
36

A Domain Theory for Statistical Probabilistic Programming

MATTHIJS VÁKÁR, Columbia University, USA

OHAD KAMMAR, University of Oxford, UK

SAM STATON, University of Oxford, UK

We give an adequate denotational semantics for languages with recursive higher-order types, continuous
probability distributions, and soft constraints. These are expressive languages for building Bayesian models of
the kinds used in computational statistics and machine learning. Among them are untyped languages, similar
to Church and WebPPL, because our semantics allows recursive mixed-variance datatypes. Our semantics
justifies important program equivalences including commutativity.

Our new semantic model is based on ‘quasi-Borel predomains’. These are a mixture of chain-complete
partial orders (cpos) and quasi-Borel spaces. Quasi-Borel spaces are a recent model of probability theory
that focuses on sets of admissible random elements. Probability is traditionally treated in cpo models using
probabilistic powerdomains, but these are not known to be commutative on any class of cpos with higher order
functions. By contrast, quasi-Borel predomains do support both a commutative probabilistic powerdomain and
higher-order functions. As we show, quasi-Borel predomains form both a model of Fiore’s axiomatic domain
theory and a model of Kock’s synthetic measure theory.

CCS Concepts: • Theory of computation → Probabilistic computation; Bayesian analysis; Denota-
tional semantics; • Software and its engineering → Language types; Functional languages; Interpreters;
Domain specific languages; • Computing methodologies → Machine learning;

Additional Key Words and Phrases: denotational semantics, domain theory, probability, recursion, adequacy

ACM Reference Format:

Matthijs Vákár, Ohad Kammar, and Sam Staton. 2019. A Domain Theory for Statistical Probabilistic Program-
ming. Proc. ACM Program. Lang. 3, POPL, Article 36 (January 2019), 29 pages. https://doi.org/10.1145/3290349

1 INTRODUCTION

The idea of statistical probabilistic programming is to use a programming language to specify statis-
tical models and inference problems. It enables rapidly prototyping different models, because: (1) the
model specification is separated from the technicalities of the inference/simulation algorithms;
and (2) software engineering/programming techniques can be used to manage the complexity of
statistical models. Here, we focus on the fundamental programming technique of recursion. We
consider both recursive terms — looping — and recursive types, e.g., streams and untyped languages.
In a traditional programming language, recursion has long been analyzed using semantic do-

mains based on ω-complete partial orders. The suitability of this approach is given by the adequacy
theorem, which connects the compositional interpretation in domains with an operational inter-
pretation. However, there are long standing open problems regarding using these domains with
probability and measure. Here we sidestep these problems by introducing a new notion: ω-quasi
Borel spaces. We look at a language with both statistical constructs and higher-order recursive types
and terms, which is close to languages used in practice for statistical probabilistic programming,
and we show the following adequacy theorem:

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/1-ART36
https://doi.org/10.1145/3290349

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3290349
https://doi.org/10.1145/3290349

36:2 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

leta = normal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rng (00000000000000000, 22222222222222222) in
score(normal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdf (1.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.1 | a ∗ 11111111111111111, 0.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.25));
score(normal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdf (1.91.91.91.91.91.91.91.91.91.91.91.91.91.91.91.91.9 | a ∗ 22222222222222222, 0.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.25));
score(normal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdf (2.72.72.72.72.72.72.72.72.72.72.72.72.72.72.72.72.7 | a ∗ 33333333333333333, 0.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.25));
a

Prior: a ∼ N (0, 2)
Observations:

1.1 ∼ N (1a, 14)
1.9 ∼ N (2a, 14)
2.7 ∼ N (3a, 14)

0
0.1
0.2
0.3
0.4
0.5
0.6

−2 −1 0 1 2

pr
ob
ab
il
it
y

de
n
si
ty

a

prior
posterior

(a) (b) (c)

Fig. 1. Bayesian linear regression as (a) a first-order probabilistic program, (b) an informal specification, and
(c) a plot of the prior and posterior distributions. Here N (µ,σ) is the normal (Gaussian) distribution with

density normal-pdf (x | µ,σ) = (2πσ 2)− 1
2 e
−(x−µ)2

2σ 2 and random number generator normal-rng (µ,σ).

Theorem (6.9: Adeqacy). If two programs are equal in the ωqbs model then they are contextually

equivalent with regard to a Monte-Carlo operational semantics.

Domain theoretic semantics can verify compositional compiler optimizations. As an example,
the following reordering transformation is valid, since it is readily verifiable in the ωqbses.

Corollary (6.11: Commutativity). The following two programs are contextually equivalent:

letx = t in

lety = s in r
≈ lety = s in

letx = t in r

This property says there is no implicit sequential state in the language. It is essential for Shan
and Ramsey’s disintegration-based exact Bayesian inference technique [2017], implemented in the
Hakaru system [Narayanan et al. 2016]. The corollary is related to Fubini’s theorem for reordering
integrals: informally,

∫
dx

∫
dy r (x ,y) =

∫
dy

∫
dx r (x ,y). The important novelty here is that our

semantic model extends this commutativity theorem to higher-order and recursive types, even if
they do not fit easily into traditional measure theory.

1.1 Introduction to Statistical Probabilistic Programming

We introduce statistical probabilistic programming through a simple example of a regression
problem, in Fig. 1. The problem is: supposing that there is a linear function x 7→ ax and three
noisy measurements (1, 1.1), (2, 1.9) and (3, 2.7) of it with postulated noise scale 0.25, find a
posterior distribution on the slope a. As indicated, first-order probabilistic programs can be thought
of as a direct translation of a Bayesian statistical problem. The probabilistic program has an
operational reading in terms of Monte-Carlo simulation: first use a Gaussian sampler/random
number generator, using normal-rng, to draw from the prior with mean 0 and standard deviation 2;
then weight, using score, the resulting samples with respect to the three data points according to the
Gaussian likelihood, using normal-pdf, assuming noisy measurements with standard deviation 1

4 .
The resulting program represents the unnormalised posterior distribution, which can then be passed
to an inference algorithm to approximate its normalisation, e.g. through Monte-Carlo sampling.

A case for recursion: higher-order functions over infinite data structures. Many probabilistic pro-
gramming languages also allow other programming language features, including recursion. When
looking at a whole closed program of ground type, these extra features pose little conceptual
problem because the entire program will reduce to a first-order program, albeit a very large or even

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:3

reduce (* foldl *)

(λ((t ,y) :: tys, t ′).
(t ′, normal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rng(y,

√
t ′ − t))

:: (t ,y) :: tys)
[(00000000000000000, 00000000000000000)]
[11111111111111111, 22222222222222222, 44444444444444444, 5.55.55.55.55.55.55.55.55.55.55.55.55.55.55.55.55.5, 66666666666666666, 6.256.256.256.256.256.256.256.256.256.256.256.256.256.256.256.256.25]

y1 ∼ N (0,√t1 − 0)
y2 ∼ N (y1,

√
t2 − t1)

y3 ∼ N (y2,
√
t3 − t2)

...

y6 ∼ N (y5,
√
t6 − t5)

−6
−4
−2
0
2
4
6

0 1 2 3 4 5 6

y

t

(a) (b) (c)

Fig. 2. A Gaussian random walk as (a) a higher-order recursive program and (b) an informal specification,
with (c) some samples. The function reduce is sometimes called fold le�.

infinite one. However, this paper is not concerned with the problem of interpreting whole closed
programs, but rather interpreting individual aspects of a program in a compositional way.

For example, consider the program in Fig. 2, which takes snapshots of a Gaussian random walk
at a stream of times (t) to produce a stream of (t ,y) co-ordinate pairs. The meaning of the whole
program is clear, and can be reduced to the first-order statistical model (b). But supposing this
appears as part of a bigger model, we would like to understand each part separately. What is the
mathematical meaning of reduce here? It takes a parameterized random operation, an initial value,
and a stream, and produces a random stream. By providing mathematical objects that represent
these recursive concepts, we can understand reduce as a first-class construct and reason about it.

A case for recursion: untyped programs. Rather than distinguish between ground types and higher-
order recursive types, an alternative approach is to combine the full untyped lambda calculus with
the constructions of the simple statistical programming language (Fig. 7). Many probabilistic
programming languages take this approach (Church [Goodman et al. 2008], Anglican [Wood
et al. 2014], WebPPL [Goodman and Stuhlmüller 2014], Venture [Mansinghka et al. 2014]). Recall
that we can express untyped calculi using recursive types, using a single recursive type like
Λ = (1

�� Λ ∗ Λ �� · · · �� Λ → Λ). Thus a language with recursive types can be thought of as
generalising this untyped situation.

1.2 Summary of Semantics in ω-�asi Borel Spaces

The usual method for interpreting a programming language is as follows:

• types denote spaces (in an untyped language, there is just one universal space);
• closed programs denote points in a space; and
• program phrases denote functions assigning a point to every valuation of their free variables.

Probabilistic programs, on the other hand, vary this by saying

• closed programs denote measures (or distributions) on a space; and
• program phrases denote kernels between spaces.

Recursive probabilistic programming has a tension between what a space is and what it is used for:

• In traditional domain theory, a type denotes a topological space or cpo in which continuity
and convergence model recursion using fixed points.
• For first-order probabilistic programs, a type denotes a topological or measurable space
whose purpose is to support measures and expectations.

It is tempting to use a single topological (or cpo) structure to interpret both the probability and
recursion. By contrast with existing mainstream approaches [Jones and Plotkin 1989], however,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:4 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

we choose to keep both structures separate but compatible, through the following observation. In
probability theory it is widely acknowledged that topological and measurable structure are only a
precursor to the notion of random element. Recall that a random element in a set P is a function
α : Ω → P where Ω is some space of random seeds, e.g. Ω = R with a Lebesgue measure. When
P = R, one would typically ask that α be measurable so that there is an expected (average, mean)
value of α . But random elements are relevant beyond their expectation. A measure on P can be
understood as a random element modulo being ‘equal in distribution’, but it is helpful to also keep
the distinction between random element and measure. This leads us to the following definition.

Definition (3.5). An ωqbs comprises a set P together with the following structure:

• a partial order ≤ on P such that limits of ω-chains exist: to model recursion;

• a setM of functions α : R→ P : these are thought of as random elements, to interpret probability;

all subject to some compatibility conditions.

For example:

(1) Let P be the set of subsets of N. This is a space to interpret deterministic programs with
a natural number argument: a subset X ⊆ N represents the program that returns for each
member in X . The order ≤ is the inclusion order, so program X is below Y if X diverges
whenever Y diverges. The random elements M are the functions α : R → P such that
α−1[{S | n ∈ S}] is (Borel) measurable for all n ∈ N.

(2) Let R be the set of real values. When thought of as values, we use the discrete order. The
random elementsM are the measurable functions R→ R.

(3) LetW = [0,∞] be the non-negative extended reals. Its elements stand for computationweights
with the linear order. The random elementsM are the measurable functions R→ [0,∞].

The semantics in ωqbses supports higher-order functions. Moreover, we can interpret recursive
types by using the recipe of Fiore and Plotkin’s axiomatic domain theory [1994]. That is to say:

Theorem (Cor. 3.10, §5.3). The category ωQbs has products, sums, function spaces, and a bilimit

compact expansion (sufficient structure to interpret recursive types).

1.3 A Probabilistic Powerdomain

With higher-order functions and recursive types dealt with, the remaining ingredient is measures
(and probabilistic programs that generate measures) as first-class constructions. To this end, for
every ωqbs P we will associate an ωqbs T (P) of measures on P . Following Moggi [1989], we turn T
into a monad encapsulating the probabilistic aspects of the programming language.

Recall that an ωqbs P comes with a setM of random elements, viz. functions α : R→ P . Because
a statistical probabilistic program naturally describes an unnormalized posterior measure, we
consider the basic space R with the full Lebesgue measure, which has infinite total measure. To
consider finite measures we consider partial random elements, which are given by pairs (α ,D)
where α ∈ M and D ⊆ R is Borel. Given any partial random element (α ,D) and any morphism
f : P →W (W = [0,∞]), the composite f ◦ α is measurable, so we can find an expectation for f :

E(α,D)[f] :=
∫
D

f (α(x)) dx . (1)

We say that (α ,D) and (α ′,D ′) are equivalent when they give the same expectation operator:

for all f : P →W,

∫
D

f (α(x)) dx =
∫
D′

f (α ′(x)) dx . (2)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:5

Definition. A measure on an ωqbs P is an equivalence class of a partial random element (α ,D),
modulo the equivalence relation (2). Equivalently, a measure is a morphismWP → W of the form

E(α,D) for some partial random element (α ,D).

Here we run into a technical problem: the set of all measures has a natural (pointwise) partial
order structure but this set might not be closed under suprema of ω-chains. On the other hand,

we know that J (P) :=W(WP) is always closed, because J is the continuation monad which makes
sense in any category with function spaces. Thus we take the closure T (P) of the set of measures
in J (P) as our space of measures. In other words, T (P) ⊆ J (P) contains those expectation operators
that arise as iterated suprema of ω-chains on P .
Our approach follows existing continuation-passing-style techniques [e.g. Keimel and Plotkin

2009; Kiselyov and Shan 2009; Olmedo et al. 2016]. CPS semantics is analogous to working with the
full continuation monad J or a fragment of it. This fragment must be chosen carefully, or else the
commutativity property fails in the model. Indeed J also has constants such as exitr = λk .r ∈ J (P)
violating the commutativity equation: put t1 = exit1, t2 = exit2. As we have the commutativity
property, these constants lie outside our monad T (P), hence are not definable in the language.

