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Abstract. In this paper, we continue the study of robust satisfiability of promise CSPs (PCSPs), initiated
in (Brakensiek, Guruswami, Sandeep, STOC 2023), and obtain the following results:

For the PCSP 1-in-3-SAT vs NAE-SAT with negations, we prove that it is hard, under the Unique Games
conjecture (UGC), to satisfy 1− Ω(1/ log(1/ϵ)) constraints in a (1− ϵ)-satisfiable instance. This shows that the
exponential loss incurred by the BGS algorithm for the case of Alternating-Threshold polymorphisms is necessary,
in contrast to the polynomial loss achievable for Majority polymorphisms.

For any Boolean PCSP that admits Majority polymorphisms, we give an algorithm satisfying 1 − O(
√
ϵ)

fraction of the weaker constraints when promised the existence of an assignment satisfying 1 − ϵ fraction of the
stronger constraints. This significantly generalizes the Charikar–Makarychev–Makarychev algorithm for 2-SAT,
and matches the optimal trade-off possible under the UGC. The algorithm also extends, with the loss of an extra
log(1/ϵ) factor, to PCSPs on larger domains with a certain structural condition, which is implied by, e.g., a family
of Plurality polymorphisms.

We prove that assuming the UGC, robust satisfiability is preserved under the addition of equality constraints.
As a consequence, we can extend the rich algebraic techniques for decision/search PCSPs to robust PCSPs. The
methods involve the development of a correlated and robust version of the general SDP rounding algorithm for
CSPs due to (Brown-Cohen, Raghavendra, ICALP 2016), which might be of independent interest.

1 Introduction The CSP dichotomy theorem has precisely identified which problems in the rich class of
constraint satisfaction problems (CSPs) are polynomial-time solvable, with the rest being NP-complete [19, 51].
Strikingly, this landmark result shows that simple gadget reductions from 3-SAT are the only obstructions to the
existence of an efficient algorithm for a CSP, and conversely the existence of a single “non-trivial polymorphism”
suffices for a polynomial time satisfiability algorithm. Informally, a polymorphism is an operator that combines
multiple satisfying assignments to the predicates defining the CSP into another satisfying assignment.

On the algorithmic side, in essence there are only two broad approaches: local consistency (also captured
by a few levels of the Sherali–Adams hierarchy of linear programs) [6] and generalizations of Gaussian
elimination [20, 38]. However, the overall algorithm in the CSP dichotomy theorem is highly non-trivial due
to the intricate ways in which these two basic algorithmic paradigms might have to be combined to solve an
arbitrary tractable CSP.

The picture is considerably simpler and clearer (but is still non-trivial) when focusing on polynomial time
robust satisfiability algorithms for tractable CSPs, a concept first considered in the beautiful work of Zwick [52]. In
addition to finding perfectly satisfying assignments when they exist, such algorithms are also robust in the sense
that, when given as input almost-satisfiable instances (namely those that admit an assignment failing to satisfy
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only an ϵ fraction of the constraints), they find an assignment satisfying all but g(ϵ) fraction of the constraints,
for some loss g(ϵ) that vanishes as ϵ → 0.

For ease of terminology, let us refer to CSPs that admit such efficient robust satisfiability algorithms as robust
CSPs. We further call them (ϵ, g(ϵ))-robust CSPs to indicate the loss incurred by the robust algorithm. Every
robust CSP is also tractable—this follows from two works of Barto and Kozik [6,7]. However, the converse is not
true and there are tractable CSPs that lack robust satisfiability algorithms. The quintessential such CSPs are
defined by linear relations over an Abelian group. Satisfiability of such CSPs can be efficiently ascertained via
Gaussian elimination, but by the celebrated inapproximability results of Håstad [36], they are not robust.1 On
the other hand, tractable CSPs that are solved by local consistency (called bounded-width CSPs in the literature)
are in fact robust. For Boolean CSPs, this was effectively implicit in Zwick’s original work that pioneered robust
satisfiability [52]. For CSPs over any fixed finite domains, this was shown by Barto and Kozik [7]. An earlier
breakthrough result of Barto and Kozik [6] had shown that any CSP that cannot express linear equations (in a
certain formal sense) is solved by local consistency algorithms. Thus, we have the pleasing picture that CSPs
solved by local consistency—one of the two basic algorithmic strategies—are precisely those that are robust (this
statement was explicitly conjectured in [35]). Further, for all such CSPs, there is a robust satisfiability algorithm
based on semidefinite programming. We therefore have a single unified approach for robust satisfiability compared
to the highly complex situation for exact satisfiability of CSPs. In a way, the robust CSP dichotomy offers a crisper
and more comprehensible complexity criterion.

