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We present a modular semantic account of Bayesian inference algorithms for probabilistic programming lan-
guages, as used in data science and machine learning. Sophisticated inference algorithms are often explained
in terms of composition of smaller parts. However, neither their theoretical justification nor their implemen-
tation reflects this modularity. We show how to conceptualise and analyse such inference algorithms as ma-
nipulating intermediate representations of probabilistic programs using higher-order functions and inductive
types, and their denotational semantics.

Semantic accounts of continuous distributions use measurable spaces. However, our use of higher-order
functions presents a substantial technical difficulty: it is impossible to define a measurable space structure
over the collection of measurable functions between arbitrary measurable spaces that is compatible with
standard operations on those functions, such as function application. We overcome this difficulty using quasi-
Borel spaces, a recently proposed mathematical structure that supports both function spaces and continuous
distributions.

We define a class of semantic structures for representing probabilistic programs, and semantic validity
criteria for transformations of these representations in terms of distribution preservation. We develop a col-
lection of building blocks for composing representations. We use these building blocks to validate common
inference algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo. To emphasize the con-
nection between the semantic manipulation and its traditional measure theoretic origins, we use Kock’s syn-
thetic measure theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-
Hastings-Green theorem.
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1 INTRODUCTION

One of the key challenges in Bayesian data analysis is to develop or find an efficient algorithm for
estimating the posterior distribution of a probabilistic model with respect to a given data set. This
posterior distribution combines prior knowledge encoded in the model and information present in
the data set consistently according to the rules of probability theory, but itsmathematical definition
often involves integration or summation over a large index set and does not yield to an efficient
computation strategy immediately. A data scientist typically has to make one of the suboptimal
decisions: she has to consult a large body of specialised research in order to pick an algorithm
suitable for her model, or to change the model so that it falls into one of those cases with efficient
known algorithms for posterior inference, or to face the challenge directly by developing a new
algorithm for herself.
Recent probabilistic programming languages aim to resolve this dilemma. They include con-

structs for describing probability distributions and conditioning, and enable data scientists to ex-
press sophisticated probabilistic models as programs. More importantly, they come with the im-
plementation of multiple algorithms for performing posterior inference for models and data sets
expressed in the languages. The grand vision is that by using these languages, a data scientist no
longer has to worry about the choice or design of such an inference algorithm but focuses on the
design of an appropriate model, instead.
In this paper, we provide a denotational validation of inference algorithms for higher-order

probabilistic programming languages, such as Church [Goodman et al. 2008], Anglican [Wood
et al. 2014] and Venture [Mansinghka et al. 2014]. The correctness of these algorithms is subtle. The
early version of the lightweight Metropolis-Hastings algorithm had a bug because of an incorrect
acceptance ratio [Wingate et al. 2011]. The correctness often relies on intricate interplay between
facts from probability theory and those from programming language theory.Moreover, correctness
typically requires stronger results from probability theory than those used for the usual Rn case in
the machine-learning community (e.g., Green’s measure-theoretic justification of Markov Chain
Monte Carlo rather than the usual one for Rn based on density functions).

Our starting point is the body of existing results on validating inference algorithms for proba-
bilistic programs [Borgström et al. 2016; Hur et al. 2015]. Those earlier results tend to be based on
operational semantics, and often (not always) focus on first-order programs. By working in a mod-
ular way with monads, denotational semantics and higher-order functions, we are able to validate
sophisticated inference algorithms, such as resample-move Sequential Monte Carlo [Doucet and
Johansen 2011], that are complex yet modular, being composed of smaller reusable components,
by combining our semantic analysis of these components.
The probabilistic programming language considered in the paper includes continuous distri-

butions, which means that semantic accounts of them or their inference algorithms need to use
measure theory and Lebesgue integration. Meanwhile, our semantic account uses a meta-language
with higher-order functions for specifying and interpreting intermediate representations of proba-
bilistic programs that are manipulated by components of inference algorithms. Such higher-order
functions let us achieve modularity and handle higher-order functions in the target probabilistic
programming language. These two features cause a tension because it is impossible to define amea-
surable space structure over the collection of measurable functions between arbitrary measurable
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spaces that is compatible with standard operations on those functions, such as function applica-
tion. We resolve the tension using quasi-Borel spaces [Heunen et al. 2017], a recently proposed
mathematical structure that supports both function spaces and continuous distributions.
We define a semantic class of structures for various intermediate representations of probabilis-

tic programs, and semantic validity criteria for transformations of these representations in terms
of distribution preservation. We develop a collection of building blocks for composing representa-
tions. We use these building blocks to validate common inference algorithms such as Sequential
Monte Carlo and Markov Chain Monte Carlo. To emphasize the connection between the seman-
tic manipulation and its traditional measure theoretic origins, we use Kock’s synthetic measure
theory. We demonstrate its usefulness by proving a quasi-Borel counterpart to the Metropolis-
Hastings-Green theorem.
To ease the presentation, we proceed in two steps. First, we present our development in the

discrete setting, where the set-theoretic account is simpler and more accessible. Then, after devel-
oping an appropriate mathematical toolbox, we transfer this account to the continuous case. Infer-
ence in the continuous setting, while conceptually very similar to the discrete case, is inseparable
from our development. The semantic foundation for continuous distributions over higher-order
functions has been very problematic in the past. The fact that our approach does generalise to
the continuous case, and does so smoothly, is one of our significant contributions, only brought
about through the careful combination of quasi-Borel spaces, synthetic measure theory, the meta-
language, and the inference building blocks.
The rest of the paper is structured as follows. Sec. 2 presents a core calculus, our metalanguage,

with its type system and set-theoretic denotational semantics. Sec. 3 presents the core ideas of
our development in a simpler discrete set-theoretic setting. Sec. 4 reviews the mathematical con-
cepts required for dealing with continuous distributions. Sec. 5 presents representations and trans-
formations for continuous distributions. Sec. 6 decomposes the common Sequential Monte Carlo
inference algorithm into simpler inference representations and transformations. Sec. 7 similarly
decomposes the general Trace Markov Chain Monte Carlo algorithm. Sec. 8 concludes. Basic re-
sults in synthetic measure theory are listed for the reader’s convenience in Appendix A.

2 THE CORE CALCULUS

We use a variant of the simply-typed λ-calculus with sums and inductive types, base types and
constructors, primitives, and primitive recursion, but without effects. We also use monad-like con-
structs in the spirit of Moggi’s computational λ-calculus [1989]. The core calculus is very simple,
and at places we need an inherently semantic treatment, which the core calculus alone cannot
express. In those cases, we resort directly to the semantic structures, sets or spaces. However,
the calculus still serves a very important purpose: every type and function expressed in it de-
note well-formed objects and well-formed morphisms. In the continuous case, using this calculus
yields correct-by-construction quasi-Borel spaces and their morphisms, avoiding a tedious and
error-prone manual verification. Using the core calculus also brings our theoretical development
closer to potential implementations in functional languages.

2.1 Syntax

Fig. 1 (top) presents the types of our core calculus. To support inductive types, we include type
variables, taken from a countable set ranged over by α , β ,γ , . . .. Our kind system will later ensure
these type variables are strictly positive: they can only appear free covariantly — to the right of
a function type. Variant types use constructor labels taken from a countable set ranged over by
ℓ, ℓ1, ℓ2, . . .. Variant types are in fact partial functions with a finite domain from the set of con-
structor labels to the set of types. When σ is a variant type, we write (ℓ τ ) ∈ σ for the assertion
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τ ,σ , ρ ::= types
α positive variable

| {ℓ1 τ1
�

� . . .
�

� ℓn τn} variant
| 1 | τ ∗ σ finite product
| µα .τ inductive type

|τ → σ function
|A base
|Fτ base constructors

Γ ≔ x1 : τ1, . . . ,xn : τn variable contexts

t , s, r ::= terms
x variable

| τ .ℓ t variant constructor
| () | (t , s) nullary and binary tuples
| τ .roll iso-inductive constructor
| λx : τ .t function abstraction
| match t

with { ℓ1 x1 → s1
�

� · · ·
�

� ℓn xn → sn}

pattern matching: variants

| match t

with (x ,y) → s

binary products

| match t

with rollx → s

inductive types

| τ .fold t inductive recursion
| t s function application
| ϕ primitive

Fig. 1. Core calculus types (top) and terms (bottom)

that σ assigns the type τ to ℓ. We include the standard unit type, binary products, and function
types. We include unary uninterpreted base types and constructors. While we use a list syntax for
variable contexts Γ, they are in fact partial functions with a finite domain from the countable set
of variables, ranged over by x ,y, z, . . ., to the set of types.

We desugar stand-alone labels in a variant type {· · ·
�

� ℓ
�

� · · ·} to the unit type {· · ·
�

� ℓ ()
�

� · · ·}.
We also desugar seemingly-recursive type declarations τ ≔ σ [α 7→ τ ] to τ ≔ µα .σ .

Example 2.1. The type of booleans is given by bool ≔ {True
�

� False}. The type of natural
numbers is given by N ≔ {Zero

�

� SuccN} desugaring to N ≔ µα .{Zero
�

� Succα }. The type of
α-lists is given by Listα ≔ {Nil

�

� Consα ∗ Listα }, desugaring to Listα ≔ µβ .{Nil
�

� Consα ∗ β}.

Base types and constructors allow us to include semantic type declarations into our calculus.
For example, we will always include the following base types:
• I : unit interval [0, 1]; • R: extended real line [−∞,∞]; • R+: non-negative extended reals
• R: real line (−∞,∞); • R+: non-negative reals [0,∞); and [0,∞].

In addition, once we define a type constructor such as Listα , we will later reuse it as a base type
constructor Listτ , effectively working in an extended calculus. Thus we are working with a family
of calculi, extending the base signature with each type definition in our development.
Fig. 1 (bottom) presents the terms in our core calculus. Variant constructor terms τ .ℓ t are an-

notated with their variant type τ to avoid label clashes. The tupling constructors are standard. We
use iso-inductive types: construction of inductive types requires an explicit rolling of the inductive
definition such as N.roll (Zero()). Variable binding in function abstraction is intrinsically typed in
standard Church-style. We include standard pattern matching constructs for variants, binary prod-
ucts, and inductive types. We include a structural recursion construct τ .fold for every inductive
type τ . Function application is standard, as is the inclusion of primitives.
To ease the construction of terms, we use the standard syntactic sugar (e.g. letx = t in s for
(λx . t)s , if then else for pattern matching booleans), informally elide types from the terms, elide
roll ing/unrolling inductive types, and informally use nested pattern matching.

