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ABSTRACT

A query Q is monotonically determined over a set of views V if Q
can be expressed as a monotonic function of the view image. In the
case of relational algebra views and queries, monotonic determinacy
coincides with rewritability as a union of conjunctive queries, and
it is decidable in important special cases, such as for CQ views and
queries [8, 22]. We investigate the situation for views and queries
in the recursive query language Datalog. We give both positive and
negative results about the ability to decide monotonic determinacy,
and also about the co-incidence of monotonic determinacy with
Datalog rewritability.
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1 INTRODUCTION

View definitions allow complex queries to be represented by simple
relation symbols. They have many uses, including as a means to
protect access to data, as a means to raise the level of abstraction
available to data users, and as a means to speed up the evaluation
of queries [2]. Views represent a restricted interface to a dataset,
and thus an associated question is what class of queries can be
answered via accessing this interface. More formally, given a query
Q expressed as a logical formula over the base relations, can the
answer to Q be obtained via accessing the views. There are several
different formulations of this computational problem, depending
on what one means by “answering a query accessing the views”.
One can ask whether Q is expressible as an arbitrary function
of the views, or as an arbitrary monotone function of the views.
Alternatively, one can choose a particular query language L and ask
whetherQ can be transformed to a queryQ ′ over the views, where
Q ′ is in L. The first choice is thatQ is determined over the views, the
second that Q is monotonically determined over the views, and the
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last that Q is L-rewritable over the views. Each of these notions can
be relativized to finite instances.

These questions were studied initially in the case where both
queries and views are given by conjunctive queries (CQs). It is
known that:
• determinacy of CQ query over a collection of CQ views is
equivalent to rewritability of Q over the views in relational
algebra [22]
• determinacy of a CQ over CQ views does not agree neither
with determinacy over finite instances [16] nor with mono-
tone determinacy [3]
• determinacy of a CQ query over CQ views is undecidable
[16], and the same holds for determinacy over finite instances
[17]
• determinacy is decidable for queries and views given as path-
CQs [3]
• monotonic determinacy of a CQ query over CQ views implies
rewritability of Q as a CQ [8], agrees with monotonic deter-
minacy over finite instances and is NP-complete to decide
[20]

These results have been generalized to the case of queries and
views built up with more general constructs of active-domain first-
order logic (or equivalently, in relational algebra). Then monotonic
determinacy becomes, like determinacy, undecidable, and mono-
tonic determinacy, like determinacy, disagrees with its variant over
finite instances. But there is still a relationship between determi-
nacy/monotonic determinacy and rewritability in a logic: determi-
nacy is the same as rewritability in first-order logic; monotonic
determinacy is the same as rewritability as a UCQ [8, 22].

Less is known where queries and views are recursive, for exam-
ple, when views and queries are in the common recursive query
language Datalog. Since in the non-recursive case of CQ queries
and views, monotone determinacy is decidable and co-incides with
UCQ rewritability, a natural question is what conditions on Datalog
queries and views allow monotone determinacy to be decidable and
to co-incide with Datalog rewritability. For specialized recursive
queries and views over a graph schema, the regular path queries,
both the determinacy and monotonic determinacy problem have
been studied. For one- and two-way regular path queries and views

monotonic determinacy (aka “losslessness with respect to the sound

view assumption”) is decidable in ExpSpace ([9] for 1-way,[10] for
2-way), and implies Datalog rewritability [14], while plain deter-
minacy is undecidable [15]. It follows from [13] that monotonic
determinacy is undecidable for Datalog queries and CQ views and
implies rewritability in Datalog over views.
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The status of these questions for more general recursive queries
— e.g., queries and views in Datalog over higher-arity relations — is
to the best of our knowledge unknown.

Example 1. Consider a schema with a ternary relation T , and
binary relation B and unary relations U1,U2. Consider the Boolean
Datalog query Q given as:

GoalQ ← U1(x),W1(x)

W1(x) ← T (x,y, z),B(z,w),B(y,w),W1(w)

W1(x) ← U2(x)

Consider the following CQ views:

V0(x,w) := T (x,y, z),B(z,w),B(y,w)
V1(x) := U1(x) V2(x) := U2(x)

V3(y, z) := U1(x),T (x,y, z)

and the binary Datalog view V4:

GoalV4 (y, z) ← T (x,y, z),B(z,w),

B(y,w),T (w,q, r ),GoalV4 (q, r )

GoalV4 (y, z) ← B(y,w),B(z,w),U2(w)

We can see that Q is monotonically determined over the views

V0-V2. In fact there is a Datalog rewriting, obtained from Q by first

replacing the second rule by W1(x) ← V0(x,w),W1(w) and then

replacing eachUi byVi in the other rules. Further Q is monotonically

determined using views V3 - V4, since it can be rewritten as the CQ

∃y z V3(y, z) ∧V4(y, z).
Note that query Q is not contained in any of the classes considered

in past work (e.g. regular path queries).

Our results. We give results on the complexity of deciding
monotonic determinacy and on the ability to rewrite monotoni-
cally-determined queries into suitable languages, for views and
queries expressed in Datalog or in sublanguages such as Monadic
Datalog (MDL), or frontier-guarded Datalog (FGDL).

We provide new positive results about rewritability, showing
monotonic determinacy implies L-rewritability for some natural
query languages L. We show that monotonic determinacy implies
rewritability in Datalog for Datalog queries and FGDL views (The-
orem 1), as well as for MDL queries and a collection of FGDL and
CQ views (Theorem 2). We observe that for CQ Q and Datalog
V, monotonic determinacy implies rewritability as a CQ, and the
same holds if CQ is replaced with UCQ. Note that an analysis of
the “inverse rules” algorithm [13] implies that FGDL queries mono-
tonically determined over CQ views have FGDL rewritings. On the
negative side, we show thatMDL queries monotonically determined
over CQ views are not necessarily rewritable in MDL (Theorem 7).
This contrasts with the observation from [13] mentioned above. In
contrast to Theorem 2, we give an example of an MDL query mono-
tonically determined over UCQ views without a Datalog rewriting
(Theorem 8). Our results on rewritability are summarized in Figure
1 where “nn” stands for “not necessarily”.

We now turn to results about deciding monotonic determinacy.
We show that monotonic determinacy is

– decidable in 2ExpTime for CQ queries and Datalog views
(Theorem 5),

– decidable in 2ExpTime for queries and views in frontier-
guarded Datalog (Theorem 3),

– decidable in 3ExpTime for MDL queries and a collection of
MDL and CQ views (Theorem 4),

– 2ExpTime-hard for CQ queries and MDL views and for MDL
queries and CQ views (Proposition 9)

– undecidable for MDL queries and UCQ views (Theorem 6)
Known and new results on decidability of monotonic determi-

nacy are presented in Figure 2 where we use [upper bound]/[lower
bound] notation for sources.

Alongside with L-rewritability we can ask whether there are
computable functions lying within a certain complexity class which
separate the images of instances where Q is true from images of
those whereQ is false. We call such a function a separator forQ over
V. Note that Datalog rewritings give rise to PTime separators, while
UCQ-rewritings produce AC0 separators. Our additional observa-
tions on separators, outside of those that follow from rewritability
results, are: (1) for Datalog queries and UCQ views there is always
a separator in NP as well as one in co-NP; (2) for any primitive
recursive function f there are Datalog queries monotonically de-
termined over Datalog views without a separator in T IME(f (x))
(Theorem 9).

Techniques. A contribution of the paper is to show how tech-
niques arising from earlier work can be adapted for the analysis
of monotone determinacy. For our positive results, a key tool is an
automata-theoretic technique, involving bounds on the treewidth
of view images and the forward-backward method developed for
analysis of guarded logics [7, 18]. For our negative results, we show
how to adapt some of the coding ideas used in showing undecidabil-
ity of determinacy [15–17] to the setting of monotonic determinacy,
and we also show how tools from constraint satisfaction [4] can
be used to provide monotonically-determined queries that have no
Datalog rewriting.

Organization. Section 2 contains preliminaries about Datalog
and monotonic determinacy, while Section 3 presents key tools
that we make use of in our positive results. Section 4 presents our
rewritability results, while Section 5 gives results on deciding mono-
tonic determinacy. Section 6 contains lower bounds on detecting
monotonic determinacy, while Section 7 provides non-rewritability
results. The paper ends with conclusions and some open questions
in Section 8. The details of some proofs are deferred either to the
appendix or to the full version.

2 PRELIMINARIES

We will work with relational schemas, consisting of a finite set of
relations, with each relation R associated with a number the arity
of R. For R of arity n, an R-fact is an expression R(c1 . . . cn ), where
c1 . . . cn are elements. A fact over schema S is an R fact for some
relation R of S. A database instance (or simply instance when it is
clear that we are discussing data) for a schema is a set of facts over
the schema. The active domain of an instance I, denoted adom(I),
is the set of elements that occur as ci in some fact R(c1 . . . cn ) of
I. A query of arity n over schema S is a function from instances
of S to relations of arity n. A Boolean query is a query of arity 0.
The output of a query Q on instance I is denoted as Output(Q,I).
We will also write I |= Q(c) or I,c |= Q to indicate that c is in
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Query \Views CQ MDL, FGDL FGDL + CQ UCQ Datalog
CQ CQ [Prop. 8, (a)]
UCQ UCQ [Prop. 8, (b)]
MDL FGDL, nn MDL MDL Datalog, nn MDL

[13] and [Th. 7] [Th. 1] [Th. 2] and [Th. 7] not necessarily
FGDL FGDL [13] Datalog rewritability in Datalog [Th. 8]
Datalog Datalog [13] [Th. 1] Datalog is open

Table 1: Rewritability of Queries Monotonically Determined by the Views

Query \ Views CQ MDL, FGDL FGDL + CQ UCQ Datalog
CQ NP-c 2ExpTime-c Π

p
2 -c 2ExpTime-c

UCQ [20] [Th. 5]/[Prop. 9] [21] [Th. 5]/[Prop. 9]
in 3ExpTime [Th. 4] in 3ExpTime [Th. 4]

MDL 2ExpTime-hard 2ExpTime-hard
[Cor. 9] 2ExpTime-c [Prop. 9] Undecidable [Th. 6]

FGDL decidability [Th. 3]/[Prop. 9] decidability
is open is open

Datalog undecidable for a fixed atomic view [Prop. 9], see also [13], Th. 3.1
Table 2: Decidability and Complexity of Monotonic Determinacy

the output of Q on input I. A homomorphism from instance I
to instance I ′ is a mapping h such that R(c1 . . . cn ) ∈ I implies
R(h(c1) . . .h(cn )) ∈ I ′. If there is a homomorphism from I to I ′
then we write I → I ′.

The Gaifman graph of an instance I is the graph whose nodes
are the elements of adom(I) and whose edges connect any ci and
c j in a c such that R(c) holds. The radius of a graph G is defined
as minu ∈vert(G)maxv ∈vert(G) distG (u,v) where distG (u,v) is the
distance between u and v in G.

Conjunctive queries and Datalog. A conjunctive query (CQ)
is a logical formula of the form q(x) = ∃y ϕ(x,y), where ϕ(x,y) is
a conjunction of atoms. Given any CQ Q , its canonical database,
denoted Canondb(Q), is the instance formed by turning each atom
R(x1 . . . xn ) into a fact R(cx1 . . . cxn ), where for each variable or
constant x in Q we have a constant cx . Each CQ Q with free vari-
ables ordered as x1 . . . xn defines a query of arity n in the obvious
way: a tuple t1 . . . tn is in the output of Q on I if there is a ho-
momorphism of Canondb(Q) into I mapping each xi to ti . The
radius of a CQ is the radius of the Gaifman graph of its canonical
database.

Datalog is a language for defining queries over a relational
schema S. Datalog rules are of the form:

P(x) ← ϕ(x)

where P(x) is an atom over a relation P that is not in S, ϕ is a
conjunctive query and every variable in P(x) occurs in ϕ. The left
side of the rule is the head, while the right side is the body of the
rule. In a set of rules, the relation symbols that occur in the head of
a rule are the intensional database predicates (IDBs). The relations in
S are called the extensional relations of the rule. A Datalog program

is a finite collection of rules. For a database instance I and a set

of Datalog rules Π by FPEval(Π,I) we denote the minimal IDB-
extension of I satisfying Π. A Datalog query Q = (Π,Goal) is a
Datalog program Π together with a distinguished intensional goal
relation Goal of arity k ≥ 0. The output of Datalog query Q on an
instance I (denoted as Output(Q,I) or simply Q(I)) consists of
all tuples c such that Goal(c) ∈ FPEval(Π,I).