Aside on the Jung-Tix problem. A long standing problem in traditional domain theory is to find a
category of Scott domains that is closed under function spaces and a commutative probabilistic
powerdomain [Jung and Tix 1998]. This remains an open problem. We side-step this problem
by using ωqbses instead of Scott domains. They inherit many of the properties and intuitions of
ω-cpos, are closed under function spaces, and support a commutative probabilistic powerdomain.
We summarize further work in this direction in Sec. 7.

1.4 Summary

We have provided a domain theory for recursion in statistical probabilistic programming. The main
contributions of this work are the following novel constructions:

(1) a Cartesian closed category of (pre)-domains (Sec. 3), that admits the solution of recursive
domain equations (Sec. 5),

(2) a commutative probabilistic power-domain (Sec. 4);
(3) an adequate denotational model (Sec. 6) for probabilistic programming with recursive types

(Sec. 2), and in consequence
• an adequate denotational model for a higher-order language with sampling from continuous
distributions, term recursion and soft constraints (§2.4);
• an adequate denotational model for untyped probabilistic programming (§2.3).

2 CALCULI FOR STATISTICAL PROBABILISTIC PROGRAMMING

We consider three call-by-value calculi for statistical probabilistic programming. The main calculus,
Statistical FPC (SFPC) is a statistical variant of Fiore and Plotkin’s Fixed-Point Calculus (FPC) [1994].
SFPC has sum, product, function, and recursive types, as well as a ground type R of real numbers,
constants fffffffffffffffff for all measurable functions f : Rn → R, a construct mat� − with {00000000000000000→ −

�� _→ −}
for testing real numbers for zero, a construct sample for drawing a random number using the
uniform (Lebesgue) measure U[0,1] on [0, 1] and a construct score for reweighting program traces
(to implement soft constraints). We express the other two calculi as fragments of SFPC. The first,
Idealised Church, is an untyped λ-calculus for statistical probabilistic programming based on the
Church modelling language [Wingate et al. 2011]. The second, the Call-by-Value Statistical PCF
(CBV SPCF), is a call-by-value variant of Plotkin’s [1977] and Scott’s [1993] simply typed λ-calculus
with higher-order term recursion, extended with statistical primitives.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:6 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

2.1 Preliminaries: Borel Measurability

We need the following fundamentals of measure theory. The Borel subsets of the real line R are given
inductively by taking every interval [a,b] to be a Borel subset, and closing under complements and
countable unions. More generally, for every natural number n, the Borel subsets of Rn are given
inductively by taking everyn-dimensional box [a1,b1]×· · ·×[an ,bn] to be a Borel subset and closing
under complements and countable unions. A (partial) function f : Rn ⇀ R is Borel-measurable

when its inverse image maps every Borel subset B ⊆ R to a Borel subset f −1[B] ⊆ Rn . The set of
Borel-measurable functions contains, for example, all the elementary functions.
A measure µ on Rn is an assignment of possibly-infinite, non-negative real values µ(B) to

every Borel subset B ⊆ Rn , assigning 0 to the empty set µ(∅) = 0, linear on disjoint unions
µ(B1 ⊎ B2) = µ(B1) + µ(B2), and continuous with respect to countably increasing sequences: if
for every n, Bn ⊆ Bn+1, then µ(⋃∞n=0 Bn) = limn→∞ µ(Bn). The Lebesgue measure λ is the unique
measure on R assigning to each interval its length λ([a,b]) = b − a. A probability measure on Rn is
a measure µ whose total measure µ(Rn) is 1. The uniform probability measure U[a,b] on an interval
[a,b] assigns to each Borel set B the relative Lebesgue measure it occupies in the interval [a,b]:
U[a,b](B) ≔ 1

b−a λ(B ∩ [a,b]). Measurable functions f : Rn → Rm let us transport measures µ on
R
n to their push-forward measure f∗µ on Rm , by setting f∗µ(B) ≔ µ(f −1[B]).
We think of whole statistical probabilistic programs of real type as a formalism for describ-

ing measures. To work compositionally, we need the following analogous concept for program
fragments, i.e., terms with unbound variables. A probability kernel k from Rn to R, written as
k : Rn { R is a function assigning to every ®x ∈ Rn a probability measure k(®x ,−) on R, such that,
for every Borel set B, the function k(−,B) : Rn → R is measurable. We will use the following
key result about probability kernels, the randomisation lemma, which says that a straightforward
random number generator U[0,1] suffices to implement any of them.

Lemma 2.1 ([Kallenberg 2006, Lemma 3.22]). For every probability kernel k : Rn { R, there is a
measurable function randk : Rn+1 → R, such that randk (x1, . . . ,xn ,−)∗U[0,1] = k(x1, . . . ,xn).

2.2 SFPC: Bayesian Statistical Modelling with Recursive Types

Syntax. As recursive types contain type-variables, we use a kind system to ensure types are well-
formed. Fig. 3 (top left) presents the kinds of our calculus, and Fig. 3 (bottom left) presents the
types of SFPC. We include type variables, taken from a countable set ranged over by α , β,γ . We
include simple types: unit, product, function, and variant types. Variant types use constructor labels
taken from a countable set ranged over by ℓ, ℓ1, ℓ2, In our abstract syntax, variant types are
dictionaries, partial functions with a finite domain, from the set of constructor labels to the set of
types. The recursive type former µα .τ binds α in τ . In our abstract syntax, term variable contexts Γ
are dictionaries from the countable set of variables, ranged over by x ,y, z, . . ., to the set of types.
We desugar stand-alone labels in a variant type {· · ·

�� ℓ �� · · ·} to the unit type {· · ·
�� ℓ 1 �� · · ·}.

We also desugar top-level-like recursive type declarations τ ≔ σ [α 7→ τ] to τ ≔ µα .σ .

Example 2.2. The type of booleans is bool ≔ {True
�� False}. The type of natural numbers is

N ≔ {Zero
�� SuccN} desugaring to N ≔ µα .{Zero

�� Succα }. The type of τ -lists is Listτ ≔ {Nil ��
Consτ ∗ Listτ }, desugaring to Listτ ≔ µα .{Nil 1

�� Consτ ∗ α }. The type of (infinite) stochastic
processes in τ is Stochτ ≔ 1 → (τ ∗ Stochτ), desugaring to Stochτ ≔ µα .1 → (τ ∗ α). The
type of untyped λ-terms with values in τ is Λ- Termτ ≔ {Valτ

�� Fun (Λ- Termτ → Λ- Termτ)},
desugaring to Λ- Termτ ≔ µα .{Valτ

�� Fun (α → α)}.
Fig. 3 (right) presents the terms of SFPC. Value variables are taken from a countable set ranged

over by x , y, z, We include primitive function constants fffffffffffffffff (t1, . . . , tn) for every measurable

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:7

k ::= kinds
type type
| context context

τ , σ , ρ ::= types
α variable
| R reals
| 1 unit
| τ ∗ σ product
| τ → σ function
| { ℓ1 τ1�� . . .�� ℓn τn}

variant

| µα .τ iso-recursive

t , s, r ::= terms
x term variable
| fffffffffffffffff (t1, . . . , tn) primitive
|mat� t with

{00000000000000000→ s
�� _→ r }

conditional

| sample sampling
| score t conditioning

constructors:
| () unit
| (t , s) pairing
| τ .ℓ t variant
| τ .roll (t) iso-recursive

function:
| λx : τ .t abstraction
| t s application

pattern matching:
|mat� t with

() → s

unit

|mat� t with

(x ,y) → s

product

|mat� t with

{ℓ1 x1 → s1
�� · · ·��ℓn xn → sn}

variant

|mat� t with

rollx → s

recursive

Γ ≔ x1 : τ1, . . . ,xn : τn variable contexts

Fig. 3. SFPC kinds and types (le�) and terms (right)

Sugar Elaboration
• _ fresh variable
• let (x : τ) = t in s (λx : τ .s) t
• letrec (x : ρ) = t in s (λx : ρ .s)(µx : ρ.t)
• t ; s mat� t with () → s

• unroll t mat� t with rollx → x

• µx : τ .t let (body : σ → τ)) = λy : σ .
let (x : τ) = λz : τ1.unrolly y in t
inbody (σ .rollbody)

where τ := τ1 → τ2 and σ := µα .α → τ

• ⊥ρ µx : ρ.x

Fig. 4. Term-level syntactic sugar

(partial) function f : Rn ⇀ R. The conditional construct tests whether its argument of type
R evaluates to 0. We include an effect sample for sampling a real number uniformly from the
interval [0, 1], for defining the prior distribution of the program. We also include an effect score r
for reweighting the posterior distribution by the non-negative factor |r | ∈ [0,∞). We include
standard constructors and pattern-matching constructs for the simple types, and standard function
abstraction and application constructs. Finally, we include the standard iso-recursive constructors
and pattern matching, which require an explicit rolling and unrolling of the recursive definition
such as N.roll (Zero()). Variant and iso-recursive constructor terms as well as function abstraction
annotate their binding occurrences with the appropriate closed type τ to ensure unique typing.
To aid readability, we use the standard syntactic sugar of Fig. 4, e.g. letx = t in s for (λx . t)s ,

µx : τ → σ .t for the usual encoding of term level recursion using type level recursion [Abadi and
Fiore 1996; Fiore 1996]. When dealing with a recursive variant type σ = µα .{. . .

�� ℓ τ �� . . .}, we
write ℓ t for the more cumbersome constructor σ .roll ({. . .

�� ℓ τ �� . . .}.ℓ t) as long as σ is clear from
the context. We can encode constructs kkkkkkkkkkkkkkkkk in our calculus for drawing from arbitrary probability
kernels k : Rn { R. Using the Randomisation Lemma 2.1, first find the appropriate measurable
function randk : Rn+1 → R and express kkkkkkkkkkkkkkkkk(t1, . . . , tn) by randkrandkrandkrandkrandkrandkrandkrandkrandkrandkrandkrandkrandkrandkrandkrandkrandk (t1, . . . , tn , sample).

Example 2.3. For StochR = µα .1 → (R ∗ α), define draw ≔ λx : StochR.unroll (x) (), which
draws a value from the process and moves the process to the corresponding new state. As an
example stochastic process, writing normal_rnд : R × R { R for a Gaussian probability kernel
taking the mean and standard deviation as arguments, we define an example Gaussian random

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:8 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

∆ ⊢k α : type
(α ∈ ∆)

∆ ⊢k R : type ∆ ⊢k 1 : type

∆ ⊢k τ : type ∆ ⊢k σ : type

∆ ⊢k τ ∗ σ : type

∆ ⊢k τ : type
∆ ⊢k σ : type

∆ ⊢k τ → σ : type

for all 1 ≤ i ≤ n:
∆ ⊢k τi : type

∆ ⊢k {ℓ1 τ1
�� . . . �� ℓn τn} : type

∆,α ⊢k τ : type

∆ ⊢k µα .τ : type

for all (x : τ) ∈ Γ:
⊢k τ : type

⊢k Γ : context

Fig. 5. SFPC kind system

(x : τ) ∈ Γ
Γ ⊢ x : τ

f : Rn ⇀ R for all 1 ≤ i ≤ n: Γ ⊢ ti : R
Γ ⊢ fffffffffffffffff (t1, . . . , tn) : R

Γ ⊢ t : R Γ ⊢ s : τ Γ ⊢ r : τ
Γ ⊢ mat� t with {00000000000000000→ s

�� _→ r } : τ

Γ ⊢ sample : R

Γ ⊢ t : R
Γ ⊢ score t : 1 Γ ⊢ () : 1

Γ ⊢ t : τ Γ ⊢ s : σ
Γ ⊢ (t , s) : τ ∗ σ

Γ ⊢ t : τi
Γ ⊢ τ .ℓi t : τ

(τ = {ℓ1 τ1
�� . . . �� ℓn τn}) Γ ⊢ t : σ [α 7→ τ]

Γ ⊢ τ .roll (t) : τ
(τ = µα .σ)

Γ,x : τ ⊢ t : σ
Γ ⊢ λx : τ .t : τ → σ

Γ ⊢ t : σ → τ Γ ⊢ s : σ
Γ ⊢ t s : τ

Γ ⊢ t : σ ∗ ρ Γ,x : σ ,y : ρ ⊢ s : τ
Γ ⊢ mat� t with (x ,y) → s : τ

Γ ⊢ t : 1 Γ ⊢ s : τ
Γ ⊢ mat� t with () → s : τ

Γ ⊢ t : {ℓ1 τ1
�� . . . �� ℓn τn} for each 1 ≤ i ≤ n: Γ,xi : τi ⊢ si : τ

Γ ⊢ mat� t with {ℓ1 x1 → s1
�� · · · �� ℓn xn→ sn} : τ

Γ ⊢ t : µα .σ Γ,x : σ [α 7→ µα .σ] ⊢ s : τ
Γ ⊢ mat� t with rollx → s : τ

Γ,x : τ → σ ⊢ t : τ → σ

Γ ⊢ µx : τ → σ .t : τ → σ

Fig. 6. SFPC type system, including (in gray) the derivable typing rule for term recursion

walk RWσσσσσσσσσσσσσσσσσ µµµµµµµµµµµµµµµµµ with initial position µ and standard deviation σ by setting:

RW = λx : R.µy : R→ StochR.λz : R.StochR.roll (λ_ : 1.(z,y(normal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnд(z,x))))

Kind and Type Systems. To ensure the well-formedness of types, which involve type variables, we
use the kind system presented in Fig. 5. Each kinding judgement ∆ ⊢k τ : type asserts that a given
type τ is well-formed in the type variable context ∆, which is a finite set of type variables. The
kinding judgements are standard. All type variables must be bound by the enclosing context, or by
a recursive type binder. Variable contexts Γ must assign closed types. We treat α-conversion and
capture avoiding substitution of variables as usual, possessing the standard structural properties.
Fig. 6 presents the resulting type system, including the derivable typing judgement for the

sugar µx : τ → σ .t for term recursion. Each typing judgement Γ ⊢ t : τ asserts that the term t is
well-typed with the well-formed closed type ⊢k τ : type in the variable context ⊢k Γ : context. The
rules are standard. By design, every term has at most one type in a given context.

