Probabilistic Programming Semantics for Name Generation

MARCIN SABOK, McGill University, Canada

SAM STATON, University of Oxford, United Kingdom
DARIO STEIN, University of Oxford, United Kingdom
MICHAEL WOLMAN, McGill University, Canada

We make a formal analogy between random sampling and fresh name generation. We show that quasi-Borel
spaces, a model for probabilistic programming, can soundly interpret the v-calculus, a calculus for name
generation. Moreover, we prove that this semantics is fully abstract up to first-order types. This is surprising
for an ‘off-the-shelf” model, and requires a novel analysis of probability distributions on function spaces. Our
tools are diverse and include descriptive set theory and normal forms for the v-calculus.

CCS Concepts: « Theory of computation — Denotational semantics; Categorical semantics; - Mathe-
matics of computing — Probability and statistics.

Additional Key Words and Phrases: probabilistic programming, name generation, nu-calculus, quasi-Borel
spaces, standard Borel spaces, descriptive set theory, Borel on Borel, denotational semantics, synthetic proba-
bility theory

ACM Reference Format:

Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman. 2021. Probabilistic Programming Semantics for
Name Generation. Proc. ACM Program. Lang. 5, POPL, Article 11 (January 2021), 29 pages. https://doi.org/10.
1145/3434292

1 INTRODUCTION
This paper is a foundational study of two styles of programming and their relationship:

(1) fresh name generation (gensym) via random draws;

(2) statistical probabilistic programming with higher-order functions.
We use a recent model of probabilistic programming, quasi-Borel spaces (QBSs, [Heunen et al.
2017]), to give a first random model of the v-calculus [Pitts and Stark 1993], which is a A-calculus
with fresh name generation. By further developing the theory of QBSs, we are able to arrive at a
new theorem for name generation:

Theorem (4.30). The random model of the v-calculus is fully abstract at first order. That is, two first
order programs are observationally equivalent if and only if their interpretation in QBSs is the same.

This is surprising because the simple non-random models of the v-calculus, based on nominal
sets [Pitts 2013, Ch. 9.6] or functor categories [Stark 1996, §5], are not fully abstract at first
order [Stark 1996, §5].

Authors’ addresses: Marcin Sabok, Department of Mathematics and Statistics, McGill University, Montreal, Canada, marcin.
sabok@mcgill.ca; Sam Staton, Department of Computer Science, University of Oxford, Oxford, United Kingdom, sam.
staton@cs.ox.ac.uk; Dario Stein, Department of Computer Science, University of Oxford, Oxford, United Kingdom, dario.
stein@cs.ox.ac.uk; Michael Wolman, Department of Mathematics and Statistics, McGill University, Montreal, Canada,
michael. wolman@mail. megill.ca.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART11

https://doi.org/10.1145/3434292

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3434292
https://doi.org/10.1145/3434292
https://doi.org/10.1145/3434292

11:2 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

1.1 The v-Calculus and its Observational Equivalence

The v-calculus (§2 and [Pitts and Stark 1993]) is a simply-typed A-calculus with fresh name abstrac-
tion vn.M in addition to A-abstraction Ax.M. The idea is that vn.M means “generate a fresh name n
and continue as M”. The v-calculus thus models name generation as used in various domains across
computer science, including cryptography, distributed systems, and statistical modelling (see §6 for
more background on name generation). Concretely, the v-calculus can also be viewed as a fragment
of OCaml, where vn.M abbreviates let n = ref () in M, since a content-less reference is a pure
name when there is no pointer arithmetic or comparison allowed.

The purpose of this paper is to give an interpretation of name generation in terms of randomness.
The v-calculus already has a standard non-random operational semantics [Pitts and Stark 1993,
§2], which induces a notion of observational equivalence =. For closed programs of ground type
(name, bool), this is straightforward. For example, it includes the /5 laws of the call-by-value
A-calculus, and also equations such as

vm.vn.(m = n) ~ false (1)

since any two separately generated names m, n should be different. Observational equivalence at
first-order type (name — bool, bool — bool — name, etc.), on the other hand, is non-trivial in the
v-calculus, because v’s and A’s do not commute. For instance,

viAx.n # Ax.vn.n. (2)

So even at first order we can have complex nestings of v’s and A’s. In this paper we argue that a
centerpiece of the first-order equational theory of the v-calculus is the following ‘privacy’ equa-
tion [Pitts and Stark 1993, Ex. 4(2)]:

vn.Ax.(x =n) = Ax.false :name — bool. (3)

On the left hand side, we generate a fresh name n, and then return a function that takes an
argument x, and tests whether x = n. In this example, n is chosen to be different from any name
that the caller of the function knows, and the name is never revealed to the caller, and so, intuitively,
it can never return true. This is an example of an equation that is not validated by the standard
nominal sets model, but it is validated by our QBS random model.

This aspect of name revelation is subtle, for instance, the program

vm.vn. Ax.if (x = m) thennelsem (4)
can reveal both m and n, but it needs to be called twice to do this. The random semantics takes care

of this, as we explain.

1.2 Probabilistic Programming and Name Generation as Randomness

The idea of probabilistic programming (e.g. [van de Meent et al. 2018]) is to define complex
probability distributions by writing programs. This is typically done by adding a sample command
to a A-calculus, to allow primitive random draws. In the statistical setting, it is common to include
continuous distributions over the real numbers, such as the normal distribution (Fig. 1). For instance,
the program

let x = sample(Normal(0,1)) in let y = sample(Normal(0,1)) in x+y (5)

is overall equivalent to sampling from a normal (Gaussian) distribution with mean 0 and variance 2.
The informal idea of this paper is to interpret vn.M of the v-calculus as a probabilistic program:

“vn.M = let n = sample(Normal(0,1)) in M”

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:3

so that freshly generated names are randomly sampled. A first observation is that any two draws

from a normal distribution will almost surely be different, and so this interpretation validates (1).
A probabilistic program involving sampling should be understood

in terms of the histogram of results we see when we run the program 0.5

a large number of times. To put it another way, the program (5) is

a Monte Carlo description of the integral f/ k(x +y) dy dx where f

denotes Lebesgue integration with respect to the normal probability

~

measure and k is some continuation function. In this way, we may say, -4 -2 2 4

informally for now, that the random implementation of v-abstraction

is also Lebesgue integration: Fig. 1. Density of the normal
“onM = /Mdn” distribution Normal(0,1).

As we will make precise in Sections 1.3 and 3.3, the measure-theoretic understanding of proba-
bility leads to full abstraction at first order. For a first glimpse, notice that in the v-calculus there is
no definable function

3: (name — bool) — bool (6)

such that 3(f) returns true if f would ever return true, as such a function would easily distinguish
the programs in the privacy equation (3). This function 3 can be defined in the nominal sets
model (e.g. [Pitts 2013, §2.5], [Staton 2010, eq. 2]), but is inconsistent with a measure-theoretic
interpretation, as we now explain. From this function 3 we could easily define an expression

f : name — name — bool + Ax.3(Ay. fxy) :name — bool

which converts a subset of (name X name) to its existential projection as a subset of (name). In
the setting of probability theory, we need to know that all definable expressions are measurable, so
that integration can be used. If we understand (name) as the real numbers, and measurable subsets
are Borel sets, as usual, then the projection of a Borel set is not necessarily Borel [Kechris 1987,
14.2], and so the 3 function (6) cannot be in the model. So our probabilistic interpretation of the
v-calculus gives a new intuition for these privacy and definability issues.

1.3 Quasi-Borel Spaces, Full Abstraction and Descriptive Set Theory

A formalism that includes both measure theory and typed A-calculus is quasi-Borel spaces (QBSs,
§3.2 and [Heunen et al. 2017]). A QBS is a set X together with a set of functions Mx C [R — X]
satisfying some conditions. The idea is to fix R as a source of randomness, and then Mx describes
the admissible random elements in X. For example, for the QBS of booleans, we take Mpoo C
[R — 2] to comprise the characteristic functions of Borel sets of R, and for the QBS function space
[real — bool] we take Meal—bool € [R — (R — 2)] to comprise the characteristic functions of
Borel subsets of R In this way, we can interpret any v-calculus type as a QBS (§3.3). Following the
above discussion, we see that 3 (6) cannot be interpreted in QBSs.

We show our full abstraction theorem in this setting: two v-calculus programs of first-order type
are observationally equivalent if and only if their interpretations in QBSs are equal (Thm. 4.30).
Our proof proceeds in three steps.

(1) We show that the privacy equation (3) holds in QBS (§4). We have already mentioned that
the 3 function (6) cannot be defined in QBSs. The next step is to fully characterize the QBS
space corresponding to ((name — bool) — bool). This turns out to correspond directly with
the concept of ‘Borel-on-Borel’ in descriptive set theory [Kechris 1987, §18.B], and we use a
pair of Borel inseparable sets to generalize the non-definability of 3 and prove the privacy
equation (Thm. 4.1).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:4 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

0, 7:=B|N|oc—1 (B and N abbreviate (bool) and (name) from §1 respectively.)
M,N :=x|true|false|M =M |MM|Ax.M|vn.M|if M then M else M
((x:7)el) (b = true, false)

F'rx:t Trb:B

I'tM:B TrNy:t THFNy:7T TFM:N TrFEN:N

I'+if MthenNjelseNy: 1 I'-(M=N):B
Lx:NFM: 1 Ix:ob-M:7 I'tM:0—17 TEFN:o
F'rvxM:1 TFAxM:0—>1 'rMN:1

Fig. 2. Grammar and typing rules for the v-calculus [Pitts and Stark 1993, Table 1].

(2) On the syntactic side, we give a normalization algorithm for observational equivalence at
first order (§4.2, Thm. 4.25). Our algorithm, which appears to be novel, refines a logical
relations argument by Pitts and Stark [Pitts and Stark 1993], by identifying and eliminating
all private names. This is non-trivial as, for instance, (4) is already in normal form, but the
similar program

vm.vn. Ax.if (x = m) thenmelsen normalizes to vn. Ax. n.

Our construction simplifies the analysis of observational equivalence at first order (Thm. 4.25).
This also provides a general strategy for proving full abstraction (Thm. 4.26).

(3) Returning to the semantic side, we show that the normalization steps are validated in the QBS
model (§4.3). The key idea here is that atomless measures such as the normal and uniform
distributions are invariant under certain translations. We use this translation invariance to
reduce our problem to the privacy equation (3), and use this to prove full abstraction at first
order (Thm. 4.30). Our use of an invariant action on the space of names is similar to but
distinct from nominal techniques [Pitts 2013, §1.9]; our action is internal to the model, and
does not feature in its construction.

In addition to proving full abstraction of the QBS semantics of the v-calculus at first order,
we provide the first detailed investigation of the higher-typed function spaces in Borel-based
probability theory (§4.1, §5). The application of higher-order probabilistic methods is increasingly
widespread in programming research (§6.3 and [Ehrhard et al. 2018; Lew et al. 2019; Sato et al. 2019;
Scibior et al. 2017; Vandenbroucke and Schrijvers 2020]). We show that our programming-based
development can alternatively be viewed in terms of recent categorical formulations of probability
theory (§5). From this perspective, Bayesian inference (conditioning) is subtle in the higher-typed
situation (Prop. 5.2). Intuitively, arbitrary conditioning would mean that one could infer, from data
as a function (name — bool), a posterior distribution on the names that the function privately
uses, in violation of the privacy equation (3).

In summary, through our full abstraction result (Thm. 4.30), we formalize the relationship between
random sampling and fresh name generation, giving new perspectives on higher-order probability.