For example, consider a signature where there is a binary relation
R and unary relation U . The formula expressing that x has a path
consisting ofR edges to an element inU would bewritten in Datalog
as the following query Conn(x) = (Π,Goal(x)) where Π consists
of the following rules:

P(x) ← U (x)
P(x) ← R(x,y), P(x)

Goal(x) ← P(x)

Above, P(x) andGoal(x) are intensional relations while R(x,y) and
U (x) are extensional. We follow conventions concerning Datalog
rules and omit the existential quantifiers on the variables in the
body that do not appear in the head; we also use “,” for conjunction.

ADatalog queryQ1 is contained in aDatalog queryQ2 ifOutput(Q1,I) ⊆
Output(Q2,I) for every instance I. Datalog containment is known
to be undecidable in general [23].

Fragments of Datalog.Monadic Datalog (MDL) is the fragment
of Datalog where all intensional predicates are unary. Frontier-
guarded Datalog (FGDL) requires that in each rule all the variables in
the head co-occur in a single extensional atom of the body. Frontier-
guarded Datalog does not contain MDL; for example, in an MDL
program we can have a rule I1(x) ← I2(x), where I1 and I2 are both
intensional. However every MDL program can be rewritten to be
in FGDL, and thus we declare, as a convention, that any MDL pro-
gram is Frontier-guarded. Frontier-Guarded Datalog containment
is known to be decidable (e.g. [6]).
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Conjunctive queries and approximating Datalog. A Data-
log query Q = (Π,Goal) can be approximated by CQs. We define
collections of CQs CQAppr(Π,U (x), i) with free variables x for all
atomsU (x) that occur in the head of a rule in Π by induction on i .
For the base case, CQAppr(Π,U (x), 1) consists of all CQs obtained
by taking the body of a rule with the headU (x) in Π which contains
no intensional predicate.

For the inductive step, CQAppr(Π,U (x), i+1) consists of all CQs
obtained by taking any body of a rule whose head is U (x) and
replacing all intensional atoms V (y) with q(σ (z)), where q(z) is
in CQAppr(Π,V (z),k) for k ≤ i and σ unifies V (z) with V (y) by
sending z to y.

A CQ approximation of a Datalog query (Π,Goal(x)) is any
element of CQAppr(Π,Goal(x), i) for some i .

Proposition 1. For any Datalog query Q , if I,c |= Q then there

is a CQ approximation Q0 of Q such that I |= Q0(c).

We often identify an approximation Q0 of a Datalog query Q
with its canonical database; for example, for another Datalog query
Q ′, we can write Output(Q ′,Q0) to indicate the output of Q ′ on
Canondb(Q0). We can also talk about the approximation of an
atom A in a Datalog program, which is defined by considering the
program with A as the goal predicate. We will exclude approxi-
mations that are redundant, in that the corresponding multi-set
of atoms, including the intensional atoms used in generating the
approximation, include a repeated intensional atom. For example, if
we have rulesU (x) ← V (x) ∧ ϕ and V (x) ← U (x) ∧ ϕ ′, we should
not apply the inductive construction first with U (x) and V (x) in
succession.

Views, determinacy, and rewritability. A view over some re-
lational schema S is a tuple (V ,QV ) where V is a view relation and
QV is an associated query over S whose arity matches that of V .
QV is referred to as the definition of view V . By V we denote a
collection of views over a schema S. We sometimes refer to the
vocabulary of the definitions QV as the base schema for V, denot-
ing it as ΣB, while the predicates components V are referred to as
the view schema, denoted ΣV. For an instance I and set of views
V = {(V ,QV ) | V ∈ ΣV}, the view image of I, denoted by V(I), is
the instance where each view predicate V ∈ ΣV is interpreted by
Output(QV ,I). A query Q over schema S is determined over V if

for any two instances I1,I2 such that V(I1) = V(I2)
we have Output(Q,I1) = Output(Q,I2).

A query Q over schema S is monotonically determined over V if
for any two instances I1,I2 such that V(I1) ⊆ V(I2)
we have Output(Q,I1) ⊆ Output(Q,I2).

Given views V and a queryQ , a query R over the view schema ΣV
is a separator ofQ with respect to V if: for each I over S, the output
of R on V(I) is the same as the output of Q on I. A separator that
can be specified in a particular language L (e.g. Datalog, CQs) is an
L-rewriting of Q w.r.t. V, and if this exists we say Q is L-rewritable
over V.

It is clear that if Q has a rewriting in a language that defines
only monotone queries, like Datalog, thenQ must be monotonically
determined.Wewill be concernedwith the converse to this question.
The main questions we will consider, fixing languages LQ and LV
for the queries and views (e.g. Datalog, fragments of Datalog) are:

• can we decide whether a Q in LQ is monotonically deter-
mined over V?
• fixing another language L for rewritings, if Q is monotoni-
cally determined over V, does it necessarily have a rewriting
in L?

In this paper, for simplicity we will always consider the determi-

nacy and rewritability problems restricting to the case when the query

Q is Boolean. But all of our results extend to the non-Boolean case.
In addition, we allow our instances to be finite or infinite, but all of
the results extend when the instances are assumed to be finite.

3 FORWARD AND BACKWARD BETWEEN

DATALOG AND AUTOMATA

We overview an automata-theoretic technique that will prove useful
in rewriting results. It involves treewidth bounds, along with the
idea of combining forward mappings from Datalog to automata,
projection of an automata onto a subvocabulary, and backward

mappings from an automaton to Datalog. The approach derives
from work on guarded logics [7, 18].

Treewidth and tree codes. For a number k a tree decomposition

of width k for an instance I is a pair TD = (τ , λ) consisting of a
rooted directed tree τ = (V , E) and a map λ associating a tuple of
distinct elements λ(v) of length at most k (called a bag) to each
vertex v in V such that the following conditions hold:

– for any atom R(c) in I, there is a vertexv ∈ V with c ⊆ λ(v);
– for any element c in I, the set {v ∈ V | c ∈ λ(v) } is
connected in τ .

Above we abuse notation slightly by using λ(v) also to refer
to the underlying set of elements as well as the tuple. Also in the
literature the width associated to such a decomposition is k − 1, but
this distinction will not be important for any of our results. Will
also talk about a tree decomposition of width k for a pair (I,a)
consisting of an instance and a tuple. In this case we add to the
requirements above that a is an initial segment of λ(r ) for r the
root of the tree.

The treewidth of an instance I, tw(I), is the minimum width
of a tree decomposition of I. For a tree decomposition TD of data
instance I let l(TD) (the “tree span”) be the maximum over elements
e of I of the number of bags containing e .

We will now discuss how to represent tree decompositions by
labeled trees called codes. In this context, we will always assume
that in tree decompositions, all verticesv ∈ V have outdegree at most

2. It is easy to show that if an instance has any tree decomposition
of width k , it has one with this property.

We represent such tree decompositions as instances in a signa-
ture Code(S,k) which contains the following relations:
• for every relation R ∈ S of arity m and every sequence
n = n1, . . . ,nm of numbers of size at most k there is a unary
relationTR

n in Code(S,k) to mark the nodes v in τ such that
the atom R(bn1 , . . . ,bnm ) is in I, where λ(v) = (b1, . . . ,bk ).
• for every partial 1-1 map s from {1, . . . ,k} to {1, . . . ,k},
there is a binary relation Ts to indicate the “same as” rela-
tion between positions in neighboring bags. For example,
if (u,v) ∈ Ts and s(3) = 1, then the position 3 in u and the
position 1 in v stand for the same element. All relations Ts
are directed from a parent to a child.
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We use UnPred(S,k) and BinPred(S,k) to denote the sets of all
unary and binary predicates in Code(S,k) respectively. A tree over
this signature will be referred to as a tree code of width k for S.

It should be clear how each tree decomposition of (I,a) of width
k gives rise to a tree code of width k for S; if there are bags with
less than k elements, we fill them up with dummy elements to
the length k . We now show how to decode an instance from such
a code T . For nodes u,v in a code T , we write (u, i) ≡0 (v, j) if
(u,v) ∈ Ts holds in T and s(i) = j. For a node u and position i
we let [u, i] be the equivalence class of (u, i) in the equivalence
relation generated by ≡0. In words, the position i in the node u
corresponds to the position j in the node v if there is an undirected
path leading from u to v with the edge labels that in a step-by-step
manner establish a match between i in u and j in v . The decoding
of T , denoted I = D(T ), is the S database instance I consisting
of atoms R([v1, i1], . . . , [vr , ir ]) where each R from S is applied to
exactly those tuples ([v1, i1], . . . , [vr , ir ]) for which there is some
nodew ∈ dom(T ) such thatw ∈ TR

j1 ...jr
and [w, jm ] = [vm, im ] for

allm ∈ {1, . . . , r }. In this case we also say the T is a code of I.
Specialized tree decompositions for Monadic Datalog. As

observed in [11], for Monadic Datalog the CQ approximations have
tree decompositions with small treespan.

Lemma 1. Let Q be a Monadic Datalog query. Then there is a

number k = O(|Q |) such that all CQ-approximations ofQ have a tree

decomposition TD of width k with l(TD) ≤| Q |.

Bounding the treewidth of view images. We present results
showing that, for certain classes of sets of views V and Datalog
queries Q , we can find a uniform bound on the treewidth of the
V-image of the approximations of Q .

It is easy to see that expanding an instance with the evaluation
of all intensional predicates of a frontier-guarded program does not
blow-up treewidth:

Lemma 2. If Π ∈ FGDL and I is an instance of treewidth k , then
FPEval(Π,I) is of treewidth k .

A locality argument shows that applying connected CQ views
preserves bounded treewidth, assuming that we deal with tree
decompositions with low tree span:

Lemma 3. Let TD be a tree decomposition of a data instance I of

width k with l(TD) ≤ s . Let V be a set of connected CQ views, and

V(I) the view image of I under V. Let r be the greatest radius of a
CQ in V. Then the treewidth of V(I) is at most k ′ = k ·((s ·k )r+1−1)

(s ·k)−1 .

Proof. For a bag b of TD and an integer n define recursively
its n-extension by setting ext(b, 0) = b and ext(b,n) = {u | ∃v ∈
ext(b,n − 1) such that u and v belong to a same bag of TD}. Since
l(TD) ≤ s , it is easy to see by induction that |ext(b,n)| ≤ k + k ·

(s · k) · · · + k · (s · k)n+1 = k ((s ·k )n+1−1)
((s ·k)−1 . Let TD ′ be a tree of bags

whose set of nodes is ext(b, r ), with an edge between ext(b, r ) and
ext(b ′, r ) exactly when there is an edge from b to b ′ inT . We claim
that TD ′ is a tree decomposition of V(I).

First, it is easy to see that for any element v the set of all bags in
TD ′ containing v is connected.

Secondly we show that for each atom S(c) from V(I) there is a
node in TD ′ containing c . Suppose that S(c) was generated by the

view definition S(x) ← ϕ(x,y) for a connected CQ ϕ(x,y) with
free variables x and quantified variables y under some assignment
η defined on both x andy. As ϕ is of radius at most r , it should have
a variable z ∈ x ∪ y such that all other variables are at distance
at most r from z in the Gaifman graph of ϕ(x,y). Therefore the
range of η lies within distance r from η(z). Let b be any bag of TD
containing η(z). If follows that c is contained in the r -extension of
b.

Finally, it is easy to see that the sizes of bags ofTD ′ are as required.
□

Tree automata.We describe our variant of tree automata that
accept binary trees T with edges labelled by binary relations from
the set BinPred(S,k) and nodes labelled with unary predicates
from a set UnPred(S,k). We consolidate node- and edge-labels by
considering a tree alphabet A. A contains labels σ s1,s2L indexed
by sets of unary predicates L ⊆ UnPred(S,k) and pairs of binary
predicates s1, s2 ∈ BinPred(S,k). It also contains leaf labels σL
indexed by L ⊆ UnPred(S,k). We sometimes treat trees as terms
over this alphabet: a tree with root labeled σ s1,s2L with children t1
and t2 would be written as σ s1,s2L (t1, t2).

A nondeterministic finite tree automaton (NTA) over A is a tuple
A = (Q,Qf ,∆0,∆2), where
• Q is a finite set of states
• Qf ⊆ Q is a set of final states,
• ∆0 is a set of initial transitions of the form σL → q, and
• ∆2 is a set of transitions of the form q1,q2,σ

s1,s2
L → q.

A run of A on a tree T is a label function f : Nodes(T ) → Q
satisfying the following: if tv = σ s1,s2L (tv1 , tv2 ) for σ

s1,s2
L ∈ A, then

(f (v1), f (v2),σ
s1,s2
L → f (t)) ∈ ∆2 and if f (v) = q for a leaf v of

T with tv = σL , then σL → q ∈ ∆0. We say that T is accepted by
A if there is a run of A on T that labels the root of T with a final
state.