Example 2.4. The types from Ex. 2.2 are well-kinded: bool,N, ListR, StochR,Λ- TermR : type.
The terms from Ex. 2.3 are well-typed: draw : StochR→ (R ∗ StochR), RW : R→ R→ StochR.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:9

t , s, r ::= terms
x variable
| kkkkkkkkkkkkkkkkk(t1, . . . , tn) kernel
| ifz t then s else r conditional

| factor t conditioning
| λx .t abstraction
| t s application

v values
::= x variable
| rrrrrrrrrrrrrrrrr real number
| λx .t abstraction

Fig. 7. Idealised Church, terms and values

Values v

x 7→ x rrrrrrrrrrrrrrrrr 7→ Val rrrrrrrrrrrrrrrrr λx .t 7→ Fun (λx : τ .t†)
Terms t , s, r

v 7→ v†

t s 7→ (u := t†;) • u s†

kkkkkkkkkkkkkkkkk(t1, . . . , tn) 7→ (;x1 := t†1 , . . . ,xn := t†n)•
Valkkkkkkkkkkkkkkkkk(x1, . . . ,xn)

ifz t then r else s 7→ (;x1 := t†) •mat�x with

{00000000000000000→ r †
�� _→ s†}

factor (t) 7→ (;x := t) • scorex ;Valx

Auxiliary sequential unpacking
(u1 := t1, . . .un := tn ;x1 := s1, . . . ,xm := sm) • r
(;) • r 7→ r

(;x1 := s1, . . .) • r 7→ mat�unroll s1 with {
Valx1→ (; . . .) • r�� Fun _→ ⊥σ }

(u1 := t1, . . . ; . . .) • r 7→ mat�unroll t1 with {
Funu1→ (. . . ; . . .) • r�� Val _ → ⊥σ }

Fig. 8. A faithful translation (−)† of Idealised Church into SFPC using the type σ := Λ- TermR.

2.3 Idealised Church: Untyped Statistical Modelling

In applied probabilistic programming systems, there has been considerable interest in using an
untyped λ-calculus as the basis for probabilistic programming. For instance, the Church modelling
language [Wingate et al. 2011], in idealised form, is an untyped call-by-value λ-calculus over the
real numbers with constructs kkkkkkkkkkkkkkkkk(x1, . . . ,xn) for drawing from probability kernels k : Rn { R
(including all real numbers, measurable functions like a Gaussian density normal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd fnormal_pd f (y | µ,σ)
and proper kernels like a Gaussian random number generator normal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnдnormal_rnд(µ,σ)), and a construct
factor for reweighting program traces, to enforce soft constraints [Borgström et al. 2016]. Fig. 7
presents the syntax of Idealised Church, and we desugar letx = t in s to mean (λx .s) t .
Idealised Church arises as a sublanguage of SFPC. We encode Idealised Church terms as SFPC

terms of the type Λ- TermR ≔ {Valτ
�� Fun (Λ- TermR→ Λ- TermR)} from Ex. 2.2, using the

translation (−)† in Fig. 8. The translation uses an auxiliary SFPC construct (. . . ; . . .) • r for sequen-
tially evaluating its arguments x := t , unpacking each term t , ensuring it is either a function or a
real value, and binding its unpacked value to x in r . This translation is faithful (Lemma 6.2).

2.4 CBV SPCF: Simply Typed Recursive Modelling

We consider a simply typed sublanguage of SFPC, a call-by-value (CBV) probabilistic variant of
Plotkin and Scott’s PCF [1977; 1993]. The types and terms are given by the following grammars:

τ ,σ , ρ ::= R | τ → σ t , s, r ::= x | fffffffffffffffff (t1, . . . , tn) | mat� t with {00000000000000000→ s
�� _→ r }

| sample | factor (t) | λx : τ .t | t s | µx : τ → σ .t ,

SPCF is a fragment of SFPC: term recursion µx : τ → σ .t is interpreted as in Fig. 4 and conditioning
factor (t) as let (x : R) = t in scorex ;x . SPCF derives its kind and type systems from SFPC.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:10 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

3 QUASI-BOREL PRE-DOMAINS

Previous works on quasi-Borel spaces (qbses) give a denotational semantics for higher-order
probabilistic languages with a range of types, but crucially excludes higher-order term recursion
and recursive types. To do that, we further equip a qbs with a compatible ωcpo structure. We call
this new semantic structure a quasi-Borel pre-domain or an ωqbs.

3.1 Preliminaries

Category theory. We assume familiarity with categories C, D, functors F ,G : C → D, natural
transformations α , β : F → G, and their theory of (co)limits and adjunctions. We write:

• unary, binary, and I -ary products as 1, X1 × X2, and
∏

i ∈I Xi , writing πi for the projections
and 〈〉, 〈x1,x2〉, and 〈xi 〉 i ∈I for the tupling maps;
• unary, binary, and I -ary coproducts as 0, X1 + X2, and

∑
i ∈I Xi , writing ιi for the injections

and [], [x1,x2], and [xi]i ∈I for the cotupling maps;
• exponentials as XY , writing Λ for the currying maps.

Domain theory. We recall some basic domain theory. Let ω = {0 ≤ 1 ≤ . . .} be the ordinary linear
order on the naturals. An ω-chain in a poset P =

(
|P |, ≤

)
is a monotone function a− : ω → P . A

poset P is an ωcpo when every ω-chain 〈an〉n∈N has a least upper bound (lub)
∨

n∈N an in P .

Example 3.1. Each set X equipped with the discrete partial order forms an ωcpo (X ,=). E.g., the
discrete ωcpo R over the real line. The non-negative extended reals equipped with the ordinary
order,W :=

(
[0,∞], ≤

)
, is an ωcpo. The Borel subsets of Rn ordered by inclusion form an ωcpo Bn .

For every pair of ωcpos P and Q , a Scott-continuous function f : P → Q is a monotone function
f : |P | →

��Q �� such that for every ω-chain a−, we have: f (
∨

n an) =
∨

n f (an). A Scott-continuous
function f : P → Q is a full mono when, for every a,b ∈ |P | , we have f (a) ≤ f (b) =⇒ a ≤ b.
Recall that the categoryωCpo ofωcpos and Scott-continuous functions is Cartesian closed: products
are taken componentwise and the exponential QP has carrier ωCpo(P ,Q) and order f ≤QP д iff
∀p ∈ |P |. f (p) ≤Q д(p). A domain is an ωcpo with a least element ⊥. A strict function between
domains is a Scott-continuous function that preserves their least elements.

Example 3.2. Ameasure onRn is a strict continuous function µ : Bn →W that is linear on disjoint
subsets. The measurable functions B(R, [0,∞]) ordered pointwise fully include into the ωcpoWR.
The integral is the unique Scott-continuous function

∫
µ : B(R, [0,∞]) → W satisfying, for all

measurable partitions R =
∑

n∈NUn and weights 〈wn〉 inW:
∫
µ [λr : Un .wn]n∈N =

∑
n∈N xn · µUn .

AnωCpo-(enriched) category C consists of a locally-small category C together with an assignment
of an ωcpo C(A,B) to every A,B ∈ Ob (C) whose carrier is the set C(A,B) such that composition
is Scott-continuous. An ωCpo-functor, a.k.a. a locally-continuous functor, F : C → D between two
ωCpo-categories is an ordinary functor F : C → D between the underlying ordinary categories,
such that every morphism map FA,B : C(A,B) → D(FA, FB) is Scott-continuous.

Example 3.3. Every locally-small category is an ωCpo-category whose hom-ωcpos are discrete.
The category ωCpo itself is an ωCpo-category. If C is an ωCpo-category, its categorical dual Cop is
an ωCpo-category. The category of locally-continuous functors Cop → ωCpo, with the order on
natural transformations α : F → G given componentwise, is an ωCpo-category when C is.

Measure theory. A measurable space X =
(
|X |, ΣX

)
consists of a carrier set |X | and a set of

subsets ΣX ⊆ P (X), called its σ -algebra, containing the empty set, and closed under complements
and countable unions, thus axiomatising the measurable subsets of Rn . A measurable function
f : X → Y is a function f : |X | → |Y | whose inverse image maps measurable subsets to measurable

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:11

subsets. Thus every n-dimensional Borel set, together with its Borel subsets, forms a measurable
space. The measurable spaces that are measurably isomorphic to a Borel set are called standard

Borel spaces. A fundamental result in descriptive set theory is that every standard Borel space is
measurably isomorphic to {i ∈ N|i < n} for some n = 0, 1, . . . ,ω, or to R [Kechris 2012]. We write
Meas and Sbs for the categories of measurable and standard Borel spaces and measurable functions
between them.

�asi-Borel spaces. As a Cartesian closed alternative to measure theory, Heunen et al. [2017]
introduced the category Qbs of quasi-Borel spaces (qbses). Measure theory axiomatises measurable
subsets of a space X , and deriving the random elements: measurable functions α : R → X , for
pushing measures forward. Qbses axiomatise random elements directly.
A quasi-Borel space (qbs) X =

(
|X |,MX

)
consists of a carrier set |X | and a set of functions

MX ⊆ |X |R, called the random elements, such that (i) all the constant functions are inMX , (ii)MX is
closed under precomposition with measurable functions on R, and (iii) if R = ⋃

n∈NUn , whereUn

are pairwise-disjoint and Borel measurable, and αn ∈ MX for all n, then the countable case-splitting[
αn |Un

]
n∈N is in MX . A morphism f : X → Y is a structure-preserving function f : |X | → |Y |,

i.e. if α ∈ MX then (f ◦ α) ∈ MY . Morphisms compose as functions, and we have a category Qbs.

Example 3.4. We turn the n-dimensional space Rn into a qbs by taking the random elements to
be the measurable functions MRn ≔ Meas(R,Rn) � ∏n

i=1 Meas(R,R), i.e., n-tuples of correlated
random variables. We also turn every set X into a qbs by taking the random elements to be
measurably piece-wise constant functions, i.e., the step functions.

Both these examples are special cases of a more abstract situation. Every measurable space X
can be turned into a qbs by settingMX := Meas(R,X). This defines a functorM− : Meas→ Qbs. It
has a left adjoint Σ− : Qbs→ Meas which equips a qbs X with the largest σ -algebra such that all
random elements α ∈ MX are measurable. This adjunction restricts to an adjoint embedding of the
category of standard Borel spaces Sbs as a full subcategory of Qbs. This embedding makes Qbs a
conservative extension of the well-behaved standard Borel spaces.
The category of qbses possesses substantial pleasant categorical properties: it has all (co)limits

and is Cartesian closed, and so can interpret simple types, quotients, and refinements. In fact,Qbs is
a Grothendieck quasi-topos, and so can interpret an expressive internal logic. The conservativity of
the embedding Sbs ֒→ Qbs means that interpreting closed programs of ground type and reasoning
about them in Qbs have standard measure-theoretic counterparts. The benefit comes from doing
so compositionally: program fragments that are higher-order functions have a compositional
interpretation and reasoning principles in Qbs, but not in Sbs nor inMeas.

3.2 Definition and Some Simple Examples

The difficulty inherent in combining domain and measure theory stems from the following consid-
erations [Jung and Tix 1998]. Each (pre-)domain induces a topological space whose open subsets are
the Scott-open subsets (see Ex. 4.7 and Ex. 5.1), from which one generates a measurable space struc-
ture by closing over countable unions and complements. Both the domain-theoretic structure and
the induced measure-theoretic structure possess a cartesian product construction. However, without
further assumptions, the two product structures may differ. To get a commutative probabilistic pow-
erdomain, one requires conditions that ensure these two structures agree while maintaining, e.g.,
cartesian closure. The search for such a category is known as the Jung-Tix problem. We circumvent
the Jung-Tix problem, without solving it, by keeping the two structures, the domain-theoretic and
the measurable, separate but compatible. Doing so also allows us to replace the measure-theoretic

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:12 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

Carrier Random elements Partial order

1 {r 7→ 〈〉} {〈〉} =1

P ×Q |P | × |Q | {〈α , β〉 | α ∈ MP , β ∈ MQ } 〈p,q〉 ≤ 〈p ′,q′〉: p ≤P p ′,q ≤Q q′

n∑
i=1

Pi
n∑
i=1
|Pi |



[ιi ◦ αi]ni=1

�������
〈Ai 〉1≤i≤n ∈ Bn ,

R =
⊎n

i=1Ai partition,
∀1 ≤ i ≤ n.αi ∈ MPi




〈j,p〉 ≤ 〈k,q〉: j = k,p ≤Pj q

QP ωQbs(P ,Q)
{
Λ(α) : R→

��QP
�����α ∈ ωQbs(R × P ,Q)} f ≤QP д: ∀p ∈ |P |. f (p) ≤Q д(p)

P⊥ |P | + {⊥}
{
[B. ↑◦α ,B∁.⊥]

���B ∈ B,α ∈ MP

}
⊥ ≤P⊥ x , (↑a ≤P⊥ ↑b ⇐⇒ a ≤P b)

Fig. 9. The simply-typed structure of ωQbs

structure, which is usually incompatible with higher-order structure, with a quasi-Borel space
structure. The result is the following definition:

Definition 3.5. An ωqbs P consists of a triple P =
〈
|P |,MP , ≤P

〉
where:

(
|P |,MP

)
is a qbs;(

|P |, ≤P
)
is anωcpo over |P | ; andMP is closed under pointwise sups ofω-chains w.r.t. the pointwise

order. A morphism between ωqbses f : P → Q is a Scott-continuous function between their
underlying ωcpos that is also a Qbs-morphism between their underlying qbses. We denote the
category of ωqbses and their morphisms by ωQbs.