Given this backdrop concerning robust CSPs, and motivated by the quest for understanding robustness of
SDP-based algorithms more broadly, Brakensiek, Guruswami, and Sandeep [13] initiated the study of robust
algorithms for promise CSPs, which we introduce next. Promise CSPs (also PCSPs for short) are a vast
generalization of CSPs that have received significant attention in recent years [2–4, 8, 11, 12, 15, 16, 24–29, 32,
34, 37, 41, 42, 44–47]. A promise CSP is defined by a fixed collection of relation pairs (Pi, Qi) over some domain
pair (D,E), with Pi ⊆ Qi.2 Given a CSP instance based on the relations, the goal is to find an assignment
satisfying the (weak) constraints given by the Qi relations if promised that an assignment satisfying the (strong)
constraints given by the Pi relations exists (but is not known). A classic example of a promise CSP is the
approximate graph coloring problem [33]: given a k-colorable graph, find an ℓ-coloring of it, where 3 ≤ k ≤ ℓ. In
our terminology, this is just the PCSP with a single pair of relations (P,Q), where P is the disequality relation
on a k-element set, and Q is the disequality relation on an ℓ-element set.

Another, more recent, example of a PCSP is the (2 + ϵ)-SAT problem, introduced and studied by Austrin,
Guruswami, and Håstad [1] (who also coined the expression promise CSP): given an instance of k-SAT with the
promise that an assignment exists that satisfies at least g literals in each clause, where 1 ≤ g ≤ k, find a standard
satisfying assignment (satisfying at least 1 literal in each clause). In this case, the P relations encode Boolean
clause assignments with Hamming weight at least g, where the Q relations encode Boolean clause assignments
with Hamming weight at least 1. Another example is the 1-in-3-SAT vs NAE-SAT problem, identified in the
influential paper of Brakensiek and Guruswami [10] that initiated a systematic study of Boolean PCSPs. Here one
is given a satisfiable instance of 1-in-3-SAT and the goal is to find an assignment that satisfies 1 or 2 variables
per clause. Astoundingly, this problem is solvable in polynomial time (via an algorithm not previously considered
in the context of CSPs) [10]. Further, such an algorithm cannot be obtained via a reduction to (finite domain)
CSPs [5]!

The study of PCSPs calls for significant new algorithmic and hardness techniques. Studying such techniques
in the broader context of PCSPs has also led to new results for (standard, non-promise) CSPs, e.g., a single
algorithm blending together linear programming with linear Diophantine equations [14] that solves all tractable
Boolean CSPs. Despite a lot of attention and recent progress on PCSPs, the complexity landscape is vast and
mostly not understood. In fact, the complexity of Boolean PCSPs is itself a major challenge, in contrast to
the CSP world where Schaefer proved a dichotomy for Boolean CSPs already in the 1970s [50]. Following a

1In fact, even for almost-satisfiable instances, it is NP-hard to beat the approximation ratio achieved by the trivial algorithm that
simply outputs a random assignment.

2More generally, there must be a map h : D → E that is a homomorphism from each Pi to Qi.
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classification of Boolean symmetric PCSPs allowing negations from [10], Ficak, Kozik, Olšák, and Stankiewicz
obtained a classification of Boolean PCSPs with symmetric relations [31]. Moreover, Brakensiek, Guruswami, and
Sandeep obtained a (conditional) classification of monotone Boolean PCSPs [12].3

Returning to robust satisfiability, given the crisp picture of robust CSPs—namely, either the natural SDP
gives an efficient robust algorithm or none exists—the study of robust PCSPs is a natural goal, as proposed by
Brakensiek, Guruswami, and Sandeep (BGS) [13]. A robust satisfiability algorithm for a PCSP defined by relation
pairs (Pi, Qi) means the following: given an instance such that (1 − ϵ) fraction of the constraints are promised
to be satisfiable according to the stronger relations Pi, there is an algorithm to weakly satisfy (according to the
relations Qi) (1 − g(ϵ)) fraction of the constraints, where g(ϵ) → 0 as ϵ → 0. As with CSPs, in this case we say
that the PCSP is robust or (ϵ, g(ϵ))-robust.