Forward from Datalog to NTA. We now show how to create
a tree automaton accepting the view images of approximations
of a given Datalog query. We say that a class C of instances is k-
regular if the treewidth of instances in C is at most k , and there is
an automaton A such that
• for codes T of width k , A accepts T implies D(T ) ∈ C.
• for each instance F ∈ C there is a code T such thatD(T ) =
F and A accepts T .

In this case we say that A captures C. If the stronger condition
“for all codes T , A accepts T iff D(T ) ∈ C” holds, we say that A
recognizes C.

The following simple “forward mapping” proposition shows that
we can capture the approximations of Datalog queries with an
automaton:

Proposition 2. For any Datalog query Q = (Π,Goal), there is
an ExpTime function that outputs an NTA AQ that captures the set

of canonical databases of CQ approximations of Q .

If we restrict to instances of a fixed treewidth, we can do better,
obtaining an NTA that recognizes all trees that satisfy the Datalog
program considered as a set of Horn clauses:

Proposition 3. For any Datalog program Π, the class {F | F |=
Π, tw(F ) ≤ k} (here F are finite instances which contain both EDBs
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and IDBs of Π) is k-regular and is recognized by an NTA at most

doubly-exponential sized in k and singly-exponential in |Π |.

We also note that if we have captured a class of codes of instances
with an automaton, we can project away some of the signature and
still capture:

Proposition 4. If C is a k-regular class in Σ captured by NTA A

and Σ′ ⊆ Σ, then the class

C↾Σ′ = {F ↾Σ′ | F ∈ C}

is also k-regular, captured by an automaton of size at most |A |. The

same holds with “captured” replaced by “recognized”.

Our next “forward mapping” result shows that we can recognize
the set of codes of small treewidth which fail to satisfy clauses of a
frontier-guarded program:

Proposition 5. For a FGDL queryQ = (Π,Goal) the set {(I,a) |
I ̸|= Q(a), tw(I) ≤ k} is k-regular and recognized by an NTA of

size at most doubly-exponential in k .

Proof. Follows from Propositions 3 and 4 since for a frontier-
guarded Q = (Π,Goal) we have, using Lemma 2,

{(I,a) | I ̸|= Q(a), tw(I) ≤ k} =

= {(F ↾Σ,a) | F |= Π, F ̸|= Goal(a), tw(F ) ≤ k}

where Σ is the signature of the EBDs in Π.
□

In applying these results, we will sometimes use implicitly that
if C1 is captured by A and C2 is recognized by A′, then C1 ∩ C2 is
captured by the product of A and A′. Note that, in contrast, classes
of instances that are captured are not closed under intersection.

Homomorphic determinacy. A query Q is said to be homo-

morphically determined by views V if:

Whenever we have two instances I1 and I2 and a ho-
momorphism h from V(I1) to V(I2), then for each tu-
ple (c1, . . . , ck ) ∈ Q(I1)we also have (h(c1), . . . ,h(ck )) ∈
Q(I2).

Note that if Q is rewritable over V in Datalog, or any other
homomorphism-invariant query language, then Q must be homo-
morphically determined by V.

Homomorphic determinacy of Q over V always implies mono-
tonic determinacy of Q over V; monotonic determinacy is simply
the case where h is the identity. Surprisingly, for Datalog queries
and views the converse also holds:

Lemma 4. For any Datalog query Q and Datalog views V, if Q is

monotonically determined over V then it is homomorphically deter-

mined over V.

Backwards fromNTAs toDatalog.Consider arbitrary NTAA
that works on tree codes of width k . From A we construct a Datalog
program. For every transition of the form q1,q2,σ

s1,s2
L → q with

L = {TR1
n1 , . . . ,T

Rm
nm } we create a rule

Pq (x1, . . . , xk ) ←

k∧
i=1

Adom(xi ) ∧ Pq1 (x
1
1, . . . , x

1
k ) ∧ Pq2 (x

2
1, . . . , x

2
k )

∧
∧

i ∈dom(s1)
xi = x1s1(i) ∧

∧
i ∈dom(s2)

xi = x2s2(i) ∧
m∧
l=1

Rl (xnl ) (1)

where j ranges over 1 and 2, x ji are fresh variables for indices
j ∈ {1, 2} and i ∈ {1, . . . ,k}, and for nl = (n1l , . . . ,n

d
l ) we have

xnl = (xn1
l
, . . . , xndl

). For initial transitions of the form σL → q

with L = {TR1
n1 , . . . ,T

Rm
nm } we have rules

Pq (x1, . . . , xk ) ←
k∧
i=1

Adom(xi ) ∧
m∧
l=1

Rl (xnl ). (2)

For each accepting stateqwe add the rulesGoalA ← Pq (x1, . . . , xk )
defining the goal predicate GoalA ; recall that we are assuming
here that the original query Q is Boolean, so we are looking for
a Boolean Datalog rewriting. We also add a standard set of rules
which, when evaluated on any data instance I under fixed-point
semantics, guarantee that the interpretation of the IDB Adom(x) is
the active domain of I. Denote the resulting backward map Datalog

query by QA .
We now get to the main result of this section, which states

that if we assume homomorphic determinacy and begin with an
automaton representing view images of approximations of Q , then
applying the backward mapping produces a Datalog rewriting ofQ
over V.

Proposition 6. Let Q be homomorphically determined over V
and A be any automaton working on k-codes such that {V(Qi ) | i ∈
ω} ⊆ D(L(A)) ⊆ {J | V(Qi ) maps into J for some i ∈ ω}. That is
to say, we require that

(1) for each CQ approximationQi ofQ there is a code T such that

D(T ) = V(Qi ) and T is accepted by A;

(2) for each T accepted by A there is a CQ approximation Qi of

Q and a homomorphism from V(Qi ) into D(T ).

Then for each data instance I we have I |= Q iff V(I) |= QA(a)
for some a ∈ adom(I)k .

To prove the proposition, we need the notion of a “proof certifi-
cate” for backward mappings of an automaton.

When a Datalog query Q = (Π,Goal) holds for a tuple d in an
instance I, there is a derivation that witnesses this, which has a
tree-like structure. A proof term for I |= Q(d) is a labelled finite
tree in which every nodev is labelled with a ground fact FactOf(v)
over the predicates mentioned in Π, and every non-leaf node v is
additionally labelled with a rule RuleOf(v) of Π such that:
• If v is the root, FactOf(v) = Goal(d)
• If v is a leaf then FactOf(v) is a fact over the extensional
predicates of Q , and this fact holds in I
• Ifv is not a leaf, letIv be the instance consisting of FactOf(v)
and all facts FactOf(c) for c a child of v . Then there is a
map hv from the variables in the body of RuleOf(v) into
the active domain of Iv that maps the facts in the body
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of RuleOf(v) onto the facts of Iv , and maps the head of
RuleOf(v) to FactOf(v).

It is well-known [1] and easy to see that proof terms represent
a semantics for Datalog: I |= Q(d) exactly when there is a proof
term that witnesses this.

We now give a notion of a witness for acceptance of an automa-
ton running over codes. A jointly-annotated term for automaton A,
instance I, and k-tuple a is a pair (T ,b) where

– T is a tree code accepted by A;
– the map b assigns each vertex of T to a k-tuple of elements
from I, with the root of T mapped to a;

which satisfy the following condition: if tv = σ s1,s2L (tv1 , tv2 ) with
L = {TR1

n1 , . . . ,T
Rm
nm }, b(v) = (b1, . . . ,bk ),

b(vj ) = (b
j
1, . . . ,b

j
k ) for j = 1, 2 then

I |=

2∧
j=1

∧
i ∈dom(sj )

bi = b
j
sj (i)
∧

m∧
l=1

Rl (bnl ). (3)

We also require that

if t = σL is a leaf symbol in T with L = {R1n1 , . . . ,R
m
nm }

then the atoms Rl (bnl ) are in I for l = 1, . . . ,m (4)

In other words, b can be considered as a homomorphism from
D(T ) into I.

We now verify the key property of a jointly-annotated term:

Proposition 7. For each data instance I it follows that I,ΠA |=
GoalA(a) if and only if there is a jointly-annotated term for A, I

and a.

Proof. We prove the two directions of the if and only if sepa-
rately.

(⇒) Take a proof term t that witnesses I,ΠA |= GoalA(a). We
transform t into a jointly-annotated term (T ,b) on the set of all
vertices of t with FactOf(v) being an IDB. Note that this gives us
a binary tree since all rule bodies in ΠA have either 0 or 2 IDBs by
assumption. For each vertexv we take some ordering (uv1 , . . .u

v
k ) of

elements in Iv without duplicates; we use fresh dummy elements to
fill up the tuple if Iv has less then k elements. Now we define unary
labels of T by setting TR

n1, ...,nm (v) ∈ T iff R(uvn1 , . . . ,u
v
nm ) ∈ Iv .

We define edge labels s between a parentv and its childw by setting
s(n) =m if uvn is the same element as uwm ; it should be clear that s is
a partial bijection. This constitutes the definition of T . It remains
to define b by setting b(v) to be (uv1 , . . .u

v
k ). We can create an

accepting run f by setting f (v) to be the state of the automaton q
such that FactOf(v) is labelled by and IDB Pq .

(⇐) It is easy to show by induction that ifv is a vertex of a jointly
annotated-term (T ,b) for A, I, and a and f is an accepting run
for A on T with f (v) = q, then I,ΠA |= Pq (b(v)). It follows that
I,ΠA |= GoalA(a).

Indeed, if v is a leaf, then then I,ΠA |= Pq (b(v)) by the rule (2)
because its body holds due to condition (4) and the fact that for all
u in b(v) we have I,ΠA |= Adom(u).

If v has children v1 and v2, then there must be q1 and q2 such
that f (v1) = q1, f (v2) = q2, production (q1,q2,σ s1,s2L → q) is a

transition of A, and the vertex label of v is L while edge labels
between v , v1 and v2 are s1 and s2.

We claim thatI,ΠA |= Pq (b(v)) can be inferred by the rule (1) for
this production under assignment {(x1, . . . , xk ) := b(v), (x11, . . . , x

1
k ) :=

b(v1), (x21, . . . , x
2
k ) := b(v2)}. Indeed, we have I,ΠA |= Adom(u)

for all elements in the body of the rule, we have I,ΠA |= Pq1 (b(v1))
and I,ΠA |= Pq2 (b(v2)) by the induction hypothesis, and the rest
of the rule by (3).

□

We are now ready for the proof of Proposition 6:

Proof. Suppose Π is a Datalog program containing intensional
predicate A, I is an instance for the extensional (input) signature
of Π, and a is a tuple of elements from I. Below we write

I,Π |= A(a)

to indicate that the least fixpoint of Π on I contains A(a).
(⇒) Suppose that I |= Q . Then there is an approximation Qi of

Q and a homomorphism h from Qi into I, which is also a homo-
morphism from V(Qi ) to V(I). As Qi is an approximation of Q , by
the first inclusion for L(A), A must accept some code T of V(Qi ).
Choose an arbitrary element e0 from adom(V(I)). For a vertex v
of T we define b(v) to be the tuple (e1, . . . , ek ) of elements of V(I)
where each ei is defined as follows:

ei =

{
h([v, i]), if [v, i] ∈ adom(I)
e0, otherwise.

We claim that (T ,b) is a jointly-annotated term for A, V(I) and
the b-image of the root of T . Indeed, if equation (3) contains an
equality [v, i] = [u, j], it follows that [v, i] and [u, j] are indeed
equivalent. The R-atoms of equations (3) and (4) hold because h
is a homomorphism, and also because they are never applied to
dummies. It follows (by Proposition 7) that V(I) |= QA(a) for some
a.
(⇐) Suppose that V(I),ΠA |= GoalA(a). Let (T ,b) be a jointly-

annotated term for the inference of GoalA(a) for V(I),ΠA and
a (which exists by Proposition 7), and f be an accepting run of
A on T . Thus, by the second inclusion for L(A), there must be a
homomorphism h from V(Qi ) for some i into D(T ). Note that by
Proposition 7, we know that b can be considered as a homomor-
phism from D(T ) into V(I). By composing h with b, we obtain
a homomorphism д from V(Qi ) into V(I). Now we have a data
instance I ′ = Qi such that I ′ |= Q and a homomorphism д from
V(I ′) into V(I). As Q is homomorphically determined by V, we
have I |= Q . □

4 REWRITABILITY

We are now ready to present our main results about rewritings of
queries that are monotonically determined over views. The follow-
ing result exhibits how the forward and backward mappings help
us obtain Datalog rewritings.