Example 2.2. For Listτ = µα .{Nil
�

� Consτ ∗ α }, we can express standard list manipulation:

x :: xs = Cons(x ,xs ) foldra f = Listτ .fold λ{Nil→ a
�

� Cons (x ,b) → f (x ,b)}

xs ++ ys = foldrys (::) xs map f xs = foldr [ ] (λ{ (y,ys ) → (f (y),ys )})
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∆ ⊢k α : type
(α ∈ ∆)

for all 1 ≤ i ≤ n: ∆ ⊢k τi : type

∆ ⊢k {ℓ1 τ1
�

� . . .
�

� ℓn τn} : type ∆ ⊢k 1 : type

∆ ⊢k τ : type ∆ ⊢k σ : type

∆ ⊢k τ ∗ σ : type

∆,α ⊢k τ : type

∆ ⊢k µα .τ : type

⊢k τ : type ∆ ⊢k σ : type

∆ ⊢k τ → σ : type

∆ ⊢k A : type

∆ ⊢k τ : type

∆ ⊢k Fτ : type

for all (x : τ ) ∈ Γ: ⊢k τ : type

⊢k Γ : context

Fig. 2. Core calculus kind system

Γ ⊢ x : τ
((x : τ ) ∈ Γ)

Γ ⊢ t : τi

Γ ⊢ τ .ℓi t : τ
((ℓi τi ) ∈ τ )

Γ ⊢ () : 1

Γ ⊢ t : τ Γ ⊢ s : σ

Γ ⊢ (t , s) : τ ∗ σ Γ ⊢ τ .roll :
(

σ [α 7→ τ ]
)

→ τ
(τ = µα .σ )

Γ,x : τ ⊢ t : σ

Γ ⊢ λx : τ .t : τ → σ

Γ ⊢ t : {ℓ1 τ1
�

� . . .
�

� ℓn τn} for each 1 ≤ i ≤ n: Γ,xi : τi ⊢ si : τ

Γ ⊢ match t with {ℓ1 x1 → s1
�

� · · ·
�

� ℓn xn→ sn} : τ

Γ ⊢ t : σ ∗ ρ Γ,x : σ ,y : ρ ⊢ s : τ

Γ ⊢ match t with (x ,y) → s : τ

Γ ⊢ t : µα .σ Γ,x : σ [α 7→ µα .σ ] ⊢ s : τ

Γ ⊢ match t with rollx → s : τ

Γ ⊢ t :
(

σ [α 7→ ρ]
)

→ ρ

Γ ⊢ τ .fold t : τ → ρ
(τ = µα .σ )

Γ ⊢ t : σ → τ Γ ⊢ s : σ

Γ ⊢ t s : τ Γ ⊢ ϕ : τϕ

Fig. 3. Core calculus type system

where we abbreviate [a1, . . . ,an] to Cons (a1, . . . ,Cons (an ,Nil) . . .).

2.2 Type System

To ensure the well-formedness of types, which involve type variables, we use a simple kind system,
presented in Fig. 2. Each kinding judgement ∆ ⊢k τ : type asserts that a given type τ is well-formed
in the type variable context ∆, which is finite set of type variables.
The kinding judgements are standard. All type variables must be bound by the enclosing context,

or by an inductive type binder. The contravariant position in the function type τ → σ must
contain a closed type, ensuring that free type variables can only appear in strictly positive positions.
Variable contexts Γ must only assign closed types.

Example 2.3. The types from Ex. 2.1 are well-kinded: ⊢k bool,N, Listα : type.

We define capture avoiding substitution of types for type variables in the standard way, which
obeys the usual structural properties. Henceforth we consider only well-formed types in context,
leaving the context implicit wherever possible, and gloss over issues of alpha-convertibility of
bound type variables.
To type terms, we assume each primitiveϕ has a well-formed type ⊢k τϕ : type associated with it.

Fig. 3 presents the resulting type system. Each typing judgement Γ ⊢ t : τ asserts that a given term
t is well-typed with the well-formed closed type ⊢k τ : type in the variable context ⊢k Γ : context.

The rules are standard. By design, every term has at most one type in a given context.
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Example 2.4. Once desugared, the list manipulation terms from Ex. 2.2 have types:

(::) : τ ∗ Listτ → Listτ foldr : σ ∗ (τ ∗ σ → σ ) ∗ Listτ → σ

map : (τ → σ ) → (Listτ → Listσ ) (++) : (Listτ ) ∗ (Listτ ) → Listτ

2.3 Primitive Recursion

As is well-known [Geuvers and Poll 2007; Hutton 1999], structural recursion on inductive types
allows us to express primitive recursion. By ‘primitive recursion’, we mean recursing through
values of an inductive type µα .σ using a term of the form: Γ,k : σ [α 7→ (µα .σ ) ∗ ρ] ⊢ t : ρ with
the intention that t can use either arbitrary (total) processing on the sub-structures of its input k ,
or make a primitive recursive call to itself with a sub-structure. In order to desugar such a term
into a function of type τ ∗ (µα .σ ) → ρ, we use terms of the following type, defined by induction
on types:

πα .σ ,ρ : σ [α 7→ (µα .σ ) ∗ ρ] → σ [α 7→ µα .σ ]

and interpret the primitive recursive declaration t embodied by:

Γ,x : µα .σ ⊢ match (µα .σ ).fold
(

λk : σ [α 7→ (µα .σ ) ∗ ρ]. (rollπα .σ ,ρk, t)
)

x

with (_, r ) → r : σ

This translation is global in nature: the structure of the term π depends on the type of t . Thus, it
does not constitute a macro translation [Felleisen 1991]. With this point in mind, we will allow
ourselves to use primitive recursive definitions.

Example 2.5. We define a function aggr : List(R+ ∗ X ) → List(R+ ∗ X ) which takes a list of
weighted values and aggregates all the weights based on their values. Wemake use of the auxiliary
function add : (R+ ∗X ) ∗ List(R+ ∗X ) → List(R+ ∗X ), which adds a weighted value to an already
aggregated list. We define add by primitive recursion:

add((s,a),xs ) ≔ matchxs with {[ ] → [(s,a)] −− new entry
(r ,x) :: xs→ if x = a

then (s + r ,a) :: xs −− accumulate
else (r ,x) :: add((s,a),xs )} −− recurse

and set aggr ≔ foldr [ ] add. This example makes use of an equality predicate betweenX elements,
restricting its applicability.

2.4 Denotational Semantics

We give a set-theoretic semantics to the calculus. In such set-theoretic semantics, types-in-context
∆ ⊢k τ : type are interpreted as functors ⟦τ⟧ : Set∆ → Set, i.e., ⟦τ⟧ assigns a set ⟦τ⟧ (Xα )α ∈∆ for
every ∆-indexed tuple of sets, and a function

⟦τ⟧
(

fα : Xα → Yα
)

α ∈∆
: ⟦τ⟧ (Xα ) → ⟦τ⟧ (Yα )

for every ∆-indexed tuple of functions between the sets with corresponding index, and this assign-
ment preserves composition and identities.
In order to interpret iso-inductive types µα .τ , we need canonical isomorphisms between the

sets ⟦τ⟧ (⟦µα .τ⟧) � ⟦µα .τ⟧. We will do this in a standard way, by interpreting ⟦µα .τ⟧ as the initial
algebra for the functor ⟦τ⟧ : [Set∆ → Set] → [Set∆ → Set]. This means that for every functor
A : Set∆ → Set with a natural family of functions {aX : (⟦τ⟧A)(X ) → A(X )}X ∈Set∆ , there is a
canonical natural family of functions {foldX : ⟦µα .τ⟧ (X ) → A(X )}X ∈Set∆ .

A technical requirement is needed to ensure that this initial algebra exists: we fix a regular
cardinalκ, and demand that each type denotes aκ-ranked functor (ranked functor for short), that is,
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⟦α⟧d ≔ d(α) ⟦{ℓ1 τ1
�

� . . .
�

� ℓn τn}⟧d ≔
n
∑

i=1

⟦τi⟧d ⟦1⟧d ≔ 1

⟦τ ∗ σ⟧d ≔
(

⟦τ⟧d
)

×
(

⟦τ⟧d
)

⟦A⟧d ≔ B ⟦A⟧

⟦Fτ⟧d ≔ B ⟦F⟧ (⟦τ⟧d) ⟦µα .τ⟧d ≔ µX . ⟦τ⟧d[α 7→ X ] ⟦τ → σ⟧d ≔
(

⟦σ⟧d
) ⟦τ⟧ ()

Fig. 4. Core calculus type-level semantics

that it denotes a functor that preserves κ-filtered colimits1. The κ-ranked functors are closed under
composition, products, sums, and initial algebras. Initial algebras for κ-ranked functors on locally
presentable categories always exist, because they can be built in an iterative way by transfinite
induction (see e.g. [Kelly 1980]).

2.4.1 Set-Theoretic Interpretation. To interpret types, we assume a given interpretation B ⟦−⟧
of the base types A as sets B ⟦A⟧ and of base type constructors F as ranked functors B ⟦F⟧ :

Set → Set. We then interpret each well-formed type in context ∆ ⊢k τ : type as a ranked functor
⟦τ⟧ : Set∆ → Set, as depicted in Fig. 4.

In this definition, the parameter d may be either a tuple of sets or functions. When interpreting
type variables, we write d(α) for the α-indexed component of d . The interpretation of simple types
uses disjoint unions, singletons, finite products, and exponentials, i.e. the bi-cartesian closed struc-
ture of Set. We interpret inductive types ⟦µα .τ⟧d using the initial algebra for the ranked functor
λX . ⟦τ⟧d[α 7→ X ] : Set → Set. In the semantics of the function type τ → σ , the exponential
makes no use of the functor’s arguments, and relies on the fact that all type variables are strictly
positive. We use the given interpretation of base types and type constructors to interpret them.

Lemma 2.6. The semantics of types is well-defined: every well-formed type ∆ ⊢k τ : type denotes a

ranked functor ⟦τ⟧ : Set∆ → Set. In particular, every closed type denotes a set.

The proof is by induction on the kinding judgements, using well-known properties of Set.
We will always interpret the base types I, R, etc. by the sets they represent.

Example 2.7. We calculate the denotations of the types from Ex. 2.1. Booleans denote a two-
element set ⟦bool⟧ = {False, True}, and the natural numbers denote the set of natural numbers
⟦N⟧ = N. By Lemma 2.6, ⟦List⟧ denotes a ranked functor List : Set→ Set, and this functor is given
by the set of sequences of X -elements ListX ≔

∪

n∈NX
n .

Beyond establishing the well-definedness of the semantic interpretation, Lemma 2.6 equips us
with syntactic means to define ranked functors. Once defined, we can add these functors to our
collection of base types (in an extended instance of the core calculus). In the sequel, we will often
restrict a given ranked functor F : Set → Set by specifying a subset GX ⊆ FX . Doing so is
analogous to imposing an invariant on a datatype. The subsets GX form a subfunctor G ⊆ F

precisely if they are closed under the functorial action of F , i.e., for every function f : X → Y and
a ∈ GX , F f (a) ∈ GY .