2 PRELIMINARIES ON NAME GENERATION AND THE v-CALCULUS

In this section we recall the v-calculus [Pitts and Stark 1993; Stark 1994], which is a simple A-calculus
for name generation. We recall the syntax, the observational equivalence (§2.1) and the denotational
semantics (§2.2). Further discussion about name generation is in Section 6.

The types, syntax and typing judgements of the v-calculus are recalled in Fig. 2 [Pitts and Stark
1993]. The typing judgements are of the form I' - M : 7, where T is a set of typed variables.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:5

_ sEMUN (s1)m s+ N N (s2)n sEMUN (s1)m skEN N (s2)m
stVU OV sr(M=N)Up (51 Wsp)false " st (M=N) Up (51 Wsp)true
sEM U (s))V (sWsy) F Ny Uz (s2)V’ swW{n}yr M|, (s)V

s+ if M then Ntrye else Neaise Ur (51 W s2)V’ stvn.M | ({n}ws")V nes

sEM oo (sD)AxM” (sWs1) FN g (s2)V (sWs1 Wsp) - M'[V/x] Uz (s3)V’
SFMN |; (s1 Wsy Ws3)V’

Fig. 3. Evaluation relation for the v-calculus [Pitts and Stark 1993, Table 2].

The types B, N are called ground types. Among higher types, we will pay special attention to
first-order function types, which are non-nested function types of the form 7; — - -+ — 7, with each
7; a ground type. As the v-calculus is call-by-value, first-order function types cannot be simplified
by uncurrying and already contain considerable complexity. We elaborate this at the end of (§2.2).

2.1 Operational Semantics and Observational Equivalence

The evaluation relation of the v-calculus is defined for terms with free variables of type N, and no
other free variables. In this operational semantics, these variables are understood to be names that
are generated in the course of running a program, and so they are assumed to be distinct, and we
tend to use m or n for them. If s = {ny,...,ni} is a set of names and 7 is a type, we define a set

Exp,(s) def {M|n1:N,...nk:NkM:T}

of expressions of type 7 only involving the names s, and we define the set Val (s) C Exp_(s) of
values: Val, (s) = {V € Exp,(s) | V = Ax.M, V = true, V = false, V = n}.

If s, t are sets of names, we write s W t to denote the disjoint union of these names, which we can
always form by renaming free names if necessary.

The big-step evaluation relation s + M ||, (s")V is given in Figure 3, where M € Exp_(s) and
V € Val,(s Ws’), meaning M evaluates to V generating fresh names s’. Evaluation is terminating
and deterministic up to choice of free names. (We will not need to work directly with this evaluation
relation very much in this paper, because we will build on existing methods for observational
equivalence [Pitts and Stark 1993; Stark 1996], but we include it for completeness.)

Observational equivalence is defined in a standard way. A boolean context C[-] for type T is
an expression C where some subexpressions are replaced by a placeholder, such that if M €
Exp,(s) then C[M] € Expg(s). Two terms Mj, M, € Exp_(s) are observationally equivalent, written
M; ~; M,, if for every boolean context C[-] we have 3s’(s + C[M;] g (s”)true) if and only if
3s’(s F C[M] s (s)true).

We have already given some examples of observational equivalences and inequivalences in
Section 1.1. We illustrate the method a little more. To see that vn.Ax.n #g_N Ax.vn.n (2), consider
the context C[—] = (Af.(f true) = (f true)) (=), which produces true for the first example
and false for the right hand side. On the other hand, an observational equivalence such as
viAx.(x = n) &Nn_p Ax.false (3) is a statement that quantifies over all contexts, and so requires a
more elaborate method such as logical relations [Pitts and Stark 1993, Example 5] or our random
model (§4.1).

We remark that the call-by-value semantics of the v-calculus form a central aspect of the intrica-
cies of observational equivalence at first-order types. The Av-calculus is a call-by-name variation
of the v-calculus [Odersky 1994; Pitts 2013, §9.4], and in that calculus, A’s and v’s do commute

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:6 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

[Odersky 1994, Fig. 2], and then we can easily derive

vnAx.(x = n) ~n—p Ax.vn.(x = n) =n_p Ax.false. (7)

2.2 Categorical Semantics

The central definition of this paper is the random semantics of the v-calculus in Section 3.3. Although
this is a new semantics for the v-calculus, it is an instance of the very general categorical framework
for v-calculus semantics given by Stark [Stark 1996]. The rough idea is that one can interpret the
v-calculus in any category with enough structure, by interpreting types as objects of the category
and expressions as morphisms.

Metalanguages. This interpretation is clarified by using a metalanguage (aka internal language)
to describe the morphisms of the category, and the way that they compose, instead of the tradi-
tional categorical composition notation (e.g. [Lambek and Scott 1988, §1.10]). The metalanguage of
cartesian closed categories allows us to notate a morphism A; X - -- X A, — B as an expression
x1: Ay ...xp: Ay F e : B, and to use A-notation and pairing to manipulate the function spaces and
products in the category. Where the category also has a coproduct 1+ 1, we can write the injections
ast true: 1+ 1andF false: 1+ 1, and the universal property of coproducts can be expressed in
terms of an if / then / else construction. The interpretation of the v-calculus in a categorical
model can be given by a translation from the v-calculus to this metalanguage.

Commutative Affine Monads. A strong monad (T, [-], (—)*) on a cartesian closed category C
comprises an assignment of an object T(A) for every object A in C, a family of ‘return’ morphisms
[-] : A — T(A),and afamily of ‘bind’ operations (—)* : T(B)* — T(B)T4, satisfying associativity
and identity laws [Moggi 1991]. In terms of the metalanguage, for any morphisms described by
expressions I' - e : T(A) and T, x: A+ e’ : T(B), we have a morphism described by an expression
I'tletx < eine’ :T(B) [Moggi 1991]. A strong monad is called affine and commutative if the
following discardability (8) and exchangeability (9) equations in the metalanguage are valid:

letx <—eine’ = ¢ (x not free in e”) (8)

letx; «— ey inletx; «— ey ine; = letx; «—e; inlet x; < e; ine;

. .)
(x1 not free in e, x; not free in e;).

Informally, affine means that we can discard any unused expressions, and is equivalent to T(1) = 1.

Commutativity means that we can exchange independent expressions (e.g. [Kammar and Plotkin

2012]).

Definition 2.1 ([Stark 1996, §4.1]). A categorical model of the v-calculus comprises

(1) a cartesian closed category C with finite limits;
(2) a strong monad T on C;
(3) a disjoint coproduct B := 1 + 1 of the terminal object with itself;
(4) a distinguished object of names N with a decidable equality test (=) : N X N — B; and
(5) a distinguished morphism new : 1 — T(N).
We ask that this category satisfies the following additional axioms:
(1) the monad T is affine and commutative;
(2) the following equation holds in the metalanguage

m:NFletnenewin [(n,m=n)] = letn « newin [(n, false)] : T(N x B). (FRESH)

The (FRESH) requirement allows us to reason within the metalanguage that any name generated
with (new) is different from other names. This definition references ‘disjoint coproducts’ and

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:7

def def

[Ax.[M]] [x] = [x] [[true]] true] [[false] false]
def def

[Ae.M] =

[[M:Nﬂ letm « [M] inlet n « [N] in [m = n] [[MN]] let f « [M] in let x « [N] in f(x)

[vx M]] flet x — new in [M] [if M then N; else NZ]] fleth [M] in if b then [N;] else [N2]

Fig. 4. Interpretation of v-calculus expressions in a categorical model, using its metalanguage [Stark 1996,
Fig. 5].

‘decidable equality’, concepts from categorical logic, but we will not assume familiarity with these
in the rest of the article except in the proof of Thm 3.8.

Denotational Semantics. In any categorical model we can interpret v-calculus types (Fig. 2) as
. def
objects, using the standard call-by-value translation into the monadic metalanguage [B] < B,

[N] = N and [o — T]] [[0']] — T[z]. This is extended to contexts: [[Tﬂ = I—[(X perlr]- A
v-calculus expression T + M : 7 is routinely interpreted as a morphism [I'] — T[] by induction
on the structure of M (Fig. 4).

Using the categorical limits and the equality test on N, we can build a subobject N** >» N* for
all finite sets s, modelling the assumption (# s) of distinct names. Formally, N*° is the equalizer
of (n: N° v Vyj(n; = nj) : B) and (n : N° + false : B). For expressions M € Exp_(s), we will

M
typically use the restricted interpretation [M] s : N*5 >»»> N* I, T[z].

We note that values V' € Val,(s) factor through [~]7 : [z] — T[], i.e. we can assume
[V] : N** — [z]. Intuitively, the values do not need a top-level monad because they do not
generate fresh names.

Any categorical model according to Definition 2.1 is sound and, under mild assumptions, adequate:

Theorem 2.2 ([Stark 1996, Prop. 1-4]). For any categorical model of the v-calculus:

o The big-step semantics is sound with respect to the denotational semantics: If s - M ||, (s")V
then [M] s = [vs’.V]xs.

o If'1 is not an initial object and [—]p : B — T(B) is monic, then the denotational semantics is
adequate for observational equivalence: If [M] s = [Mz]+s then My ~, M,, for all expressions
M;, M; € Exp,(s).

In Section 6.2 we survey the examples categorical models of the v-calculus from the literature. In
Section 3.3 we show that quasi-Borel spaces form a categorical model.

Categorical models need not identify observationally equivalent terms at higher types. The
simplest example of such an equivalence is the privacy equation (3), whose translation into the
metalanguage is

let a « new in [Ax.[x = a]] = [Ax.[false]] : T[N — B] = T(N — TB). (10)

The metalanguage has extra types such as (N = B) which are not the interpretation of v-calculus
types. So in the metalanguage it is possible to consider the following simpler variation of (10):

let a « new in [Ax.(x = a)] = [Ax.false] : T(N — B). (PRIV)

Note that (PRIV) straightforwardly implies (10) in the metalanguage. So to prove the privacy
observational equivalence (3), it is sufficient to find a categorical model that satisfies (PRIV). In
Section 4.1 we show that quasi-Borel spaces satisfy (PRIV). We discuss other models in Section 6.2,
in particular, neither (PRIV) nor (10) are satisfied in the nominal sets model (14).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:8 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

We remark that because of the call-by-value semantics of v-calculus, first-order functions already
exhibit an interesting degree of complexity that cannot be simplified by uncurrying. At type
[N— (N—B)] =T(N - T(N — TB)), name-generation effects may occur at three different
stages, unlike in the uncurried version T(N X N — TB).

3 HIGHER-ORDER PROBABILITY

The central new definition of this paper is the random model of the v-calculus based on quasi-Borel
spaces. We recall Borel spaces in Section 3.1, quasi-Borel spaces in Section 3.2, and then explain the
model in Section 3.3, in prepration for the full abstraction result in Section 4.

3.1 Rudiments of Measurable Spaces

Probability spaces are traditionally defined in terms of measurable spaces [Kallenberg 2002; Pollard
2001]. A measurable space is a set X together with a o-algebra £x on X. We call a set U € X
measurable if U € Yx. A function f : X — Y between measurable spaces is measurable if for all
measurable A C Y, the set f~!(A) is measurable in X.

The measurable spaces and measurable functions form the category Meas. This category has
products given by equipping X X Y with the product o-algebra x ® Zy.

The Borel c-algebra Xy is the o-algebra on R generated by the open intervals. We will always
consider R as a measurable space with the Borel o-algebra. We say a measurable space X is discrete
if Xx = P(X), where P (X) denotes the power set of X.