Theorem 1. Suppose Q is a Datalog query and V is a collection

of FGDL views. If Q is monotonically determined by V, then Q is

rewritable over V in Datalog. The size of the rewriting is at most

double-exponential in |Q | and exponential in |V|. If Q is MDL such a

rewriting exists in MDL as well.
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Proof. Consider the class C of canonical databases of CQ ap-
proximations of Q . By Proposition 2, C is k-regular for some k =
O(|Q |) and is captured by an NTA A′ of at most exponential size
in |Q |. By Lemma 2, the treewidth of the class of view images of C
is also bounded by k . We claim that there is an automaton A that
captures V = {J | tw(J) ≤ k,V(Qi ) ⊆ J for some i ∈ ω} of size
at most double-exponential in |Q | and single-exponential in |V| (“of
required size” below) and argue that it satisfies the conditions of
Proposition 6.

Without loss of generality we assume that the sets of IDBs of pro-
grams for different views are disjoint, and that their goal predicates
are identical with the view predicates. Denote by ΠV the union of
all rules in Datalog queries in V. Note that by definition, for any
instance I, the restriction of FPEval(ΠV,I) on the view signature
is exactly V(I).

By Proposition 3, there is an NTA AΠV of required size which
recognizes all codes of {F | F |= ΠV, tw(F ) ≤ k}. Hence the class
F = {F | F ↾ ΣB ∈ C, F |= ΠV, tw(F ) ≤ k} is captured by the
intersection of A′ and AΠV , which is also of required size. Observe
thatV is the projection of F on the signature of view predicates and
so V is captured by some NTA A of required size by Proposition 4.

By Lemma 4, Q is homomorphically determined over V. Since
{V(Qi ) | Qi is a CQ approximation of Q} is the projection of

{FPEval(ΠV,I) | I ∈ C}

on the signature of view predicates, we have:

{FPEval(ΠV,I) | I ∈ C} ⊆

{F | F ↾Σ ∈ C, F |= ΠV, tw(F ) ≤ k} ⊆

{F | F ↾Σ ∈ C, F |= ΠV},

The inclusions above are preservedwhen projecting to the signature
of view predicates. From this we can verify that the condition of
Proposition 6 holds for A. Now applying Proposition 6, we conclude
that Q is Datalog rewritable, and that the rewriting is of required
size.

If Q is MDL the construction can be refined to produce an MDL
rewriting; see the full version for details. □

We can use the same technique in the setting where the views
are combinations of Monadic Datalog and CQs, while the query
is Monadic Datalog, using Lemma 1 and the bound of Lemma 3,
which relies on the bound on l produced in Lemma 1. Although
Lemma 3 requires connectivity, we can show that disconnected
views can be replaced by connected ones.

Theorem 2. Suppose Q is a Monadic Datalog query and V is a

collection of Monadic Datalog and CQ views. If Q is monotonically

determined by V, then Q is rewritable over V in Datalog. The size of

the rewriting is at most double-exponential in K = O(|Q | |V |).

The previous rewriting results involved restricting the views.
We now note that if we restrict the query to be a UCQ, monotonic
determinacy implies not only Datalog rewritability, but even UCQ
rewritability, for arbitrary Datalog views:

Proposition 8. For views V in arbitrary Datalog we have:

(1) if a CQ Q is monotonically determined by V, then there is a CQ-
rewriting of Q in terms of V;

(2) if a UCQ Q is monotonically determined by V, then there is a

UCQ-rewriting of Q in terms of V.
In both cases the rewritings are polynomial size in |Q | and |V|.

Proof. This can be seen as a “degenerate” variant of the forward-
backward technique, which is well-known in the DB and KR lit-
erature [3, 21, 22]. Let Q be the disjunction of Qi : i ∈ S . Let
Q ′ =

∨
i ∈S V(Qi ) denote the query that holds on an instance I ′ of

the view schema exactly when for some i ∈ S , there is a homomor-
phism of V(Qi ) into I ′. Equivalently, this is the query obtained by
applying the views to each canonical database of a disjunct of Q ,
and then interpreting the resulting facts as a query.

We claim that if Q is monotonically determined by V, then Q ′

is a rewriting of Q . In particular, if Q is a CQ, then Q ′ is just a CQ.
We need to show that for each instance I, I |= Q iff V(I) |= Q ′.

(⇒) If some Qk maps into I, then V(Qk ) maps into V(I).
(⇐) Suppose some V(Qk ) maps into V(I). Monotonic determi-

nacy implies homomorphic determinacy by Lemma 4 In the defi-
nition of homomorphic determinacy, take I1 = Qk and I2 = I. It
is easy to check that V(I1) maps into V(I2) and I1 |= Q . It follows
that I2 |= Q , in other words, that I |= Q .

□

5 DECIDABILITY

Wemove from rewritability results to decision procedures for mono-
tonic determinacy.

Monotonic determinacy testing procedure. Our decidabil-
ity results will depend upon an characterization of monotonic de-
terminacy, which we review here. Given a Datalog query Q and
Datalog views V, a canonical test for Monotonic Determinacy is a
tuple (Qi ,D

′) that consists of:
• A CQ Qi that is a CQ-approximation of Q
• An instance D ′ of the input schema formed by taking each
fact F = V (c) in V(Qi ), choosing a CQ approximation Q ′ of
QV , and replacing F with fresh elements and facts from Q ′

that witness V (c). That is, firing the rule ∀x V (x) → Q ′(x).
In this case we say thatD ′ is obtained from V(Qi ) by applying

inverses of view definitions.

Such a test succeeds if D ′ satisfies Q . It is easy to see that mono-
tonic determinacy is characterized using tests:

Lemma 5. Q is monotonically determined over V if and only if

every test succeeds.

Proof. We assume Q is Boolean for simplicity. In one direction,
assume Q is monotonically determined over V, and consider a test
(Qi ,D

′). By virtue of (Qi ,D
′) being a test, we have V(D) ⊆ V(D ′).

Monotonic determinacy and Qi |= Q thus imply that D ′ |= Q .
In the other direction, assume every test succeeds, and consider

instance I1 and I2 with I1 satisfyingQ and V(I1) ⊆ V(I2). As I1 |=
Q , there is a homomorphismα from someQi intoI1. Since the views
are preserved under homomorphism, α is also a homomorphism
from V(Qi ) into V(I1).

We will now create a D ′ such that (Qi ,D
′) forms a test, along

with an extension of α that is a homomorphism taking D ′ into I2.
D ′ will be the union of a set of facts SF (defined below) for every
fact F from V(Qi ). For a fact F = V (c) from V(Qi ) let F ′ = α(F ).
Note that F ′ is in V(I1). By assumption, F ′ is also in V(I2). Thus
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there is a proof term τF ′ witnessing that I2 |= F ′. Moving top-down
on τF ′ , we form a proof term for F . The root of the term τF ′ is
labelled with the fact GoalV (α(c1) . . . α(cn )) for the goal predicate
GoalV of the Datalog programQV . Since α is not injective, ci may
not be unique, but we choose one such tuple c1 . . . cn and fix it for
the transformation of τF ′ . This choice will impact the proof term
that we create, but will not impact the homomorphism extending
α . We first transform τF ′ by replacing any element α(ci ) occurring
in τF ′ by ci . We then continue our transformation by proceeding
top-down on the partially-transformed term. At the root of the
term we do nothing more. In the inductive step, we consider an
intensional fact U (d) in τF witnessed by a set of facts J that are
a substitution instance of some rule body B. In J , we uniformly
replace any witnessw to an existentially quantified variable x of B
by a fresh element dw , and extend the homomorphism to take dw
to w . We set SF to be the union of all EDB facts occurring in the
proof term we have constructed for F .

It is easy to see that the union of the facts SF forms an appropriate
D ′ giving a test. By assumption this test succeeds, so D ′ |= Q . But
since D ′ is homomorphically embedded into I2, this means that
I2 |= Q as required. □

We show that monotonic determinacy is decidable for some
classes of views by bounding the treewidth of all instances D ′ that
are the second component of some test.

Theorem 3. SupposeQ andV are Frontier-guarded Datalog queries.

Then there is an algorithm that decides if Q is monotonically deter-

mined by V in 2ExpTime.

Proof. In this proof the words “of required size” mean “doubly-
exponential in Q and single-exponential in V”, C stands for the
class of all CQ-approximations of Q , ΣV is the view signature and
ΣB is the initial signature.

We must check whether Q holds on all tests. As observed in the
proof of Theorem 1, there is an integer k = O(|Q |, |V|) bounding
the treewidth of all CQ-approximations of Q and views in V. Let
V = {F ↾ΣV | F ↾ΣB ∈ C, tw(F ) ≤ k, F |= ΠV}. As argued in the
proof of Theorem 1, V is k-regular and captured by an NTA AV of
required size.

Since Q is a monotone query, instead of checking whether all
tests succeed, we will check an equivalent condition that Q holds
on the class ETEST (Q,V) which consists of all instances D ′ which
can be obtained from an instance in V by applying inverses of
view definitions while keeping the atoms of the view signature.
Note that the treewidth of all instances in ETEST (Q,V) is also
bounded by k . By Proposition 2, for each view V with definition
QV there exists an automaton A′V running on codes T which for
each atom V (c) at a node n checks whether n has a descendant
n′ such that n′ contains c and the subtree of T rooted at n′ is a
code of some CQ approximation of QV . It should be clear that the
automaton AET EST obtained as the product of AV and A′V for all
V ∈ V captures ETEST (Q,V).

By Proposition 5, there is an NTA A′′ of required size which
recognizes those codes which do not satisfy Q . So to check if Q is
monotonically determined by V we construct the intersection of
AET EST and A′′ (which is of required size) and check if it is empty.
The latter check is linear in the size of the automaton. □

Using Lemma 1 and the treewidth bounds of Lemma 3 we can
use the same proof technique to extend this to a mix of CQ and
Frontier-guarded Datalog views, provided that Q is in Monadic
Datalog.

Theorem 4. SupposeQ is in Monadic Datalog, andV is a collection

of CQ and Frontier-guarded Datalog views. Then there is an algorithm

that decides if Q is monotonically determined by V in 3ExpTime.

The previous cases of decidability required restricting the views.
We now observe that if we only restrict Q to be a CQ, then we can
reduce monotonic determinacy to checking equivalence between a
recursive and a non-recursive query, the one created by the “simple
forward backward method” of Proposition 8.

Theorem 5. If Q is a CQ and V is a collection of Datalog views,

then the problem of monotonic determinacy of Q over V is decidable

in 2ExpTime.

6 LOWER BOUNDS ON TESTING

MONOTONIC DETERMINACY

We now begin our negative results, starting with lower bounds for
testing monotonic determinacy. We first note some lower bounds
on monotonic determinacy that can be obtained through straight-
forward reductions from containment or equivalence:

Proposition 9. Monotonic determinacy is

• NP-hard for CQ queries and views [8, 20]

• Π
p
2 -hard for UCQ queries and UCQ views

• 2ExpTime-hard for CQ queries and MDL views

• 2ExpTime-hard for MDL queries and a fixed atomic view

• undecidable for Datalog queries and a fixed atomic view (cf

[13])

It is more challenging to get undecidability results in settings
where the equivalence problem for the views and queries is de-
cidable, as is the case for UCQs and Monadic Datalog [12]. The
remainder of this section will be devoted to developing techniques
for this case.

A tiling problem is a tuple TP = (Tiles,HC,VC, IT , FT ) where
Tiles = {T1, . . . ,Tk }, HC and VC are binary relations (“horizontal
and vertical compatibility”), and IT and FT are subsets of tiles that
must be placed at the bottom left and top right corner respectively.

A solution to a tiling problem consists of numbers n andm, and
map τ : {1, . . . ,n} × {1, . . . ,m} → Tiles such that
(T1) (τ (i, j), τ (i + 1, j)) ∈ HC for 1 ≤ j ≤ m and 1 ≤ i < n ;
(T2) (τ (i, j), τ (i, j + 1)) ∈ VC for 1 ≤ j < m and 1 ≤ i ≤ n.
(T3) τ (1, 1) ∈ IT and (T4) τ (n,m) ∈ FT .

By a standard reduction from the halting problem for Turing ma-
chines, it is easy to show that the problem “given a tiling problem
TP, tell if it has a solution” is undecidable. By reducing this tiling
problem to the problem of monotonic determinacy for MDL queries
and UCQ views we obtain

Theorem 6. The problem of monotonic determinacy for MDL

queries and UCQ views is undecidable.

The idea of the reduction is, given TP, to construct QT P and
VT P which generate tests for monotonic determinacy that look
like (n,m)-grids with assignments of tiles. The query QT P will
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Figure 1: A grid-like test for monotonic determinacy (a) and

CQs for checking horizontal and vertical adjacency between

grid points (b)

have disjuncts that return “true” when they detect violations of
conditions (T1)–(T4). ThusQT P and VT P will have a failing test for
monotonic determinacy iff the tiling problem TP has a solution.

Figure 1, (a) shows such a test. We code the grid using four binary
relations YSucc, XSucc, XProj, YProj and unary markers XEnd
and YEnd. Vertical and horizontal axes are represented as chains of
YSucc- and XSucc-atoms respectively. The “grid points” are linked
via XProj- and YProj-edges to their projections on the axes. The
unary predicates XEnd and YEnd mark the ends of the axes.