Example 3.6 (Real Values). We have the ωqbs R = (R,Meas(R,R),=R) with the discrete order
=R. This pre-domain represents a space of values returned by probabilistic computations.

Example 3.7 (Real Weights). Contrast this pre-domain withW = ([0,∞],Meas(R, [0,∞]), ≤[0,∞])
with the linear order. This pre-domain represents a space of weights of computation traces. Compare
this space to the Sierpiński space {0, 1}≤ , the full subspace {0, 1} inW.

The categoryωQbs is anωCpo-category, with each homset inωQbs ordered pointwise by setting,
for every pair of morphisms f ,д ∈ ωQbs(X ,Y): f ≤ д when ∀x ∈ |X | . f (x) ≤Y д(x).

3.3 Interpreting Simple Types and Partiality

We turn every qbs into the discrete ωqbs over it by taking the discrete ωcpo structure, i.e., equality
as an order. This construction is the left adjoint to the evident forgetful functor |−| : ωQbs→ Qbs.
Similarly, we turn every ωcpo into the free ωqbs over it whose random elements are lubs of step
functions. This construction is the left adjoint to the evident forgetful functor |−| : ωQbs→ ωCpo.

Example 3.8. The discrete ωqbs on the qbs structure of the real line is the pre-domain R of real
values. The free ωqbs on the ωcpo of weights (Ex. 3.1) is the pre-domainW of real weights (Ex. 3.7).

These adjoints equip ωQbs with well-behaved limits and coproducts:

Lemma 3.9. The forgetful functors |−| : ωQbs→ ωCpo, |−| : ωQbs→ Qbs preserve limits and

coproducts. This uniquely determines the limits and coproducts ofωQbs, which exist for small diagrams.

In Sec. B we will see that ωQbs also has quotients, but their construction is more subtle.
The category ωQbs is bi-Cartesian closed, with the concrete structure given in Fig. 9. The

structural maps, such as tupling, projections, and so forth, are given as for sets. The figure also
depicts a locally-continuous lifting monad1 〈−⊥, return, >>=〉 , for interpreting partiality, where:

↑x := ι1x ⊥ := ι2⊥ returnx := ↑x
(
(↑x) >>= f

)
:= f (x)

(
⊥ >>= f

)
:= ⊥.

1See §4.1 for the definition of monads.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:13

This monad jointly lifts the partiality monad P 7→ P⊥ over ωCpo and the exception monad
X 7→ X + 1 over Qbs.

Corollary 3.10. The functor |−| : ωQbs→ Set preserves the bi-Cartesian and partiality structures.

So simple types, when interpreted in ωQbs, retain their natural set-theoretic interpretations.

4 A COMMUTATIVE STATISTICAL POWERDOMAIN

Our powerdomain construction combines two classical ideas in probability theory. The first idea is
Schwartz’s treatment of distributions as expectation operators. We construct the powerdomain
monadT as a submonad of the continuation monad J :=WW

−
, whereW is the space of weights over

[0,∞] from Ex. 3.7. The second idea is the Randomisation Lemma 2.1: kernels X → TY should arise
by pushing forward the Lebesgue measure along a partial function X × R⇀ Y , i.e., a morphism
X → (Y⊥)R. Each element of (Y⊥)R induces a randomisable expectation operator via the Lebesgue
integral. Combining the two ideas, we take T to be the smallest full submonad of the Schwartz
distribution monad that contains all the randomisable distributions.
Sampling and conditioning have natural interpretations as expectation operators:

sample : 1→ JR, sample〈〉[w] ≔
∫
[0,1]

w(r) dr ; score : R→ J1, score r [w] ≔ |r | ·w(〈〉)

We will see that T is also the smallest full submonad of J which is closed under sample and score.

4.1 Preliminaries

Monads. A strong monad structure T over a Cartesian closed category C is a triple 〈T , return, >>=〉
consisting of an assignment of an objectTX and a morphism returnX : X → TX for every object X ,
and an assignment of a morphism >>=X ,Y : TX × (TY)X → TY . A strong monad is a strong monad
structure T satisfying the monad laws below, expressed in the Cartesian closed internal language:(
(returnx) >>= f

)
= f (x) (a >>= return) = a

(
(a >>= f) >>= д

)
=

(
a >>= λx . f (x) >>= д

)
Every monad yields an endofunctor T on C-morphisms: T (f) := id >>=T (returnT ◦f). The Kleisli
category CT consists of the same objects as C, but morphisms are given by CT (X ,Y) := C(X ,T Y).
A strong monad T is commutative when, for every pair of objects X ,Y :

a : T X ,b : T Y ⊢ a >>= λx .b >>= λy. return(x ,y) = b >>= λy.a >>= λx . return(x ,y)
Factorisation systems. We use the following concepts to factorise our powerdomain as a submonad

of the Schwartz distribution monad. Recall that a orthogonal factorisation system on a category C is
a pair

(
E,M

)
consisting of two classes of morphisms of C such that:

• Both E andM are closed under composition, and contain all isomorphisms.
• Every morphism f : X → Y in C factors into f =m ◦ e for somem ∈ M and e ∈ E.
• Functoriality: for each situation as on the left, there is a unique h : A→ A′ as on the right:

X A Y

X ′ A′ Y ′

e ∈E

f

m∈M

= д

e ′∈E m′∈M

=⇒
X A Y

X ′ A′ Y ′

e

f =

m

h д

e ′ m′

=

S-finite measures and kernels. Let X be a measurable space. Define measures and kernels by direct
analogy with their definition on Rn . A measure µ is finite when µ(X) < ∞, and a kernel k : X { Y

is finite when there is some bound B ∈ [0,∞) such that for all x ∈ |X | , k(x ,Y) < B. We compare
measures and kernels pointwise, and both collections are ωcpos. Measures and kernels are closed
under countable pointwise sums given as the lubs of the finite partial sums. A measure µ is s-finite

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:14 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

when it is a lub of finite measures, equivalently µ =
∑

n∈N µn for some countable sequence of
finite measures, and similarly a kernel k is s-finite when it is a lub of finite kernels, equivalently
k =

∑
n∈N kn for some countable sequence of finite kernels [Staton 2017]. The Randomisation

Lemma 2.1 generalises to s-finite kernels [Vákár and Ong 2018, Theorem 15]: for every s-finite
kernel k : X { Y , with Y standard Borel, there is a partial measurable function f : X × R ⇀ Y

such that, for every x ∈ |X | , k(x ,−) = f (x ,−)∗λ. Recall the 2-dimensional Lebesgue measure
λ ⊗ λ, which assigns to each rectangle [a1,b1] × [a2,b2] its area (b1 − a1) × (b2 − a2). Applying the
Randomisation Lemma to λ ⊗ λ yields the transfer principle: there is a measurable φ : R⇀ R × R
such that φ∗λ = λ ⊗ λ.

4.2 Randomisable Expectation Operators

A randomisation of an ωqbs X is a partial ωQbs-morphism α : R⇀ X , equivalently a total ωQbs
morphism R→ X⊥. Thanks to the Cartesian closure, we have an ωqbs of randomisations RX :=
(X⊥)R. A randomisation α ∈ RX represents an intensional description of a measure onX by pushing
forward the Lebesgue measure λ. The undefined part of α shaves some of the measure leaving us
with the restriction of λ to Dom (α) := α−1

[
x ∈ |X⊥ |

��x , ⊥] . By construction, Dom (α) is a Borel
set, and for every weighting functionw : X →W, the compositionw ◦ α : Dom (α) → X →W is
anωqbs morphism. Underlying this composition is a qbs morphismw ◦α : Dom (α) →W. Because
Qbs is a conservative extension of Sbs, this morphism is a Borel measurable function. Thus, every
randomisation induces an expectation operator. Moreover, this assignment is an ωqbs morphism:

E : RX → JX ; Eα [w] :=
∫
Dom(α)

λ(dr)w(α(r))

A randomisable expectation operator µ ∈ JX is onewhere µ = Eα for some randomisationα ∈ RX .
Let |SX | be the set of randomisable operators E[XR⊥] ⊆ |JX |. Similarly, consider the randomisable

random operators MSX := E ◦ [MRX]. Let |TX | be the ω-chain-lub-closure of |SX | ⊆ | JX | , and
MTX be the closure ofMSX ⊆ M JX under (pointwise) lub of ω-chains. The ωqbsTX is the smallest
ωqbs that is a full sub-ωcpo of JX and containing the randomisable random operators.

Example 4.1. When X is a standard Borel space with the discrete order, each randomisable
operator defines an s-finite measure, and each randomisable random operator defines an s-finite
kernel. By the Randomisation Lemma for s-finite kernels, conversely, every s-finite measure/kernel
arises from a randomisable (random) operator. Moreover, each s-finite measure/kernel is a lub of
finite measures/kernels. So TX is the smallest sub-ωcpo of JX containing the finite measures as
elements and kernels as random elements, and consists of the s-finite measures and kernels.

The randomisation functor R : ωQbs → ωQbs has the following monad structure. Using the
transfer principle, fix any measurable φ : R −⇀ R × R satisfying φ∗λ = λ ⊗ λ, and define:

returnx ≔
[
[0, 1]. ↑x , [0, 1]∁.⊥

] (
α >>= f

)
: R

φ−⇀ R × R R×α−−−⇀ R × X R×f−−−→ R × (Y⊥)R
eval−−−⇀ Y

The unit is a randomisation of the Dirac distribution, shaving from Lebesgue all but a probability
distribution concentrated on x . The monadic bind splits the source of randomness, using the transfer
principle, into two independent sources of randomness, one for α and one for the kernel f . The
expectation morphism E : RX → JX preserves this monad structure. The monad structure R does
not satisfy the monad laws. While RX depends on the choice of φ, TX is independent of the choice.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:15

4.3 Factorising Monad Structure Morphisms

To show that the monad structure of J restricts toT , we rely on a general theory, recently developed
by McDermott and Kammar [2018]. The full monos between ωcpos form theM-class of an orthog-
onal factorisation system on ωCpo, where the E-class consists of the dense epis: Scott-continuous
functions e : P → Q whose image is dense, i.e., the closure of e[P] isQ . Kammar and Plotkin [2012]
andMcDermott and Kammar [2018] use this factorisation system to decompose a locally-continuous
monad over ωCpo into appropriate sub-monads indexed by the sub-collection of effect operation
subsets. We use this construction to carve a sub-monad for sampling and conditioning.

A full mono between ωqbses is a full mono between them as ωcpos, i.e., an order reflecting ωqbs
morphism. A densely strong epi e : X ։ Y is an ωqbs morphism that maps the random elements
MX into a Scott dense subset ofMY w.r.t. the pointwise order.

Lemma 4.2. Densely strong epis and full monos form an orthogonal factorisation system on ωQbs.

Moreover, the densely strong epis are closed under countable products, exponentiation with standard

Borel spaces, and the lifting monad (−)⊥.
Therefore, the densely strong epis are closed under the randomisation functor R. We can now

directly apply McDermott and Kammar’s construction [2018] to turn TX into a canonical monad:

Theorem 4.3. The unit and bind of J restrict to T . The (densely strong epi, full mono)-factorisation

of the expectation operator E : RX ։ TX ֌ JX preserves these monad structures.

4.4 Sampling and Conditioning

In the introduction to this section, we defined sampling and conditioning as expectation operators.
Both arise as expectation operators for the following randomisations:

sample: 1→ RR score : R→ R1

sample ≔ [[0, 1]. ↑, [0, 1]∁.⊥]; score(r) ≔ [[0,|r |]. ↑〈〉, [0,|r |]∁.⊥]
Post-composing with E : R → T , we have analogous operations for T . Let FX be the free monad

overωQbswith Kleisli arrows sample : 1→ FR and score : R→ F1. It exists because, for example,
ωQbs is locally presentable (see Appx. B). The monad morphismm J : F → J preserving sample

and score given by initiality of F factors through the full inclusion of T in J asm J : F
mT−−→ T

E−→ J ,
wheremT : F → T is the unique monad morphism given by initiality. The randomisable operators
are fully definable by sample and score, lubs, and the monad operations in the following sense:

Lemma 4.4. The uniquemonadmorphism from the free monad preserving sampling and conditioning

is a component-wise densely strong epimT : F ։ T .

Proof (sketch). Define the Lebesgue integral E↑(w) ≔
∫
R
λ(dr)w(r) by rescaling the normal

distribution. Let normal-rng : [0, 1] → R be a randomisation of the gaussian with mean 0 and
standard deviation 1, and let normal-pdf : R → R be the probability density function of this
gaussian. Set ξ ∈ FR as on the left, and calculate as on the right:

ξ := sample >>= λs .
let r = normal-rng(s) in
score 1

normal-pdf r ; return r
(mT ξ)(w) =

∫
[0,1]

λ(ds) w (normal-rng(s))
normal-pdf◦normal-rng s

=

∫
R

λ(dr)w(r)

For each non-empty ωqbs X , choose x0 ∈ |X | , and consider a randomisable random operator
α = E ◦ Λf , for some uncurried f : R × R⇀ X . Set ζ (s) ≔ ξ >>= λr .handle f (s, r)withx0 where
the auxiliary function handle − withx0 : X⊥ → FX ; is given by: handle ↑x withx0 ≔ returnx
and handle⊥withx0 ≔ score 0; returnx0. Then:mT ◦ ζ (s)(w) =

∫
R
λ(dr)f (s, r) = α(s,w). �

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:16 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

Using the functoriality of the factorisation system, we deduce:

Proposition 4.5. The monad T is the minimal full submonad of J that contains sample and score.