Lemma 2.8. Subfunctors of ranked functors over Set are ranked.

We can prove this lemma directly, but it also follows from a higher-level argument using the
commutation of finite limits and κ-directed colimits in Set.
1We do not use simpler classes of functors, such as polynomial functors or containers, as they are not closed under subfunc-
tors, given by subsets in the discrete case and subspaces in the continuous case, which we need in the sequel.
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instance Monad (List)where

returnx = [x]

xs >>= f = foldr [ ]
(

λ(x ,ys ). f (x) ++ ys
)

xs

(a) Declaring monadic interfaces

Sugar Elaboration
• x ← t ; s t >>= λx . s

• return t returnT t

• t ; s _← t ; s

(b) Haskell’s do-notation

Fig. 5. Monadic programming notation

2.5 Monadic Programming

In the sequel, we will be working with types that support a monadic programming style. More
precisely, a monadic interface T consists of a tripleT = (T , returnT , >>=T ) where:T assigns to each

set X a set TX ; returnT assigns to each set X a function return
T

X
: X → TX ; and >>=T assigns to

each pair of sets X and Y a function >>=
T

X ,Y
: TX × (TY )X → TY . We borrow Haskell’s type-class

syntax to define such interfaces. As an example, Fig. 5a defines a monadic interface over List.
Each such monadic interface T allows us to use standard do-notation summarised in Fig. 5b.

Though simple in principle, we must take care when treating this notation as syntactic sugar,
as choosing the appropriate function returnX or >>=X ,Y at each desugaring step must take typing
information into account. When we use do-notation in the sequel, we ensure that such choices can
be disambiguated. Finally, we will delimit our use of do-notation to within a do-block T .do {. . .},
omitting the monadic interface T or the entire delimiter when either is clear from the context.

Importantly, we do not insist that a monadic interface satisfies the monad associativity and unit
laws: (returnx) >>= f = f (x), a >>= return = a, and (a >>= f ) >>= д = a >>= (λx . (f x >>= д)).

3 DISCRETE INFERENCE

We can now lay-out the core ideas in the simpler, set-theoretic case: a semantic structure for higher-
order (discrete) probabilistic programs, intermediate representations of these programs for the
purpose of inference, valid transformations between these representations, and modular building
blocks for creating new representations and transformations from existing ones. For simplicity, we
consider representations and transformations from simple rather naive inference algorithms only
in this section. In Sec. 6 and Sec. 7, we show how the core ideas here apply to advanced algorithms
when aided with further technical developments.

3.1 The Mass Function Monad

For our purposes, probabilistic programming languages contain standard control-flowmechanisms
and data types, such as our core calculus, together with probabilistic choice and conditioning oper-
ations. In the discrete case, these are given by two effectful operations:

Γ ⊢comp flip : bool

Γ ⊢ t : R+

Γ ⊢comp score t : 1

In Bayesian probabilistic programming, we think of flip as drawing from a (uniform) prior distri-
bution on bool, and of score as recording a likelihood. Typically, one calls score(f (x))where f is a
density function of a distribution, which records the likelihood of observing data x from the distri-
bution f . The score might be zero, a hard constraint: this path is impossible. The score might be in
the unit interval, the probability of a discrete observation; but in general a likelihood function can
take any positive real value. The inference problem is to approximate the posterior distribution,
from the unnormalized posterior defined by the program, combining a prior and likelihood.
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To give a set-theoretic semantic structure to such a higher-order language with these two con-
structs, it suffices to give a monadic interface T for which the associativity and unit laws hold,
together with two functions:

flip : ⟦1⟧→ T ⟦bool⟧ score : ⟦R+⟧→ T ⟦1⟧

For the purposes of the discrete development, the following monad fits the bill. A (finite) mass

function over a set X is a function µ : X → R+ for which there exists a finite set F ⊆ X such that
µ is 0 outside F : in other words, the support set supp µ ≔

{

x ∈ X
�

�µ(x) , 0
}

is finite. For every set
X , let MassX ≔

{

µ : X → R+
�

�µ is a mass function
}

. The mass function monad is given by:

Mass ≔ instance Monad (Mass)where

returnx0 = λx . if (x = x0) then 1 else 0

µ >>= f = λy.
∑

x ∈supp µ µ(x) · (f (x)(y))

and we set flip = λ_. 1
2
and score r = λ{ () → r }. Intuitively, values ofMassX represent unnormal-

ized probabilistic computations of a result in X . From the Bayesian perspective, the meaning of a
program is the unnormalized posterior.

Lemma 3.1. The monadic interface Mass defines a ranked monad over Set.

This monad is also known as the free positive cone monad, as it constructs the ‘positive fragment’
of a vector space over the field of reals with basis X .

3.2 Inference Representations

The mass function semantics is accurate, but idealised: realistic implementations cannot be ex-
pected to compute mass functions at arbitrary types, and especially at higher-order types. Instead,
probabilistic inference engines would manipulate some representation of the program, while main-
taining its semantics.

Definition 3.2. A discrete inference representation T is a sextuple

T =
(

T , returnT , >>=T , flipT , scoreT ,mT
)

consisting of:

• a monadic interface
(

T , returnT , >>=T
)

;

• two functions flipT : 1→ T2 and scoreT : R+ → T1, where 1 := ⟦1⟧, 2 := ⟦bool⟧; and
• an assignment of a meaning functionm

T

X
: TX → MassX for every set X

such that the following laws hold for all sets X , Y , and x ∈ X , a ∈ TX , r ∈ R+, and f : X → TY :

returnMass x =m(returnT x) m(a >>=T f ) = (ma) >>=Mass λx . m(f x)

m(flipT ) = flipMass m(scoreT r ) = scoreMass r

As with monadic interfaces, we use a type-class notation for defining inference representations.

Example 3.3 (Discrete weighted sampler). Consider the type

Termα ≔ {Return (R+ ∗ α)
�

� Flip (Termα ∗ Termα)}

which induces a ranked functor Term. The elements of TermX are binary trees, which we call
terms, whose leaves contain weighted values of type X . Fig. 6a presents the inference representa-
tion structure of the functor Term. Flip represents a probabilistic choice while Return holds the
final value and the total weight for the branch. Thus an immediately returning computation is
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instance Discrete Monad (Term)where

returnx= Return (1,x)

a >>= f = let (scale : R+ ∗ TermX → TermX ) = −− uses primitive recursion
λs . λ{Return (r ,x) → Return (s · r ,x)

�

�Flip (kFalse,kTrue)→ Flip (scale(s,kFalse), scale(s,kTrue))}

in matchawith {

Return (r ,x) →scale(r , f x)
�

�Flip (kFalse,kTrue)→Flip (kFalse >>= f , −− uses primitive recursion

kTrue >>= f )}

flip = Flip (Return (1, False),Return (1, True))

score r = Return (r , ())

ma = fold λ{Return (r ,x) → Mass .do {score r ; returnx}
�

�Flip (µFalse, µTrue)→ Mass .do {x ← flip;

if x then µTrue else µFalse}}

(a) Discrete weighted sampler representation

instance Discrete Monad (Enum)where

returnx= [(1,x)]

xs >>= f = let (scale : R+ ∗ EnumX → EnumX ) =

λ{ (r ,xs ) → map λ{ (s,y) → (r · s,y)}

xs }

in foldr [ ]

λ{ ((r ,x),ys ) → scale(r , f x) ++ ys }

xs
flip = [( 1

2
, False), ( 1

2
, True)]

score r = [(r , ())]

mxs = λa. −− mxs a =
∑

(r,x )∈xs
x=a

r

foldr 0

(

λ{ ((r ,x), s) →

if x = a then r + s else s}

)

xs

(b) Discrete enumeration sampler

instance Inf Trans (W)where

liftT a = T .do { x ← a;

return(1,x)}

returnWT x= returnT (1,x)

a >>=WT f = T .do {(r ,x) ← a;

(s,y) ← f (x);

return(r · s,y)}

flipWT = lift flipT

scoreWT r = returnT (r , ())

mWT a = λx .
∑

(r,x )∈suppmT (a) r

(tmap t)X = t
R+∗X

(c) Discrete weighting transformer

Fig. 6. Example inference representations (a,b) and transformers (c)

represented by a leaf with weight 1. The auxiliary function scale in the definition of >>= scales
the leaves of its input term by the input weight. The function >>= itself substitutes terms for the
leaves according to its input function f , making sure the newly grafted terms are scaled appropri-
ately. The probabilistic choice operation flip constructs a single node with each leaf recording the
probabilistic choice unweighted. Conditioning records the input weight.
The meaning function recurses over the term, replacing each node representing a probabilistic

choice by probabilistic choice of the mass function monad, and reweighting the end result appro-
priately.
The main step in validating the inference representation laws involves >>=: first show that com-

posing the meaning function with the auxiliary function scale scales the meaning of the input
term appropriately, and then proceed by structural induction on terms.
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The weighted sampler representation in fact forms a proper monad over Set: it is the free
monad for an algebraic theory with a binary operation flip and unary operations scorer subject
to flip(scorer (x), scorer (y)) = scorer (flip(x ,y)). As the mass function monad also validates these
equations, the meaning function is then the unique monad morphism from Term toMass preserv-
ing the operations flip and score.
However, we emphasise that an inference representation need not form a proper monad, and

that the meaning function need not be a monad morphism. Indeed, the Pop Sam representation
introduced in Sec. 6 is not a monad and most of the non-trivial inference transformations we
discuss are not monad morphisms.
The weighted sampler representation allows us to incorporate both intensional and operational

aspects into our development. Bayesian inference ultimately reduces a representation into prob-
abilistic simulation. The weighted sampler representation can thus act as an internal representa-
tion of this simulation. Moreover, its continuous analogue will allow us to manipulate traces when
analysing the Trace Markov Chain Monte Carlo algorithm in Sec. 7.

Example 3.4 (Enumeration). The type Enumα ≔ List(R+ ∗ α) induces a ranked functor Enum.
Elements of EnumX form an enumeration of the mass function they represent, with the same
value x potentially appearing multiple times with different weights. Values not appearing in the
list at all have weight 0.
Fig. 6b presents an inference representation structure using Enum. Returning a value lists the

unique non-zero point mass. The >>= operation applies the given function to each element listed,
scales the list appropriately and accumulates all intermediate lists. The choice operation enumer-
ates both branches with equal probability, and conditioning inserts a scaling factor. The meaning
function assigns to an element the sum of its weights. This definition uses an equality predicate.
Establishing the inference representation laws is straightforward.