A measure on a measurable space X is a o-additive map p : Xx — [0, 0] with u(0) = 0. It is
finite if p(X) < oo, s-finite if it is the countable sum of finite measures, and a probability measure
if u(X) = 1. A probability space (X, j1) is a measurable space X and a fixed probability measure
pon X. If p is a probability measure on X and f : X — Y is measurable, then the pushforward
measure f.p on Y is defined by f£iu(U) = p(f~1(U)) for U € Ty. If f: X — R, then we can find the
Lebesgue integral fo(x) du(x) e R.

There is a monad G : Meas — Meas due to [Giry 1982] that assigns to X the space of probability
measures GX on X, with the o-algebra generated by the maps y — p(U) for all U € Xx. The
unit of this monad is the Dirac distribution X — GX, x +— J,. The bind of this monad consists
of the averaging of measures, so thatif f : X — GY, we get the map f* : GX — GY taking
1 € GX to the measure f*(p)(U) = fX f(x)(U)du(x) on Y. In the metalanguage, we can regard
let x « pin f(x) (= f*(p)) as a generalized integral /f(x) du(x). This monad is strong and
commutative (9), which is a categorical way to state Fubini’s theorem [Kallenberg 2002, 1.27]. The
monad is moreover affine (8), since in general g(y) = f g(y) du(x) for a probability measure p.

When a probability space (Q, p) is fixed, we say a random variable A with values in X is a
measurable map A : Q — X. Two random variables A, B are said to be equal in distribution, written

Al B, if they have the same law, i.e. A,y = B,y on X.

The spaces R and [0, 1] are part of an important class of well-behaved measurable spaces called
the standard Borel spaces. A standard Borel space is a measurable space that is either countable and
discrete or measurably isomorphic to R with the Borel o-algebra. Note that this is not the usual
definition of standard Borel spaces, which can be found in [Kechris 1987, §12.B] and is equivalent
to the one above. In particular, the definition of a standard Borel space ignores any underlying
topology.

We refer to measurable subsets of standard Borel spaces as Borel sets, measurable maps between
standard Borel spaces as Borel measurable and denote the full subcategory of standard Borel spaces
by Sbs.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:9

The standard Borel spaces form a well behaved full subcategory of Meas closed under taking
countable products and coproducts and the Giry monad. Additionally, Borel subsets of standard
Borel spaces are standard Borel [Kechris 1987, §12.B, 13.4, 17.23].

Given a standard Borel space X, we call a probability measure p on X atomless if u({x}) = 0 for
all x € X. We have the following isomorphism theorem for standard Borel spaces with atomless
probability measures:

Theorem 3.1 ([Kechris 1987, 17.41]). Let p be the uniform measure on [0, 1]. If X is a standard Borel
space and p an atomless measure on X, then there is a Borel measurable isomorphism f : [0,1] — X
such that f.p = p.

Example 3.2. The following are examples of familiar standard Borel spaces with atomless proba-
bility measures:

(1) The space R of real numbers with the Gaussian distribution.

(2) The Cantor space 2", which can be viewed as the space of infinite sequences of coin flips,
with the measure generated uniformly on the basic open sets: u({s € 2V : a C s}) = 271/,
where a is a finite sequence of flips.

(3) The circle T = [0, 1) (one-dimensional torus) with the uniform measure.

By Theorem 3.1, these are all isomorphic as probability spaces.

We note that a standard Borel space admitting an atomless probability measure is necessarily
uncountable and in bijection with R.

Measurable spaces are satisfactory for first-order probabilistic programming [Kozen 1981; Staton
2017], but a result of Aumann shows that they fail to accommodate higher-order functions.

Theorem 3.3 (Aumann [Aumann 1961]). There is no c-algebra on the space 2% of measurable
functions R — 2 such that the evaluation map 2% x R — 2 is measurable.

We note that 28 can be identified with the set Sg of Borel sets in R, and in this case the evaluation
map 2% X R — 2 is simply the inclusion check (B, x) — B > x.

3.2 Preliminaries on Quasi-Borel Spaces

Quasi-Borel spaces [Heunen et al. 2017] are a convenient setting including both measure theory
and higher-typed function spaces that are increasingly widely used (e.g. [Lew et al. 2019; Sato
et al. 2019; Scibior et al. 2017; Vandenbroucke and Schrijvers 2020]). They work by first restricting
probability theory to the well-behaved domain of standard Borel spaces (§3.1). They then provide a
conservative extension to function spaces, achieving cartesian closure. (We survey other models of
higher-order probability in Section 6.3.)

Definition 3.4 ([Heunen et al. 2017]). A quasi-Borel space is a set X together with a collection Mx
of distinguished functions « : R — X called random elements. The collection Mx must satisfy

(1) for every x € X, the constant map Ar.x lies in Mx;

(2) if € Mx and ¢ : R — R is Borel measurable, then a o ¢ € Mx; and

(3) if {A;};2; is a countable Borel partition of R and a; € Mx are given, then the case-split

a(r) = a;(r) for r € A; lies in M.

A map f : X — Y between quasi-Borel spaces is a morphism if for all @ € Mx we have f o a € My.
This defines a category Qbs.

We consider the reals with a canonical quasi-Borel structure Mr = Meas(R,R). Under that
definition, any other quasi-Borel space X satisfies Mx = Qbs(R, X). Similarly, we obtain a quasi-
Borel structure on the space of booleans by taking M, = Meas(R, 2) where 2 is the two-point
standard Borel space. This has the structure of a coproduct 2 = 1+ 1.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:10 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

The category Qbs is cartesian closed, and we have YX = Qbs(X,Y). By cartesian closure, a
map R — YX is a random element iff its uncurrying R x X — Y is a morphism. For example, 2%
comprises the characteristic functions of Borel subsets of R, and the random elements R — 2R are
the curried characteristic functions of Borel subsets of R?.

Any quasi-Borel space (X, Mx) can be equipped with a o-algebra Xyr, = Qbs(X, 2), where we
identify subsets with their characteristic functions; equivalently, X, is the greatest o-algebra
making the random elements measurable.

We now define probability theory in this new setting. Given a probability measure p € G(R)
and a € My, we can push forward the randomness from R onto X, obtaining a distribution on X.
The definition of the induced o-algebra X1, makes sure this pushforward is well-defined.

Definition 3.5 ([Heunen et al. 2017]). A probability distribution on a quasi-Borel space X is an
equivalence class [a, pi]~, where a € Mx,p € G(R) and (a,) ~ (', p') if aupr = alp’ € G(X, 2y)-

We note that the significance of the induced o-algebra on a quasi-Borel space X is to give a
notion of equality of distributions on X, which is simply extensional equality of the pushforward
measures.

There is a Giry-like strong monad P on Qbs which sends X to the space P(X) of probability
distributions on X, endowed with the quasi-Borel structure

Mpx)y ={f:R — P(X) | 3a € Mx, g : R — GR measurable s.t. B(r) = [a,g(r)]-}.

For x € X, one can form the Dirac distribution d, on X by taking d, = [Ar.x, p]. for any y € GR.
This forms the unit of the monad. On the other hand, given f : X — P(Y) and [a, p]. € P(X), we
have f o @ € Mp(y) so there is some f € My and g : R — GR such that f o a(r) = [B,g(r)].. We
define a measure on Y by taking f*([e, u]~) = [, g" (#)]~. This forms the bind of the monad.

Finally, we note that all of probability theory over standard Borel spaces is the same whether
done in Meas or Qbs.

Proposition 3.6 (Conservativity [Heunen et al. 2017, Prop. 19, 22]). Any measurable space (X, Zx)
can be regarded as a quasi-Borel space (X, Ms,), where Ms, = Meas(R, X). This restricts to a full
and faithful embedding Sbs — Qbs of standard Borel spaces into quasi-Borel spaces that preserves
countable products, coproducts and the probability monad.

Due to this we will identify the standard Borel spaces in both Meas and Qbs and write say 2 or
R for the quasi-Borel space and measurable space alike.

Probability theory in Qbs departs from the traditional foundations only if we go beyond standard
Borel spaces. To emphasise this, we briefly make a digression to recall the categorical relationship
between quasi-Borel spaces and measurable spaces.

Proposition 3.7 ([Heunen et al. 2017, Prop. 15]). The maps 2 : (X, Mx) — (X,Zpm,) and M :
(X,2x) = (X, Ms,) are functorial and form an adjunction

>
—_—
Qbs _ L Meas
~—
M

Now consider the quasi-Borel space 2%. Using this adjunction (Prop. 3.7), we obtain a ¢-algebra
Y,z on the set 2* and a measurable evaluation map %(2% x R) — 2. We note that this does not
contradict Theorem 3.3 because X does not preserve products, and indeed the o-algebra Y=g
induced from the quasi-Borel space 2% x R is strictly larger than the product algebra 3,z ® Sz
(cf. Theorem 4.1, Proposition 5.8, and Observation 5.10).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:11

3.3 Probabilistic Semantics for the v-Calculus

We can now give probabilistic semantics to the v-calculus (cf. Def. 2.1) by interpreting names as
elements of a probability space and name generation as random sampling.

Theorem 3.8. Qbs is a categorical model of the v-calculus under the following assignment:

(1) the object of names is N = R, and the object of Booleans is B = 2;
(2) the name-generation monad is T = P; and
(3) new is given by the Gaussian distribution v € P(R).

Moreover, it is adequate: If [My]+s = [Mz]zs then My =, My, for all expressions My, M, € Exp_(s).

Proor. Quasi-Borel spaces have the required categorical structure, and the equality test is a
Borel measurable map (=) : R? — 2, hence a morphism. The probability monad is commutative (9),
i.e. Fubini holds [Heunen et al. 2017, Prop. 22], and affine because P(1) = 1, i.e. probability measures
must have total mass 1. The freshness requirement is the following identity in the internal language
of Qbs, which reduces by Conservativity (Prop. 3.6) to a statement about ordinary measure theory:

x:Rrletye—vin[(y,y=x)] =lety « vin[(y,false)] : P(R X 2)

Because v is atomless, both sides denote the same distribution v ® [false].

For adequacy, we verify the assumptions of Thm. 2.2. It is clear that 0 # 1. To see that the unit
[-]B : B — P(B) at B is monic, notice that by conservativity (Prop 3.6) it is equivalent to check
that 2 — G(2) is injective in ordinary measure theory, which is trivial. O

Remark 3.9. Any choice of standard Borel space and atomless measure will provide us with a
model of the v-calculus. For example, we could consider 2 or T = [0, 1) with the uniform measure
(cf. Example 3.2), or R with any other atomless distribution.

By Theorem 3.1, all such choices give isomorphic models of the v-calculus. More specifically, as
the choice of standard Borel space and atomless measure completely determine the semantics of
the v-calculus in Qbs, we always obtain the same equational theory of the v-calculus.

We may therefore choose to use any such space and measure when reasoning about the v-calculus
in Qbs. We will take advantage of this in Section 4.3, where we will find it convenient to work with
the circle T.

By the general properties of categorical models, Qbs semantics are sound and adequate for the
v-calculus. In Section 4 we turn to studying the probabilistic semantics at higher types.

Aside on the ‘MONO’ Requirement. When working with a monadic metalanguage, several au-
thors [Moggi 1991; Stark 1996] ask that a monad T satisfies the requirement

[<]x : X — TX is monic for all X. (MONO)

As we now explain, by using ‘separated’ quasi-Borel spaces we can support the full (MONO)
requirement. We mention this for completeness with respect to the literature, and will not use
this notion later in this paper. In Stark’s adequacy result (Thm. 2.2(2)), he only requires that
[<]5 : B — T(B) be monic (for B=1+1).

Definition 3.10. A quasi-Borel space (X, Mx) is separated if the maps X — 2 separate points,
meaning that for all x # x” € X there is some morphism f : X — 2 such that f(x) # f(x’).

