifted function F,, ,, : Cstar®?([n], [n]) — [Fn, Fn], which is
moreover continuous whenever F;, , is.

Proof notes. From Theorem IV.10 uniqueness already holds
for the Set version. The existence of a Set function is again
ensured by Theorem IV.10. It remains to show continuity. F}, ,,
is shown to be continuous by Lemma VI.7 and the universal
property of the quotient topology. Then, all morphisms F4 g
are constructed from these, the canonical maps and the uni-
versal property of the coproduct. The resulting morphisms are
all continuous by construction. [

C. Topologically enriched completion for CPTP

Finally, we prove that the norm topology on CPTP maps is
the canonical one induced by the norm topology on isometries.
In particular, starting from isometries rather than unitaries
forces a lot of differences to the topology: as opposed to the
case of Cstar, the homsets now only have one connected
component.

There is no maximal Stinespring dilation for a CPU map,
but it is always possible to chose a dilation space which is
common to all CPU maps @, M,,,(C) - M, (C):

Lemma VI.9 (e.g. [35], p.50). Any morphism [ €
B, M, (C), M, (C)] admits a Stinespring dilation in
Mp(C), where D := Y, m?n.

This implies that as opposed to the case of unitaries,
we can embed all the information needed for CPU maps
@D, M, (C) — M,(C) in a single isometry space. This
leads us to:

Theorem VI.10. The functor Top-Isometry — Top-CPTP
is a completion w.rt. the embedding Top-B(®1+9) —
Top-B(© L9 That is:

s s c s

Top-Isometry M Top-CPTP

M VEI!F

vC

where (F,v) € Top-B(91%9) and Fe Top-B(T51%)
See Notation VI4.

Proof notes. We prove the dual result. We proceed similarly
to the proof of Theorem VI.8. The base case is obtained by
the universal property of the quotient of the topological space
of dilations Isometry(n,D) — CPU([my,...,my], [n])
where D = Y. m?n.

Isometries can be shown to be a connected smooth manifold,
hence as a quotient of such a space, CPTP homsets are
connected. Operationally, the isometry ; : 0 — 1 induces a
map E(id; @) : C — My (C) which is to be understood as a
bridge between the classical and quantum world as it turns a
bit 0 into a qubit in state [0). Cstar®?([2], [1, 1]) for instance
has three connected components: two of them are points to be
understood as bits and then the 2-sphere of pure qubits, so the
bits are not connected to specific points on the sphere.



VII. CONTEXT

We conclude this paper by mentioning connections with
related programmes.

Brief comparison with the CPM construction

Categorical quantum mechanics (CQM) is a successful
abstraction of the compact closed category of natural num-
bers and all complex matrices by using ‘dagger’ structures
([11,[13]). Since this category has biproducts and is compact
closed, it is a rig category (e.g. [1], Prop. 5.3, although
rig categories and bipermutative categories have not been
considered in CQM in full generality). Finite dimensional
C*-algebras are described abstractly as Frobenius structures,
through the CPM construction ([12],[38]), and variants thereof.
This has been described by a universal property [14], and
to that extent is related to our characterisation, although it
is unclear how that universal property is related to ours. In
particular, coproducts and additive monoidal structure (&)
typically do not play an explicit role in [14], in contrast to our
work, where they are central to our understanding of quantum
control and classical data.

A broader difference between our work and the CQM
approach is that the CQM-style work typically begins with
all linear maps and CPM provides all completely positive
maps, not only isometries and trace-preserving maps. Within
the category of all completely positive maps, one can cut down
to the trace-preserving ones by imposing causality conditions,
formulated using the dagger in an elegant categorical way.
An advantage of this approach is that the non-trace-preserving
maps expose further categorical structure, e.g. for instance one
can consider free biproduct completions ([38], §5) by taking
advantage of the additional additive structure of the hom-sets.
However, although they are useful for calculations, the non-
trace-preserving completely positive maps don’t have a real
physical meaning. Our philosophy is to not consider them at all
when using universal properties to derive theories of physics.
In this way our approach is different in spirit from CQM using
the CPM construction.

Finite / infinite dimensions

Our work here is focused on finite dimensional systems,
as is common in quantum computation and information the-
ory. More broadly in quantum physics, infinite dimensional
systems are often considered. The categorical axiomatics of
these systems is in its infancy, but some recent steps have
been made (e.g. [2], [11], [36], [41]).

Topology and metrics

We motivated our work on topological enrichment (§VI)
in terms of other theoretical work on quantum topology
(§I-D). There are many more practical applications of quantum
information that use notions of convergence, but there they use
metrics rather than topology. There can be many metrics that
generate the same topology, and indeed there are many metrics
at play in quantum information (see [34], §9, for an overview).
It is possible that our Theorem VI.10, giving a universal

property for the topological enrichment, could be refined to
give a universal property to some metric on CPTP maps. This
is a subtle point, as is elaborated in work ([26],[27]) on the
metrics involved in a continuous Stinespring’s theorem. (These
papers served as an inspiration for our topological result.)
We note that, away from the quantum area, universal proper-
ties have recently been used to characterize metrics (e.g. [31],
[32]), and this may serve as an inspiration for future work.

Quantum programming languages

The language of bipermutative categories can be thought
of as a prototypical calculus for programming circuits that
allows control. This has been proposed earlier as a language
for quantum circuits [19]. Selinger’s QPL [37] and Adam’s
QPEL [3] involve the related notion of distributive monoidal
categories, which also play a role in Tull’s categorical analysis
[40] of operational probabilistic theories through monoidal
effectuses ([9], §10). All this work has been a source of
inspiration in our development.

In some ways a universal property is an equational char-
acterization of a structure, and there have been other equa-
tional characterizations of quantum programming, including
the measurement calculus [15], the ZX calculus ([5],[23],[20]),
and the work by the second author in [39]. These are more
syntactic than the present work, which can be an advantage,
but an advantage of the present work is that it is arguably
more canonical through its categorical nature. We highlight in
particular the recent extention of ZX with hiding [7], which
indeed makes an explicit connection to the universal properties
considered in [21].

Overall summary

We have proposed the categorical framework of bipermuta-
tive categories in Section §II to study the connection between
pure and mixed states. We proved in Section §IV that the
category of unital x-homomorphisms is a canonical completion
of the category of unitaries and we used this result to prove
in Section §V that the category of completely positive trace-
preserving maps is a canonical completion of the category of
isometries. We then went beyond the discrete framework in
Section §VI and considered topologically enriched categories
where we proved that the norm topology of CPTP maps is
the canonical topology induced by the norm topology on
isometries.
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