3.3 Inference Transformations

We can now define the central validity criterion in our development. We decompose Bayesian in-
ference algorithms into smaller transformations between inference representations. To be correct,
these transformations need to preserve the meaning of the representation they manipulate:

Definition 3.5. Let T , S be two inference representations. A discrete inference transformation

t : T → S assigns to each set X a function tX : T X → S X satisfying mT (a) = mS (tX (a)) for
every a ∈ TX .

This validity criterion guarantees nothing beyond the preservation of the overall mass function
of our representation. The transformed representation may not be better for inference along any
axis, such as better convergence properties or execution time. It is up to the inference algorithm
designer to convince herself of such properties by other means: formal, empirical, or heuristic.
Some transformations change the representation type:

Example 3.6 (Enumeration). Define a transformation: t : Term→ Enum by:

t ≔ λ{ Return (r ,x) → Enum .do {score r ; returnx}
�

� Flip (xFalses ,xTrues )→ Enum .do {b ← flip; if b then xTrues else xFalses }}

Straightforward calculation shows it preserves the meaning functions.

The last example is a special case: analogous functions form inference transformations tT :

Term → T for every discrete inference representation T . To establish meaning preservation, cal-
culate that bothmTerm andmT ◦ tT are monad morphisms that preserve probabilistic choice and

conditioning and appeal to the initiality of Term.
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An inference transformation need not be natural:

Example 3.7 (Aggregation). Recall the functions aggrX : List(R+ ∗ X ) → List(R+ ∗ X ) from
Ex. 2.5 which aggregate list elements according to their X component by summing their weights.
It forms an inference transformation aggr : Enum→ Enum. The meaning preservation proof uses
straightforward structural induction. Note that aggr is not a natural transformation.

3.4 Inference Transformers

We can decompose the weighted sampler representation Term, which forms a monad, by trans-
forming the discrete sampler representation DSamX ≔ {ReturnX

�

� Sample (DSamX ∗DSamX )}

with the following writer monad transformer WT X ≔ T (R+ ∗ X ), i.e. Term = WDSam. Such de-
compositions form basic building blocks for constructing and reasoning about more sophisticated
representations.

Definition 3.8. An inference transformer F is a triple (F , tmapF , liftF ) whose components assign:

• inference representation F T to every inference representation T ;
• inference transformation tmapF t : FT → FS to every inference transformation t : T → S ;
and
• inference transformation liftT : T → F T to every inference representation T .

We use type-class notation for defining inference transformers.

Example 3.9. The weighting inference transformer structure on WT X ≔ T (R+ ∗ X ) is given in
Fig. 6c. We lift a representation in T into WT by assigning weight 1 to it. The monadic interface
uses the standard writer monad for the multiplication structure on R+, accumulating the weights
as computation proceeds. We lift the probabilistic choice from T , but crucially we reimplement a
new conditioning operation using the explicitly given weights. The mass function meaning of a
representation then accumulates the mass of all weights associated to a given value. We transform
an inference transformation by picking the component of the appropriate type.
It is straightforward to show that WT is an inference representation, using preservation of

return and >>= by the meaning function to reduce the proof to manipulations of weighted sums
over R+. Establishing the validity of lift and tmap is straightforward.

The weighting transformer augments the representation with a new conditioning operation, but
transforms its choice operation to the new representation. We will later see more examples of both
kinds.

3.5 Summary

We have introduced our three core abstractions, inference representations, transformations, and
transformers, in relation to a mathematical semantic structure, the mass function monad. The
examples so far show that the higher-order structure in our core calculus acts as a useful glue
for manipulating and defining these abstractions. In the continuous case, we will also use this
higher-order structure to represent computations over the real numbers.

4 PRELIMINARIES

In order to generalise this higher-order treatment to the continuous case, we first need to review
and develop the mathematical theory of quasi-Borel spaces. Our development uses Kock’s syn-
thetic measure theory [2012], which allows us to reason analogously to measure theory. In order
to present the synthetic theory, we briefly review the required category theoretic concepts. These
sections are aimed at readers who are interested in the categorical context of our development.
Other readers may continue directly to § 4.3.
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4.1 Category Theory

Basic Notions. We assume basic familiarity with categories C, D, functors F ,G : C → D, and
natural transformations α , β : F → G, and their theory of limits, colimits, and adjunctions. To
fix notation, a cartesian closed category is a category with finite products, denoted by 1, ×,

∏n
i=1,

and exponentials, denoted by XY . In this subsection, we use the fragment of our core calculus
consisting of the simply-typed λ-calculus (with sums, if necessary) to more compactly review the
relevant concepts.

Monads. A strong monad T over a cartesian closed category is a triple (T , return, >>=) consisting
of an assignment of an object TX and a morphism returnX : X → TX for every object X , and
an assignment of a morphism >>=X ,Y : TX × (TY )

X → TY , satisfying the monad laws from § 2.5.
Given a monad T , a T -algebra A is a pair (|A| , >>=A) consisting of an object |A|, called the carrier,
and an assignment of a morphism >>=AX : |A|

X → |A|TX to every object X satisfying

(returnx >>=A f ) = f x and ((a >>= f ) >>=A д) = a >>= (λx . f (x) >>=A д).

The pair (T X , >>=) always forms aT -algebra called the free T -algebra over X . The Eilenberg-Moore

category CT for a monad T consists of T -algebras and their homomorphism. The Kleisli category
CT consists of the same objects as C, but morphisms from X to Y in CT are morphisms X → T Y

in C. The Kleisli category CT inherits any coproducts C has. A strong monad T is commutative

when, for every

a : TX ,b : TY ⊢ T .do {x ← a;y ← b;return(x ,y)} = T .do {y ← b;x ← a;return(x ,y)}

(The notion of strong/commutative monad is due to [Kock 1972]; our formulation of algebras also
appears in [Marmolejo and Wood 2010].)

Biproducts. A zero object Z is both initial and terminal. A category has (finite, countable, etc.)
biproducts if it has a zero object (and hence zero morphisms 0X ,Y : X→Z→Y ) and the following
canonical morphisms are invertible:

[

(

δi, j
)

j ∈I

]

i ∈I
:
∑

i ∈I Xi →
∏

j ∈I X j where: δi,i ≔ idXi
, δi, j ≔ 0Xi ,X j

for i , j .

Algebraic Structure. Recall the notion of a commutative monoid (M, 1, ·) in a category with finite
products. We extend it to countably many arguments. Let C be a category with countable products.
A σ -monoid (see also [Haghverdi and Scott 2006]) is a triple (M, 0, Σ) consisting of: an objectM ; a
morphism 0 : 1→ M ; and a morphism Σ : MN → M such that:

• setting δ0≔ idM : M → M and δi ≔ 0◦! : M → 1→ M , i > 0, we have Σ ◦ (δi )i ∈N = δ0; and

• for every bijection ϕ : N � N × N, a(−,−) : M
N×N ⊢ Σ

(

Σ

(

a(i, j)

)

j ∈N

)

i ∈N

= Σ

(

aϕ(k )

)

k ∈N
.

Proposition 4.1. In a category with countable biproducts, each objectM is a σ -monoid via:

01,M : 1→ M Σ :
∏

i ∈NM �
∑

i ∈NM
∇
−→ M where ∇ is the codiagonal.

Every morphism is a σ -monoid homomorphism with respect to this structure.

A σ -semiring is a quintuple (S, 1, ·, 0, Σ) consisting of: a commutative monoid (S, 1, ·); and a
σ -monoid (S, 0, Σ), such that a : S,b− ∈ SN ⊢ a · Σ (bi )i ∈N = Σ (a · bi )i ∈N. Given a σ -semiring
(S, 1, ·, 0, Σ), an S-module is a pair (M, ⊙) consisting of a σ -monoidM ; and a morphism ⊙ : S×M →

M satisfying: x = x , 0S ⊙ x = 0M , (a · b) ⊙ x = a ⊙ (b ⊙ x),
(

Σ (an)n∈N
)

⊙ x = Σ (an ⊙ x)n∈N.
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4.2 Synthetic Measure Theory

Synthetic mathematics identifies structure and axioms from which we can recover the main con-
cepts and results of specific mathematical theories, and transport them to new settings. We now
briefly recount the relevant parts of Kock’s [2012] development. (In the finite discrete case, this is
also related to Jacobs’s [2017] work on effectuses.)

4.2.1 Axioms and Structure. Let C be a cartesian closed category with countable products and
coproducts, and letM be a commutative monad over C. If the morphism ! : M0→ 1 is invertible,
then both the Eilenberg-Moore category CM and the Kleisli category CM have zero objects. As a

consequence, we have a canonical M-homomorphism >>=
[

(

δi, j
)

j

]

i
: M

∑

i ∈NXi →
∏

j ∈NMX j .

Definition 4.2. A measure category is a pair
(

C,M
)

consisting of a cartesian closed category C
with countable products and coproducts, and equalisers; and a commutative monadM over C such

that the morphisms ! : M0→ 1 and >>=
[

(

δi, j
)

j

]

i
: M

∑

i ∈NXi →
∏

j ∈NMX j are invertible.

We fix a measure category
(

C,M
)

for the remainder of this section. The intuition is that MX

is the object of distributions/measures over X . Kock shows that, while short, the above definition
has surprisingly many consequences.
Both the Eilenberg-Moore and the Kleisli categories have countable biproducts, and as a con-

sequence, all M-algebras have a σ -monoid structure and all M-homomorphisms are σ -monoid
homomorphisms with respect to it. Moreover, this structure on the free algebra on the terminal
object R ≔ M1 extends to a σ -semiring structure by setting: 1 ≔ return() and r · s ≔ M.do {r ; s}.
Kock calls this structure the σ -semiring of scalars. EachM-algebra A has an R-module structure:

r : R,a : |A| ⊢ r ⊙ a ≔ M.do {r ;a}

As C has equalisers, for each object X , we may form the equaliser PX
subX MX

M!
−
−
−
−
−
−
−
−
→
→

1

R be-

cause R = M1. Each subX is monic, the monadic structure factors through sub turning P into a
commutative monad P, and sub : P ↣ M into a strong monad monomorphism.

The morphismM! : MX → R is called the total measure morphism, and P is then the sub-object
of all the measures with total measure 1, and so we think of it as the object of probability measures

over X . For example, every P-algebra is closed under convex linear combinations of scalars: if

r− : N→ R satisfies Σ (ri )i = 1 then µ
−
: (PX )N ⊢ M!(Σ

(

ri ⊙ µ
i

)

i
) = 1.