This is equivalent to saying that the induced o-algebra 2, on X separates points.
Proposition 3.11. A quasi-Borel space X is separated if and only if it satisfies the (MONO) rule: the
unit X — P(X) of the probability monad is injective.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:12 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

Additionally, we have: standard Borel spaces are separated; if X, Y are separated, sois X X Y; if Y is
separated, so is YX; and for every X, P(X) is separated.

ProOF NOTEs. The first part follows because for f : X — 2 and x € X, we have fX f(y)déc(y) =
f(x). The rest is routine calculation. O

Therefore we could model the full (MONO) requirement by restricting to separated quasi-Borel
spaces. Moreover, this would not change the semantic interpretation.

4 FULL ABSTRACTION

In this section, we will prove that Qbs is a fully abstract model of the v-calculus at first-order types.
This will proceed in three steps, as described in §1.3. We will first prove that privacy holds in Qbs
(§4.1). We will then construct a normal form invariant observational equivalence at first-order
types, eliminating the use of private names (§4.2). Finally, we will make use of a measure-invariant
group structure on the set of names and the privacy equation established in §4.1 to prove that Qbs
validates our normalization and is therefore fully abstract at first-order types (§4.3).

4.1 The Privacy Equation

Theorem 4.1 (Privacy for Qbs). Qbs satisfies (PRIV). This means that the random singleton is
indistinguishable from the empty set:

let a « vin [{a}] = [0] : P(2%).
In particular, Qbs validates the privacy equation (3).

In statistical notation, we would consider a Borel set-valued random variable {X} where X ~ v.

Privacy states that {X} £ 0 in distribution. Before presenting the proof, let us consider some
examples of measurable operations which we can apply to Borel sets and see why they fail to
distinguish {X} from 0.

Example 4.2. For any fixed number x, € R, the evaluation map xy € () : 2% — 2 is a morphism.
However, testing membership of x, will almost surely not distinguish {X} and 0, as X is sampled
from an atomless distribution, so

Pr(xy € {X}) =Pr(X =x) = 0 =Pr(xg € 0).

This is merely stating freshness: a freshly generated name is distinct from any fixed existing name.
As discussed in Eq. (7), this is a strictly weaker statement than privacy, because A and v don’t
commute.

Example 4.3. Example 4.2 shows that Dirac distributions cannot distinguish the random singleton
from the empty set. More generally, they cannot be distinguished by s-finite measures. Evaluating
an s-finite measure y1 is a morphism 2% — [0, co] [Scibior et al. 2017, §4.3]. However because the
set of atoms of p is countable, we have u({X}) = 0 = u(0) almost surely.

Example 4.4. In Section 1.2 we discussed the Boolean existence function (6), recalling that if
it was in a model then the privacy equation (3) would not hold. As we suggested, this function
is incompatible with Borel-based probability. We can now be precise: the nonemptiness check
3: 2% — 2is not a quasi-Borel morphism.

To see that this is the case, recall that there exists a Borel subset B C R? of the plane whose
projection 7 (B) is not Borel [Kechris 1987, 14.2]. The characteristic function yg : RXR — 21isa
morphism, and so is its currying : R — 2. However, the characteristic function y, gy = 3o fis

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:13

not a morphism because 7(B) is not measurable. Therefore 3 : 2% — 2 cannot be a quasi-Borel
map.

This implies that the singleton {0} C 2% is not measurable. Furthermore, the equality check
between sets 2% x 2% — 2 is not a morphism in Qbs.

As Theorem 4.1 is a statement about measures on 2%, we must analyze the o-algebra 3,z on 2%
induced by its quasi-Borel structure.

Notation 4.5. Let BC X XY and x € X. Welet B, = {y € Y | (x,y) € B} denote the vertical
section of B at x.

Recall that we can identify the space 2% = Qbs(R, 2) with the Borel subsets of R. We can similarly
identify the set Qbs(R X R, 2) with the Borel subsets of R X R, and by currying this means that the
maps in Qbs(R, 2%) are exactly the maps Ar.B, for Borel BC R xR.If BC R xR and U C 2%, we
note that

(ArB)™"(U)={r eR| B, e U}.

Definition 4.6 ([Kechris 1987]). A collection U C 2% of Borel sets is Borel on Borel if for all Borel
B C R XR,theset {r e R| B, € U} is Borel.

It follows that the c-algebra 3,z on 2® induced by the quasi-Borel structure is exactly the
collection of Borel on Borel sets. Examples of such families include the family of null sets with
respect to a Borel probability measure (Example 4.3) and the family of meager sets [Kechris 1987,
§18.B].

Definition 4.7 ([Kechris 1987]). Let X be a standard Borel space. Two disjoint sets A, A’ C X are
said to be Borel separable if there is a Borel set B € X such that A C Band A’NB = 0. A A’ are
Borel inseparable if no such set exists.

Theorem 4.8 (Becker [Kechris 1987, 35.2]). There exists a Borel set B C R X R such that the sets
B={xeR|By,=0} and B'={x e R| B, isa singleton}
are Borel inseparable.
Using this, we prove that quasi-Borel spaces validate privacy.
Lemma 4.9. Let U C 2% be Borel on Borel. If® € U then {r} € U for all but countably manyr € R.

Proor. Let A= {r e R | {r} ¢ U}. This is a Borel set because U is Borel on Borel. Borel subsets
of standard Borel spaces are standard Borel, so A is standard Borel.

Now suppose for the sake of contradiction that A were uncountable. Because A is standard Borel
it is isomorphic to R. Fixing such an isomorphism, we have by Theorem 4.8 a Borel set B C R X A
such that B°, B! are Borel inseparable.

However, if r € B® then B, = 0 € U. On the other hand, if r € R! then B, = {a} for some a € A,
and so B, = {a} ¢ U. Tt follows that B> C {r e R | B, e U} and B' C {r e R | B, ¢ U}. As U is
Borel on Borel, {r € R | B, € U} provides a Borel separation of B%, B!, a contradiction. O

ProoF oF THEOREM 4.1. To show that these two quasi-Borel measures are equal, we must check
that the pushforward measures agree on the measurable space (2%, 3,z), meaning that for U € %z,
DelU = vreR|{rtelU}=1.

Every such U is Borel on Borel, and by possibly taking complements we can assume that @ € U.

By Lemma 4.9 the set {r € R | {r} € U} is co-countable, and because v is atomless this must have
v-measure 1. O

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:14 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

bl R‘éal bz (=4 b] = bz ny R‘,:jal n, & ni Rny

(Ax.Mp) R (Ax.My) & VR': 5] = s, Vi € Valy(sy Ws]), V, € Val, (s, W's}),
Vi (RY RV, = Mi[Vi/x] (R® R);T My [V /x]

M R;PM; & 3R’: 5] = 55, Vi € Val,(s; Ws)), Va € Val,(s; Wsy),
siF M U (s)Vi&sy - My [(s5)Va & Vi (RWR)YAV,

Fig. 5. Stark’s logical relation

We offer some comments about this proof: the strategy we employed generalizes beyond the
category of quasi-Borel spaces. Take any model of higher-order probability which agrees with
standard Borel spaces on ground types, that is all morphisms R — 2 are measurable and all
measurable maps R? — 2 are morphisms. Then this Borel on Borel property is a necessary
constraint on second-order functions 28 — 2, arising from cartesian closure alone. In this case,
Lemma 4.9 applies and it is inconsistent for such morphisms to tell apart the empty set from a
random singleton with positive probability.

It is now merely an extensionality aspect of Qbs that these constraints are also sufficient, and
that the inability to distinguish the empty set from singletons implies equality in distribution. The
category of sheaves in [Staton et al. 2016] features a more intensional probability monad, where
the two sides of the privacy equation presumably cannot be identified.

4.2 A Normal Form for Privacy

The privacy equation is a crucial stepping stone to full abstraction at first-order types. In Section 4.3
we will show that all other first-order observational equivalences can be reduced to privacy. In order
to do this, we will first define a syntactic procedure to eliminate private names. Intuitively, private
names are names that are not leaked to the environment — if they are not already known outside the
program, then they have no observable effects. In this section, we will provide a concrete definition
of private names in terms of a logical relation originally developed in [Pitts and Stark 1993], and
we will construct a normal form invariant under observational equivalence that eliminates the use
of private names in first-order terms.

Let sy, s, be sets of free names; we write R: s; < s, for a partial bijection or span between s; and
s2. We write R W R’ for the disjoint union of spans between disjoint sets of names, and we write
ids: sWt; = sWt, to denote the partial bijection defined that is the identity on s and undefined on
t1, t,. Stark [Pitts and Stark 1993] defines two families of relations R¥* C Val,(s;) X Val,(s,) and
R7™® C Exp,(s1) x Exp,(sz) by mutual induction, given in Fig. 5.

We note that R'® and R;* coincide at values, so we will simply write the relations as R;.
Additionally, by renaming related names we can without loss of generality reduce any span R to a
subdiagonal, writing s; = s W t; and R = id,.

The logical relation agrees with observational equivalence (=) at first-order types:

Theorem 4.10 ([Pitts and Stark 1993, Theorem 22]). Let 7 be a first-order type. Then for My, M, €
Exp,_(s) we have

M, = My & M, (ids); M

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:15

It is important to note that the logical relation is defined at all types 7, but the relation at first-
order types need only quantify over smaller first-order or ground types, making it possible to
reason about observational equivalence of such terms inductively. In this paper we will primarily
focus on the logical relation at first order types. In this setting we can tighten up Theorem 4.10
further, as we will explain: for any s” C s, (idy); is a partial equivalence relation whose domain
comprises those expressions that donaAZt leak any names when s’ is public, and (idy), relates
expressions whose behaviours are equivalent when s’ is public.

Example 4.11. The privacy equation for the v-calculus (3) can be established by means of this
logical relation. Because {a,x} + (x = a) |Jg false whenever a, x are distinct names, the logical
relation implies that

Ax.(x = a) (idg)n—p Ax.Talse,

so that intuitively a is private in Ax.(x = a). This in turn implies that
va.Ax.(x = a) (idg)n—p Ax.false,
which by Theorem 4.10 establishes the privacy equation of the v-calculus.
Example 4.12. For names q, b, let Ax.(ab)x : N — N denote the term
Ax.if (x = a) then b else if (x = b) then a else x.

This is the transposition of a, b, swapping a and b and otherwise behaving as the identity. It is
clear that Ax.(a b)x (id{gp1)N—N Ax.(a b)x. One can also verify that Ax.(a b)x (idg)n—N Ax.(a b)x
as well. Here we no longer allow relations to be made with the names a, b, which we think of as
private. Similarly, one can check that Ax.(a b)x (idg)n—n Ax.x, so that

va.vb.Ax.(ab)x (idg)Nn—N Ax.x

and by Theorem 4.10 va.vb.Ax.(a b)x is observationally equivalent to the identity.

We note that it is not the case that Ax.(ab)x (id(s})N—N Ax.(a b)x, as this would require that
b (id(4}) b. The same holds if we swap a for b. It is therefore apparent that the logical relations
capture some of the connections between names; in this case, that if a or b are known, then by
passing them as an argument to Ax.(a b)x the other will be made public as well.

We notice that in these examples, private names are unmatched by spans. Intuitively, this is
because the unmatched names do not affect the (observational) semantics of the terms; if we do not
already know what they are, then they have no observable effects. In general, given M € Exp_(sWt),
we are interested in the names in t with observable effects given that the names in s are known to
the environment. This motivates Definition 4.17 of private and leaked names.

Notation 4.13. If R: sp = s; and S: s; = 52 are spans, we let R; S denote the composition of
relations, meaning that m(R; S)n if there is some z such that mRz and zSn.