4.5 Synthetic Measure Theory

Synthetic mathematics identifies structure and axioms from which we can recover the main
concepts and results of specific mathematical theories, and transport them to new settings. Kock
[2012] demonstrates that some measure theory can be reproduced for any suitable monad on
a suitable category. Ścibior et al. [2017] impose this categorical structure on Qbs and use it to
verify implementations of Bayesian inference algorithms. Our statistical powerdomain T is a very
well-behaved monad. On the full subcategory Qbs ⊆ ωQbs, it restricts to the distribution monad
given by Ścibior et al. [2017]. Like there, T makes ωQbs into a model of synthetic measure theory,
enabling the interpretation of a statistical calculus. We hope to replicate their proofs for the more
expressive SFPC in the future, and only state that ωQbs has this structure.

Recall the central definition to synthetic measure theory. A measure category
(
C,T

)
consists of

a Cartesian closed category C with countable limits and coproducts; and a commutative monad

T over C such that the morphisms 〈〉T0 : T0 → 1 and >>=
[〈
δi, j

〉
j

]
i
: T

∑
i ∈NXi →

∏
j ∈NTX j

are invertible, where δi,i = returnTXi
and δi,j = x 7→ (〈〉−1T0

〈〉) >>= (returnT ◦[]). The intuition is
that elements in T

∑
i Xi , thought of as a measure on a countable coproduct spaces are in one-to-

one correspondence with tuples of measures on the component spaces. Surprisingly, this short
definition guarantees that T1 is a countably-additive semi-ring whose elements resemble scalars,
and measures have a countably-additive structure and scalar multiplication operations. We then
also have a morphism total := T 〈〉 : TX → T1, which we think of as assigning to each measure the
scalar consisting of its total measure.

Theorem 4.6. The statistical powerdomain T equips ωQbs with a measure category structure.

The countable semiring of scalars is given by weights T1 � W with addition and multiplication. In

particular, elements of TX are linear and T is a commutative monad.

Recall that we obtain a probabilistic powerdomain as a full submonad P of T as the equalizer
of 1, total : TX → T1, and a subprobabilistic powerdomain similarly. We make no use of these
additional powerdomains in this work, except to note that there is a continuous normalization
functionTX → (PX)⊥ + {⊤}, where ⊤ is maximal, which returns ⊥ or ⊤ if the overall measure is 0
or∞ respectively, and a normalized probability measure otherwise. In probabilistic programming,
this normalization operation is usually used at the top level to extract a posterior distribution.

4.6 Valuations on Borel-Sco� Open Subsets

We compare our approach to traditional notions of probabilistic powerdomains using the following
concepts. Let X be a set. A lub-lattice of X -subsets is a family of subsets of X that is closed under
finite unions and intersections, and countable unions of ω-chains B0 ⊆ B1 ⊆ . . . w.r.t. inclusion.

Example 4.7 (Scott open subsets). Let P be an ωcpo. A subsetU ⊆ |P | is Scott open when it is

• upwards closed: for all x ∈ U , and y ∈
��Q ��, if x ≤ y then y ∈ U ;

• ω-inaccessible: for every ω-lub∨n∈N yn ∈ U , there is some n ∈ N for which yn ∈ U .

The Scott open subsets form a lub-lattice of subsets.

Example 4.8 (Borel subsets). Let X be a qbs. A subset B ⊆ |X | is Borel when, for every random
element α , the subset α−1[B] ⊆ R is Borel. The Borel subsets form a lub-lattice of subsets.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:17

Example 4.9 (Borel-Scott open subsets). Let X be a qbs. A subset D ⊆ |X | is Borel-Scott open when
it is Borel w.r.t. the underlying qbs and a Scott open w.r.t. the underlying ωcpo. The Borel-Scott
open subsets form a lub-lattice of subsets.

The measurable functions into a Borel space are characterised as approximated by step functions
(see Ex. 3.4). The same is true for ωqbses. Let X be a ωqbs, and B a Borel-Scott open subset of X .
The characteristic function of B is given by [− ∈ B] := [B.1,B∁.0] : X → {0, 1} ⊆ W. A morphism
f : X →W is a step function when it is a finite weighted sum of characteristic functions.

Lemma 4.10 (Approximation by Simple Functions). Let f : X →W be a ωqbs-morphism. Then,

there is an ω-chain fn : X →W of step functions such that
∨

n∈N fn = f .

Proof (Sketch). Define fn :=
∑

1≤i≤4n
[−∈f −1[(i2n ,∞]]]

2n . �

Let O =
(
|O|, ⊆

)
be a lub-lattice over a set X ordered w.r.t. inclusion. An O-valuation [Lawson

1982] is a strict Scott-continuous function v : O → W satisfying the binary inclusion-exclusion

principle: v(A ∪ B) + v(A ∩ B) = v(A) + v(B) for all A,B ∈
��O��. Every lub-lattice of subsets on X

induces a measurable space structure on X by closing under complements and countable unions.
Every valuation induces a unique measure on this measurable space. A valuation v over X is finite
whenv(X) < ∞, and s-finite when it is the pointwise lub of finite valuations. The s-finite valuations
form an ω-chain-closed subset of the valuations.
The linearity and Scott continuity of expectation operators in TX now gives us the following.

Corollary 4.11. Expectation operators are determined by their value on characteristic functions.

This corollary tells us that elements of TX can be thought of as certain (s-finite) valuations
on the lub-lattice of Borel-Scott open subsets. If P is an ωcpo, the valuations over the free ωqbs
generated by P (see §3.3) coincide with traditional valuations on the Scott opens of P . When X is a
qbs with the discrete order, restricting the expectation operators in TX to characteristic functions
yields s-finite measures on the underlying measurable space ΣX , and by Cor. 4.11, each such s-finite
measure uniquely determines the operator. Similarly, when X and Y are qbses with the discrete
order, each Kleisli arrow X → TY determines at most one s-finite kernel ΣX { ΣY by restricting
to characteristic functions. For an sbs X , TX consists of all s-finite measures on X andMTX of all
s-finite kernels R { X , by the randomisation lemma for s-finite kernels [Vákár and Ong 2018].

5 AXIOMATIC DOMAIN THEORY

Domain theory develops order-theoretic techniques for solving recursive domain equations. The
theorems guaranteeing such solutions exist are technically involved. Fiore and Plotkin’s axiomatic

domain theory [1996; 1994] axiomatises categorical structure sufficient for solving such equations.
They aggregate axioms of different strengths dealing with the same domain-theoretic aspects of
the category at hand; the strength of one axiom can compensate for the weakness of another. This
theory allows us to treat recursive domain equations in ωQbs methodically.

This section is technical, and the main result is that ωQbs has an expansion to a category pBS of
ωqbses and partial maps between them, supporting the solution of recursive domain equations. The
type-formers of SFPC, that will denote locally continuous mixed-variance functors over ωQbs, then
have a locally continuous extension to pBS, allowing us to use the solutions of recursive domain
equations as denotations of recursive types.

5.1 Axiomatic Structure

We begin by isolating the structure Fiore postulates as it applies to ωQbs. For the full account, see
Fiore’s thesis. A (Pos)-domain structure D is a pair 〈CD,MD〉 consisting of a Pos-enriched category

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:18 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

CD, and a locally small full-on-objects subcategoryMD consisting solely of monomorphisms such
that for everym : D ֌ Y inMD and f : X → Y in CD:
• the pullback ofm along f exists in CD; and
• in every pullback diagram, the pulled back morphism f ∗m : f ∗D ֌ X is inMD.

We call CD the category of total maps and the monos inMD admissible.

Example 5.1 (Scott open monos). A Scott open mono m : P → Q between ωcpos is a Scott-
continuous function that is a full mono such thatm[P] ⊆ Q is Scott open (see Ex. 4.7). Equivalently,
m is mono andm-images of Scott open subsets are Scott open. Taking the Scott open monos as
admissible monos yields a domain structure Scott over ωCpo.

To define partial maps for Qbs and ωQbs, we use the following two examples. First, define a
strong mono m : X ֌ Y between qbses to be an injective function m : |X | ֌ |Y | such that
m ◦ [MX] = MY ∩ |m[X]| |R | . The strong monos in Qbs coincide with the regular monos, and so are
closed under pullbacks. They are also closed under composition and include all isomorphisms.

Example 5.2 (Borel open monos). Let X , Y be qbses. A Borel open monom : X ֌ Y is a strong
mono whose imagem[X] ⊆ Y is Borel (see Ex. 4.8). Equivalently, a strong mono such thatm-images
of Borel subsets are Borel. The Borel open monos are closed under pullbacks, composition, and
contain all isos. By the completeness of Qbs we have all pullbacks, so taking the Borel open monos
as admissible monos yields a domain structure Borel over Qbs.

Example 5.3 (Borel-Scott open monos). Taking the ωQbs-morphisms that are both Borel open and
Scott open yields BS, our domain structure of interest over ωQbs. It is a domain structure as by
Lemma 3.9 the pullbacks in ωQbs are computed using the pullbacks of ωCpo and Qbs.

To incorporate effects, we extend Fiore’s [1996] account in the following special case. When the
representability axiom (⊣), which we define below, holds, there is a strong monad over C called the
lifting monad −⊥. We define an effectful domain structure to be a triple 〈D,T ,m〉 consisting of a
representable domain structureD with finite products; a strong monad T over the category of total
maps; and a strong monad morphismm : −⊥ → T , thought of as encoding partiality usingT ’s effects.

Our effectful domain structure consists of ωQbs, together with the Borel-Scott open monos; the
probabilistic power-domain of Sec. 4; and, as the resulting lifting monad is the partiality monad
of §3.3, the monad morphismm is the function mapping ⊥ to the zero measure and every other
element x to the Dirac measure δx .

5.2 Axioms and Derived Structure

We develop the domain theory following Fiore’s development and describe the axioms it validates,
summarised in Fig. 10. While doing so, we recall the structure Fiore derives from these axioms.

Partial maps. Each domain structureD = (C,M) constructs a category pD of partial maps. Let X , Y
be C-objects. A partial map description u : X ⇀ Y from X to Y , is a pair u =

(
∂u ,u

)
consisting of

an admissible mono ∂u : Du ֌ X and a C-morphism u : Du → Y . Two descriptions u and v are

equivalent, u ≡ v , when there is an isomorphism i : Du
�−→ Dv satisfying: v ◦ i = u and ∂v ◦ i = ∂u .

A partial mapu : X ⇀ Y is the equivalence class of a description, bearing in mind thatM is locally
small. E.g., for BS, choose inclusions as the canonical representatives ∂u : Du ⊆ X , which uniquely
determine the description. Partial maps form a category pD, with identities given by [id, id], and
the composition v ◦u : X

u−⇀ Y
v−⇀ Z via pullback (see Fig. 11, left). We have an identity-on-objects,

faithful functor J : C → pD mapping each total map f : X → Y to [id, f] : X ⇀ Y .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:19

Structure Axioms

CD total map category
ωQbs

f ≤ д Pos-enrichment
pointwise order

MD admissible monos
Borel-Scott opens

T monad for effects
power-domain

m partiality encoding
m : −⊥ → T , ⊥ 7→ 0

(⊣) every object has a partial
map classifier ↑X : X → X⊥

(fup) every admissible mono is full
and upper-closed

(⊣≤) ⌞−⌟ is locally monotone
(C∨) CD is ωCpo-enriched
(U) ω-colimits behave uniformly

(Lemma 5.8)
(1) CD has a terminal object

(→≤) CD has locally monotone
exponentials

(+) locally continuous total
coproducts

(�) 0→ 1 is admissible
(×∨) CD has a locally

continuous products
(CL) CD is cocomplete
(T∨) T is locally continuous

Derived axioms/structure

pD partial map category
−⊥ partiality monad
(⊣∨) the adjunction J ⊣ L

is locally continuous
(p∨) pD is ωCpo-enriched
(1≤) pD has a partial terminal

(⊗) pD has partial products
(⊗∨) (⊗) is locally continuous
(→∨) CD has locally continuous

exponentials
(Ð⇀−−∨) pD has locally continuous

partial exponentials

(pCL) pD is cocomplete
(p+∨) pD has locally continu-

ous partial coproducts
(BC) J : C ֒→ pD is a bilimit

compact expansion

Fig. 10. The axiomatic domain theory of ωQbs and its probabilistic power-domain

X X

X

id
pD

X

∂
id

pD

X

X

Du

Y

Dv

Z

P

∂u ∂vu v

v ◦ u∂v◦u
:=:=

Du Y

LYX

ηY∂u

u

⌞u⌟
Fig. 11. Partial identities and composition (le�) and characteristic maps (right).

Representability. Given a domain structure, a classifier of partial maps is a collection of admissible
monos

〈
↑X : X ֌ LX

〉
X ∈C , indexed by the objects of C, such that for every Y , and every partial

map f : X ⇀ Y , there is a unique (total) map ⌞f ⌟ : X → LY such that Fig. 11 (right) is a pullback
square. We call ⌞f ⌟ the total representation of f . Each classifier ↑ of partial maps induces a right
adjoint J ⊣ L : pD→ C with ↑ as unit. We give two well-known and two novel examples.

Example 5.4 (partiality in Set). The collection
〈
ι1 : X → X + {⊥}

〉
X ∈Set classifies the partial maps

of Fn, the domain structure over Set with injections as admissible monos. The representation of a
partial function maps the elements outside the domain to ⊥. The induced adjunction is isomorphic
to the Kleisli resolution of the partiality monad (−) + {⊥}.

Example 5.5 (partiality in ωCpo). Let X⊥ be the lifting of the ωcpo X by adjoining a new bottom
element. The collection

〈
↑ : X → X⊥

〉
X ∈ωCpo

classifies the Scott-partial maps with ⌞−⌟ as in Fn.