4.2.2 Notation and Basic Properties. Kock’s theory shines brightly when we adopt a measure-
theoretic notation, as in Fig. 7, by thinking of MX as the object of measures over X , and R as
the object of scalars these measures take values in. The functorial action of the monad allows us
to push measures along morphisms, and pushing all the measure into the terminal object gives a
scalar we think of as the total measure of an object. The monadic return acts as a dirac distribution.
The main advantage is the Kock integral, synonymous to the monadic >>=. The main difference be-
tween the Kock integral

�
and the usual Lebesgue integral

∫

frommeasure theory is that the Kock
integral evaluates to a measure, and not a scalar. Calculating with the Kock integral is analogous
to using Lebesgue integrals with respect to a generic test function, and proceeding by algebraic
manipulation. The scalar rescaling ⊙ allows us to rescale a distribution by an arbitrary weight
function. A kernel is a morphism k : X → MY , and we use the usual notation for integration
against a kernel and iterated integration. We define the product measure by iterated integration.
Finally, the >>= operation of an M-algebra A gives rise to an expectation operation. Here we will
only make use of the scalars’ algebra structure, which generalises the usual Lebesgue integral.
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Notation Meaning Terminology
R ≔ M1 Scalars

f : YX , µ : MX ⊢ f∗µ ≔ (M f )(µ) Push-forward

µ : MX ⊢ µ(X ) ≔ !∗µ The total measure

x : X ⊢ δx ≔ return(x) Dirac distribution
µ : MX , f : (MY )X ⊢

�
X
f (x)µ(dx) ≔ µ >>= f Kock integral

w : RX , µ : MX ⊢ w ⊙ µ ≔

�
X
(w(x) ⊙ δx )µ(dx) Rescaling

[

f : (TZ )X×Y ,

x : X ,k : (TY )X

]

⊢
�
Y
f (x ,y)k(x , dy) ≔

�
Y
f (x ,y)k(x)(dy) Kernel integration

[

f : (MX )X×Y ,

µ ∈ M(X × Y )

]

⊢
P
X×Y

f (x ,y)µ(dx , dy) ≔
�
X×Y

f (z)µ(dz) Iterated integrals

µ : MX ,ν : MY ⊢ µ ⊗ ν ≔

�
X

(�
Y
δ (x,y)ν (dy)

)

µ(dx) Product measure

µ : MX , f : |A|X ⊢ EAx∼µ [f (x)] ≔ µ >>= f Expectation

f : RX , µ : MX ⊢
∫

X
f (x)µ(dx) ≔ E

R
x∼µ [f (x)] Lebesgue integral

Fig. 7. Synthetic measure theory notation

The justification for this notation is that it obeys the expected properties, which we now survey.
The commutativity of the monad lets us change the order of integration:

Theorem 4.3 (Fubini-Tonelli). For every pair of objects X , Y in a measure category (C,M):
P
X×Y

f (x ,y)(µ ⊗ ν )(dx , dy) =

�
Y
ν (dy)

�
X
µ(dx)f (x ,y) =

�
Y
ν (dy)

�
X
µ(dx)f (x ,y)

Moreover, for every M-algebra A:

µ : MX ,ν : MY , f : |A|X×Y ⊢ EA
x∼µ
y∼ν

[f (x ,y)] = EA
x∼µ
[ EA
y∼ν
[f (x ,y)]] = EA

y∼ν
[ EA
x∼µ
[f (x ,y)]]

As usual, we allow placing the binder µ(dx) on either side of the integrand f (x).
Integrals and expectation interact well with the R-module structure in the sense that they are

homomorphisms in both arguments. The precise statement of this fact can be found in Appendix A.
The push-forward operation interacts with rescaling in the following way:

Theorem 4.4 (Frobenius reciprocity). For all objects X , Y in a measure category
(

C,M
)

:

w : RX , µ : MX , f : YX ⊢ w ⊙
(

f∗µ
)

= f∗

(

(w ◦ f ) ⊙ µ
)

When calculating in this notation, we use the equations in Appendix A where we present a
toolbox for synthetic measure theory. This toolbox includes most of the equations we come to
expect from standard measure theory, like the change of variables law. To validate them, inline
the definitions and proceed using the usual category-theoretic properties.
The following two sections contain relevant extensions to Kock’s theory.

4.2.3 Radon-NikodymDerivatives. The Radon-Nikodym Theorem is a powerful tool in measure
theory, and we now phrase a synthetic counterpart. As usual in the synthetic setting, we set the
definitions up such that the theorem will be true. Doing so highlights the difference between three
measure-theoretic concepts that coincide in measure theory, but may differ in the synthetic setting.
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Let µ,ν ∈ MX be measures. We say that ν is absolutely continuous with respect to µ, and write
ν Î µ, when there exists a morphism w : X → R such that ν = w ⊙ µ. Given two morphisms

w,v : X → R and a measure µ ∈ MX , we say that w and v are equal µ-almost everywhere (µ-a.e.)
whenw ⊙ µ = v ⊙ µ. A measurable property over X is a morphism P : X → bool. Given a measure

µ ∈ MX a measurable property P over X holds µ-a.e., when the morphism [P] ≔ λx . if P x then

1 else 0 is equal µ-a.e. to 1.

Theorem 4.5 (Radon-Nikodym). Let (C,M) be a well-pointed measure category. For every ν Î µ

inMX , there exists a µ-a.e. unique morphism
dν

dµ
: X → R satisfying

dν

dµ
⊙ µ = ν .

4.2.4 Kernels. We say that a kernel k : X → MY is Markov when, for all x , k(x ,Y ) = 1, i.e.,
when k factors through the object of probability measures via sub : P ↣ M. We now restrict
attention to kernels k : X → MX over the same object X . We say that such a kernel preserves a
measure µ when µ >>= k = µ. Recall the morphism swap ≔ λ(x ,y). (y,x) : X ×Y → Y ×X . Given a

measure µ ∈ MX and a kernel k , we define the box product by µ ⊠ k ≔
P
X×X

δ (x,y)µ(dx)k(x , dy).

A kernel k is reversible with respect to a measure µ ∈ MX when swap∗(µ ⊠ k) = µ ⊠ k .
The following standard results on kernels transfer into the synthetic setting. If aMarkov kernel

k is reversible with respect to µ, then k preserves µ. Kernels obtained by rescaling the Dirac kernel,

i.e., λx .w(x)⊙δx are reversible w.r.t. all measures. Finally, linear combinations λx .
∑

n∈N rn⊙kn(x)

of reversible kernels w.r.t. µ are also reversible w.r.t. µ.

4.3 Quasi-Borel Spaces

It remains to show that there is a concrete model of synthetic measure theory that contains the
classical measure theoretic ideas that are central to probability theory and inference. This is novel
because Kock’s work [2012] is targeted at the geometric/topological setting, whereas probability
theory is based around Borel sets rather than open sets. It is non-trivial because the traditional
setting for measure theory does not support higher-order functions [Aumann 1961] and commu-
tativity of integration is subtle in general. In this section we resolve these problems by combining
some recent discoveries [Heunen et al. 2017; Staton 2017], and exhibit amodel of synthetic measure
theory which contains classical measure theory, for instance:

• the σ -semiring over the morphisms 1 → R is isomorphic to the usual σ -semiring over the
extended non-negative reals, R+;
• this isomorphism induces a bijective correspondence between the morphisms R → 1 + 1

and the Borel subsets of R+, as characteristic functions, and also between the morphisms
R → R and the measurable functions R+ → R+;
• it also induces an injection of the morphisms 1 → M(R) into the set of Borel measures on
R+, whose image contains all the probability measures; the morphisms R → M(R) include
all the Borel probability kernels;
• the canonical morphism RR × M(R) → R, (f , µ) 7→

∫

f (x) µ(dx), corresponds to classical
Lebesgue integration.

Moreover, each objectX can be seen as a setU (X ) = C(1,X )with structure, because the category is
well-pointed, in the sense that the morphisms X → Y are a subset of the functionsU (X ) → U (Y ).

4.3.1 Rudiments of Classical Measure Theory. Measurable spaces are the cornerstone of con-
ventional measure theory, supporting a notion of measure.

Recall that a σ -algebra on a setX is a set ΣX of subsets ofX that is closed under countable unions
and complements. Ameasurable space is a set together with a σ -algebra. Ameasure is a σ -additive
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function ΣX → R+. A function f between measurable spaces is measurable if the inverse image
of every measurable set according to f is measurable.
For example, on a Euclidean space R

n
we can consider the Borel sets, which form the smallest

σ -algebra containing the open cubes. There is a canonical measure on R
n
, the Lebesgue measure,

which assigns to each cube its volume, and thus to every measurable function f : R
n
→ R+ a

Lebesgue integral
∫

R
n f ∈ R+. A slightly more general class of measures is the σ -finite measures,

which include the Lebesgue measures and are closed under disjoint unions and product measures.
A measurable space that arises from the Borel sets of a Polish space is called a standard Borel

space. In fact, every standard Borel space is either countable or isomorphic to R. Standard Borel
spaces are closed under countable products and countable disjoint unions.

4.3.2 Quasi-Borel Spaces. In this section we fix an uncountable standard Borel space, R. For
example, R = R. The basic idea of quasi-Borel spaces is that rather than focusing on measurable
sets of a setX , as in classical measure theory, one should focus on the admissible random elements
R→ X .

Definition 4.6 ([Heunen et al. 2017]). A quasi-Borel space (QBS) is a set X together with a set of
functions MX ⊆ [R,X ] such that (i) all the constant functions are in MX , (ii) MX is closed under
precomposition with measurable functions on R, and (iii)MX satisfies the piecewise condition: if
R =

⊎∞
i=1Ui , whereUi is Borel measurable and αi ∈ MX for all i , then

⊎∞
i=1 αi ∩ (Ui ×X ) is inMX .

Amorphism f : X → Y is a function that respects the structure, i.e. if α ∈ MX then (f ◦α) ∈ MY .
Morphisms compose as functions, and we have a category QBS.
A QBS X is a subspace of a QBS Y if X ⊆ Y andMX = {α : R→ X | α ∈ MY }.

A measurable space X can be turned into a QBS when given the set of measurable functions
R→ X asMX . When X and Y are standard Borel spaces considered as QBSes this way, QBS(X ,Y )
comprises the measurable functions, so QBS can be thought of as a conservative extension of
the universe of standard Borel spaces. The three conditions on quasi-Borel spaces ensure that
coproducts and products of standard Borel spaces retain their universal properties in QBS. In fact,
the category of QBSs has all limits and colimits. It is also cartesian closed; e.g., RR ≔ QBS(R,R),
andM(RR) =

{

α : R→ (RR)
�

� uncurry(α) ∈ QBS(R × R→ R)
}

. For any QBS X ,MX = QBS(R,X ).