Lemma 4.14. The logical relations are transitive at first-order types. This means that if o is a first-
order type, M; € Exp,_(s;) fori =0,1,2 and R: sy = $1,S: s; < s, are spans such that My Ry My and
M1 So- Mz, then MO (R, S)o- Mz.

Proor. This follows by induction on the type o. O

Proposition 4.15. Let o be a first-order type and M € Exp_(s W t). There is a least u C t such that
M (idswu) M.

Proor. If ug,u; € t, M (idswy,)o M and M (idsuy,)o M, then idswy,; idsww, = idsw(uenu,) SO by
transitivity (4.14) we have M (idsw(uynu,))o M. We can therefore take u to be the intersection of all
such sets. O

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:16 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

Proposition 4.16. Let o be a first-order type. Let M; € Exp (s W t;) and suppose there is some
R: t; = t; such that M; (ids WR), M,. Let u; C t; be the least set such that M; (idswy,)o M;. Then after
possibly renaming names in u; we have u; = up = u, id, € R and M; (idgwy)s M.

ProoF. We know that R;R™! = iddom(r)> 50 M (idswdom(r))s M1 by transitivity (4.14). As uy is
least with this property, u; € dom(R).

Now consider the restriction R [, of R to u;. Because R [, = idy,; R, we have by transitivity that
Ml (lds WR rul)a M2~

A symmetric argument shows that R [, is a bijection of u; onto u,. Therefore, after renaming
names, we can assume that u; = u, = u and R [,= id,,.]

Definition 4.17 (Private and Leaked Names). Let M € Exp, (s W t). We define the set of leaked
names in M relative to s, denoted by Leak(M, s), to be the least u C ¢ such that M (idsw,). M. We
call the names that are not leaked private relative to s, denoted Priv(M, s) = t \ Leak(M, s). Given a
type 7 and a set of names s, we let

Safe] = {M € Exp,(s Wt) | Leak(M,s) = 0} = {M € Exp_(swt) | M (ids), M}
be the set of terms that leak no names relative to s. If s is empty, we write Priv(M), Leak(M) and
Safe;,.

Remark 4.18. By Lemma 4.14 and Proposition 4.16, the relation (ids), induces an equivalence
relation on Safe?. In fact, this corresponds to the usual notion of reducibility by logical relations.
Concretely, one could equivalently define Safe] directly as follows:

true, false € Safe} neSafel @nes
Ax.M € Safed < Vs',V e Safes” M[V/x] € Safes®™

M € Safel & 35",V € Safeiws',M U (sHV.

Example 4.19. We have Priv(Ax.(x = a)) = {a} and Ax.(x = a) € Safen_,p (cf. Example 4.11).
Similarly, Priv(Ax.(a b)x) = {a, b} and Ax.(ab)x € Safen_,n (cf. Example 4.12).

In Examples 4.11, 4.12 and 4.19, we identified private names and found logically related terms
that eliminate them. We will now show that this can be done for all terms of first-order type by
constructing a normal form that recursively eliminates private names.

Notation 4.20. If s = {ny, ..., ni} is a set of names, we write vs.M as shorthand for vn..... vng. .M.
We also write
if x =n € s then M, else M,

as shorthand for
if x = n; then M,, else if --- else if x = nx then M, else M,.

Definition 4.21 (Normal form for privacy). Let o be a first-order type and let M € Safe} for
M € Exp,(s W t). We define the normal form (M, s) of M by induction on the type o as follows:
Ground case: If ¢ is a ground type and M is a value, then we let (M, s) = M.
Function case B — 7: Suppose M is a value of type B — 7 and that we have already constructed
normal forms for expressions of type 7. Expanding M into its y-normal form, we have

M = Ax.if x = true then Mg ye €1se Mrase

for some Mirye, Mra1se € Exp, (s Wt). We know M (ids), M, so we have that Mirye (ids)r Mirye and
Meaise (idg); Mra1se. We then define

(M, s) = Ax.if x = true then (Mirue, s) €lse (Mraise, S).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:17

Function case N — 7: Suppose that M is a value of type N — 7 and that we have already
constructed normal forms for expressions of type 7. Expanding M to its y-normal form, we have

M=Ax.if x =n € sWt then M, else M,

for some M,, € Exp_(swt) and My € Exp_ (s Wt W {x}). In this case, M (ids)s M implies that
My (idgw(x})r My and My, (ids); My, for all n € s. We then define

(M,s) = Ax.if x = n € s then (M,, s) else (My,s W {x}).
Expression case: Suppose that we have constructed normal forms for values of type o. Because

M (ids)s M, there is some V € Val,(s Wt W w) suchthatsWt + M |, (w)V and V (idsw+) V for
some w’ C w. Let u = Leak(V,s) C w’. Then V (idswy); V, so we can define

(M, s) =vulV,sWu).
If s is empty, we omit it and write (M).

Example 4.22. This normal form generalizes the observations in Examples 4.11 and 4.12. Specifi-
cally, we have

(va.Ax.(x = a)) = Ax.false and (va.vb.Ax.(ab)x) = Ax.x.

The choice of u = Leak(V,s) in the expression case of our construction is crucial here; it is of
course true that
Ax.(ab)x (idggp})NoN Ax.(ab)x,

but this does not help us identify and eliminate the private names a, b.

Proposition 4.23. Let 7 be a first-order type and M € Safe;. Then
(1) if M is a value, so is (M, s);
(2) the names that appear in (M, s) are a subset of the names that appear in M;
(3) (M, s) eliminates the names in Priv(M, s) (i.e. (M, s) € Exp_(s));
(4) (M,s) € Safe;;
(5) (M, s) is well-defined up to renaming bound variables and names; and
(6) M (ids); (M, s).

Proor. (1) is clear by construction. (4) follows trivially from (3). We prove (2), (3), (5) and (6) by
induction on 7, following the construction of the normal form (M, s). For (2) and (3), the induction
steps are clear and so is the case where M is a value of type B. If M is a value of type N, then
M (ids)y M implies that M € s, and so (M, s) = M € Expy(s). For (5), the cases where M is a value
are clear, and the expression case follows because we made a canonical choice of u = Leak(V,s) in
the construction of (M, s). For (6), the expression case follows directly from the inductive hypothesis
and the definition of logical relations. In the case where M is a value and 7 = N — ¢, we p-expand
and write

M=Ax.if x =n e swt then M, else M,.

We need to verify that My (idsw(x})o (Mo, s W {x}) and that M, (ids)s (My,s) for n € s, both of
which follow from the inductive hypothesis. The case that M is a value and ¢ = B — 7 is handled
similarly. O

Example 4.24. As noted in Example 4.19, Leak(Ax.(x = a)) = {a} and Leak(Ax.(ab)x) = {a, b},
and these are indeed eliminated from the normal forms computed in Example 4.22.

We can now equate the problem of checking if two terms are observationally equivalent to one
of verifying the equality of their normal forms:

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:18 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

Theorem 4.25. Let o be a first-order type and let M; € Exp_(s W t;) fori = 1,2. The following are
equivalent:

(1) M (ids)a' Mp;

(2) M; € Safel. and (M, s) = (M, s) after possibly renaming bound variables and names.

Proor. If M; € Safe; and (M, s) = (My, s), then (M, s) (ids)s (Mp, s) and so by transitivity of
logical relations (4.14) and Proposition 4.23 we have M; (ids), Ma.

For the converse, suppose that M; (ids), M. By transitivity, it is clear that M; (ids), M;.

To show that (M, s) = (Ms, s), we argue by induction, following the construction of the normal
forms. The base case is clear. Now consider the inductive step at values. In the case that 0 = N — 7,
we n-expand and write

M; = Ax.if x =n € sWt; then M, else Mj.

By definition of logical relations, because M; (ids)s My, we have M, (idsw(x})o Mg and M, (id), M2
for n € 5. By our inductive hypothesis, this means that (M],s & {x}) = (M2,s W {x}) and (M}, s) =
(M2, s) for n € s. It follows that (Mj, s) = (My, s). The case that ¢ = B — 7 is the same.

In the case of expressions, let V; € Val, (s Wt; W) be the values such that swt; - M; || (¢))V;. Let
u; = Leak(V,s) C t/. ThenV; € Safes*™ and (M, s) = vu;.(V;, s W u;). We know that M; (ids), My,
so there is some R: t] = t, such that V; (id; WR), V3. By Proposition 4.16, after possibly renaming
names we have u; = uy = u, id,, € R and V; (idswy)s V2. We therefore have (Vi,s W u) = (Vo, s W u)
by our inductive hypothesis, and so (Mg, s) = (M, s). O

4.3 Full Abstraction at First-Order Types

At first-order types, it is sufficient to eliminate private names in order to prove abstraction:

Theorem 4.26. Let C be a categorical model of the v-calculus. C is fully abstract at first-order types
if and only if for all first-order types T and all M € Exp_(s), we have

HM]]# = [KM: S)]]#s- (11)

Proor. That this is necessary is clear, as by Proposition 4.23 normal forms preserve logical
relations and therefore (by Theorem 4.10) observational equivalence. To see that it is sufficient,
suppose that C satisfies (11) and let M;, M, € Exp_(s) for a first-order type . If M; ~, My, then by
Theorems 4.10 and 4.25 (M, s) = (M, s), and so

[Mi]4s = [{M1,)] 45 = [{Ma,)] 25 = [Ma] 4. O

For the remainder of this section, we will let the space of names be the circle T = [0, 1) and we
will let v be the uniform measure on T (we may assume this is the case by Remark 3.9). We choose
to work with the circle as there is a canonical group structure (T, +) on T, namely addition modulo
1, that is both compatible with the measurable structure (and hence, by Prop. 3.6, the quasi-Borel
structure) of T and is v-invariant. This means that the maps +: TXT — Tand —: TXT — T
are quasi-Borel, and for all g € T and B C T Borel we have v(g + B) = v(B). More generally, this
implies that for all f : T — P(X) and g € T, we have

letx<—vinf(g+x)=/f(g+x)dv(x)=/f(x)dv(x)=letx<—vinf(x).
T T

The idea of v-invariance will be used to treat private names as interchangeable in Qbs.
We will now use the v-invariant group structure on T, along with privacy, to prove that passing
to normal forms preserves Qbs semantics.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:19

Example 4.27. Consider the transposition va.vb.Ax.(a b)x. We have seen that
(va.vb.Ax.(ab)x) = Ax.x.

We wish to show that their semantics are equal in Qbs, i.e. [va.vb.Ax.(ab)x] = [Ax.x] : P(P(T)%).
To do this, we define a function f : 2T x T? — T as follows:

(x—a)+b ifx—aeB,
f(B,a,b,x) ={(x—b)+a elseif x—b € B,
x otherwise.

This function behaves like a generalized transposition, parameterized by a new set-argument B. If
B =0, then f(0, a, b, x) = x is just the identity on x. If B = {g} is a singleton, then

g+b ifx=g+a,
fHg}abx)=1g+a elseif x=g+b,

x otherwise,

so that f is a transposition whose parameters have been shifted by g.
We then take f’ : 27 x T? — P(P(T)") to be the map f’(B, a,b) = [Ax.[f(B,a, b, x)]], so that

f(0,a,b) =[Ax.x] and f'({g},ab) =[Ax.(ab)x](g+a,g+b),
and we define h : 2T — P(P(T)") to be
h(B) =leta« vinleth « vin f'(B,ab).
It is clear that (@) = [Ax.x]. On the other hand, by the v-invariance of the action we have
h({g}) =leta«—vinletb « vin[ix.(ab)x](g+a g+Db)
=leta<« vinletb « vin[Ax.(ab)x])(a,b)
= [va.vb.Ax.(ab)x],

independently of g € T.
Our problem now reduces to the privacy equation. Specifically, we have

[Ax.x] = let B « [0] in h(B)
=let B« (letn« vin[{n}]) in h(B)
=letn < vinh({n})
=letn < vin [vavb.Ax.(ab)x]
= [va.vb.Ax.(ab)x],
where the second equality is (PRIV) and the final equality follows by discardability (8).