Note how CQs

HA(z1, z2, x1, x2,y) = YProj(y, z1) ∧ YProj(y, z2)∧
∧ XProj(x1, z1) ∧ XProj(x2, z2) ∧ XSucc(x1, x2)

and

VA(z1, z2, x,y1,y2) = YProj(y1, z1) ∧ YProj(y2, z2)∧
∧ XProj(x, z1) ∧ XProj(x, z2) ∧ XSucc(y1,y2)

(see Figure 1, (b)) can be used to check vertical and horizontal
adjacency between grid points. E. g., HA(z1, z2, x1, x2,y) says z1
and z2 have the same y-projection, while the x-projection of z2 is
next to the x-projection of z1. Thus the query

H (z1, z2) = ∃y∃x1∃x2 HA(z1, z2, x1, x2,y)

holds of grid points z01 and z
0
2 iff z02 is the right neighbour of z

0
1 .

Given a tiling problem TP , we define the query QT P as a dis-
junctionQstart ∨Qhelper ∨Qverify where Monadic Datalog query
Qstart and UCQsQhelper andQverify are defined by the following
programs:

(1) Qstart ← A(x),B(x)
(2) A(x) ← XSucc(x, x ′),A(x ′),C(x ′)
(3) A(x) ← XEnd(x)
(4) B(y) ← YSucc(y,y′),B(y′),D(y′)

(5) B(y) ← YEnd(y)
(6) Qhelper ← C(u), YProj(y, z),XProj(x, z)
(7) Qhelper ← D(u), YProj(y, z),XProj(x, z)

(8) Qverify ← HA(z1, z2,y, x1, x2),Ti (z1),Tj (z2)
for all pairs (Ti ,Tj ) < HC

(9) Qverify ← VA(z1, z2,y1,y2, x),Ti (z1),Tj (z2)
for all pairs (Ti ,Tj ) < VC

(10) Qverify ← YSucc(o,y), YSucc(y, z),XSucc(o, x),
XProj(x, z),Ti (z) for all Ti < IT

(11) Qverify ← YEnd(y), YProj(y, z),
Ti (z),XProj(x, z),XEnd(x) for all Ti < FT

The set of views VT P consists of
– the grid-generating view

S(x,y) ← C(x),D(y)
S(x,y) ← XProj(x, z),Ti (z), YProj(y, z) for all Ti in Tiles;
– the atomic views VYSucc, VXSucc, VYEnd, VXEnd and VTi for
EDBs YSucc,XSucc, YEnd, XEnd and each Ti in Tiles;

– the following special views
V helper
C (u, x,y, z) ← C(u),XProj(x, z), YProj(y, z)

V helper
D (u, x,y, z) ← D(u),XProj(x, z), YProj(y, z)

VHA(z1, z2,y, x1, x2) ← HA(z1, z2,y, x1, x2)
VVA(z1, z2,y1,y2, x) ← VA(z1, z2,y1,y2, x)

VI (o, x,y, z) ← XSucc(o, x),XProj(x, z),
YSucc(o,y), YProj(y, z)

VF (x,y, z) ← XProj(x, z),XEnd(x),
YEnd(y), YProj(y, z)

A typical CQ-approximation of Qstart is shown in Figure 2 (a),
and it generates the axes of the grid which are marked with unary
predicatesC andD. The view-image of such CQ is shown in Figure 2
(b). This view image for each grid-point contains an S-atom, and so
a grid-like test as in Figure 1 (a) can be constructed out of this view
image by replacing each of these S-atoms with any of the disjuncts
other than the first disjunct in the definition of the grid-generating
view.

When we run Q on the tests, Qverify comes into play. Note
the correspondence between rules 8) – 11) for Qverify and the
negations of conditions (1) – (4) in the definition of a solution of a
tiling problem. Thus, when executed on a grid-test from Figure 1 (a),
Qverify returns False iff a grid test is a solution to TP. The query
Qhelper ensures that we are not harmed in the case where the
grid-generating views are applied with the first rule.

We can verify that a solution of our tiling problem corresponds
to monotonic determinacy, which will prove useful in both our
undecidability and non-rewritability results:

Proposition 10. QT P is not monotonically determined by VT P
iff TP has a solution.

7 NON-REWRITABILITY

We now turn to negative results concerning rewritability.
Pebble games. In order to prove non-definability in Datalog

and Monadic Datalog, we use the well-known tool of existential
pebble games. A partial homomorphism from I to I ′ is a mapping h
from a subsetD ⊆ adom(I) to adom(I ′) such that R(c1 . . . cn ) ∈ I
implies R(h(c1) . . .h(cn )) ∈ I ′, provided each ci ∈ D. Let k ≥ 2.
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Figure 2: A typical approximation of a start atom (a) and its

view image (b). (b) is obtained from (a) by replacingC and D
with their cross-product S = C × D

In the existential k-pebble game we have two players, the Spoiler
and the Duplicator, each having a set of pebbles {p1, . . . , pk } and
{q1, . . . , qk }, respectively. The game is played on two instances I
and I ′ over the same schema. In each round, the Spoiler either
places a pebble pi on some element of I or removes pi from I, to
which the Duplicator responds by placing its corresponding pebble
qi on some element of I ′ or by removing qi from I ′, respectively.
The Duplicator wins the game if he has a winning strategy, i.e., if
he can indefinitely continue playing the game in such a way that
after each round, if a1, . . . ,ak are the elements in I marked by
the Spoiler’s pebbles {p1, . . . , pk }, and a′1, . . . ,a

′
k are the elements

in I ′ marked by the Duplicator’s pebbles {q1, . . . , qk }, then the
relation {(a1,a′1), . . . , (ak ,a

′
k )} is a partial homomorphism from I

to I ′.
Recall that if there is a homomorphism from I to I ′, we write

I → I ′. Similarly, if Duplicator wins the game on I and I ′, then
we write I →k I

′. Observe that I → I ′ implies I →k I
′, for

every k ≥ 2.
The following property relates the game to homomorphisms

from structures of bounded treewidth:

Fact 1. [5] Let k ≥ 2. Let I and I ′ be two instances over the same

schema. Then the following are equivalent:

(1) I →k I
′
,

(2) for every instance I ′′ of treewidth ≤ k − 1, if I ′′ → I, then
I ′′ → I ′.

Existential pebble gameswithk pebbles preserve truth of Boolean
Datalog queries with rule bodies of size at most k . Thus games can
be used to show non-definability in Datalog:

Fact 2. [19] Let Q be a Boolean query. Suppose there exists two

instances Ik and I ′k such that Q(Ik ) = True, Q(I ′k ) = False and

Ik →k I
′
k , for infinitely many k’s. ThenQ is not definable in Datalog.

Let I be an instance and k ≥ 2 be an integer. An instance I ′ is
a k-unravelling of I if there is a homomorphism Φ from I ′ to I
and a tree decomposition (τ , λ) of I ′ of width at most k , such that:

(1) For eachu ∈ vert(τ ), the mapping Φ|λ(u) is a partial isomor-
phism from I ′ to I.

(2) For u ∈ vert(τ ) with children u1, . . . ,uℓ , the set
{Φ(λ(u1)), . . . ,Φ(λ(uℓ))} contains the collection of all non-
empty subsets of I of size ≤ k .

s
A A A BBB

C C CD D D
M

U

(a)

S TR

(b)

R

Figure 3: An unravelling of Q (a) and its view image (b)

If, in addition we have |λ(u) ∩ λ(v)| ≤ 1 for all non-equal u
and v in vert(τ ), then we say that I ′ is (1,k)-unravelling of I.
Duplicator has a winning strategy between an instance and its
(1,k)-unravelling in a variation of the k-pebble games in which at
most one pebble can remain in place in each move. Such games
preserve Boolean Monadic Datalog queries with bodies of size k ,
and hence each Boolean Monadic Datalog query is preserved under
(1,k)-unravellings for sufficiently large k . So we have the following
variant of Fact 2:

Fact 3. Let Q be a Boolean query. Suppose there exists two in-

stances Ik and I ′ such that Q(Ik ) = True, Q(I ′k ) = False and I ′k
is a (1,k)-unravelling of Ik , for infinitely many k’s. Then Q is not

definable in Monadic Datalog.

Note that the treewidth of any k-unravelling is at most k − 1.
Observe also that all k-unravellings of an instance I are homomor-
phically equivalent. The following facts about unravellings, proved
in the appendix, will be useful:

Fact 4. Letk ≥ 2. LetI be an instance andU be anyk-unravelling
of I. Then the following hold:

(1) U → I and I →k U .

(2) For every instance I ′, we have I →k I
′
iffU → I ′.

Non-rewritability inMonadicDatalog.We recall thatMonadic
Datalog queries monotonically determined over CQ views always
have FGDL rewritings (e.g. [13], or Thm 2 ). We show that they
may not be rewritable in MDL:

Theorem 7. There exists a Monadic Datalog query Q and a set of

CQ views V such that Q is rewritable with respect to V in Datalog –

and thus monotonically determined – but not rewritable in Monadic

Datalog.

Proof. Consider the following Monadic Datalog query Q

W (x) ← A(x,y),B(y,v),C(x, z),D(z,v),U (v)
W (x) ← A(x,y),B(y,v),C(x, z),D(z,v),W (v)
Goal ← W (x),M(x)

and a set of views V
S(x,y, z) ← M(x),A(x,y),C(x, z)

R(y, z,y′, z′) ← B(y,v),D(z,v),A(v,y′),C(v, z′)
T (y, z,v) ← U (v),B(y,v),D(z,v).

Q checks whether the instance I contains the points s ∈ MI

and t ∈ U I which are connected by a sequence of “diamonds” (see
Figure 3, (a)).
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Figure 4: A long row of R rectangles

Relying on Figure 3 it is easy to see that the query Q ′

P(y, z) ← T (y, z,v)
P(y, z) ← R(y, z,y′, z′), P(y′, z′)
Goal ← S(x,y, z), P(y, z)

is a Datalog rewriting of Q with respect to the views.
We claim that there is no Monadic Datalog rewriting of Q in

terms of these views. To prove this, given an integer k , we construct
two instances Ik and I ′k such that Ik |= Q , I ′k ̸ |= Q , but Duplicator
wins in the (1,k)-game for the view images V(Ik ) and V(I ′k ).

Let Ik be a sequence of k + 1 diamonds from Figure 3, (a) and Jk
be the view image of Ik from Figure 3, (b). Let J ′k be the (infinite)
(1,k)-unravelling of Jk . Let I ′k be the result of applying “inverse
rules”:

S(x,y, z) → M(x) ∧A(x,y) ∧C(x, z)
R(y, z,y′, z′) → ∃v B(y,v) ∧ D(z,v) ∧A(v,y′) ∧C(v, z′)

T (y, z,v) → U (v) ∧ B(y,v) ∧ D(z,v).

to J ′k and removing the view predicates. There are two types of
elements in I ′k , those that were present in J

′
k and those introduced

by the existential quantifier over v in the second rule which are
called anonymous.

We first claim that the view image of I ′k is J ′k . To see this,
consider a homomorphism h from the body of q(y, z,y′, z′) =
B(y,v),D(z,v),A(v,y′),C(v, z′) into I ′k . Note that h must map v
into an anonymous point, and so y, z,y′ and z′ must be mapped
to the points y0, z0,y′0, z

′
0 for some R(y0, z0,y′0, z

′
0) ∈ J

′
k . If follows

that any R-atom in V (I ′k ) is in J
′
k . This also holds for S-atoms

thanks to the unary predicate M ; and also for R-atoms, thanks to
the unary predicate U .

Our next claim is that I ′k |= Q iff J ′k |= Q
′. Indeed, In maps into

I ′k iff Jn maps into J ′k .
Finally, we claim that J ′k ̸ |= Q ′. We show that for any n there

is no homomorphism from Jn to J ′k . Indeed, as J
′
k maps homo-

morphically onto Jk , for any points s, t in J ′k with s ∈ π1(S
J′k ),

t ∈ π3(T
J′k ), the distance between s and t (measured in the Gaifman

graph for J ′k ) cannot be less then k + 1. This implies the claim for
1 ≤ n ≤ k . For n ≥ k+1 the claim follows from the observation that
there is no homomorphism from the query describing the pattern
in Figure 4 into J ′k . Indeed, it can be easily shown by induction
that if such a homomorphism existed, then there would be a single
bag in J ′k containing its whole image. This is a contradiction, as all
bags are of size k , and the query in question has 2k + 2 variables.

It follows that Ik and I ′k are as required. □

Non-rewritability in Datalog. Now we show that monotonic
determinacy does not imply Datalog rewritability, even for Monadic
Datalog queries and UCQ views:

Theorem 8. There exists a Monadic Datalog query Q and a set of

UCQ views V such thatQ is monotonically determined by V but there

is no Datalog rewriting of Q over V.