The induced adjunction is isomorphic to the Kleisli resolution of the lifting monad (−)⊥.
Example 5.6 (partiality in Qbs). The collection

〈
ι1 : X → X + {⊥}

〉
X ∈Qbs classifies the Borel-

partial maps with ⌞−⌟ as in Fn. The induced adjunction is isomorphic to the Kleisli resolution of
the partiality monad (−) + {⊥}.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:20 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

Example 5.7 (partiality in ωQbs). The collection
〈
↑ : X → X⊥

〉
X ∈Qbs classifies the BS-partial

maps with ⌞−⌟ as in Fn. The induced adjunction is the Kleisli resolution of the monad (−)⊥ of §3.3.

Enrichment. The order enrichment of CBS = ωQbs is an ωCpo-enrichment. Moreover, the partial
map category inherits a potential Pos-enrichment: for u,v : X ⇀ Y , write u ⊑ v to mean that
there is some i : Du → Dv such that ∂u = ∂v ◦ i and u ≤ v ◦ i . The isomorphism pD � ωQbs−⊥
respects ⊑ and ≤, i.e., u ⊑ v : X ⇀ Y iff ⌞u⌟ ≤ ⌞v⌟ as morphisms X → Y⊥ in ωQbs, and so
pD is ωCpo-enriched. We can also deduce this fact from more fundamental axioms. First, every
admissible mono is full and its image is upper-closed. As a consequence of Fiore’s Prop. 4.2.4,
the order ⊑ is a partial order and Pos-enriches pD. Denote the inverse map to representation by⌜−⌝ : CBS(X ,Y⊥) → pBS(X ,Y). Because ⌜−⌝ is monotone, the adjunction J ⊣ L : pD is locally
monotone [ibid., Prop. 4.5.4], and, as a consequence pD is ωCpo-enriched [ibid., Prop. 4.5.3].

Uniformity. As ωQbs is cocomplete (Cor. 7.2 in Appx. B), it has local ω-lubs, but these lubs can
behave pathologically [ibid., Sec. 4.3.2]. The following uniformity axiom avoids such pathologies.

Lemma 5.8 (Uniformity). Let 〈in+1 : Dn ֌ Dn+1〉n∈N be an ω-chain of Borel-Scott open monos.

• Every colimiting cocone
(
D,

〈
µn : Dn → D

〉
n∈N

)
consists of Borel-Scott opens.

• The mediating morphism into any other cocone of Borel-Scott opens is also Borel-Scott open.

Unit type. As ωQbs has a terminal object 1, the partial maps have 1 as a partial terminal object:
every hom-poset pBS(A,1) has a unique maximal morphism [ibid., p. 84].

Product types. As ωQbs has binary products X × Y , we can extend the binary product functor
(×) : CD × CD → CD to a partial-product functor ⊗ : pD × pD→ pD [ibid., Prop. 5.1.1]. Because
ωQbs has exponentials, the functor − × X preserves colimits. As a consequence, as products are
locally continuous, and as axioms (U), (p∨) hold, (⊗) is locally continuous [ibid., Prop. 5.1.3].

Variant types. Because ωQbs is cocomplete, using axioms (⊣),(1) we deduce that pD is cocom-
plete [ibid., Theorem 5.3.14], and colimiting cocones of total diagrams comprise of total maps and
are colimiting in CD [ibid., Prop. 5.2.4]. As the coproducts ofωQbs are locally continuous, so are the
coproducts in pBS [ibid., Prop. 5.3.13]. As a consequence, the locally continuous finite-coproduct
functor

∑
i ∈I : ωQbsI → ωQbs extends to a locally continuous functor

∐
i ∈I : pDI → pD on

partial maps [ibid., remark following Cor. 5.3.10].

Effectful function types. The following development is new, as Fiore only considered the partiality
effect. As we now saw, when the representability axioms (⊣),(⊣≤), and the enrichment axioms
(p∨),(⊗∨) hold, we have a locally continuous strong lifting monad −⊥ over C. Recall the additional
structure given in an effectful domain structure 〈D,T ,m〉 , namely the locally monotone strong
monad T over CD, and the strong monad morphismm : −⊥ → T . We further assume that T is
locally continuous, which we call axiom (T∨). Thm. 4.3 validates it for the statistical powerdomain.

We have an identity-on-objects locally continuous functor ⌞−⌟T : pD→ CT , from the category
of partial maps into the Kleisli category for T , given for every partial map u : X ⇀ Y by:

⌞u⌟T : X
⌞u⌟
−−→ Y⊥

m−→ TY

When axiom (→≤) holds, the composite functor (⊙X) : ⌞J − ⊗X ⌟T : C → CT has a right adjoint:

(X Ð⇀−−T −) : CT → C X Ð⇀−−T Y := (TY)X X Ð⇀−−T v := λX .

(
(TY1)X × X

eval−−−→ TY1
>>=v−−−−→ TY2

)
for every v : Y1 → TY2. Axiom (→≤) implies the exponential adjunction is locally continuous,
and as a consequence, (Ð⇀−−T) is locally continuous. We use it to extend Kleisli exponentiation

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:21

(− ⇒ T−) : Cop × C → C to a locally continuous functor (Ð⇀−−T) : pDop × pD→ pD by setting, for
every u : X2 ⇀ X1 and v : Y1 ⇀ vY2:

u Ð⇀−−T v := JλX .

(
(TY1)X1 × X2

⌞id⊗u⌟T−−−−−−→ T ((TY1)X1 × X1)
>>=eval−−−−−−→ TY1

>>=⌞v⌟T−−−−−−→ TY2

)

Recursive types. To solve recursive domain equations, we synthesise axiomatic domain theory with
Levy’s more modern account [2004]. Recall that an embedding-projection-pair (ep-pair) u : A −֒⇀↽− B

in an ωCpo-enriched category B is a pair consisting of a B-morphism ue : A→ B, the embedding,
and a B-morphism up : B → A, the projection, such that e ◦ p ≤ id and p ◦ e = id. An embedding

u : A ֒→ B is the embedding part of some ep-pair A −֒⇀↽− B. Every embedding u : A ⇀֒ B in a partial

map category with axiom (p∨) is a total map u : A→ B [Fiore 1996, Prop. 5.4.2].
An ω-chain of ep-pairs

(
〈An〉n∈N, 〈an〉n∈N

)
in B consists of a countable sequence of objects

An and a countable sequence of ep-pairs an : An −֒⇀↽− An+1. A bilimit (D,d) of such an ω-chain

consists of an object D and a countable sequence of ep-pairs dn : An −֒⇀↽− D such that, for all n ∈ N,
dn+1 ◦ an = dn , and

∨
n∈N d

e
n ◦ d

p
n = idD . The celebrated limit-colimit coincidence [Smyth and Plotkin

1982] states that the bilimit structure is equivalent to a colimit structure (D,de) for (〈An〉 ,
〈
aen

〉
),

in which case dpn are uniquely determined, and similarly equivalent to a limit structure (D,dp) for
(〈An〉 ,

〈
a
p
n

〉
), in which case den are uniquely determined. As we saw, the partial map category pBS

has all colimits (derived axiom (pCL)), and so pBS has bilimits of ω-chains of ep-pairs.
A zero object is an object that is both initial and terminal. An ep-zero object in an ωCpo-category

is a zero object such that every morphism into it is an embedding and every morphism out of it is a
projection. We say that axiom (�) holds in a domain structure D in which C has both an initial
object 0 and terminal object 1, when the unique morphism 0 → 1 is an admissible mono. The
Borel-Scott domain structure satisfies (�). When axioms (+),(1),(×∨),(→≤),(CL),(�),(⊣), and (⊣≤)
hold, pD has 0, the initial object of C, as an ep-zero object. So in pBS the empty ωqbs is an ep-zero.

A bilimit compact category is an ωCpo-category B with an ep-zero and ep-pair ω-chain bilimits.
So pBS is bilimit compact.WhenA,B are bilimit compact, every locally continuous, mixed-variance
functor F : Aop × Bop × A × B → B has a parameterised solution to the recursive equation

roll : F (A,X ,A′,X) �−→ X , for every A, A′ in A, qua the bilimit
(
µB.F (A,B,A′,B),dF ,A,A′

)
of

0 −֒⇀↽− F (A,0,A′,0) ֒
F ep(A,↼−−−֒⇁,A′, −֒⇀↽−)
−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−− F (A, F (A,0,A′,0),A′, F (A,0,A′,0)) −֒⇀↽− · · · −֒⇀↽− Fn(A,A′) −֒⇀↽− · · ·

The solution is minimal in the sense of Pitts [1996], and we denote the inverse to roll by unroll. The
assignments µB.F (A,B,A′,B) extend to a mixed-variance functor µB.F (−,B,−,B) : Aop × A → B
by µB.F (f ,B,д,B) := ∨

n d
e
n ◦ Fn(f ,д) ◦ d

p
n .

Finally, a bilimit compact expansion J : C ֒→ B is a triple consisting of an ωCpo-category C, a
bilimit compact category B; and an identity-on-objects, locally continuous, order reflecting functor
J : C → B such that, for every ep-pair ω-chains (A,a), (B,b) in B, their bilimits (D,d), (E, e), and
countable collection of C-morphisms 〈αn : An → Bn〉n∈N such that for all n:

Jαn+1 ◦ aen = ben ◦ Jαn , Jαn ◦ apn = bpn ◦ Jαn+1
(i.e., Jα : (A,ae) → (B,be) and Jα : (A,ap) → (B,bp) are natural transformations), there is a
C-morphism f : A→ B such that J f =

∨
n e

e
n ◦ αn ◦ d

p
n . The motivation for this definition: given

two bilimit compact expansions I : D ֒→ A, J : C ֒→ B, and two locally continuous functors

F : Dop × Cop × D × C → C G : Aop × Bop × A × B → B s.t. G ◦ Iop × J op × I × J = J ◦ F

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:22 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

the functor µB.G(−,B,−,B) : Aop × A → B restricts to µB.G(J op−,B, J−,B) : Dop × D → C.
Bilimit compact expansions are closed under products and opposites [Levy 2004].

Returning to axiomatic domain theory, when axioms (⊣),(⊣≤),(1),(×∨),(→≤),(CL), and (�) hold,
the embedding J : C ֒→ pD is a bilimit compact expansion of total maps to partial maps. To show
the third condition in the definition of expansion, note that embeddings in pD are total, and we
can use the limit-colimit coincidence to reflect the two bilimits along J to the colimits in C, and
find a mediating morphism f : D → E. This morphism maps to the mediating morphism in pD,
which is precisely

∨
n e

e
n ◦ αn ◦ d

p
n .

5.3 Summary: Semantics of Types

Using axiomatic domain theory, we constructed an expansion J : ωQbs ֒→ pBS to a suitable
category of partial maps. We use it to interpret SFPC’s type-system. We define two interpretations
for type-variable contexts ∆ as ωCpo-categories, and two locally continuous interpretations of
well-kinded types ∆ ⊢k τ : type: a total map interpretation ⟦−⟧ and its extension {| − |} to partial
maps, i.e. J ◦ ⟦−⟧ = {| − |} ◦ J op × J :

⟦∆⟧ :=∏
α ∈∆

ωQbs {|∆|} :=
∏
α ∈∆

pBS ⟦τ⟧ : ⟦∆⟧op × ⟦∆⟧→ ωQbs {|τ |} : {|∆|}op × {|∆|}→ pBS

⟦α⟧ := πα {|α |} := πα⟦R⟧ := R {|R|} := R⟦1⟧ := 1 {|1|} := 1

⟦τ ∗ σ⟧ := ⟦τ⟧ × ⟦σ⟧ {|τ ∗ σ |} := {|τ |} ⊗ {|σ |}⟦τ → σ⟧ := ⟦τ⟧⇒ T ⟦σ⟧ {|τ → σ |} := {|τ |} Ð⇀−−T {|σ |}

LPPPPPPN
{ℓ1 τ1�� . . .�� ℓn τn}

MQQQQQQO
:=

n∑
i=1
⟦τi⟧ {|

{ℓ1 τ1�� . . .�� ℓn τn}|} :=
n∐
i=1

{|τi |}
⟦µα .τ⟧ := µα . {|µα .τ |} := µα .
{|τ |}(J−,α , J−,α) {|τ |}(−,α ,−,α)

6 SEMANTICS FOR SFPC

Operational semantics for statistical probabilistic calculi such as SFPC require a mathematically
technical development. The difficulty comes from dealing with continuous distributions over
programs that manipulate continuous data. We follow the recipe previously employed by Staton
et al. [2016] (others have used broadly similar methods, e.g. Borgström et al. [2016]). Each program
phrase involving the real numbers r1, . . . , rn can be represented as an open term t with free
variables x1, . . . ,xn each used linearly and in sequence, together with the tuple 〈r1, . . . , rn〉 ∈ Rn .
This separation lets us equip the abstract syntax with a measurable space structure, and define a
big-step operational semantics as kernels between these syntactic spaces [Staton et al. 2016].

6.1 Measure Theoretic Preliminaries

Constructing spaces. Every set is the carrier of a discrete measurable space, in which all subsets
are measurable. We will typically only consider discrete spaces of countable carriers, as these are
precisely the discrete standard Borel spaces. Let I be a set indexing some measurable spaces Xi .
The measurable subsets of the disjoint union

∑
i ∈I Xi are the disjoint unions

∑
i ∈I Ai of measurable

subsets Ai in Xi . When I is countable, the measurable subsets of the cartesian product
∏

i ∈I Xi are
given by taking the boxes

∏
i ∈I Ai , with each Ai measurable in Xi , and closing under countable

unions and complements. These three constructions are the free measurable space over a set,
categorical coproduct, and categorical countable product in the category of measurable spaces.