Notation 4.28. Iff = (t1,...,tn) isa vector in T" and g € T, we write g + I= (g+t,...,g+1ty).
Additionally, we write let ¢ «<— v to be shorthand for drawing ¢ samples in a sequence:

lett; «— vin ---let ty « v.

Now suppose that 7 is a first-order type and M € Exp_(s). We will prove that [M] = [{M, s)] by
constructing a function f : 2° x T*S — P([7]) satisfying

f(0,-) = [{M, 5)]#s(-) and f({n}, =) = [M] (),
as we did in Example 4.27, and applying the privacy equation (PRIV).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:20 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

We will construct this f inductively, parallel to the construction of the normal forms. In order to
do this, we will provide a more general, parametrized version of this construction: given M € Safe
with names in s ¥ t, we will construct a function f : 27 x T#** — P([[r]) such that

F(0,-7) = [(M,$)]5(-) and f({n},) = [M]s (= n+7).

We will use this parametrized version in the inductive step of our proof.

The construction of f itself is somewhat high-level, and is analogous to the difference between
the n-normal form of a term and its normal form. It takes as arguments a set of name-permutations
B, a sequence s of potentially leaked names, and a sequence of names ¢ that are guaranteed to
remain private. It then identifies the redundant parts of the y-normal form — where we compare
against a private name t; — and instead checks whether the name matches one of the names in
B+ t;.

By selecting B to be a fresh permutation 7 <> 1, we recover the semantics of the n-normal form.
On the other hand, by letting B be the empty set we skip redundant comparisons against private
names, recovering the semantics of the normal form. We can then use the privacy equation to
equate these two denotations, proving that each term is denotationally equivalent to its normal
form.

Proposition 4.29. Let 7 be a first-order type and let M € Exp, (s W t). If M € Safe?, then there is a
quasi-Borel map

f:2ExT*Y — P([7])
such that
f(0.5.7) = [(M.$)]+5(5) and f({g},5,7) = [M] 50 (5, g + 1)
whenever (5, g +t) € T*Y,
In the case that M = V is a value, f factors through the unit of the monad.

Proor. We construct f inductively, in parallel to the construction of the normal forms.
Ground case: If 7 is a ground type and V is a value, then (V,s) = V so we simply let

fB3D =[V.9)]E) = [IKV.) 5).

Function case B — 7: Suppose that V is a value of type B — 7 and that we have already
constructed these functions for expressions of type 7. We n-expand V, so that

V = Ax.if x = true then My else Mra1se.
By definition of logical relations and the normal form we have Mrye, Mraise € Safe; and
(V,s) = Ax.if x = true then (Mirue, s) €lse (Mraise, S).

By assumption we have functions fi e, fralse : 2° X T*** — P([r]) satisfying the conditions of
Proposition 4.29 for Myrye and Mra1se. We then define f : 2T x T#*%¢ — P([z])B by

FB.ED = ix {ftrue(B,E’,?) if x = true,

ﬁalse(B, 5, ?) otherwise.

It is clear that f(0,5,) = [(V,s)|(5) and f({g},5.7) = |V|(5,g +) when (5,9 +f) € T*%, so that
[f] satisfies Proposition 4.29 for V.

Function case N — 7: Suppose that V is a value of type N — 7 and that we have already
constructed these functions for expressions of type 7. We n-expand V, so that

V =Ax.if x =n € sWt then M, else M.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:21

By definition of logical relations and the normal form we have M, € SafeiW{X}, M, € Safe forn € s
and

(V,s) = Ax.if x = n € s then (M, s) else (My,s W {x}).

By assumption we have functions f, : 2TxT#*%* — P([r]) forn € sand f; : 2" xT*¥**{x} — p([7])
satisfying the conditions of 4.29 for M,, and M,. Writing ¢ = (ty,.. ., t;), we define f : 2T x T#S¥* —
P([z])" by

ﬁ,(B,?,?) ifx=ne€s,

M,]G, (x =) +1) elseif (x—t;) € B,

f(B,51) = Ax.

M]G, (x —t,) +1) elseif (x—t) € B,

fo(B.5.1,x) otherwise.
If B=0, then
[{My, $)](5) ifx=nes,

f(0,5,1) = Ax. {[[(MO,SH](;) otherwise

so that £(0,5,7) = [(V, s)|(5). On the other hand, if B = {g} is a singleton, then

M,]G g+1) ifx=nes5,
M,]G g+1) elseif x =g+t
f({gh5.1) = Ax.
M,]G, g+1) elseif x =g+t
[Mo] (5. g+%,x) otherwise
so that f({g},5,7) = |V|(5,g +f) when (5,g +) € T****. Thus [f] satisfies Proposition 4.29 for V.
Expression case: Suppose that we have constructed these reductions for values of type 7. We

have M (ids); M, so by definition of logical relations and the normal form there is some V €
Val, (s WtWuWw) such that swt - M ||, (u ¥ w)V and u = Leak(V, s). Therefore V € SafeS*™ and

(M, s) =vulV,sWu).

By assumption, there is a function fiy : 27 x T#SY*#9w _ p([r]) satisfying the conditions of
Proposition 4.29 for V and (V, s & u). We then define f : 2T x T**** — P([r]) by

f(B,5,f) =letu « vinletw « vin fy(B,5 5 i w).
It follows that
f({g}.5.1) =letu < vinletw < vin fy({g}.5. .4 W)
=letu «—vinletw « vin [V]sswrwuww(S g+ 5, g+w)
=letu «—vinletw «vin [[V]}“w@uw,v(f,g+?, u,w)

= [vu.vw.V] sswr (5, g +)

= [M]ss0r g +17)
whenever (5,9 +) € R*Y, where the third equality follows by v-invariance and the last by

soundness (Theorem 2.2). Similarly, we verify that £(0,5,7) = [(M, s)]s(5) by discardability (8)
and soundness. O

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:22 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

We note that this construction is not specific to quasi-Borel spaces; it can be performed completely
syntactically in a metalanguage asserting that N carries a v-invariant group structure.

It follows immediately that passing to normal forms preserves Qbs semantics, and therefore that
Qbs is fully abstract at first-order types:

Theorem 4.30. Qbs is fully abstract at first-order types.

Proor. By Theorem 4.26 it is enough to show that Qbs validates passing to normal forms.
Let 7 be a first-order type and let M € Exp_(s). By Proposition 4.29 there is a quasi-Borel map
f: 2" x T*S — P([z]) such that

f(0.5) = (M. 5)]5(5) and f({g}.5) = [M]+(5).
Currying, we get amap h : 27 — P([r])™ such that
h(0) = [{M,$)]+s and h({n}) = [M]xs.
It follows that
[{M,s)]+s = let B« [0] in h(B) = let B « (let n « v in [{n}]) in h(B)
=letn—vinh({n}) = letn « vin [M]yss = [M]ss,
where the second equality is (PRIV) and the final equality follows by discardability (8). O
5 STRUCTURAL CONSEQUENCES

In this section, we highlight some consequences our main result has on the category of quasi-Borel
spaces and other models of name generation. The privacy equation makes it impossible in Qbs to
find certain conditional probabilities, as this would require revealing a private name (Prop. 5.2).
This means care is needed for Bayesian inference in a higher-typed situation. We will give a broader
context for this result using recent notions from synthetic probability theory, allowing us to consider
any model of name generation as a categorical model of probability.

Definition 5.1 ([Fritz 2020, 11.1]). Let g € P(X X Y) be a probability distribution and px € P(X)
its first marginal. A conditional distribution for y is a morphism px : X — P(Y) such that

p=letx « pxinlety « px(x) in [(x,y)].
We will now consider the distribution y € P(2% x R)
p=1leta«—vin[({a},a)] (12)
which returns a closure with private name a, but also leaks the name a in the second component.
Proposition 5.2. In Qbs, conditionals need not exist at function types.
Proor. By the privacy equation (PRIV), the first marginal of y (12) equals
m=leta—vin[{a}] =[0] :P®).
If 41 admitted a conditional distribution pj; : 2* — P(R), we would obtain
p=1let A« [0] inleth « pp(A) in [(A b)] =let b « p;1(0) in [(0,b)] : P(2® xR).

This is a contradiction, as the predicate (3) : 2% x R — 2 is always true for y, and always false
for the RHS. To condition on y; would mean to reconstruct the value a given only access to the
marginal {a}, which is impossible. O

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:23

All conditionals from practical statistics (at ground types like R) are still supported by quasi-Borel
spaces. The situation is different at function types, but this is not a coincidental pathology of Qbs:
Name generation offers a systematic reason why conditioning on function types is inconsistent.
To make this precise, we will consider any model of name generation as a categorical model of
probability theory, and study conditioning in that context. We show that the privacy equation
is inconsistent with an axiom called ‘positivity’, which is valid in traditional measure-theoretic
probability, but not in Qbs by our full-abstraction result.

Categorical or synthetic probability theory is the abstract axiomatization of probabilistic systems.
Its high-level nature ties it closely to the semantics of probabilistic programming languages: One
could argue that such languages are precisely the internal languages of synthetic probability
theories, and different axioms appear as admissible program equations (see (13)). The subject has
been explored among others by [Fritz 2020; Kock 2011; Scibior et al. 2017]. Of these approaches, we
adopt the language of Markov categories which is increasingly widely used [Fritz 2020; Parzygnat
2020; Patterson 2020; Shiebler 2020].

Definition 5.3 ([Fritz 2020, 2.1]). A Markov category C is a symmetric monoidal category in which
every object X is equipped with the structure of a commutative comonoid copyy : X — X ® X,
delx : X — I satisfying naturality conditions.

Morphisms in a Markov category capture stochastic computation (Markov kernels); the inter-
change law of ® encodes exchangeability/Fubini, and naturality of del the discardability of such
computations. copy allows us to introduce correlations. Morphisms y : I — X are called distri-
butions on X. Product distributions are formed by the tensor product,andif p: I - X ® Yisa
distribution, we can take its marginals px = (idx ®dely) o y, uy = (delx ® idy) o p.

An important class of examples are Kleisli categories. If T is a commutative and affine monad on
a category C with finite products, then the Kleisli category KI(T) is a Markov category [Fritz 2020,
3.2]. Examples are the categories Set, Meas and Qbs, all equipped with their respective probability
monads. We observe that name generation (cf. Def. 2.1) is a synthetic probabilistic effect.

Observation 5.4. For every categorical model (C, T) of the v-calculus, the categoryK1(T) is a Markov
category.

Proor. The monad T is assumed commutative and affine, so we apply [Fritz 2020, 3.2]. O

This makes the probabilistic semantics of this paper conceptually very natural: We have taken
a synthetic probabilistic effect and given an interpretation using actual randomness. In what
follows, we will explore some of the structural differences between name generation and traditional
probability theory. By our full abstraction result, this behaviour will apply to quasi-Borel spaces as
well.

We let C denote a Markov category and recall the following definitions

Definition 5.5 ([Fritz 2020, 10.1]). A morphism f : X — Y is deterministic if it commutes with
copying:
copyy o f = (f ® f) o copyy.