The query Q and views V we use will be QT P ∗ and VT P ∗ for
a particular tiling problem TP∗ as defined in Section 6. Define a
schema δ := {H, V, I, F} where H, V are binary and I, F are unary
relations. Consider a tiling problem TP = (Tiles,HC,VC, IT , FT ).
Given a database instance I for schema δ , we say that I can be

tiled by TP if there is an assignment of each element of I to a
tile where H, V, I, F satisfy the horizontal, vertical, initial and final
constraints. We denote by IT P the tiling problem TP viewed as a
relational structure for δ , with Tiles the domain. Then an instance
for δ can be tiled by TP exactly when it has a homomorphism
into IT P . For n,m ≥ 1, we denote by Iдr idn,m the database instance
with domain {(i, j) : 1 ≤ i ≤ n and 1 ≤ j ≤ m} and facts I((1, 1)),
F((n,m)), H((i, j), (i + 1, j)), for every 1 ≤ i < n and 1 ≤ j ≤ m, and
V((i, j), (i, j + 1)), for every 1 ≤ i ≤ n and 1 ≤ j < m. Then TP has a
solution in the usual sense if Iдr idn,m can be tiled with TP .

We can adapt techniques of [4] to show that there is a tiling
problem for which no n×m rectangular grid can be tiled, but where
for each k large enough grids can be “k-approximately tiled”, in the
sense of having k−unravellings that can be tiled. The proof can be
found in the appendix.

Lemma 6. There is a tiling instance TP∗ such that I
дr id
n,m can not

be tiled with TP∗ for each n,m ≥ 1 but for each n,m ≥ 3 and each
k with 2 ≤ k < min{n,m} any k-unravelling of Iдr idn,m can be tiled

with TP∗.

Proof of Theorem 8. LetTP∗ be the tiling instance fromLemma 6
and let QT P ∗ and VT P ∗ be the MDL query and UCQ views from
Theorem 6. Recall thatQT P ∗ and VT P ∗ are defined over the schema

σ := {XSucc, YSucc,C,D,XEnd, YEnd,
XProj, YProj,T1, . . . ,Tp }

where {T1, . . . ,Tp } is the tile set ofTP∗. Since I
дr id
n,m cannot be tiled

withTP∗, for each n,m ≥ 1, the tiling instanceTP∗ has no solution,
and hence QT P ∗ is monotonically determined by VT P ∗ .

Fix ℓ ≥ 10. We shall define instances Iℓ and I ′
ℓ
over σ such that

VT P ∗ (Iℓ) → ⌊
√
ℓ−1⌋ VT P ∗ (I

′
ℓ
), QT P ∗ (Iℓ) = True and QT P ∗ (I

′
ℓ
) =

False. By applying Fact 2, this implies that QT P ∗ has no Datalog
rewriting over VT P ∗ , as required. The instance Iℓ has domain z0 ∪
X ∪ Y , where X := {x1, . . . , xℓ} and Y := {y1, . . . ,yℓ}, and facts
D(xi ),C(yi ), for all 1 ≤ i ≤ ℓ, along with

XSucc(xi , xi+1), YSucc(yi ,yi+1) for all 1 ≤ i < ℓ and

with XEnd(xℓ), YEnd(yℓ), YSucc(z0,y1) and XSucc(z0, x1). Fig-
ure 2 (a) depicts I3. Informally, Iℓ is the expansion of QT P ∗ (more
precisely of Qstart) representing the (ℓ × ℓ)-grid. In particular,
QT P ∗ (Iℓ) = True.

Intuitively, we would now like to define I ′
ℓ
so that its view

image contains a ⌊
√
ℓ − 1⌋ unravelling of the view image of Iℓ . By
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Fact 4 we would have VT P ∗ (Iℓ) → ⌊
√
ℓ−1⌋ VT P ∗ (I

′
ℓ
) as required.

But using Lemma 6 and the definition of QT P ∗ we hope to show
QT P ∗ (I

′
ℓ
) = False. We will follow this intuition, but to define the

appropriate I ′
ℓ
we will need to construct several auxiliary instances.

Let Eℓ := VT P ∗ (Iℓ). Figure 2 (b) depicts E3. Recall that view images
are defined over schema τ :

{VXSucc,VYSucc,VXEnd,VYEnd,VT1 , . . . ,VTp ,

V helper
C ,V helper

D ,VHA,VVA,VI ,VF , S}

Intuitively, Eℓ copies theXSucc, YSucc,XEnd and YEnd-facts from
Iℓ , while the S-facts correspond to the product Y × X . Let Uℓ be
a ⌊
√
ℓ − 1⌋-unravelling of Eℓ , which is witnessed by a homomor-

phism Φ : Uℓ → Eℓ and a tree decomposition (τ , λ) ofUℓ .
In order to exploit Lemma 6, we need to interpret Uℓ as an

unravelling of the grid Iдr id
ℓ,ℓ

. The idea is to define a new instance

Wℓ over schema δ = {H, V, I, F} (recall that δ is the schema ofIдr id
ℓ,ℓ

)
whose domain consists of all the S-facts of Uℓ and the horizontal
and vertical successor relations are interpreted in the natural way.
Thus we can think ofWℓ as an unravelling of the S-facts of Eℓ ,
which in turn correspond to grid points of Iдr id

ℓ,ℓ
(the fact S(yj , xi )

corresponds to the point (i, j)). Formally,Wℓ is defined as follows:
(1) The domain ofWℓ contains all pairs (w, z) such that S(w, z)

is a fact inUℓ .
(2) I((w, z)) is a fact iff Φ(w) = y1 and Φ(z) = x1. Similarly,

F((w, z)) is a fact iff Φ(w) = yℓ and Φ(z) = xℓ .
(3) H((w, z), (w ′, z′)) is a fact iff w = w ′ and VXSucc(z, z

′) is a
fact in Uℓ . Similarly, V((w, z), (w ′, z′)) is a fact iff z = z′ and
VYSucc(w,w

′) is a fact in Uℓ .

Claim 1. Wℓ can be tiled by TP∗.

Proof. We use the characterization for tilings ofWℓ as homo-
morphisms into IT P ∗ . Then by Lemma 6 and Fact 1, it suffices to
show (a)Wℓ → I

дr id
ℓ,ℓ

and (b) tw(Wℓ) ≤ ℓ − 2.
For (a), we can take the homomorphism ψ such that for ev-

ery (w, z) in Wℓ , we have ψ ((w, z)) = (i, j) iff Φ(w) = yj and
Φ(z) = xi , for 1 ≤ i, j ≤ ℓ. Let us argue that ψ is a homomor-
phism. If I((w, z)) is a fact inWℓ , by definition we have Φ(w) =
y1 and Φ(z) = x1, and then I(ψ ((w, z))) = I((1, 1)), which is a
fact in Iдr id

ℓ,ℓ
. If H((w, z), (w ′, z′)) is a fact in Wℓ , then w = w ′

and S(w, z), S(w ′, z′),VXSucc(z, z
′) are facts in Uℓ . It follows that

Φ(w) = Φ(w ′) = yj , Φ(z) = xi and Φ(z′) = xi+1, for some 1 ≤ j ≤ ℓ
and 1 ≤ i < ℓ. Hence H(ψ ((w, z)),ψ ((w ′, z′))) = H((i, j), (i + 1, j)),
which is a fact in Iдr id

ℓ,ℓ
. The argument is analogous for F and

V-facts.
For condition (b), recall that (τ , λ) is a decomposition ofUℓ with

|λ(u)| ≤ ⌊
√
ℓ − 1⌋, for all u ∈ vert(τ ). We define a decomposition

(τ ′, λ′) forWℓ with τ ′ := τ and, for each u ∈ vert(τ ′), we have
λ′(u) :=

{(w, z) : {w, z} ⊆ λ(u) and S(w, z) is a fact in Uℓ}

The connectedness condition is inherited from τ . Suppose that we
have a fact H((w, z), (w ′, z′)) inWℓ . Thenw = w ′, and

S(w, z), S(w ′, z′),VXSucc(z, z
′)

are facts in Uℓ . There must exist u ∈ vert(τ ) = vert(τ ′) such that
{w = w ′, z, z′} ⊆ λ(u) (as every clique is always contained in a
bag). It follows that {(w, z), (w ′, z′)} ⊆ λ′(u). The argument for
V-facts is analogous. Finally, note that |λ′(u)| ≤ |λ(u)|2 ≤ ℓ − 1, for
all u ∈ vert(τ ′). We conclude that the treewidth ofWℓ is ≤ ℓ − 2
as required. ■

Using the tiling solution χ forWℓ given by Claim 1 and “chasing
with the inverse rules of the view definitions” we canmove to the de-
sired instance I ′

ℓ
for the base schema σ . The instance I ′

ℓ
is obtained

fromUℓ by replacing each factVXSucc(w, z),VYSucc(w, z),VXEnd(w)
and VYEnd(w), by facts XSucc(w, z), YSucc(w, z), XEnd(w) and
YEnd(w), respectively; and by replacing each fact S(w, z) by three
facts XProj(z, sw ,z ), YProj(w, sw ,z ), and Ti (sw ,z ), where sw ,z is a
fresh element and χ ((w, z)) = Ti . By construction, all facts of Uℓ

are contained in those of VT P ∗ (I ′ℓ ) and hence Uℓ → VT P ∗ (I ′ℓ ). By
Fact 4 (2), we have VT P ∗ (Iℓ) → ⌊

√
ℓ−1⌋ VT P ∗ (I

′
ℓ
).

It remains to show that QT P ∗ (I ′ℓ ) = False. Since there are no
C or D-facts in I ′

ℓ
, Qstart and Qverify cannot hold in I ′

ℓ
. Towards

a contradiction, suppose some rule (8)–(11) holds in I ′
ℓ
. If rule (8)

holds then there are elementsw, z, z′ in I ′
ℓ
and facts

YProj(w, sw ,z ), YProj(w, sw ,z′),XProj(z, sw ,z ),

XProj(z′, sw ,z′),XSucc(z, z′)

along with Ti (sw ,z ), Tj (sw ,z′), for tiles (Ti ,Tj ) < HC for TP∗. By
construction of I ′

ℓ
, we know that S(w, z), S(w, z′) andVXSucc(z, z′)

are inUℓ . In particular, H((w, z), (w, z′)) is a fact inWℓ . Also, by def-
inition of I ′

ℓ
, we know χ ((w, z)) = Ti and χ ((w, z′)) = Tj . Since χ

is a valid tiling ofWℓ forTP∗, (Ti ,Tj ) ∈ HC inTP∗; a contradiction.
The case of rule (9) is symmetric. If rule (10) holds, there are u,w, z
in I ′

ℓ
and facts

YSucc(u,w),XSucc(u, z),X (z, sw ,z ),Y (w, sw ,z )

along with Ti (sw ,z ), for some tile Ti not an initial tile of TP∗ . It
follows that VYSucc(u,w),VXSucc(u, z) and S(w, z) are facts in Uℓ .
Note that I((w, z)) is a fact in Wℓ since Φ is a homomorphism
from the unravelling Uℓ to Eℓ and then we must have Φ(u) = z0,
Φ(w) = y1 and Φ(z) = x1. Now by definition of I ′

ℓ
, we know that

χ ((w, z)) = Ti . Since χ is a valid tiling ofWℓ forTP∗,Ti is an initial
tile of TP∗, which is a contradiction. The argument for rule (11) is
analogous. We conclude that QT P ∗ (I ′ℓ ) = False. □

PTIME rewritability of QT P ∗ over VT P ∗ . For the query QT P ∗
and views VT P ∗ produced in the proof of Theorem 8 there is a
rewriting in a slightly larger language, stratifiedDatalog. The details
of stratified Datalog will not concern us here, except that it includes
positive Boolean combinations of Datalog queries and relational
algebra queries. We show that for every tiling problemTP for which
rectangular grids can not be tiled, the query QT P from Theorem 6
has a rewriting that is a positive Boolean combination of Datalog
queries and relational algebra queries. In particular, this shows that
QT P always has a separator in PTime.

Denote by Q∗start the query obtained from Qstart by replacing
C and D by the first and second projections of S , respectively. Let
Q∗verify be obtained from Qverify by using the views. That is, by
replacing:
• CQ HA by view VHA and similarly for VA,
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• relations Ti by the corresponding atomic views
• rewriting rules corresponding to the second to last bullet
item asVI (o, x,y, z),VTi (z), and similarly rewriting rules cor-
responding to the final bullet item using VF .

Let ProductTest be a query that tests whether S is the product
of its projections. ProductTest can be expressed in relational
algebra, hence in stratified Datalog.