4.3.3 A Monad of Measures. The following development is novel.

Definition 4.7. A measure µ on a quasi-Borel space is a triple (Ω,α , µ) where Ω is a standard
Borel space, α ∈ QBS(Ω,X ), and µ is a σ -finite measure on Ω.

For example, Ω might be R
n
and µ might be the Lebesgue measure. A measure determines an

integration operator: if f ∈ QBS(X ,R+) then define
∫

f d(Ω,α , µ) ≔
∫

Ω
f (α(x)) µ(dx)

using Lebesgue integration according to µ. We say that twomeasures are equal, denoted (Ω,α , µ) ≈
(Ω′,α ′, µ ′), if they determine the same integration operator. We write [Ω,α , µ] for an equivalence
class of measures.
As an aside, we note that not every integration operator on R in the classical sense is a measure

in the sense of Def. 4.7, because we restrict to σ -finite µ. Technically, the only integration operators
that arise in this way are those corresponding to s-finite measures. This is a class of measures that
includes the probabilitymeasures, andwhichworkswell with iterated integration and probabilistic
programming [Staton 2017].
Themeasures up-to≈ form amonad, as follows. First, the set of all measuresMX forms a QBS by

setting MMX =
{

λr . [Dr ,α(r ,−), µ |Dr
]
�

� µ σ -finite on Ω, D ⊆ R × Ωmeasurable, α ∈ QBS(D,X )
}

,
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where Dr = {ω | (r ,ω) ∈ D}. In consequence, when Ω
′ is a standard Borel space, for every

morphism f : Ω′ → MX , there exist Ω, µ, D ⊆ Ω
′ × Ω and α ∈ QBS(D,X ) such that f (ω ′) =

[Dω′,α(ω
′,−), µ |Dω′

]. One intuition is that α is a partial function Ω
′ × Ω → X , with domain D.

The unit of the monad, return : X → MX , is return(x) ≔ [1, λ_. x ,δ()] where δ() is the Dirac
measure on the one-point space 1. We often write δx for return(x). The bind >>=: MX ×MYX →

MY is
[Ω,α , µ] >>= ϕ ≔ [D, β, (µ ⊗ µ ′)|D ]

where ϕ(α(r )) = [Dr , β(r ,−), µ
′]. Note that (ϕ ◦ α) : Ω → MX must be of this form because it is a

morphism from a standard Borel space. The measure µ ⊗ µ ′ is the product measure, which exists
because µ and µ ′ are σ -finite.
This structure satisfies the monad laws, it is commutative by the Fubini-Tonelli theorem, and

it satisfies the biproduct axioms, and so it is a model of synthetic measure theory. Every measure
on 1 is equivalent to one of the form ([0, r ], !, µ) where r ∈ R+, ! : [0, r ] → 1 is the unique such
random element, and µ is the Lebesgue measure. Thus M1 � R+.
As another aside, we note that when Ω,Ω′ are standard Borel spaces, the Kleisli morphisms

Ω → MΩ
′ correspond to s-finite kernels, which were shown in [Staton 2017] to provide a fully

complete model of first-order probabilistic programming.

5 CONTINUOUS INFERENCE

We now develop the continuous counterpart to Sec. 3. The semantic structure of the category of
quasi-Borel spaces allows us to transport many of the definitions with little change. For example,
a monadic interface T consists of analogous data, but the assignments are indexed by quasi-Borel
spaces, T assigns quasi-Borel spaces, and returnT and >>=T assign quasi-Borel space morphisms.

Definition 5.1. A continuous representation T is a tuple (T , returnT , >>=T ,mT ) consisting of:

• a monadic interface (T , returnT , >>=T );

• an assignment of a meaning morphismm
T

X
: T X → MX for every space X

such thatmT preserves returnT and >>=T .
A sampling representation is a tuple (T , returnT , >>=T ,mT , sampleT ) such that its first four com-

ponents form a continuous representation, it has an additional Qbs-morphism sampleT : 1→ T I,
andmT maps sampleT () to the uniform Qbs-measure U = [I, id,Uniform] on the unit interval I,
where Uniform is the usual uniform distribution on I.

A conditioning representation T is similarly a tuple (T , returnT , >>=T , scoreT ,mT ), with a Qbs-
morphism scoreT : R+ → T 1 such that for each r , mT maps scoreT (r ) to the r -rescaled unit
Qbs-measure r ⊙ δ () = [1, λ_. (), r · δ()].

An inference representation T is a tuple (T , returnT , >>=T , sampleT , scoreT ,mT ) with the appro-
priate components forming both a sampling representation and a conditioning representation.

This definition refines Def. 3.2 with sampling and scoring representations, allowing us to talk
about inference transformers that augment a representation of one kind into another.

Example 5.2 (Continuous sampler). By analogy with Ex. 3.3, we define in Fig. 8a a sampling
representation using the type Samα ≔ {Returnα

�

� Sample (I → Samα)}. Validating the preser-
vation of sample and the monadic interface is straightforward. It also follows from more general
principles: Sam is the initial monad with an operation sample : T I.

We define inference transformations between any two representations as in Def. 3.5. We have
four kinds of representations, and when defining transformers we can augment a representation
with additional capabilities:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 60. Publication date: January 2018.



Denotational Validation of Higher-Order Bayesian Inference 60:19

instance Sampling Monad (Sam)where

returnx = Returnx

a >>= f = matchawith {

Returnx→f (x)

Samplek→

Sample (λr .k(r ) >>= f )}
sample = Sample λr . (Return r )

ma = matchawith {

Returnx→δx
Samplek→

�
I
k(x)U(dx)}

(a) Continuous sampler representation

instance Cond Trans (W)where

returnWT x= returnT (1,x)

a >>=WT f = T .do {(r ,x) ← a;

(s,y) ← f (x);

return(r · s,y)}

(tmap t)X = t
R+∗X

liftT a = T .do {x ← a; return(1,x)}

mWT a = λx .
�
R+×X

r ⊙ δxm
T (a)(dr , dx)

scoreWT r = returnT (r , ())

(b) Continuous weighting inference transformer

Fig. 8. Continuous representations and tranformers

Definition 5.3. Let k1, k2 be a pair of kinds of representation. A k1 to k2 transformer F is a tuple
(F , tmapF , liftF ) consisting of an assignments of:

• a k2 representation F T to every k1 representation T ;
• an inference transformation tmapF t : FT → FS to every transformation t : T → S ; and
• an inference transformation liftT : T → F T to every k1 representation T .

When the two kinds k1, k2 differ, we say that that the transformer is augmenting.

When defining a k1 to k2 transformer, we adopt a Haskell-like type-class constraint notation
k1 =⇒ k2 used for example in Fig. 11a.

Example 5.4. By analogy with Ex. 3.9, Fig. 8b presents the continuous weighting transformer
structure on WT X ≔ T (R+ ∗ X ). It augments any representation transformer with conditioning
capabilities. Each conditioning operation is deferred to the return value, and so we can view this
transformer as freely adding a conditioning operation that commutes with all other operations.
When the starting representation had conditioning capabilities, we have an inference transforma-
tionwaggr : WT → T , given bywaggra ≔ T .do {(r ,x) ← a; scoreT r ; returnx}which conditions
based on the aggregated weight.
Its validity follows from a straightforward calculation using the meaning preservation of T .

In the continuous case, the output of the final inference transformation will always beWSamX

or a similar Pop SamX described in the next section. From this representation, we obtain theMonte
Carlo approximation to the posterior by using a random number generator to supply the values
required by Sam. Interpreting the program directly in WSam X and sampling from that would
correspond to simple importance sampling from the prior, which usually needs a very large num-
ber of samples to give a good approximation to the posterior. Our goal in approximate Bayesian
inference is therefore to find another representation for the program and a sequence of inference
transformations that map it toWSam X . While, in principle, this output represents the same pos-
terior distribution, hopefully it uses a representation that requires fewer samples to obtain a good
approximation than a direct interpretation inWSam X . We emphasise that approximation is only
done in this final sampling step, while all the inference transformations that happen before it are
exact.
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6 SEQUENTIAL MONTE CARLO

Sequential Monte Carlo (SMC) is a family of inference algorithms for approximating sequences
of distributions. In SMC, every distribution is approximated by a collection of weighted samples
called a population, with each population obtained from the previous one in the sequence by a
suitable transformation. In a sub-class of SMC known as particle filters, each distribution in the
sequence is generated by a known random process from the previous distribution andwe can apply
this process to samples in the previous population to obtain the current population. In particle
filters the samples in the population are called particles.

A common problem with particle filters is that, after multiple steps, a few particles have much
larger weights than the remaining ones, effectively reducing the sample size in the population
well below the actual number of particles, a phenomenon known as sample impoverishment. To
ameliorate this problem, particle filters introduce additional resample operations after each step
in the sequence, which constructs a new population by sampling with replacement from the old
one. The new population has uniform weights across its particles. In the setting of probabilistic
programming, we use suspended computations as particles, and their associated weight is their
currently accumulated likelihood.
We show how to decompose a particle filter into a stack of two transformers: a representation

to conditioning transformer for representing a population of particles, and a conditioning to con-
ditioning transformer that allows us to run a particle until its next conditioning operation. We
define each step of the SMC algorithm as an inference transformation on this stack. We can then
apply this stack of transformers to a sampling representation to obtain a correct by construction
variation of SMC. The algorithm we obtain is known as the particle filter with multinomial resam-
pling [Doucet and Johansen 2011] that uses the prior as the proposal distribution, but throughout
this paper we refer to it simply as SMC.