In the case of Kleisli categories, determinism is equivalent to the following program equation in
the metalanguage:

x:XFlety « f(x)in[(y.y)] =lety; « f(x) inlety; « f(x) in[(y1,y2)] : T(YXY) (13)

Note that any morphism that factors through the unit of the monad is deterministic, but the
converse is false in general.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:24 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

Definition 5.6 ([Fritz 2020, 11.22]). A Markov category C is called positive if whenever f : X — Y
and g : Y — Z are such that g o f is deterministic, then

(9 ®idy) o copyy o f=((go f) ® f) o copyy.

This equation is valid in discrete and measure-theoretic probability by [Fritz 2020, 11.25]. We
suggest the reading that “irrelevant intermediate results cannot introduce correlations”: On the
RHS, the output of f is resampled instead of copied. This blatantly fails in the presence of negative
probabilities: There is a monad D, on Set assigning to X distributions which sum to 1, but whose
weights can be negative. Probabilities thus are allowed to interfere destructively. The Kleisli category
of D, is still a valid Markov category, and it is in this positivity axiom that its theory deviates from
standard probability [Fritz 2020, 11.27]. A consequence of positivity is this:

Proposition 5.7 (One deterministic marginal). LetC be a positive Markov category, andp: I - X ® Y
be a distribution. If the marginal px : I — X is deterministic, then u = px ® ply.

ProoF. Let f = pand g : X ® Y — X be marginalization. By assumption g o f is deterministic.
The result is obtained by simple string diagram manipulation from the positivity axiom. O

In Meas, nothing can be correlated with a constant: If (X, Y) is a joint distribution and X 4 X is
deterministic, then Y is independent from X. The privacy equation implies that this does not hold
for name generation, analogously to Prop. 5.2.

Proposition 5.8. Any non-degenerate model of the v-calculus that verifies (PRIV) is non-positive.

Proor. Consider the distribution p = let a « new in [({a}, a)]. Its first marginal is determinis-
tic,as y; = let a «— new in [{a}] = [0] by (PRIV). Yet p is not the product of its marginals [0] ®new,
as the map (3) : BN x N — B distinguishes the two distributions. This violates Prop. 5.7. O

Corollary 5.9. The category Qbs is not positive at function spaces.

We have thus given a natural example of a non-positive Markov category, and this phenomenon
has an intuitive meaning in the context of name generation. Any fixed singleton set {a} is manifestly
distinguishable from 0, but only if we know where to look. By randomizing a, its value is perfectly
anonymized and this information is lost, leaving us with the empty set. This is reminiscent of
a limited form of destructive interference. Note that probabilities in quasi-Borel spaces remain
non-negative.

The concept of non-positivity is useful to connect several structural properties of Qbs. Firstly, it
explains the non-existence of conditionals and disintegrations in Prop 5.2, as by [Fritz 2020, 11.24]
conditionals imply positivity. Secondly, the failure of the functor X : Qbs — Meas (Prop. 3.7) to
preserve products is necessary in order to violate Proposition 5.7, as we observe

Observation 5.10. Let X, Y be quasi-Borel spaces and i € P(X X Y) such that ux = [x] for some
x € X.IfE(X XY) = 3ZX X XY, then yu is the product of its marginals.

Proor. If X X Y carries a product-c-algebra, the situation reduces to Meas, which is positive. O

Proposition 5.8 thus implies that the product 2% x R cannot be preserved. Similar arguments
can be constructed for other product spaces like 2% x 2%, Another structural result on quasi-Borel
spaces that follows from the methods of §4 concerns the novel status of function spaces.

Proposition 5.11. The quasi-Borel space 2% is not isomorphic to M(Q) for any measurable space Q.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:25

Proor. The adjunction ¥ 4 M (Prop. 3.7) is idempotent, hence a quasi-Borel space X lies in the
essential image of M if and only if Mx = My, . We will show that M= is strictly smaller than Ms, . .
Let f : R — R be a bijective function that is not measurable, and let A C R? be the graph of f. By
[Srivastava 1998, Theorem 4.5.2], A is not Borel and hence the map a : R — 2%, x — A, = {f(x)}
does not lie in M,=. However a € MZZR’ that is « is a measurable map from R to (ZR, 3,r). Namely,
for every U € Z,x, we have a1 (U) = {x : {f(x)} € U}. By Lemma 4.9, the set S = {x : {x} € U}
is always countable or cocountable, and so is a ™' (U) = f~!(S) by bijectivity of f. So the preimage
is a Borel set as desired. O

6 RELATED WORK AND CONTEXT
6.1 Names in Computer Science and Statistics

Names are important in almost every area of practical computer science. There are two main ways
to implement name generation: the first is to have one or more servers that deterministically supply
fresh names as requested, and the second is to pick them randomly. This paper has emphasised the
surprising effectiveness of the latter approach for programming semantics, in that it provides a
model that is fully abstract up to first order, not by construction, but by general properties of the
real numbers.

Names might be server names in distributed systems, nonces in cryptography, object names
in object oriented programming, gensym in Lisp, or abstract memory locations in heap-based
programming. Beyond computer science, names play a vital role in logic and set theory. Since this
paper is in the theme of probabilistic programming, we emphasise in particular two ways that
names are used in probabilistic programming and statistics, and the way that name generation is
already understood in terms of randomness there.

o The Dirichlet process can be used as a method for clustering data points where the number
of clusters is unknown. The ‘base distribution’ of a Dirichlet process allocates a label to each
cluster that is discovered. It is common to use an atomless distribution such as a Gaussian for
this, so that the labels are in effect fresh names for the clusters. In the Church probabilistic
programming language, it is common to actually use Lisp’s gensym as the base distribution
for the Dirichlet process [Roy et al. 2008].

e A graphon is a measurable function g: [0,1]? — [0, 1], and determines a countably infinite
random graph in the following way: we label nodes in the graph with numbers drawn
uniformly from [0, 1], and there is an edge between two nodes r, s with probability g(r, s).
Thus when building a graph node-by-node, the name of each fresh node is, in effect, a real
number [Orbanz and Roy 2015].

While many programming languages support name generation directly or through libraries, we
have here focussed on the v-calculus, which is stripped down so that the relationship between name
generation and functions can be investigated. There are many other calculi for names, including
Av, which is a call-by-name analogue of the v-calculus [Odersky 1994], and the z-calculus, for
concurrency [Milner 1999]. Moreover, research on the v-calculus has led to significant developments
in different directions, including memory references (e.g. [Jeffrey and Rathke 1999; Laird 2004;
Murawski and Tzevelekos 2016]) and cryptographic protocols (e.g. [Sumii and Pierce 2003]). It may
well be informative to pursue quasi-Borel based analyses of these applications in the future.

6.2 Models of the v-Calculus

Arguably the simplest model of the v-calculus is a set-theoretic model with a special set N of atoms,
where abstractness of the atoms is enforced by an invariance property under permutations of
the atoms. This model appears in different equivalent guises, including nominal sets and sheaves

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:26 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

on finite sets of names and injective renamings. In this model, types are interpreted as sets, and
expressions are interpreted as equivariant functions; see for instance [Pitts 2013, Ch. 9] or [Stark
1994, §3.7]. In nominal sets, equivariance is used to treat private names as interchangeable, which
is reminiscent of the idea of v-invariance in 4.3.

This simple model of nominal sets is very useful, but on its own it is only fully abstract at
ground types [Stark 1996, §5]. The privacy law (PRIV) fails because the Boolean existence function
3: (N — B) — B (6) is a morphism of nominal sets, and so we can distinguish the expressions in
(PRIV) via the context

let f « (=) in (3f) : B. (14)
Nominal sets are a Boolean model of set theory [Pitts 2013, Thm. 2.23], and one would necessarily
have this kind of existence function 3 in any Boolean model of set theory. Quasi-Borel spaces do
form a kind-of model of set theory (a quasitopos), but it is an intuitionistic one, and there is no
Boolean existence function (Example 4.4).

To deal with this incompleteness of nominal sets, Stark [Stark 1994, §4.4] proposed a semantic
version of the logical relations that we have recalled in Section 4. This model, based on functors
between double categories, is fully abstract at first order, as ours is. Subsequently an alternative
logical relations model was proposed by [Zhang and Nowak 2003], by working with logical relations
over a functor category that more clearly distinguishes between public and private names. Qbs is
different in spirit to these models, as it is a general purpose model of probability theory rather than
a model purpose-built for full abstraction. A quasi-Borel space can be regarded as an R-indexed
logical relation (in the sense of [Plotkin 1973]), but it also has a basic role motivated by probability
theory.

One curious aspect is that all of these models of the v-calculus will provide unusual Markov
categories (Observation 5.4), i.e. categorical models of probability theory, even if they do not exhibit
any randomness in the familiar sense.

Full Abstraction at Higher Types. None of the set-based models justify the following observational
equivalence at second-order [Pitts and Stark 1993, Ex. 4(3)]:

vavb.Af.(fa & fb) ~(n—B)—p Af.true (15)

where < denotes the biconditional of booleans. To see that this equation fails in the quasi-Borel
space model, notice that there is a Qbs morphism (0>): R — 2 given by (0>)(r) = true iff 0 > r,
and so we can temporarily add this as a constant to the v-calculus and keep the rest of the deno-
tational semantics the same. Then [(Af.true)(0>)] = [true], but [(va.vb.Af(fa < fb))(0>)] is
different; informally it returns true with probability 0.5.

To our knowledge, the only models of (15) to date are game-semantic models [Abramsky et al.
2004; Tzevelekos 2008] and bisimulation models [Benton and Koutavas 2008]. In common with our
work, normal forms play an implicit role in those models, but those models are very different from
ours at higher types. In the future it may be interesting to impose further invariance properties on
quasi-Borel spaces to bridge the gap.

Usage of Models in Practice. One major application of models is in validating observational
equivalences that may be used for compiler optimizations. In probabilistic programming, optimiza-
tions are performed as part of statistical inference algorithms. For instance, discardability (8) and
exchangeability (9) are simple but useful translations in practical inference [Murray and Schon
2018; Nori et al. 2014], and partial evaluation and normalization are used in several systems [chieh
Shan and Ramsey 2017; Gehr et al. 2020]. Our work in this paper is primarily foundational, but one
application is that, in a higher-order probabilistic language, a statistical inference algorithm could

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:27

legitimately simplify using our normalization algorithm (§4.2) or higher-typed equations such as
the privacy equation (3).

6.3 Other Models of Higher-Order Probability

In this paper we have focused on quasi-Borel spaces, but recently other models of higher-order
probability have been proposed. We contend that there are two essential ingredients for using a
model of higher-order probability to model the v-calculus, with name generation as randomness:

(1) it must support an atomless distribution, such as the normal distribution, on some uncountable
space N;
(2) it must support equality checking on that space, as a function N X N — 2.

Some models, such as probabilistic coherence spaces [Ehrhard et al. 2014], do not seem to support
atomless distributions, which makes it unclear how to use them for this purpose. Other models are
based on the idea that all functions are continuous or computable, e.g. [Escardo 2009; Huang et al.
2018] and then it is impossible to have equality checking for N = R.

This still leaves several recent models, including the stable cones model [Ehrhard et al. 2018], a
function analytic model [Dahlqvist and Kozen 2020], game semantics [Paquet and Winskel 2018],
geometry of interaction [Dal Lago and Hoshino 2019], boolean-valued sets [Bacci et al. 2018], a
boolean topos model [Simpson 2017], and an operational bisimulation [Lago and Gavazzo 2019].
There are also recent logics for higher order probability [Sato et al. 2019]. We understand from the
authors that operational bisimulation violates the privacy law, for an interesting reason, and that
the boolean topos model violates it because of booleanness (as above, (14)). It remains to be seen
how abstract the other recent models are for interpreting the v-calculus. We note that [Dahlqvist
and Kozen 2020; Ehrhard et al. 2018] are currently focused on call-by-name semantics and so it is
not obvious how to use them with the call-by-value v-calculus that we considered in this paper
(see (7).