Constructing kernels. The Dirac kernel δ− : X { X assigns to each x ∈ |X | its Dirac distribution
defined by δx (A) = 1 for x ∈ A and δx (A) = 0 otherwise. Every measurable function f : X → Y

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:23

inudces a kernel f : X { Y by setting f (x ,A) ≔ δf (x)(A). Each kernel k : X { Y acts on measures
µ over X yielding the unique measure µ >>= k over Y satisfying, for all measurable φ : Y → [0,∞]:∫

Y

(µ >>= k)(dy)φ(y) =
∫
X

µ(dx)
∫
Y

k(x , dy)φ(y)

Moreover, given k : X { Y and l : Y { Z , the mapping x 7→ k(x) >>= l is a kernel k >> l : X { Z .
The s-finite kernels are closed under this composition [Kallenberg 2017; Staton 2017].

6.2 Syntax Spaces

Consider the set of terms of type τ in variable context Γ, TrmΓ⊢τ
≔ {t |Γ ⊢ t : τ }. The set of values

of type τ in context Γ consists of the subset ValΓ⊢τ ⊆ TrmΓ⊢τ given inductively by:

v,w,u ::= x | rrrrrrrrrrrrrrrrr | () | (v,w) | τ .ℓv | τ .roll (v) | λx : τ .t values.

We want to equip TrmΓ⊢τ and ValΓ⊢τ with a measurable space structure. Let ∆ range over non-
symmetric linear variable contexts of type R, namely finite sequences of variables, and let mixed

variable contexts Γ;∆ be pairs of variable context Γ and linear contexts ∆ with disjoint sets of
variables. Each such mixed context can be turned into an ordinary variable context Γ,∆ : R by
treating the identifiers in ∆ as variables of type R. We will use the identifiers �,�1,�2 for the
variables in ∆. A term template is a term that does not involve nullary primitives rrrrrrrrrrrrrrrrr . We refine the
SFPC type-system to judgements of the form Γ;∆ ⊢ t : τ by treating ∆ non-symmetric linearly, e.g.:

Γ;� ⊢ � : R

Γ;∆1 ⊢ t : σ → τ Γ;∆2 ⊢ s : σ
Γ;∆1,∆2 ⊢ t s : τ

Let TTrmΓ;∆⊢τ ⊆ TrmΓ,∆:R⊢τ be the set of well-formed templates Γ;∆ ⊢ t : τ and TValΓ;∆⊢τ ⊆ TValΓ;∆⊢τ

be the set of well-formed template values. Given any ∆ = �1, . . . ,�k , and r1, . . . , rk ∈ R, we define
the following function

−[r1, . . . , rn] : TTrmΓ;∆⊢τ → TrmΓ⊢τ t[r1, . . . , rn] := t[�1 7→ r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1, . . . ,�k 7→ rkrkrkrkrkrkrkrkrkrkrkrkrkrkrkrkrk]
Combining these functions we have a bijection

∑
n∈N,t ∈TTrmΓ;�1, . . .,�n ⊢τ R

n
� TrmΓ⊢τ .

Example 6.1. The Bayesian linear regression program from Fig. 1(a) is represented by:

©­­­­«
11,

leta = normal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rngnormal-rng (�1,�2) in (0, 2,
score(normal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdf (�3 | a ∗�4,�5)); 1.1, 1, 0.25,
score(normal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdf (�6 | a ∗�7,�8)); , 1.9, 2, 0.25,
score(normal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdfnormal-pdf (�9 | a ∗�10,�11));a 2.7, 3, 0.25)

ª®®®®¬
The representation

∑
n∈N,t ∈TTrmΓ;�1, . . .,�n ⊢τ R

n has a canonical measurable space structure, com-

bining the Borel σ -algebra on Rn and the coproduct σ -algebra. As a consequence, we equip TrmΓ⊢τ

with the measurable space structure making the representation a measurable isomorphism. Sim-
ilarly, we equip ValΓ⊢τ with a measurable space structure. Summing over all types, we get the
measurable spaces of closed terms, Trm, and closed values, Val.

6.3 Operational Semantics

We define a structural operational semantics as a kernel ⇓ : Trm { Val. As usual, the operational
semantics is not compositional. E.g., the semantics of function application is not defined in terms
of that of a subterm, but of a substituted subterm. As a consequence, we construct an increasing
sequence of kernels ⇓n : Trm { Val indexed by the natural numbers and set ⇓ ≔ ∨

n ⇓n . At level 0,
the evaluation kernel is the least kernel, namely t ⇓0 A := 0 for every closed term t and measurable

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:24 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

(
sample ⇓n

)
:= U[0,1] >>= λr .δrrrrrrrrrrrrrrrrr

(
score(t) ⇓n

)
:=

(
t ⇓n

)
>>= λrrrrrrrrrrrrrrrrr .|r | · δ()

Fig. 12. big-step operational semantics for SFPC’s statistical primitives (n > 0)

A ⊆ Val. For positive levels n > 0, we use the following three notational conventions that highlight
that the semantics is a standard adaptation of the more familiar operational semantics. First:

k1(t)w1 k2(t ,w1)w2 . . . kn(t ,w1, . . . ,wn)v
l(t) f (t ,w1, . . . ,wn ,v)

means

Second: l(t) ≔ k1(t) l(t) ≔ k2(t) means l(t) ≔ k1(t) + k2(t)

l(t) ≔ k1 (t) >>= λw1.

k2 (t ,w1) >>= λw2. . . .

kn(t ,w1, . . . ,wn−1)>>= λv .
δf (t,w1, ...,wn,v)

i.e., we sum overlapping definitions. Finally, if one of the intermediate kernels ki is undefined (on a
measurable subset), we define l(t) to have measure 0 on this subset.

Fig. 12 shows the crucial definitions involved in the indexed evaluation kernels are sampling and
conditioning, which evaluate using the interpreter’s corresponding primitives (see Appx. A for the
full semantics). The kernel ⇓ is s-finite, as the s-finite kernels are closed under composition and
lubs [Staton 2017].

6.4 Contextual Equivalence

The operational semantics lets us compare the meaning of terms using the following standard
notions. Given variable context Γ1, Γ2, we say that Γ2 extends Γ1, and write Γ2 ≥ Γ1 when, for all
(x : τ) ∈ Γ1, we have (x : τ) ∈ Γ2. Program contexts of type σ with a hole − of type Γ ⊢ τ are terms
C[Γ ⊢ − : τ] of type σ with a single variable of type τ , where this variable − always occurs inside
the term in contexts Γ′ ≥ Γ. Write C[t] for the capturing substitution C[Γ ⊢ − : τ][− 7→ t].
Two terms t , s ∈ TrmΓ⊢τ are in the contextual preorder t - s when for all program contexts

C[Γ ⊢ − : τ] of type R, we have that C[t] ⇓ ≤ C[s] ⇓ in the usual (pointwise) order of measures on
Val⊢R. We say that t and s are contextually equivalent, writing t ≈ s , when t - s and s - t

The observational preorder and equivalence are the same even if we vary the definitions:

(1) using contexts of type 1 and observing only the weight of convergence;
(2) using contexts of ground type (i.e. iterated sums and products of primitive types) and observ-

ing the distribution over Val⊢τ ;
(3) using contexts of arbitrary type τ and observing the induced distribution over Val⊢τ /∼, where
∼ is the smallest congruence identifying all λ-abstractions (as done in [Pitts 1996]).

Indeed, for the equivalence of 1., 2. and 3., use characteristic functions Rn → R. For the equivalence
with our notion, observe that 1 embeds into R and, conversely, distinguish any distribution on
Val⊢R with contexts of type 1 by usingmat� [− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A][− ∈ A](−R)with {00000000000000000→ ⊥

�� _→ ()}, for Borel A ⊆ R.
6.5 Idealised Church and SPCF

Since both Idealised Church (§2.3) and SPCF (§2.4) are fragments of SFPC, they inherit an operational
semantics and a notion of contextual equivalence w.r.t. contexts in the fragment. For Idealised
Church, these contexts translate into certain SFPC program contexts of typeΛ- TermR. The induced
notion of contextual preorder is now that for two Idealised Church terms we set t - s when
C[t]† ⇓ ≤ C[s]† ⇓ as distributions on Val⊢Λ- TermR/∼ for all Idealised Church program contexts
C[−], where ∼ identifies all values of the form Fun (λx .t). For CBV SPCF program contexts of type
R induce an analogous notion of contextual preorder and equivalence.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:25

⟦sample⟧γ
:= sample()

⟦score t⟧γ :=⟦t⟧γ >>=T score
⟦τ .roll t⟧γ :=
T roll(⟦t⟧γ) ⟦mat� t with

rollx → s
⟧γ :=

⟦t⟧γ >>= λa.⟦s⟧γ [x 7→ unroll a]

Fig. 13. The denotational interpretation of the statistical and recursive primitives

Lemma 6.2. The translations Idealised Church
(−)†−−−→ SFPC

(−)‡←−−− CBV SPCF are adequate:

t†1 -SFPC t†2 =⇒ t1 -Idealised Church t2 s‡1 -SFPC s‡2 =⇒ s1 -CBV SPCF s2

Proof. Both languages are fragments of SFPC with the induced operational semantics. Moreover,
the source contexts are a subset of those of SFPC. Therefore, the SFPC contextual preorder is as
fine-grained as each fragment’s contextual preorder. �

6.6 Denotational Semantics

Recall the type semantics of §5.3 for SFPC: closed types τ denote ωqbses ⟦τ⟧. We extend this
assignment to contexts by: ⟦Γ⟧ :=∏

(x :τ)∈Γ ⟦τ⟧. We define semantics for values and terms:

⟦−⟧v : ValΓ⊢τ → ωQbs(⟦Γ⟧ , ⟦τ⟧) ⟦−⟧ : TrmΓ⊢τ → ωQbs(⟦Γ⟧ ,T ⟦τ⟧)
such that returnT

⟦τ ⟧

(⟦v⟧v γ) = ⟦v⟧γ for every v ∈ ValΓ⊢τ and γ ∈ ⟦Γ⟧. This interpretation is the

standard semantics of a call-by-value calculus using a monad over a bi-cartesian closed category.
The semantics for the core primitives are in Fig. 13. The full details are in Appx. A.

Induction on terms and values proves that the semantics has the following standard properties:

Lemma 6.3 (Substitution). Let ⊢ vx : σ , (x : σ) ∈ Γ be closed SFPC values and Γ ⊢ t : τ be an

SFPC term. Then ⟦t[x 7→ vx](x :σ)∈Γ⟧ = ⟦t⟧ [x 7→ ⟦vx ⟧v ()] (x :σ)∈Γ .
Theorem 6.4 (Compositionality). LetC[Γ ⊢ − : τ] be an SFPC program context and let Γ ⊢ t , s : τ

be SFPC terms. If ⟦t⟧ ≤ ⟦s⟧ then ⟦C[t]⟧ ≤ ⟦C[s]⟧. As a consequence, the meaning of a term depends

only on the meaning of its sub-terms: if ⟦t⟧ = ⟦s⟧ then ⟦C[t]⟧ = ⟦C[s]⟧.
6.7 Enriched Semantics

These semantic definitions can be phrased inside the categoryωQbs. Recall from §3.1 the adjunction
Σ− ⊣ M− : Qbs→ Meas. The coproduct representation of TrmΓ⊢τ as

∑
n∈N,t ∈TTrmΓ;�1, . . .,�n ⊢τ R

n is
meaningful inωQbs too. Because left adjoints preserve co-products, its underlyingmeasurable space
is the measurable space structure of TrmΓ⊢τ from §6.2. Similarly, ValΓ⊢τ is the underlying measurable
space of a qbs. Both becomeωqbses via the discrete order. The denotational interpretation functions

are ωqbs-morphisms ⟦−⟧v : ValΓ⊢τ → ⟦τ⟧⟦Γ⟧ and ⟦−⟧ : TrmΓ⊢τ → (T ⟦τ⟧)⟦Γ⟧.
Lemma 6.5. The denotational semantics ⟦−⟧v : Val ⊢R → R is a an isomorphism. Therefore,⟦−⟧vT := T ⟦−⟧v : TVal ⊢R → TR is an isomorphism.

The notational conventions defining the big-step operational semantics kernel internalise in
ωQbs, if we read returnT for δ and sample forU[0,1]. We can therefore define an abstract interpreter
as an ω-qbs map ⇓ : Trm⊢τ → TVal⊢τ . As in §4.6, because we equipped Val⊢τ with the discrete
order, the Kleisli arrow ⇓ : Trm⊢τ → TVal⊢τ induces at most one s-finite kernel ⇓ : Trm⊢τ { Val⊢τ

by restriction to characteristic functions. This kernel is in fact the big-step semantics from §6.3.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:26 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

r E
⊢R
v rrrrrrrrrrrrrrrrr ⇔ ⊤ 〈〉 E⊢1v () ⇔ ⊤ 〈a1,a2〉 E⊢τ1∗τ2v (v1,v2) ⇔ a1 E

⊢τ1
v v1 ∧ a2 E⊢τ2v v2

ιi (a) E⊢τv τ .ℓ jv ⇔ i = j ∧ a E⊢τiv v

(τ = {ℓ1 τ1
�� . . . �� ℓn τn}) roll a E⊢τv τ .rollv ⇔

a E
⊢σ [α 7→τ]
v v (τ = µα .σ)

Λ(k) E⊢τ→σ
v λx : τ .t ⇔

k ≤ ⟦t⟧ ∧ k Ex :τ ⊢σ
c t

µ E⊢τc t ⇔
µ ≤ ⟦t ⇓⟧vT

b EΓ⊢τ
v w⇔ ∀

〈
ax E⊢σv vx

〉
(x :σ)∈Γ .b (ax)(x :σ)∈Γ E⊢τv w[x 7→ vx](x :σ)∈Γ

k EΓ⊢τ
c t ⇔ ∀

〈
ax E⊢σv vx

〉
(x :σ)∈Γ .k (ax)(x :σ)∈Γ E⊢τc t [x 7→ vx](x :σ)∈Γ

Fig. 14. The properties of the relational interpretation (logical relation) Ev and Ec .