BGS focused on Boolean PCSPs where the known satisfiability algorithms4 can be attributed to the existence
of polymorphisms. A polymorphism for a relation pair (P,Q) is a homomorphism from a (categorical) power
Pm of P to Q, with Pol(P,Q) representing the set of all polymorphisms. More precisely, BGS focused on three
families of polymorphisms: Majority (MAJ), Alternating Threshold (AT), and Parity [10]. For any odd L ∈ N,
we let MAJL,ATL,PARL : {−1, 1}L → {−1, 1} be defined as

MAJL(x1, . . . , xL) := 1

[
L∑

i=1

xi ≥ 0

]
,

ATL(x1, . . . , xL) := 1

[
L∑

i=1

(−1)i−1xi ≥ 0

]
,

PARL(x1, . . . , xL) := 1

[
L∑

i=1

xi ≡ L mod 4

]
.

We let MAJ := {MAJL : L ∈ N odd}, AT := {ATL : L ∈ N odd}, PAR := {PARL : L ∈ N odd} be the
respective sets of polymorphisms. In two of these cases, Majority and AT, BGS showed that the associated PCSPs
are robust via an algorithm based on semidefinite programming [13]. They also showed that a partial converse
holds: for PCSPs defined by a single pair (P,Q) of symmetric Boolean relations (plus allowing negations), if the
relation pair (P,Q) lacks some odd-arity MAJ and some odd-arity AT as a polymorphism, then the PCSP is not
robust (assuming the Unique Games conjecture).

The quantitative aspects of the robust satisfaction algorithms in [13] for the two cases, Majority and AT,
however, diverged significantly. For Majority, the BGS algorithm, which is really the same as the Charikar–
Makarychev–Makarychev algorithm for 2-SAT but analyzed in greater generality assuming only a Majority
polymorphism, guaranteed that at most Õ(ϵ1/3) fraction of the constraints are violated. This is weaker
than the (ϵ, O(

√
ϵ)) robustness guarantee for 2-SAT [23]—which is tight [40, 43] under the Unique Games

conjecture [39, 40, 43].5 A natural question then is whether the BGS loss guarantee for Majority polymorphisms
can be improved to O(

√
ϵ), which would then give the right polymorphic generalization of the CMM robust

algorithm for 2-SAT.
The situation for robust algorithms for Boolean PCSPs with AT polymorphisms is worse, as the BGS algorithm

only showed (ϵ, O(1/ log(1/ϵ)))-robustness. A natural question then is whether this exponential loss is necessary,
or whether one can achieve polynomial loss also for the AT case similar to the Majority case. We address and
resolve both of these questions in this work.

1.1 Our Results Our contributions in this paper fall into three parts. First, we show that the robust
algorithm for Alternating Threshold due to Brakensiek–Guruswami–Sandeep [13] has a near-matching hardness
result under the UGC. This is based on a novel integrality gap for (1-in-3-SAT,NAE-SAT). Second, we show

3The classification assumes the Rich 2-to-1 conjecture of Braverman, Khot, and Minzer [17].
4Recall that robust PCSPs must first of all be tractable.
5Historically, showing evidence for the near-optimality of the Goemans–Williamson robust algorithm for Max-Cut, which also

achieves O(
√
ϵ) loss, was the original motivation for the formulation of the Unique Games conjecture in [39].
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that any promise template with the Majority polymorphism has a robust algorithm with loss g(ϵ) = O(
√
ϵ), which

is asymptotically tight, and improves over BGS’s analysis of O(ϵ1/3). We further extend this analysis to show
that similar algorithms achieve a robustness of O(

√
ϵ log(1/ϵ)) for Plurality and related polymorphisms. Finally,

we show that the robustness of PCSPs is (approximately) preserved under a large family of gadget reductions
under the UGC. We do this by solving a seemingly elementary but technically complex problem: given a promise
template with a robust algorithm, show that adding the equality relation to the template (approximately) preserves
the robustness of the problem.

Hardness for Alternating Threshold. A key result of Brakensiek–Guruswami–Sandeep [13] is that for any
promise template (P,Q) with AT ⊆ Pol(P,Q), PCSP(P,Q) is robust with g(ϵ) = O( log log(1/ϵ)

log(1/ϵ) ). Interestingly, for
CSPs, similar asymptotics appear with the OR and AND families6 of polymorphisms, and these are known to be
tight [35,52]. We show that AT exhibits a similar behavior by proving UGC hardness.

Theorem 1.1 (AT hardness, informal). Assuming UGC, fiPCSP(1-in-3-SAT,NAE-SAT) is not
(ϵ,Ω(1/ log(1/ϵ)))-robust.