6.1 The Population Transformer

Given a representation T , we define a representation structure over PopT X ≔ T (List(R+ ∗ X )).
We further deconstruct this representation transformer as the composition of two transformers:
the continuous weighting transformer W from Ex. 5.4, and Haskell’s notorious ListT transformer.
The negative reputation associated to the transformer ListTT X ≔ T (ListX ) stems from its

failure to validate the monad laws when T is not commutative.2 However, it is a perfectly valid
representation transformer, described in Fig. 9a, sincewe do not require that representations satisfy
monad laws.
To prove the meaning function preserves return, simply calculate. For >>= preservation, show:

as : List(T X ) ⊢mListTT (sequenceas ) =
∑

a∈as

mT (a)

and proceed via straightforward calculation using the linearity of the Kock integral and the com-
mutative (σ -)monoid structure on measures.
By composing the two representation transformers, we obtain the representation to condition-

ing transformer Pop, given explicitly in Fig. 9b.
Fig. 9c presents a N+-indexed family of inference transformations. Fix any n ∈ N. The spark

function generates a population of particles with the unit value, and the same weight 1
n
. Thus,

spawn (n,a) takes a distribution a over particle populations, sparks n equally weighted particles,
and for each of them, samples a population based on a. A straightforward calculation confirms that
the meaning of spark is 1, and so spawn (n,−) : PopT → PopT is an inference transformation. In

2For a list transformer “done right”, see Jaskelioff’s thesis [2009], and its generalisations [Fiore and Saville 2017; Piróg 2016].
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Auxiliary functions:
sequence : List(TX ) → T (ListX )

sequence ≔ foldr (return[ ])

(λ(a, r ).T .do {x ← a;

xs← r ;

return(x :: xs )}
concat : List(ListX ) → ListX

concat ≔ foldr [ ]++
∑

x ∈xs f (x) ≔ foldr 0
(

λ(x , s). f (x) + s
)

xs

instance Rep Trans (ListT)where

returnListTT x = returnT [x]

a >>=ListTT f = T .do {xs ← a;

letbs = map f xs in

yss ← sequencebs ;

return(concatyss )}

mListTT a =

�
ListX

mT (a)(dxs )
∑

x ∈xs δx
liftListTT a = T .do {x ← a; return [x]}

(tmap t)X = tListX

(a) The list transformer

instance Cond Trans (Pop)where

returnPopT = return(W ◦ ListT)T
>>=PopT = >>=(W ◦ ListT)T

liftPopT = liftW(ListTT ) ◦ liftListTT

tmapPopT = tmapW(ListTT ) ◦ tmapListTT
mPopT =m(W ◦ ListT)T

= λa.
�

List(R+×X )

mT (a)(dxs )
∑

(r,x )∈xs r ⊙ δx

scorePopT = score(W ◦ ListT)T

(b) The population transformer

replicate : N ∗ X → ListX

replicate(n,x) ≔ N.fold λ{ Zero → [ ]
�

� Succxs→ x :: xs } n

spark : N+ → PopT 1

spark ≔ returnT
(

replicate(n, ( 1
n
, ()))

)

spawn : N+ ∗ PopT X → PopT X

spawn(n,a) ≔ PopT .do {sparkn;a}

(c) Spawning new particles

Fig. 9. Representing populations

the version of SMC we consider below, we will only pass to spawn a distribution a over uniformly-
weighted single-particle populations.

We use spawn to resample a new population. Thinking operationally, we have a population of
weighted particles andwe obtain a new population by sampling with replacement from the current
one, where the probability of selecting a given particle is proportional to its weight. Doing so is
equivalent to simulating a discrete weighted sample using a uniform one.

Lemma 6.1. There is a Qbs-morphism dwrand : List(R+ ∗ X ) ∗ I→ {TakeX
�

� Fail } such that:

• For all xs for which
∑

(r,_)∈xs r = 0, we have dwrand(xs ,−)∗U = δFail.

• For all xs for whichw :=
∑

(r,_)∈xs r > 0, we have dwrand(xs ,−)∗U =
∑

(r,x )∈xs
ri
w
⊙ δTake x .

Fig. 10a presents one such morphism, though its precise implementation does not matter to our
development. As a consequence, for every sampling representationT forwhichwe have an element
fail : TX such that mT (fail) = 0, we can define a discrete weighted sampler dwsampleT (xs ) :

List(R+X ) → TX in Fig. 10b which will then satisfymT (dwsampleT (xs )) =
∑

(r,x )∈xs r ⊙ δx .
The resampling step in Fig. 10c operationally takes the current population, creates a computa-

tion/thunk that samples a single particle from this population, and then spawns n new particles
that are initialised with this thunk. The morphism resample (n,−) : PopT → PopT is an inference
transformation because, as we know, spawn (n,−) is one and dwsamplePopT : PopT → PopT sam-
ples a population consisting of just a single unit weight particle with a probability proportional to
its renormalised weight in the original population.
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dwrand(xs , r ) ≔

letw =
∑

(r,_)∈xs r in

if w = 0

then Fail

else foldr (w · r , Fail)

(λ((s,x), (fuel, result)).

if 0 ≤ fuel < s

then(−1, Takex)

else −− potential underflow
(fuel − s, result))

xs

(a) A discrete weighted randomiser

dwsampleT (xs ) ≔

T .do {score(
∑

(r,_)∈xs r );

r ← sample;

match dwrand (xs , r ) with {

Fail →fail
�

� Takex→returnx}}

(b) A discrete weighted sampler

resample : N+ ∗ PopT X → PopT X

resample(n,a) ≔

T .do {xs ← a;

spawn(n, dwsamplePopT xs )}

(c) Resampling

Fig. 10. The resampling transformation

instance Cond =⇒ Cond Trans (Sus)where

returnSusT x = returnT (Returnx)

a >>=SusT f = fold (λb .T .do {

t ← b;

match t with {

Returnx→f (x)
�

� Yield c →Yield c})}

a

liftSusT a = T .do {x ← a; returnSusT x}

(tmapSusT t)X= SusTX .fold (λb . mS (b))

mSusT a =mT (finishSusT (a))

score r = returnT (Yield liftSusT (score r ))

(a) The suspension transformer

advanceT : SusTX → SusTX

advanceT a = T .do {

t ← a;

match t with {

Returnx→returnT x
�

� Yield t →t}}

finishT : SusTX → TX

finishT a = fold λb .T .do {

t ← b;

match t with {

Returnx→returnx
�

� Yieldb →b}}

(b) Suspension operations

Fig. 11. The suspension transformation

6.2 The Suspension Transformer

The second transformer in the SMC algorithm allows us to suspend computation after each condi-
tioning. The suspension transformer equips the standard resumptionmonad transformer SusT X ≔

T {ReturnX
�

� Yield (SusT X )}, presented in Fig. 11a, with inference transformations.
The two transformations on suspended computations in Fig. 11b take one step, and complete the

computation, accordingly. As the meaning function for the transformed representation returns the
meaning the computation would have if it was allowed to run to completion, these two operations
do not change the meaning and so form inference transformations.
We can now put all the components together:
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Theorem 6.2. Let T be a sampling representation. For every pair of natural numbers n, k , the

following composite forms an inference transformation:

smc
T

n,k
≔ (Sus ◦Pop)T

tmapSus spawn(n,−)
−−−−−−−−−−−−−−→ (Sus ◦Pop)T

(advance ◦ tmapSus resample(n,−))◦k

−−−−−−−−−−−−−−−−−−−−−−−−−−→ (Sus ◦Pop)T
finish
−−−−→ PopT

In the above (−)◦− : XX × N → XX denotes n-fold composition. The transformation smc
T

n,k

amounts to running the SMC algorithm with n particles for k steps. If the representation T is
operational in nature, such as the continuous sampler Sam, we get a sequence of weighted values
over the return type when we run the resulting representation. By construction, the distribution
on the results, rescaled according to their final weights, would be identical to the desired posterior
distribution.
When the representation T is not a commutative monad, like the continuous sampler Sam, the

resulting representation PopT is not a monad: the monad laws do not hold. Therefore, to encom-
pass representations of PopT one must generalise beyond monads.

7 TRACE MARKOV CHAIN MONTE CARLO

Markov Chain Monte Carlo (MCMC) algorithms operate by repeatedly using a transition kernel to
generate a new sample from a current one. Thus they can be thought of as performing a random
walk around the space they are exploring. If the transition kernel is well-behaved, they are guar-
anteed to preserve the distribution. A popular MCMC algorithm used for Bayesian inference is
Metropolis-Hastings (MH), where the transition kernel consists of a proposal kernel followed by a
decision to either accept the proposed sample or keep the old one. The accept or reject step is used
to correct for bias introduced by the proposal kernel, thus producing a valid MCMC algorithm for
a rich family of proposal kernels.
MH is a general inference method, but it requires specialised knowledge about the space on

which they operate on. In the context of a probabilistic programming language, the Trace MH

algorithm replaces the unknown target spacewith the space of program traces, which are shared by
all probabilistic programs. Thus, Trace MH allows probabilistic programming language designers
to devise general-purpose kernels to effectively explore traces.
We analyse the the Trace MH as follows. First, we prove a quasi-Borel space counterpart of the

Metropolis-Hastings-Green (MHG) Theorem, that forms the theoretical foundation for the correct-
ness of MH.We then present the tracing representation and show its validity. We present the Trace
MH algorithm, parameterised by a proposal kernel for traces, and give sufficient conditions on this
kernel for the resulting transformation to be valid. We then give a concrete proposal kernel and
show that it satisfies these general conditions.

7.1 Abstract Metropolis-Hastings-Green

In the abstract, the key ingredient in MH is the Metropolis-Hastings-Green (MHG) morphism η

presented in Fig. 12a, formulated in terms of an arbitrary inference representation T . This trans-
formation is usually known as the update step of the MH algorithm. It is parameterised by a (repre-
sentation of a) proposal kernelψ : X → T X , and by a chosen (representation of a) Radon-Nikodym
derivative ρ : X × X → R+.
To use η in an inference transformation, we need to provide well-behaved parametersψ , ρ, and

their behaviour may depend on the representation of the input distribution a. In particular, the
parameter ρ should represent a well-behaved appropriate Radon-Nikodym derivative. To simplify
our proofs, we also require that the proposal kernelψ is Markov, which suffices for our application.
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ψ : (T X )X , ρ : R
X×X

+
,a : T X ⊢

T .do {x ← a;

y ← ψ (x);

r ← sample;

if r < min(1, ρ(x ,y))

then returny

else returnx}

(a) The Metropolis-Hastings-Green
morphism ηψ ,ρ (a)

p ∈ t = match (p, t)with {([ ] ,Returnx )→ True

(r :: rs , Sample f )→ [rs ∈ f (r )]

−− any other case:
(_ , _ )→ False}

w− :
∑

t ∈WSamX Paths t → R+ v− :
∑

t ∈WSamX Paths t → X

wReturn (r,x )([ ]) = r vReturn (r,x )([ ]) = x

wSample t− (s :: rs ) = wts (rs ) vSample t− (s :: rs ) = vts (rs )

(b) Traces through a probabilistic program

Fig. 12. Basic notions in Trace MH

Theorem 7.1 (Metropolis-Hastings-Green). Let X be a qbs, a ∈ TX a distribution, ψ : X →

TX a kernel, and ρ : X ×X → R+ a Qbs-morphism. Set k ≔mT ◦ψ and µ ≔ [ρ , 0] ⊙ (mT (a)⊠k).

Assume that: (1) k is Markov; (2) [1 =
(

ρ ◦ swap
)

· ρ] holds µ-a.e.; (3) ρ is a Radon-Nikodym

derivative of swap∗µ with respect to µ; and (4) ρ(x ,y) = 0 ⇐⇒ ρ(y,x) = 0 for all x ,y ∈ X .

Then (mT ◦ ηψ ,ρ )(a) =m
T (a).