Finally we mention another model of higher-order probability that is purely combinatorial [Staton
et al. 2018]. That work emphasizes two views of the same model. From one point of view, the space
N is a space of real numbers and supports the beta distributions (which are atomless). From another
point of view, N is a space of freshly generated names of urns, and real numbers do not arise. This
is not a model of the v-calculus since it does not support name equality checking, but it is related
in spirit nonetheless.

6.4 Beyond v-Calculus

The v-calculus describes the basic interaction between functions and name generation. Going
further, it is also important to investigate the situation where the names have further meaning
or structure. In probabilistic programming and statistics, the reorderability of names amounts
to sequence exchangeability (e.g. [Staton et al. 2018]), and this is of fundamental importance in
statistics and probabilistic programming. But more elaborate symmetries and exchangeabilities are
also important (e.g. [Jung et al. 2020; Orbanz and Roy 2015; Staton et al. 2017]), and we leave this
for future work.

ACKNOWLEDGMENTS

We thank Alexander Kechris for a first proof of the privacy equation; we have independently
developed a different proof based on Borel inseparability (§4.1). We also thank Ohad Kammar for
many insightful comments on an early draft of this work. The work has had three starting points:
one in discussions with Alex Simpson in 2013; one in discussions with Cameron Freer and Dan Roy
in 2016; and the last following discussions with Ohad Kammar and Prakash Panangaden in 2019. We

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

11:28 Marcin Sabok, Sam Staton, Dario Stein, and Michael Wolman

also thank Tobias Fritz, Mathieu Huot and Sean Moss for helpful discussions. It has been helpful to
present preliminary versions of this work at the LAFI and PPS workshops. This work is supported
by EPSRC Grant No. EP/N509711/1, a Royal Society University Research Fellowship, FRONT
Grant No. 290736, NSERC Discovery Grant No. RGPIN-2020-05445, NSERC Discovery Accelerator
Supplement No. RGPAS-2020-00097 and NCN Grant Harmonia No. 2018/30/M/ST1/00668.

REFERENCES

S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and L. D. B. Stark. 2004. Nominal games and full abstraction for the
nu-Calculus. In Proc. LICS 2004. 150 — 159.

Robert J. Aumann. 1961. Borel structures for function spaces. Illinois Journal of Mathematics 5 (1961).

Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott. 2018. Boolean-valued
semantics for stochastic lambda-calculus. In Proc. LICS 2018.

Nick Benton and Vasileios Koutavas. 2008. A Mechanized Bisimulation for the Nu-Calculus. Technical Report MSR-TR-2008-
129. Microsoft Research.

Chung chieh Shan and Norman Ramsey. 2017. Exact Bayesian inference by symbolic disintegration. In Proc. POPL 2017.

Fredrik Dahlqvist and Dexter Kozen. 2020. Semantics of higher-order probabilistic programs with conditioning. Proc. ACM
Program. Lang. 4, POPL, Article 19 (Dec. 2020).

Ugo Dal Lago and Naohiko Hoshino. 2019. The geometry of Bayesian programming. In Proc. LICS 2019.

Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2018. Measurable cones and stable, measurable functions. In
Proc. POPL 2018.

Thomas Ehrhard, Charistine Tasson, and Michele Pagani. 2014. Probabilistic coherence spaces are fully abstract for
probabilistic PCF. In Proc. POPL 2014. 309-320.

M.H. Escardo. 2009. Semi-decidability of may, must and probabilistic testing in a higher-type setting. In Proc. MFPS 2009.

Tobias Fritz. 2020. A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics.
Adv. Math. 370, 107239 (Aug. 2020).

T. Gehr, S. Steffen, and M. T. Vechev. 2020. APSI: exact inference for higher-order probabilistic programs. In Proc. PLDI 2020.

Michele Giry. 1982. A categorical approach to probability theory. In Categorical Aspects of Topology and Analysis. Lecture
Notes in Mathematics, Vol. 915. Springer, 68-85.

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A Convenient Category for Higher-Order Probability
Theory. In Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (Reykjavik, Iceland) (LICS
’17). IEEE Press, Article 77, 12 pages.

Daniel Huang, Greg Morrisett, and Bas Spitters. 2018. An application of computable distributions to the semantics of
probabilistic programs. arxiv:1806.07966.

A. Jeffrey and J. Rathke. 1999. Towards a theory of bisimulation for local names. In Proc. LICS 1999.

Paul Jung, Jiho Lee, Sam Staton, and Hongseok Yang. 2020. A generalization of hierarchical exchangeability on trees to
directed acyclic graphs. Annales Henri Lebesgue (2020). to appear.

Olav Kallenberg. 2002. Foundations of Modern Probability. Springer, New York.

Ohad Kammar and Gordon D. Plotkin. 2012. Algebraic foundations for effect-dependent optimisations. In Proc. POPL 2012.
349-360.

Alexander Kechris. 1987. Classical Descriptive Set Theory. Springer.

Anders Kock. 2011. Commutative monads as a theory of distributions. Theory and Applications of Categories 26 (Aug. 2011).

Dexter Kozen. 1981. Semantics of probabilistic programs. J. Comput. Syst. Sci. 22, 3 (1981), 328-350.

Ugo Dal Lago and Francesco Gavazzo. 2019. On bisimilarity in lambda calculi with continuous probabilistic choice.
Electron. Notes Theoret. Comput. Sci. 347 (2019), 121 - 141. Proc. MFPS 2019.

James Laird. 2004. A game semantics of local names and good variables. In Proc. FOSSACS 2004. 289-303.

J Lambek and P J Scott. 1988. Introduction to higher order categorical logic. CUP.

Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K. Mansinghka. 2019. Trace
types and denotational semantics for sound programmable inference in probabilistic languages. Proc. ACM Program.
Lang. 4, POPL, Article 19 (Dec. 2019).

Robin Milner. 1999. Communicating and mobile systems - the Pi-calculus. CUP.

Eugenio Moggi. 1991. Notions of computation and monads. Inform. Comput. 93, 1 (1991), 55 - 92.

Andrzej S. Murawski and Nikos Tzevelekos. 2016. Nominal game semantics. Found. Trends Program. Lang. (2016).

Lawrence M. Murray and Thomas B. Schon. 2018. Automated learning with a probabilistic programming language: Birch.
Annual Reviews in Control 46 (2018), 29 — 43.

Aditya Nori, Chung-Kil Hur, Sriram Rajamani, and Selva Samuel. 2014. R2: An efficient MCMC sampler for probabilistic
programs. In Proc. AAAI 2014.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

Probabilistic Programming Semantics for Name Generation 11:29

Martin Odersky. 1994. A Functional Theory of Local Names. In Proc. POPL 1994. 48 — 59.

Peter Orbanz and Daniel M. Roy. 2015. Bayesian models of graphs, arrays and other exchangeable random structures. IEEE
Trans. Pattern Anal. Mach. Intell. 2 (2015), 437-461.

Hugo Paquet and Glynn Winskel. 2018. Continuous probability distributions in concurrent games. In Proc. MFPS 2018.
321-344.

Arthur J. Parzygnat. 2020. Inverses, disintegrations, and Bayesian inversion in quantum Markov categories. arXiv:2001.08375.

Evan Patterson. 2020. The algebra and machine representation of statistical models. Ph.D. Dissertation. Stanford University
Department of Statistics.

Andrew M. Pitts. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge University Press.

Andrew M. Pitts and Ian Stark. 1993. Observable properties of higher order functions that dynamically create local names,
or: What’s new?. In Proc. MFCS 1993 (Lecture Notes in Computer Science). 122-141.

G. D. Plotkin. 1973. Lambda-definability and logical relations. Technical Report SAI-RM-4. School of A I, Univ.of Edinburgh.

David Pollard. 2001. A users’ guide to measure-theoretic probability. CUP.

Daniel Roy, Vikash Mansinghka, Noah Goodman, and Josh Tenenbaum. 2008. A stochastic programming perspective on
nonparametric Bayes. In Proc. ICML Workshop on Nonparametric Bayes.

Tetsuya Sato, Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Justin Hsu. 2019. Formal verification of
higher-order probabilistic programs: reasoning about approximation, convergence, bayesian inference, and optimization.
Proc. ACM Program. Lang. 3, POPL, Article 38 (Jan. 2019), 30 pages.

Adam Scibior, Ohad Kammar, Matthijs Vakér, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean Moss, Chris
Heunen, and Zoubin Ghahramani. 2017. Denotational validation of higher-order Bayesian inference. Proceedings of the
ACM on Programming Languages 2 (Nov. 2017).

Dan Shiebler. 2020. Categorical stochastic processes and likelihood. arXiv:2005.04735.

Alex Simpson. 2017. Probability Sheaves and the Giry Monad. In Proc. CALCO 2017.

Shashi M. Srivastava. 1998. A Course on Borel Sets. Springer, New York.

Tan Stark. 1994. Names and Higher-Order Functions. Ph.D. Dissertation. University of Cambridge. Also available as Technical
Report 363, University of Cambridge Computer Laboratory.

Tan Stark. 1996. Categorical models for local names. LISP and Symbolic Computation 9, 1 (Feb. 1996), 77-107.

Sam Staton. 2010. Completeness for algebraic theories of local state. In Proc. FOSSACS 2010. 48-63.

Sam Staton. 2017. Commutative semantics for probabilistic programming. In Proc. ESOP 2017.

Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman, Cameron E. Freer, and Daniel M. Roy. 2018. The
Beta-Bernoulli process and algebraic effects. Proc. ICALP 2018.

S. Staton, H. Yang, N. L.. Ackerman, C. Freer, and D. Roy. 2017. Exchangeable random process and data abstraction. In
Proc. PPS 2017.

Sam Staton, Hongseok Yang, Frank Wood, Chris Heunen, and Ohad Kammar. 2016. Semantics for probabilistic programming:
higher-order functions, continuous distributions, and soft constraints. In Proc. LICS 2016. 525 — 534.

Eijiro Sumii and Benjamin C. Pierce. 2003. Logical relations for encryption. J. Comput. Secur. 11, 4 (2003), 521-554.

Nikos Tzevelekos. 2008. Nominal game semantics. Ph.D. Dissertation. Oxford University Computing Laboratory.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An introduction to probabilistic program-
ming. arxiv:1809.10756.

Alexander Vandenbroucke and Tom Schrijvers. 2020. PAwNK: functional probabilistic NetKAT. In Proc. POPL 2020.

Yu Zhang and David Nowak. 2003. Logical relations for dynamic name creation. In Proc. CSL 2003. 575-588.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 11. Publication date: January 2021.

	Abstract
	1 Introduction
	1.1 The Nu-Calculus and its Observational Equivalence
	1.2 Probabilistic Programming and Name Generation as Randomness
	1.3 Quasi-Borel Spaces, Full Abstraction and Descriptive Set Theory

	2 Preliminaries on Name Generation and the Nu-Calculus
	2.1 Operational Semantics and Observational Equivalence
	2.2 Categorical Semantics

	3 Higher-Order Probability
	3.1 Rudiments of Measurable Spaces
	3.2 Preliminaries on Quasi-Borel Spaces
	3.3 Probabilistic Semantics for the Nu-Calculus

	4 Full Abstraction
	4.1 The Privacy Equation
	4.2 A Normal Form for Privacy
	4.3 Full Abstraction at First-Order Types

	5 Structural Consequences
	6 Related Work and Context
	6.1 Names in Computer Science and Statistics
	6.2 Models of the Nu-Calculus
	6.3 Other Models of Higher-Order Probability
	6.4 Beyond Nu-Calculus

	Acknowledgments
	References