Here fiPCSP refers to PCSPs that allow for variables to be negated and set as constants (see [13]). The
use of negations is necessary, as Brakensiek–Guruswami–Sandeep [13] observed that (1-in-3-SAT,NAE-SAT)

without negations is robust with polynomial loss. Theorem 1.1 is proved in the full version of this paper. Using
Raghavendra’s theorem [48], we prove Theorem 1.1 by constructing an explicit integrality gap—the same high-
level strategy as used by Guruswami–Zhou [35] for HORN-3-SAT, although the execution and analysis in our
setting are significantly more complex. We explain further details in Subsection 1.2.

Improved Analysis for Majority and Beyond. Our next result is a robust algorithm for PCSPs with Majority
polymorphisms with an improved loss function.

Theorem 1.2 (MAJ robustness, informal). For any promise template (P,Q) with MAJ ⊆ Pol(P,Q),
PCSP(P,Q) is (ϵ, O(ϵ1/2))-robust.

This result is proved in the full version. We note that the algorithm used in Theorem 1.2 is identical to the
one used in [13]. The main improvement in the analysis comes from a more refined analysis of multivariate normal
distributions. See Subsection 1.2 for further details.

Note that Theorem 1.2 only applies to Boolean PCSPs. A commonly studied non-Boolean variant of
the Majority polymorphisms is the Plurality polymorphisms. Typical examples of (P)CSPs admitting such
polymorphisms are unique games [39] as well as the so-called SetSAT problem—a non-Boolean generalization
of (2 + ϵ)-SAT [1] introduced in [15].

Theorem 1.3 (PLUR robustness, informal). For any promise template (P,Q) with PLUR ⊆ Pol(P,Q),
PCSP(P,Q) is (ϵ, O(ϵ1/2 log(1/ϵ)))-robust.

This result is proved in the full version. We note that Theorem 1.3 is merely a special case of our main
result in the full version, which applies to any separable PCSP. We describe this broader family more precisely in
Subsection 1.2.

Robust Gadget Reductions (adding EQUALITY). In virtually all classifications of (variants of) CSPs, an
essential tool is gadget reductions between CSP templates. For example, in the CSP dichotomy, the hardness
side of the CSP is done using gadget reductions from 3-SAT [21]. Robust (P)CSPs are no exception, and gadget
reductions are frequently used to study the relationship between templates [13,30]. However, there is a significant
distinction between the ordinary CSP dichotomy [19, 51] and the one for robust (P)CSPs [7]: the allowance of
equality constraints, which we denote by EQ. For exact satisfiability of (P)CSPs, if we specify that some variables
are to be equal, we can efficiently compute the connected components of the equality relation and distill the
problem down to a smaller number of variables (and without any equality constraints). However, for robust
(P)CSPs, equality is a rather subtle concept. If only 1 − ϵ constraints are satisfied in the optimal assignment,

6For any L ∈ N, ORL(x1, . . . , xL) = 1 if xi = 1 for some i ∈ [L] and ANDL(x1, . . . , xL) = 1 if xi = 1 for all i ∈ [L].
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we do not know whether each equality constraint should be trusted or ignored. That said, it still seems quite
reasonable to assume that adding equality constraints should only mildly change the robustness of the resulting
PCSP.

Question 1.4 (Barto–Kozik [7]). Let Γ be a CSP template, i.e., a set of relations. Assume that CSP(Γ) is
(ϵ, f(ϵ))-robust. Is CSP(Γ ∪ {EQ}) then (ϵ, O(f(ϵ)))-robust?

Despite Barto–Kozik [7] giving a complete classification of all robust CSPs,7 they do not answer Question 1.4
except in the very weak sense that CSP(Γ ∪ {EQ}) is (ϵ, O(log log(1/ϵ)/ log(1/ϵ)))-robust, independent of f . In
this paper, we establish Question 1.4 is nearly true for both CSPs and PCSPs:

Theorem 1.5 (Robustness of Equality, informal). Assume UGC. For any promise template Γ, if PCSP(Γ)
is (ϵ, f(ϵ))-robust, then PCSP(Γ ∪ {EQ}) is (ϵ, O(f(ϵ1/6)))-robust.

As an immediate corollary, we can now use the most general gadget reductions available for studying (P)CSPs
to study robust (P)CSPs, modulo a polynomial loss in robustness.

Theorem 1.6 (Gadget Reductions, informal). Assume UGC. Let Γ and Γ′ be promise templates such that
there is a gadget reduction8 from PCSP(Γ′) to PCSP(Γ). If PCSP(Γ) is (ϵ, f(ϵ))-robust, then PCSP(Γ′) is
(ϵ, O(f(ϵ1/6)))-robust.

These results are proved in the full version. In the technical overview (Subsection 1.2), we describe the
techniques we use to establish our results, including an adaptation of the algorithm of Brown-Cohen and
Raghavendra [18] for approximate (P)CSPs.