UsingKock’s syntheticmeasure theory, wewere able to follow closely standardmeasure-theoretic
proofs of MHG [Geyer 2011]. The synthetic setting highlights the different roles each of the three
abstractions: a.e.-equality, a.e.-properties, and Radon-Nykodim derivatives play in the proof that
our formulation exposes (cf. § 4.2.3).

7.2 Tracing Representation

A sampling trace is a sequence of samples that occur during the execution of a probabilistic pro-
gram. We represent such programs as elements of the continuous weighted sampler WSam from
(cf. Fig. 8). Consequently, the collection of traces through a program t ∈ WSamX is a subset of
List I. Fig. 12b defines a measurable predicate [∈] : WSamX × List I → bool that tests whether a
given sequence p of probabilistic choice forms a complete trace in the program t . Consequently,
we can define the set of paths through a given program t by Paths t ≔

{

p ∈ List I
�

�p ∈ t
}

⊆ List I,
and equip it with the subspace structure it inherits from List I. We can therefore define the set:

∑

t ∈WSamX

Paths t :=
{

(t ,p) ∈ WSamX × List I
�

�p ∈ t
}

⊆ WSamX × List I

which we can also equip with a subspace structure.We can now define theweightw− and valuation
v− morphisms in Fig. 12b that retrieve the likelihood and value at the end of a trace.

We can now define the tracing inference representation. It is parameterised by an inference
representation T and given for X as the following subspace of WSamX ×T (List I):

TrT X ≔

{

(t ,a) ∈ WSamX ×T (List I)

�

�

�

�

�

[ ∈ t]mT (a)-a.e., and

mWSam(t) =
�
List I

δvt (p)mT (a)(dp)

}

.

Thus, a representation consists of a program representation t , together with a distribution a on all
lists, but maintaining two invariants. First, the lists aremT (a)-almost-everywhere paths through
t , and so we can indeed think of a as a representation of a distribution over traces. Second, if we
calculate the posterior of the paths through t according tomT (a), it should have the same meaning
as the original program.
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instance Inf =⇒ Inf Monad (TrT )where

returnx = (returnWSam x , returnT [ ])

(t ,a) >>= (f ,д) = (t >>=WSam f ,T .do {p ← a;

q ← д ◦vt (p);

return(p ++ q))})

m(t ,a) =mWSam(t) =
�
List I

δvt (p)mT (a)(dp)

tmap t = id × tList I
sample = (sampleWSam,

T .do {r ← sample; return[r ]})

score r = (scoreWSam,

T .do {score r ; return[ ]})

(a) The tracing inference

ηTrT
ψ ,ρ

: TrT X → TrT X

ηTrT
ψ ,ρ
(t ,a) ≔

(

t ,ηψt ,ρt (a)
)

(b) Trace MH update-step

priT : WSamX → T (List(I))

priT (t) ≔ fold

λ{Return (r ,x)→ returnT [ ]
�

�Samplek → T .do {

r ← sampleT ;

k(r )}}

(c) Prior representation

Fig. 13. Building blocks of Trace MH

We stress that an implementation need not compute the meaning of the program. But this rep-
resentation guarantees that the meaning will be preserved by the inference operations.
Note that the integrand in the definition of (t ,a) ∈ TrT X is only partially defined. This partiality

is not an issue because the first condition guarantees it ismT (a)-a.e. defined. We can then choose
the constantly 0 distribution when p < t .
Fig. 13a presents the inference representation structure of TrT . Most of the proof revolves

around preseving the invariant, i.e., that these definitions define set-theoretic functions.
The inference transformationmarginalT : TrTX → TX marginalises the trace transformer once

it is no longer useful. It first samples a path and then uses it to run the program discarding the
weight: marginal (t ,a) = do {x ← a; return vt (x)}. Its correctness is precisely the invariant.

7.3 Inference with MHG

The transition fromT toTrT still requires a proposal kernel and a representation of the appropriate
derivative, but these can now be given in terms of concrete traces.
Given an inference representation T , a trace proposal kernel is a transformation representing a

kernelψ :
(
∑

t ∈WSamX Paths t
)

→ T (List I). A trace derivative is a transformation representing the

derivative ρ :
(
∑

t ∈WSamX Paths t × Paths t
)

→ R+. Given a trace proposal kernel ψ and a trace
derivative ρ, Fig. 13b presents the traceMHGupdate transformation using the correspondingMHG
update on T (List I).
The Trace MH update step requires some assumptions to form an inference transformation:

Theorem 7.2 (Trace Metropolis-Hastings-Green). Let T be an inference representation, ψ a

trace proposal kernel, and ρ a trace derivative. Assume that, for every (t ,a) ∈ TrT X , letting k ≔

mT ◦ψt and µ ≔ [ρt , 0] ⊙ (mT (a)⊠k): (1) k is Markov; (2) [1 = ρt · (ρt ◦ swap)] holds µ-a.e.; (3) ρt

is a Radon-Nikodym derivative of swap∗µ with respect to µ; and (4) ρt (p,q) = 0 ⇐⇒ ρt (q,p) = 0

for all p,q ∈ List(I). Then ηTrT
ψ ,ρ

: TrT → TrT is a valid inference transformation.

We will now demonstrate such a simple and generic trace proposal kernel and trace derivative
that implement a MHG update step of a popular lightweight Metropolis-Hastings algorithm in sev-
eral probabilistic programming language systems [Goodman et al. 2008; Goodman and Stuhlmüller
2014; Hur et al. 2015; Wood et al. 2014].
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For any inference representation T , Fig. 13c defines the morphism priT that maps a represen-
tation t ∈ WSamX to its prior distribution on paths over t . Let UD(n) ∈ M(N) be the measure
for the uniform discrete distribution with support {0, 1, . . . ,n}. Intuitively, it assigns a probability
1

n+1
to every element in the support. It be easily defined from sampleM, which denotes the uniform

distribution on I, as in Lemma 6.1.
We now define our concrete proposalψt and derivative, a.k.a. ratio, ρt :

ψt : List(I) → T (List(I))

ψt (p) ≔ T .do {i ← UD
T (|p |)

q ← priT (sub(t , take(i,p)))

return(take(i,p) + q)}

ρt : List(I) × List(I) → R+

ρt (p,q) ≔
wt (q)·( |p |+1)

wt (p)·( |q |+1)

where sub(t ,x) selects a subterm of a given term by following the list x and take(i,p) retrieves the
i-th prefix of p. This proposal and derivative/ratio satisfy the condition in the Trace MH.

Our approach lets us combine MH updates with other inference building block. For example,
recall the SMC algorithm from Section 6.2. Each time it performs resampling, multiple particles are
given the same values, which results in inadequate coverage of the space, a phenomenon known
as degeneracy. One way to ameliorate this problem is to apply multiple MH transitions to each
particle after resampling in order to spread them across the space, resulting in an algorithm known
as resample-move SMC [Doucet and Johansen 2011].
The implemnetation of resample-move SMC is very similar to that of SMC from Section 6.2,

except we introduce an additional layer Tr between Sus and Pop:

Theorem 7.3. Let T be a sampling representation. For every pair of natural numbers n, k , ℓ the

following composite forms an inference trasnformation:

rmsmc
T

n,k, ℓ
≔ (Sus ◦Tr ◦Pop)T

tmapSus tmapTr spawn(n,−)
−−−−−−−−−−−−−−−−−−−−→ (Sus ◦Tr ◦Pop)T

(advance ◦ tmapSus η
◦ℓ ◦tmapSus tmapTr resample(n,−))◦k

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (Sus ◦Tr ◦Pop)T
marginal ◦finish
−−−−−−−−−−−−→ PopT

In the above we apply ℓ MH transitions after each resampling. Our compositional correctness
criterion corresponds to a known result that resample-move SMC is an unbiased importance sam-
pler.

8 RELATEDWORK AND CONCLUDING REMARKS

The idea of developing a programming language for machine learning and statistics is old, and
was explored at least in the early 2000s [Park et al. 2005; Ramsey and Pfeffer 2002; Thomas et al.
1992] as an interesting yet niche research topic. In the past five years, however, designing such a
language and building its runtime system has become an active research area, and lead to practical
programming languages and libraries [Carpenter et al. 2017; Goodman et al. 2008; Goodman and
Stuhlmüller 2014; Gordon et al. 2014; Mansinghka et al. 2014; Minka et al. 2014; Murray 2013;
Narayanan et al. 2016; Tran et al. 2017; Wood et al. 2014]. Most of these research efforts have
focussed on developing efficient inference algorithms and implementations [Kucukelbir et al. 2015;
Le et al. 2017; Tran et al. 2017; Wingate andWeber 2013]. Only a smaller amount of work has been
dedicated to justifying the algorithms or other runtime systems of those languages [Borgström
et al. 2015; Hur et al. 2015]. Our work contributes to this less-explored line of research by providing
novel denotational techniques and tools for specifying and verifying key components of inference
algorithms, in particular, those for expressive higher-order probabilistic programming languages.
Such specifications can then be combined to construct the correctness argument of a complex
inference algorithm, as we have shown in the paper.
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The idea of constructing inference algorithms by composing transformations of an intermedi-
ate representations is, to the best of our knowledge, relatively recent. In previous work with Gor-
don [Ścibior et al. 2015], we manipulated a free monad representation to obtain an implementation
of SMC. However, we did not implement MH, did not break down SMC further into resampling
and suspension, and our semantics was not compositional. Zinkov and Shan [2017] directly ma-
nipulate syntax trees of a small language Hakaru. Their semantics is only first-order and they
focus on local program transformations corresponding to solving integrals analytically, which is
orthogonal to our global transformations relating to sampling algorithms.
Our approach does not yet deal with two important aspects of inference. In practice, one wants

convergence guarantees for the inference algorithm, estimating the results within an error margin
after a given number of inference steps. As any purely-measure theoretic approach, ours does not
express such properties. Additionally, we can not express algorithms that rely on derivatives of the
density function for the program traces, such as Hamiltonian Monte Carlo or variational inference.
Developing a theory of differentiation over quasi-Borel spaces might enable us to express such
algorithms.
Another interesting direction for future work is to develop a denotational account of some prob-

abilistic programming languages that allow users to select or compose parts of inference algo-
rithms [Mansinghka et al. 2014; Tran et al. 2017]. The exposure of an inference algorithm in such
languages breaks the usual abstraction of probabilistic programs as distributions, and causes diffi-
culties of applying existing semantic techniques to such programs. Ourmore intensional semantics
may be able to overcome these difficulties. Finally, it would be interesting to consider indexed or
effect-annotated versions of inference representations, transformations and transformers, where
indices or annotations ensure that inference components are applied to a certain type of programs.
Such a refined version of our results may lead to a way of selectively applying Hamiltonian Monte
Carlo or other algorithms that assume the presence of differentiable densities and a fixed length
of all paths through the program.
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