Consider the query R formed by existentially quantifying

V helper
C ∨V helper

D ∨Q∗verify ∨ (Q
∗
start ∧ ProductTest)

Clearly R is a positive Boolean combination of Datalog queries
and the relational algebra query ProductTest. We claim that R is
a rewriting of q.

In one direction, suppose Q returns true on I and let J be
the view image. We do a case analysis depending on which of the
top-level disjuncts holds. If Qhelper holds on I then V helper

C or
V helper
D is non-empty, and thus R holds in J . If Qverify holds on
I then Q∗verify holds on J and hence we conclude again that R
holds on J . Finally, suppose Qstart holds on I. If ProductTest
fails, we know one ofC or D is empty. But thenQstart cannot hold,
a contradiction to our assumption. Thus ProductTest must hold.
From this, it is easy to see that Q∗start holds. This completes the
proof of this direction.

Conversely suppose that R holds on the view image J . Again we
do a case analysis on the top-level disjuncts. If V helper

C or V helper
D

is nonempty on J , then Qhelper holds on I and hence Q holds on
I. If Q∗verify holds on J , then Qverify holds on I, and again we
conclude thatQ holds onI. Finally, supposeQ∗start∧ProductTest
holds on J , and suppose that none of the disjuncts ofQ hold. Note
that since Qhelper fails, V helper

C and V helper
D must be empty. Thus

we have two possibilities for S . There is the “projection case”, where
either one of C or D is empty, and all the S atoms are generated by
the second rule. The alternative is the “product case”, where both
C and D are both nonempty and all the atoms of S are generated
by the first rule.

We claim that we must be in the “product case” for S above. If we
are in the projection case, then every pair must be associated with
a tile. Further, since Qverify and Qhelper fail, we have a tiling of a
rectangular grid, contradicting the hypothesis that there is no tiling.
Since we have argued that we are in the product case, it follows
that Qstart holds on I and thus Q holds in I as required.

Complexity of separators. Thus far we have seen that there
may be no Datalog rewriting even in the case of UCQ views. What
about separators, which are like rewritings, but not required to be
in a logic? It is easy to see that for UCQ queries and views, there
is always a rewriting in co-NP and a rewriting in NP. This is true
because every view image is the view image of a small instance;
basically the same observation was made for regular path queries
in [14]. Thus if we want really strong lower bounds, we need to
deal with recursive queries, and we need to look beyond regular
path queries.

We show that when we turn to general Datalog queries and
views, there may be no separator in PTime. In fact, we can find
monotonically determined examples with no separator that can be
performed within any given computable time bound.

Theorem 9. There is no function F such that for allQ,V such that

V and Q are in Datalog and Q is monotonically determined over V,
there is a separator of Q over V that runs in time F (V(I )).

The proof is inspired by a construction in [14] which obtained
Datalog views and queries where the certain answers are difficult
to compute. Roughly speaking, we modify this by considering a
query verifying that the base data represent an input and a valid
computation of a high-complexity deterministic Turing Machine,
while the views verify that the computation is halting and return
the input. Determinism of the machine will imply monotonic de-
terminacy of the query over the views. An efficient separator will
contradict the high-complexity of the machine. Details are in the
appendix.

8 CONCLUSION

We have taken some basic steps in understanding monotonic deter-
minacy for recursive queries. We leave quite a number of gaps in
both the understanding of rewritability and decidability/complexity
of testing monotonic determinacy, as one can see from Figures 1
and 2. To highlight just one, while we have shown that mono-
tonic determinacy of a Datalog query over Datalog views does not
imply a rewriting in any reasonable complexity class, we do not
know what can be said when the query is restricted; e.g. to be
in Frontier-guarded Datalog. While we have shown that when a
Monadic Datalog query is monotonically determined over UCQ
views, it may not be Datalog rewritable, we do not know whether
a rewriting can always be obtained by expanding the language, e.g.
to stratified Datalog. We have shown in the previous section that
this is true of the particular rewritings constructed in Theorem 8.
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APPENDIX: PROOFS FOR SECTION 7 ON

NON-REWRITABILITY RESULTS

Proof of Fact 4

Recall the statement:

Let k ≥ 2. Let I be an instance andU be any k-unravelling of I.
Then the following hold:

(1) U → I and I →k U .
(2) For every instance I ′, we have I →k I

′ iffU → I ′.

For the first part,U → I by definition. To see I →k U , we form
a strategy for the duplicator inductively, preserving the invariant
that the pebbles of the duplicator are contained in a single bag of
the tree decomposition. The induction step is accomplished using
the second property of an unravelling.

We turn to the second part, fixing I ′. If U → I ′ via some
homomorphism h, we can apply h to the strategy witnessing I →k
U to see I →k I

′. Conversely, suppose I →k I
′. Givenu ∈ U we

know there is some some bag of the tree decomposition containingu

with at most k elements, and Θ is a partial isomorphism on this bag.
Consider a play for Spoiler in the pebble game from I to I ′ going
down the branch of the tree decomposition to u. In this play, once
Spoiler moves a pebble off of an element, he will never move back
on to the element. Let h(u) be the element in I ′ corresponding
to u in the response of the duplicator playing according to his
winning strategy witnessing I →k I

′. One can verify that h(u) is
a homomorphism.

Proof of Lemma 6

Recall the statement:

There is a tiling instance TP∗ such that Iдr idn,m can not be tiled
with TP∗ for each n,m ≥ 1 but for each n,m ≥ 3 and each k with
2 ≤ k < min{n,m} any k-unravelling of Iдr idn,m can be tiled with
TP∗.

We can rephrase a tiling problem as a homomorphism problem.
For a tiling problemTP = (Tiles,HC,VC, IT , FT ), we denote byIT P
the database instance over δ = {H, V, I, F} with domain Tiles and
facts H(T ,T ′) (resp. V(T ,T ′)) for every (T ,T ′) ∈ HC (resp. (T ,T ′) ∈
VC), and I(T ) (resp. F(T )) for every T ∈ IT (resp. T ∈ FT ). Then
an instance can be tiled according to TP exactly when it has a
homomorphism to IT P . We can thus rephrase the lemma as:

There is a tiling problem TP∗ such that Iдr idn,m ̸→ IT P ∗ for each
n,m ≥ 1, but Iдr idn,m →k IT P ∗ for each n,m ≥ 3 and each k with
2 ≤ k < min{n,m}.

Before going into the proof, we state a well-known character-
ization of winning strategies for the Duplicator in the existential
pebble game:

Fact 5. Let k ≥ 2 and let I,I ′ be two instances over the same

schema. The Duplicator has a winning strategy in the existential k-
pebble game on I and I ′ if and only if there is a non-empty collection

H of partial homomorphisms from I to I ′ with domain size ≤ k
such that: (1) if f ∈ H and д ⊆ f , then д ∈ H , and (2) for each

f ∈ H with domain size < k and each a ∈ adom(I), there is д ∈ H
with f ⊆ д whose domain contains a.

Proof. Our proof is an adaptation of a construction from [4].
It was shown in [4] that if an instance I has a core of treewidth
strictly bigger than k with k ≥ 2, then there exists an instance I∗
such that I ̸→ I∗ and I →k I

∗. We could apply this result to
each Iдr idn,m , where n,m ≥ 3, and obtain I∗n,m such that Iдr idn,m ̸→

I∗n,m and Iдr idn,m →k I
∗
n,m , for 2 ≤ k < min{n,m}. By adapting

the arguments in [4], we show that the family {I∗n,m }n,m≥3 can
actually be collapsed into a single instance IT P ∗ with the desired
properties.

Forn,m ≥ 1, letGn,m be the (n×m)-grid graph. That is, vert(Gn,m ) :=
{(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edges(Gn,m ) := {{(i, j), (i ′, j ′)} :
|i − i ′ | + |j − j ′ | = 1}. Observe that Gn,m is precisely the Gaifman
graph of the database instance Iдr idn,m . Intuitively, a solution for
our tiling problem on Gn,m will describe a 0/1 assignment to the
edges of the grid Gn,m . In order to define TP∗, we consider the
grid G3,3. Intuitively, we want to think of grid points within G3,3
as “grid point types” that can be assigned to a grid point in some
larger grid Gn,m . For example, the tile (2, 1) that lies in the center
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of the lower border represents the type of all elements that lie on
the lower border of Gn,m , excluding the corner points. Our tiles
will enhance each abstract grid point with a 0/1 assignment to its
incident edges.

For each vertex u ∈ vert(G3,3), we denote by du the degree of
u (note that du ≤ 4) and fix an enumeration eu1 , . . . , e

u
du

of all the
edges in G3,3 that are incident to u. The set of tiles Tiles∗ of TP∗
contains all the tuples (u,b1, . . . ,bdu ) such that

(1) u ∈ vert(G3,3) and b1, . . . ,bdu ∈ {0, 1},
(2) b1 + · · · + bdu ≡ 0 (mod 2) if u , (1, 1),
(3) b1 + · · · + bdu ≡ 1 (mod 2) if u = (1, 1).

That is, we consider assignments where the number of edges set to
1 is odd for the left-lower point but the number of edges set to 1 is
even elsewhere.

Let us denote π1 : Tiles∗ → vert(G3,3) the first-coordinate
projection. We define the set of initial and final tiles to be IT ∗ :=
{t ∈ Tiles∗ : π1(t) = (1, 1)} and FT ∗ := {t ∈ Tiles∗ : π1(t) = (3, 3)},
respectively.

Our compatibility relation will ensure that the 0/1 assignment to
incident edges is consistent among adjacent nodes: if a grid point
n has the outgoing edge to its right set to b ∈ {0, 1} and n′ is the
neighbor of n to the right, then n′ has the incoming edge to its left
set to b.

We first give the constraints for pairs of grid points that are
assigned to distinct abstract grid points in G3,3. For each edge
e = {u,v} = {(i, j), (i + 1, j)} ∈ edges(G3,3) with 1 ≤ i < 3 and
1 ≤ j ≤ 3, we add to the horizontal compatibility relation HC∗ the
pair ((u,b1, . . . ,bdu ), (v,b

′
1, . . . ,b

′
dv
)) iff e = eu

ℓ
= evm , for some ℓ,m

andbℓ = b ′m . Similarly, for each edge e = {u,v} = {(i, j), (i, j+1)} ∈
edges(G3,3) with 1 ≤ i ≤ 3 and 1 ≤ j < 3, we add to the vertical
compatibility relationVC∗ the pair ((u,b1, . . . ,bdu ), (v,b

′
1, . . . ,b

′
dv
))

iff e = eu
ℓ
= evm , for some ℓ,m and bℓ = b ′m .

We now give the consistency restrictions for pairs of grid points
that are assigned the same abstract grid point. We add the following
pairs to HC∗ and VC∗:
• For u = (2, j) with j ∈ {1, 3}, the pair ((u,b1, . . . ,bdu ),
(u,b ′1, . . . ,b

′
du
)) ∈ HC∗ iff

e = {(2, j), (3, j)}, e ′ = {(1, j), (2, j)}, e = eu
ℓ
, e ′ = eum , for

some ℓ,m, and bℓ = b ′m ,
• For u = (i, 2) with i ∈ {1, 3}, the pair ((u,b1, . . . ,bdu ),
(u,b ′1, . . . ,b

′
du
)) ∈ VC∗ iff e = {(i, 2), (i, 3)}, e ′ = {(i, 1),

(i, 2)}, e = eu
ℓ
, e ′ = eum , for some ℓ,m, and bℓ = b ′m ,

• For u = (2, 2), the pair ((u,b1, . . . ,bdu ), (u,b
′
1, . . . ,b

′
du
)) ∈

HC∗ iff e = {(2, 2), (3, 2)}, e ′ = {(1, 2), (2, 2)}, e = eu
ℓ
, e ′ =

eum , for some ℓ,m, and bℓ = b ′m ; and the pair

((u,b1, . . . ,bdu ), (u,b
′
1, . . . ,b

′
du
)) ∈ VC∗

if and only if e = {(2, 2), (2, 3)}, e ′ = {(2, 1), (2, 2)}, e = eu
ℓ
,

e ′ = eum , for some ℓ,m, and bℓ = b ′m .
Letn,m ≥ 3.We define a functionΨ from vert(Gn,m ) to vert(G3,3)

as follows. We set Ψ((1, 1)) = (1, 1), Ψ((n, 1)) = (3, 1), Ψ((1,m)) =
(1, 3) and Ψ((n,m)) = (3, 3). For 1 < i < n and 1 < j < m, we define
Ψ((i, j)) = (2, 2), Ψ((1, j)) = (1, 2), Ψ((n, j)) = (3, 2), Ψ((i, 1)) = (2, 1)
and Ψ((i,m)) = (2, 3). We can now enumerate incident edges of
a in Gn,m according to the already defined enumeration for Ψ(a)

in G3,3. More precisely, for each a ∈ vert(Gn,m ), we define a bi-
jection ∆a from its incident edges in Gn,m to the incident edges
of Ψ(a) in G3,3 in the natural way: if e corresponds to the inci-
dent edge of a to the “up” direction in the grid Gn,m then ∆a (e)
is also the incident edge of Ψ(a) in the grid G3,3 to the “up” direc-
tion; similarly for the “right”, “down” and “left" directions. Then
for each a ∈ vert(Gn,m ), we enumerate its incident edges as
ea1 , . . . , e

a
da
= ∆−1a (e

Ψ(a)
1 ), . . . ,∆−1a (e

Ψ(a)
dΨ(a)
), where eΨ(a)1 , . . . , e

Ψ(a)
dΨ(a)

is the enumeration for Ψ(a) already fixed in the construction of
TP∗.