6.8 Adequacy

The key to relating the denotational and operational semantics is to establish that ⟦t⟧ = ⟦t ⇓⟧vT as
expectation operators in T ⟦τ⟧. As usual, we prove one inequality by induction on the syntax.

Lemma 6.6 (Computational Soundness). For every closed term ⊢ t : τ , we have ⟦t⟧ ≥ ⟦t ⇓⟧vT .
For the other direction, we construct a logical relation, using a variation of Pitts’ minimal

invariant relations method in bilimit compact categories [Levy 2004; Pitts 1996].

Lemma 6.7 (Relational Interpretation). For every context Γ and type τ of SFPC, there are

relations EΓ⊢τ
v ⊆ ωQbs(⟦Γ⟧ , ⟦τ⟧) × ValΓ⊢τ and EΓ⊢τ

c ⊆ ωQbs(⟦Γ⟧ ,T ⟦τ⟧) × TrmΓ⊢τ satisfying Fig. 14.

We have that a E⊢τv v implies that a ≤ ⟦v⟧v . Therefore, using the Substitution Lemma 6.3 and
the definitions of ⇓, ⟦−⟧v and ⟦−⟧, we establish the following fundamental lemma, by a lengthy
mutual induction on the structure ofw and s .

Lemma 6.8 (Fundamental). For everyw ∈ ValΓ⊢τ and s ∈ TrmΓ⊢τ ⟦w⟧v EΓ⊢τ
v w and ⟦s⟧ EΓ⊢τ

c s .

In particular, for closed terms ⊢ t : τ we have ⟦t⟧ ≤ ⟦t ⇓⟧vT . Adequacy now follows:

Theorem 6.9 (Adeqacy). For all types τ of SFPC and all closed terms t , s ∈ Trm ⊢τ , we have that⟦t⟧ ≤ ⟦s⟧ implies that t - s . In particular, ⟦t⟧ = ⟦s⟧ implies that t ≈ s .
Proof. Assume ⟦t⟧ ≤ ⟦s⟧ and consider any any context C[Γ ⊢ − : τ] of type R. By the Composi-

tionality Thm. 6.4, we have: ⟦C[t]⟧ ≤ ⟦C[s]⟧ . Therefore: ⟦C[t] ⇓⟧vT = ⟦C[t]⟧ ≤ ⟦C[s]⟧ = ⟦C[s] ⇓⟧vT .
By Lemma 6.5, we deduce C[t]⇓ ≤ C[s]⇓. So t - s . �

By Lemma 6.2, it now follows that the induced denotational semantics of Idealised Church at the
ωqbs ⟦Λ- TermR⟧ and the induced denotational semantics of CBV PPCF are adequate.

Corollary 6.10. For Idealised Church or CBV PPCF terms t , s , ⟦t⟧ ≤ ⟦s⟧ implies that t - s .

We conclude with two applications of the Adequacy Thm. 6.9. First, evaluation order in SFPC
and its sub-fragments does not matter, as a consequence of the monad commutativity (Thm. 4.6):

Corollary 6.11. For every Γ ⊢ t : τ , Γ ⊢ s : σ , and Γ,x : τ ,y : σ ⊢ r : ρ we have:

let (x : τ) = t in

let (y : σ) = s in r ≈ let (y : σ) = s in
let (x : τ) = t in r

Second, we show that our definable term-level recursion operator is indeed a fixed-point operator:

Corollary 6.12. Let τ = τ1 → τ2 be a function type. For every Γ,x : τ ⊢ t : τ we have

µx : τ .t ≈ t[x 7→ µx : τ .t]. Therefore, the following derivation rule is admissible:

t[x 7→ µx : τ .t] ⇓ v
µx : τ .t ⇓ v

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

A Domain Theory for Statistical Probabilistic Programming 36:27

7 RELATEDWORK AND CONCLUDING REMARKS

There is an extensive body of literature on probabilistic power-domain constructions. We high-
light the first denotational models of higher-order probabilistic languages with recursion [Saheb-
Djahromi 1980] and the work of Jones and Plotkin [1989] who give an adequate model of FPC with
discrete probabilistic choice based on a category of pre-domains and a probabilistic power-domain
construction using valuations. Crucially, in this approach, commutativity of the probabilistic power-
domain may fail unless one restricts to certain subcategories of continuous domains which are
known to not be Cartesian closed. Jung and Tix [1998] survey the challenges in the search for such
a sub-category of continuous domains that admits function spaces and probabilistic power-domains.
One ingredient of this problem is that the measurable space structure used is generated from the
Scott topology of the domain at hand. Subsequently Barker [2016]; Goubault-Larrecq and Varacca
[2011]; Mislove [2016]; and Bacci et al. [2018] proposed variations on this in which random variables
play a crucial role, as they do in qbses. We extend their reach by establishing commutativity.
Ehrhard et al. [2017] gave an adequate semantics for a call-by-name PCF with continuous

probabilistic choice. The semantics is based on a variation of stable domain theory, using cones and
stable functions, equipped with a notion of random elements analogous to a qbs-structure which
they call measurability tests. We extend their reach by interpreting soft constraints, recursive types,
and commutativity. A large technical difference with our work arises from their choice to work
with cones rather than ωcpos, and with stable functions, rather than mere continuous functions,
and from our choice to use monadic semantics.

Borgström et al. [2016] conducted a thorough operational treatment of an untyped probabilistic
calculus, à la Idealised Church. Our work complements this analysis with a denotational counterpart.

Topological domain theory (TDT) [Battenfeld et al. 2007] accommodates most of the features that
we have considered in this paper. In particular, it provides a cartesian closed category with an
algebraically compact expansion and a commutative probabilistic powerdomain. Indeed, Huang
et al. [2018] have already proposed it as a basis for statistical probabilistic programming. We leave
the formal connections between topological domains and ωqbses for future investigation, but we
compare briefly, following §1.2. In traditional domain theory, the Borel structure is derived from
the order; in TDT, both order and Borel structure are derived from the topology; and in ωqbses,
both order and Borel structure are independent (see §3.3). Concretely, TDT disallows topological
discontinuities such as our zero-testing conditionals; moreover it makes a direct connection to
computability [Ackerman et al. 2011].

To conclude, we developed pre-domains (§3) for statistical probabilistic recursive programs via:

• a convenient category ωQbs, being Cartesian closed and (co)complete (Cor. 3.10);
• a commutative probabilistic power-domain modelling synthetic measure theory (§4);
• an interpretation of recursive types, through axiomatic domain theory (§5);
• adequate models of recursive languages with continuous probabilistic choice and soft con-
straints, of recursively typed, untyped and simply types varieties (§6);
• canonicity through four independent characterisations of ωQbs (§B).

This semantics gives sound reasoning principles about recursive probabilistic programs.

ACKNOWLEDGMENTS

Research supported by Balliol College Oxford (Career Development Fellowship), EPSRC (grants
EP/N007387/1, EP/M023974/1), and the Royal Society. We are grateful to the reviewers for their
suggestions. It has been helpful to discuss this work with the Oxford PL and Foundations groups,
at the Domains 2018 and HOPE 2018 workshops, and with Marcelo Fiore, Chris Heunen, Paul Levy,
Carol Mak, Gordon Plotkin, Alex Simpson, Hongseok Yang, amongst others.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

36:28 Ma�hijs Vákár, Ohad Kammar, and Sam Staton

REFERENCES

Martin Abadi and Marcelo P Fiore. 1996. Syntactic considerations on recursive types. In Proc. LICS 1996. IEEE, 242–252.
Nathanael L Ackerman, Cameron E. Freer, and Daniel M. Roy. 2011. Noncomputable conditional distributions. In Proc. LICS

2011. 107–116.
J. Adamek and J. Rosicky. 1994. Locally Presentable and Accessible Categories. Cambridge University Press.
Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott. 2018. Boolean-valued

semantics for the stochastic λ-calculus. In Proc. LICS 2018.
Tyler Barker. 2016. A monad for randomized algorithms, In Proc. MFPS 2016. Electronic Notes in Theoretical Computer

Science 325, 47–62.
Ingo Battenfeld, Matthias Schröder, and Alex Simpson. 2007. A convenient category of domains. Electronic Notes in

Theoretical Computer Science 172 (2007), 69–99.
Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation for

universal probabilistic programming. In Proc. ICFP 2016. 33–46. Full version at arxiv:abs/1512.08990.
Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2017. Measurable cones and stable, measurable functions: a model

for probabilistic higher-order programming. Proceedings of the ACM on Programming Languages 2, POPL (2017), 59.
Marcelo P. Fiore. 1996. Axiomatic Domain Theory in Categories of Partial Maps. Cambridge University Press.
Marcelo P Fiore and Gordon D Plotkin. 1994. An axiomatisation of computationally adequate domain theoretic models of

FPC. In Proc. LICS 1994. 92–102.
Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum. 2008. Church: a language

for generative models. In Proc. UAI 2008.
Noah Goodman and Andreas Stuhlmüller. 2014. Design and Implementation of Probabilistic Programming Languages.

http://dippl.org. Online book.
Jean Goubault-Larrecq and Daniele Varacca. 2011. Continuous random variables. In Logic in Computer Science (LICS), 2011

26th Annual IEEE Symposium on. IEEE, 97–106.
Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order probability

theory. In Proc. LICS 2017.
Daniel Huang, Greg Morrisett, and Bas Spitters. 2018. An application of computable distributions to the semantics of

probabilistic programs. (2018). arxiv:1806.07966.
Claire Jones and Gordon D Plotkin. 1989. A probabilistic powerdomain of evaluations. In Proc. LICS 1989. 186–195.
Achim Jung and Regina Tix. 1998. The troublesome probabilistic powerdomain, In Proc. Comprox 1998. Electronic Notes in

Theoretical Computer Science 13, 70–91.
Olav Kallenberg. 2006. Foundations of modern probability. Springer.
Olav Kallenberg. 2017. Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling, Vol. 77.

Springer.
Ohad Kammar and Gordon D. Plotkin. 2012. Algebraic foundations for effect-dependent optimisations. In Proc. POPL 2012.

349–360.
Alexander Kechris. 2012. Classical descriptive set theory. Vol. 156. Springer Science & Business Media.
Klaus Keimel and Gordon D Plotkin. 2009. Predicate transformers for extended probability and non-determinism. Mathe-

matical Structures in Computer Science 19, 3 (2009), 501–539.
Oleg Kiselyov and Chung-Chieh Shan. 2009. Embedded probabilistic programming. In Domain-Specific Languages. Springer,

360–384.
Anders Kock. 2012. Commutative monads as a theory of distributions. Theory and Applications of Categories 26, 4 (2012),

97–131.
Jimmy D. Lawson. 1982. Valuations on continuous lattices. In Continuous Lattices and Related Topics, Rudolf-Eberhard

Höffman (Ed.). Mathematik Arbeitspapiere, Vol. 27. Universitat Bremen, 204–225.
Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis. Kluwer.
Vikash K. Mansinghka, Daniel Selsam, and Yura N. Perov. 2014. Venture: a higher-order probabilistic programming platform

with programmable inference. arXiv:1404.0099 (2014). http://arxiv.org/abs/1404.0099
Dylan McDermott and Ohad Kammar. 2018. Factorisation systems for logical relations and monadic lifting in type-and-effect

system semantics. Proc. MFPS 2018 (2018). To appear.
Michael W Mislove. 2016. Domains and random variables. arXiv preprint arXiv:1607.07698 (2016).
Eugenio Moggi. 1989. Computational lambda-calculus and monads. In Proc. LICS 1989. 14–23.
Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference by

program transformation in Hakaru (system description). In Proc. FLOPS 2016. Springer, 62–79.
Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning about recursive

probabilistic programs. In Proc. LICS 2016. 672–681.
Andrew M Pitts. 1996. Relational properties of domains. Inform. Comput. 127, 2 (1996), 66–90.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

http://dippl.org
http://arxiv.org/abs/1404.0099

A Domain Theory for Statistical Probabilistic Programming 36:29

Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3 (1977), 223–255.
Nasser Saheb-Djahromi. 1980. CPO’s of measures for nondeterminism. Theoret. Comput. Sci. 12, 1 (1980), 19–37.
Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris

Heunen, and Zoubin Ghahramani. 2017. Denotational validation of higher-order Bayesian inference. Proc. ACM Program.

Lang. 2, POPL, Article 60 (Dec. 2017), 29 pages.
Dana S. Scott. 1993. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoret. Comput. Sci. 121, 1 (1993), 411–440.
Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian inference by symbolic disintegration. In Proc. POPL 2017.

130–144.
Michael B. Smyth and Gordon D. Plotkin. 1982. The category-theoretic solution of recursive domain equations. SIAM J.

Comput. 11, 4 (1982), 761–783.
Sam Staton. 2017. Commutative semantics for probabilistic programming. In Proc. ESOP 2017.
Sam Staton, Hongseok Yang, Frank Wood, Chris Heunen, and Ohad Kammar. 2016. Semantics for probabilistic programming:

higher-order functions, continuous distributions, and soft constraints. In Proc. LICS 2016. 525–534.
Matthijs Vákár and Luke Ong. 2018. On S-Finite Measures and Kernels. arXiv preprint arXiv:1810.01837 (2018).
David Wingate, Andreas Stuhlmüller, and Noah Goodman. 2011. Lightweight implementations of probabilistic programming

languages via transformational compilation. In Proc. AISTATS 2011.
Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. 2014. A new approach to probabilistic programming

inference. In Proc. AISTATS 2014. 1024–1032.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 36. Publication date: January 2019.