We now formalize the intuition that the parity and consistency
conditions ensure that a rectangular grid cannot be tiled:

Claim 2. Iдr idn,m ̸→ IT P ∗ , for every n,m ≥ 1.

Proof. Note that Iдr idn,m ̸→ IT P ∗ if min{n,m} ≤ 2. Towards a
contradiction, suppose Iдr idn,m → IT P ∗ for some n,m ≥ 3, via a
homomorphism h. By construction, we must have π1(h(a)) = Ψ(a),
for every a in Iдr idn,m and hence h corresponds to a 0/1 assignment
of the edges of the Gaifman graph Gn,m of Iдr idn,m . In particular,
there exists a 0/1 vector (xe )e ∈E(Gn,m ) such that for each verted
a ∈ vert(Gn,m ), we have h(a) = (Ψ(a), xea1 , . . . , xeada ).

Now we have∑
a∈vert(Gn,m )

(xea1 + · · · + xe
a
da
) =

(xe (1,1)1
+ · · · + xe (1,1)d(1,1)

) +
∑

a∈vert(Gn,m )\{(1,1)}
(xea1 + · · · + xe

a
da
)

= 1 (mod 2)

But this is impossible as each edge e ∈ edges(Gn,m ) is counted
exactly twice in

∑
a∈vert(Gn,m )(xea1 + · · · + xe

a
da
); a contradiction.

■

While there is no total mapping from Iдr idn,m to IT P ∗ that is a
homomorphism, by considering partial mappingswith domains that
are not too large, we can easily satisfy the correct parity conditions,
and hence we can define partial homomorphisms from Iдr idn,m to
IT P ∗ . The next claim tells us that these partial homomorphisms
can be chosen to be consistent.

Claim 3. Iдr idn,m →k IT P ∗ , for every n,m ≥ 3 and 2 ≤ k <
min{n,m}.

Proof. Let P = (a0,a1, . . . ,aℓ) be a walk in Gn,m . For every
edge e ∈ edges(Gn,m ), we define:

(1) xPe = 1 if P visits e an odd number of times.
(2) xPe = 0 if P visits e an even number of times.

We also definehP (a) := (Ψ(a), xPea1
, . . . , xPeada

), for eacha ∈ vert(Gn,m )

(i.e., in the domain of Iдr idn,m ).
Let W be the collection of all walks P = (a0,a1, . . . ,aℓ) in

Gn,m with a0 = (1, 1) and aℓ , a0. We claim that for each P =
(a0,a1, . . . ,aℓ) ∈ W and each a , aℓ in vert(Gn,m ), the tuple
hP (a) always belongs to the domain of IT P ∗ . Note that xPea1

+ · · · +

xPeada
= |{e in P : e is incident to a}| (mod 2). For a , a0, we have
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|{e in P : e is incident to a}| = 2 · |{i : 0 < i < ℓ and ai = a}| = 0
(mod 2), and hence hP (a) = (Ψ(a), xPea1

, . . . , xPeada
) belongs to IT P ∗

(as Ψ(a) , (1, 1)). On the other hand, for a = a0, we have |{e in P :
e is incident to a}| = 1 + 2 · |{i : 0 < i < ℓ and ai = a}| = 1 (mod
2), and hence hP (a) = (Ψ(a), xPea1

, . . . , xPeada
) belongs to IT P ∗ (as

Ψ(a) = (1, 1)).
Thus we can define for eachwalk P = (a0,a1, . . . ,aℓ) ∈ W a par-

tial mappinghP fromIдr idn,m toIT P ∗ with domain vert(Gn,m )\{aℓ}.
By definition of TP∗ and since hP is defined from a 0/1 vector
(xPe )e ∈edges(Gn,m ), we have that h

P is actually a partial homomor-
phism.

We define a non-empty collectionH of partial homomorphisms
from Iдr idn,m to IT P ∗ as follows. For 1 ≤ p ≤ n and 1 ≤ q ≤ m, we
denote by Cp,q the (p,q)-cross of Gn,m defined as Cp,q := {(p, j) :
1 ≤ j ≤ m} ∪ {(i,q) : 1 ≤ i ≤ n}. For every non-empty subset
S ⊆ vert(Gn,m ) with |S | ≤ k (recall that 2 ≤ k < min{n,m}),
and every walk P = (a0, . . . ,aℓ) ∈ W such that there are p,q
with aℓ ∈ Cp,q and Cp,q ∩ S = ∅, we add to H the restriction
hP |S . We prove thatH is a winning strategy for the Duplicator and
then Iдr idn,m →k IT P ∗ as required. Condition (1) of Fact 5 holds by
definition, so we focus on condition (2). Let hP |S ∈ H for some S
with |S | < k and walk P = (a0, . . . ,aℓ) ∈ W such that aℓ ∈ Cp,q
andCp,q ∩S = ∅ for some p,q. Let a ∈ vert(Gn,m )\S and S ′ = S ∪
{a}. Since k < min{n,m}, there exist p′,q′ such thatCp′,q′∩S ′ = ∅.
Moreover, since Cp,q is connected and |Cp,q ∩ Cp′,q′ | ≥ 2, there
is a walk P ′′ = (aℓ,aℓ+1, . . . ,aℓ+r ) such that aℓ+i ∈ Cp,q , for all
0 ≤ i ≤ r , aℓ+r ∈ Cp′,q′ and aℓ+r , a0. Let P ′ = (a0, . . . ,aℓ+r ) be
the concatenation of P and P ′′. Then hP

′

|S ′ ∈ H . Finally, observe
that hP (b) = hP

′

(b), for every b ∈ S , since xPe and xP
′

e can only
differ for edges e = {b ′,b ′′} ⊆ Cp,q and Cp,q ∩ S = ∅. It follows
that hP |S ⊆ hP

′

|S ′ , and hence condition (2) holds. ■

□

Proof of Theorem 9

Recall the statement:

There is no integer-valued function F such that for all Q,V such
that V and Q are in Datalog and Q is monotonically determined
over V , there is a separator of Q over V that runs in time F (V(I )).

We now give the proof of Theorem 9. We assume the opposite,
aiming for a contradiction. We use the following fact, which is a
consequence of the time hierarchy theorem:

For any computable function F there is a deterministic Turing
machineMF which halts on all of its inputs, and such that no Turing
machine running in time F can decide the same language asMF .

Fix such a machineM for F .
Let Σinput be the input alphabet of M , and ΣM be a suitable

alphabet for encoding configurations ofM .
We consider a base signaturewith relations Succ(x,y) andUa (x) :

a ∈ Σinput for the input signature ofM along with symbols

Succ′(x,y),U ′a (x) : a ∈ ΣM

for the configuration signature ofM .

A pre-run-string is a string in the regular language formed by
intersecting σInpBegin (Σinput)∗σInpEnd(Σ∗M ;)+σRunEnd with a reg-
ular expression enforcing that the last maximal segment of ΣM
strings that does not contain ; encodes a halting state. Above:
• σInpBegin is a marker designating the beginning of the input
while
• σInpEnd designates the end of the input;
• ; is a marker indicating the separator between configurations,
while
• σRunEnd marks the end of the run.

A well-shaped string will consist of an initial letter with a special
symbol σInpBegin and ending with σInpEnd, followed by a code for
a run of M , ending with a special symbol σRunEnd. A string is
badly-shaped if it is not well-shaped. It is easy to see that a badly-
shaped string w has at least one of the following bad properties:
w is not a pre-run string, w contains a sub-string ;ci ;ci+1; where
ci+1 does not encode a next configuration after ci , w contains a
string σInpBeginwinσInpEndc1; such that c1 does not encode initial
configuration ofM with inputwin .

A pre-run instance will be a relational encoding of a homo-
morphic image of a pre-run string using relations Succ(x,y) and
Ua (x) : a ∈ Σinput for the coding of the initial segment, symbols
Succ′(x,y),U ′a (x) : a ∈ ΣM for the remaining part of the run, and
additional symbols for the separators. That is, in the relational en-
coding we allow the same element to represent different places in
the string. A well-shaped string instance will be a relational encod-
ing of a homomorphic image of a well-shaped string, again using
the relations Succ(x,y),Ua : a ∈ Σinput for the initial segment
and the primed copies for the remaining segments. We define a
badly-shaped string instance analogously.

A standard argument shows
Proposition 11. There is a Datalog query whose approximations

are (up to isomorphism) exactly the badly-shaped string instances.

Note that if we had enforced that codings were alternating, with
every other configuration reversed, then we could use a PDA to
detect bad properties on a string and a context-free path query to
detect it on the encoding. With the power of general Datalog, no
alternation is needed.

Our views V will include:
• the input views, with one binary view returning exactly
Succ(x,y), and for each a ∈ Σinput a unary view return-
ingUa (x).
• a nullary view V badly-shaped which returns True whenever
the instance contains a badly-shaped string instance. That
is, V badly-shaped returns True when the input contains the
homomorphic image of a relational encoding of a string start-
ing with the symbol σInpBegin and ending with the symbol
σInpEnd which has one of the bad properties. By Proposition
11, a Datalog view with this property exists.
• a unary viewV pre-run(x)which holds for x if there is a subin-
stance that is a pre-run instance in which the occurrence of
σInpEnd corresponds to x .

Our query Q will be the sentence obtained from V badly-shaped

disjoined with QAccept, where QAccept returns true exactly when
we detect a relational encoding of a pre-run string that ends in an
accept state.
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We now argue that Q is monotonically determined over V.
Consider instances I1 and I2 with V(I1) ⊆ V(I2) and Q(I1)

being true.
Q(I1) could be true because V badly-shaped holds, in this case,

Q(I2) also holds since V badly-shaped is one of the views. So we can
assume thatV badly-shaped does not hold in I1 or I2, since if it does
hold then I2 satisfies Q .

Q(I1) could also be true becauseV badly-shaped fails butQAccept

holds. We know there is a relational encoding of some string

σInpBeginwσInpEndw0;w1; . . . ;wnσRunEnd

witnessing that QAccept holds in I1. Let x be the element corre-
sponding to the label σInpEnd in this encoding. Note that V pre-run

must hold of x in I1, hence in I2. The latter must be witnessed via
a relational encoding of some string of the form

σInpBeginw
′
0σInpEndw

′
1; . . . ;w

′
k

with σInpBeginw ′0σInpEnd relationally encoded in the unprimed sig-
nature, thew ′i encoded in the primed signature, with the element
labelled by σInpEnd corresponding to x . Note that by the definition
of pre-run,w ′k must include a halting state.

Since we have views for all of the input signature elements, and
V(I1) ⊆ V(I2), we know that we also have an encoding of a string
σInpBeginw0σInpEnd in I2, with the encoding done in the unprimed
signature, with the

We now consider the string

s = σInpBegin w0 σInpEnd w
′
1; . . . ;w

′
k σRunEnd

s begins with the input string, and ends with a halting state. Note
that since a relational encoding of σInpBegin w0 σInpEnd lies in I1,

the encoding of s must lie in I2, due to the input views. Since
V badly-shaped is false in I2, we know that in I2:
• For every relational encoding of a string of form:

σInpBegin w0 σInpEnd w
′
1;

with σInpBegin w0 σInpEnd encoded in the unprimed signa-
ture andw ′1 encodes a state with tape configurationw0 and
state the initial state of M , under the transition relation of
M .
• For every relational encoding a string of the form:

w ′1;w
′
2;

with the encoding being in the primed signature, w ′2 must
encode a state that is a successor in the transition relation
ofM of the state encoded byw ′1.

From this we infer that s is an encoding of a run of M on w0,
ending at a halting state.

But sinceM is deterministic, s must be the same as

σInpBegin w0 σInpEndw1; . . . ;wnσRunEnd

which ends in an acceptance state.
Since a relational encoding of s lies in I2, we can conclude that

Q holds in I2. This completes the argument for monotonic deter-
minacy of Q with respect to V.

Now, suppose Q has a separator R that runs in time F . Then R
will allow us to check in time F whether M accepts or rejects on
its input, a contradiction. Thus we have completed the proof of
Theorem 9.
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