1.2 Technical Overview

Hardness for Alternating Threshold. Our integrality gap instance for 1-in-3-SAT vs NAE-SAT has a similar
high-level idea to the following LP integrality gap instance for Horn-SAT [35]:

1. We have variables {xj1, xj2 : j ∈ [k]} where k = ⌈1/ log2(ϵ)⌉+ 1.

2. We have the unary constraints x11, x12, and ¬xk1 where 1 is True and −1 is False.

3. For all j ∈ [k − 1], we have the constraints ¬xj1 ∨ ¬xj2 ∨ x(j+1)1 and ¬xj1 ∨ ¬xj2 ∨ x(j+1)2.

Clearly this instance is unsatisfiable, as we insist that x11, x12 are True, and then xk1, xk2 should also be True
due to the chain of implication constraints, but we insist that xk1 is False. As there are only O(k) = O(log(1/ϵ))

constraints, the integral value of this instance is at most 1− Ω(1/ log(1/ϵ)).
On the other hand, the following LP solution gives value at least 1− ϵ to all of the constraints:

1. For each j ∈ [k], we give xj1 and xj2 bias 1− 2j+1−k.

2. For the constraint x11, we can set x11 = 1 with probability 1− 21−k and −1 with probability 21−k and we
will have that E[x11] = 1− 21−k − 21−k = 1− 22−k. Thus, the LP gives a value of 1− 21−k ≥ 1− ϵ for this
constraint. By symmetry, the LP also gives a value of 1− 21−k ≥ 1− ϵ for the constraint x12.

3. For each j ∈ [k − 1], for the constraint ¬xj1 ∨ ¬xj2 ∨ x(j+1)1, we can take the distribution where

a. With probability 1− 2j+1−k, we set xj1 = xj2 = x(j+1)1 = 1.
b. With probability 2j−k, we set xj1 = 1, xj2 = −1, and x(j+1)1 = 1.
c. With probability 2j−k, we set xj1 = −1, xj2 = 1, and x(j+1)1 = 1.

7We observe that Barto–Kozik were able to establish this classification by using gadget reductions that do not allow equality.
Using Theorem 1.6, one could (in theory) simplify parts of Barto–Kozik’s proof, although the proof of Theorem 1.6 is much more
complicated than the workarounds needed by Barto–Kozik.

8More precisely, there is a minion homomorphism from Pol(Γ) to Pol(Γ′).
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With this distribution, E[xj1] = E[xj2] = (1 − 2j−k) − 2j−k = 1 − 2j+1−k and E[x(j+1)1] = (1 − 2j+1−k) −
2j+1−k = 1 − 2j+2−k. Thus, the LP gives this constraint a value of 1. By symmetry, the LP also gives a
value of 1 to the constraint ¬xj1 ∨ ¬xj2 ∨ x(j+1)2.

4. The bias for xk1 is 1− 2 = −1 so xk1 is always set to −1 which satisfies the constraint ¬xk1.

One way to think about this integrality gap instance is as follows. In order to avoid violating a constraint, the
following must hold.

1. Variables with bias 1− 2j+1−k must be rounded to 1.

2. For all j ∈ [k − 1], if the variables with bias 1 − 2j+1−k are rounded to 1 then the variables with bias
1− 2j+2−k are rounded to 1.

3. Variables with bias −1 must be rounded to −1.

Since we can obtain a contradiction in O(log(1/ϵ)) steps, at least Ω(1/ log(1/ϵ)) of the constraints must be violated.
We will use a similar idea for our integrality gap instance. We will construct our instance so that while the

SDP value is at least 1− ϵ, if we want to avoid violating a significant number of constraints,

1. Almost all of the variables with bias 1 − 2−k must be set to 1 and almost all of the variables with bias
2−k − 1 must be set to −1.

2. For all j ∈ [k], if almost all of the variables with bias 1 − 2−j are set to 1 then almost all of the variables
with bias 21−j − 1 are set to −1. Similarly, for all j ∈ [k], if almost all of the variables with bias 2−j − 1 are
set to −1 then almost all of the variables with bias 1− 21−j are set to 1.

We then observe that these conditions imply that almost all of the variables with bias 0 are set to 1 and almost all
of the variables with bias 0 are set to −1, which is impossible. Since we can obtain a contradiction in O(log(1/ϵ))

steps, at least Ω(1/ log(1/ϵ)) of the constraints must be violated.
In order to have 1-in-3-SAT constraints, it turns out that we need general vectors of the form {xv0 +√

1− x2w} where w is orthogonal to v0. A natural choice for this is to use all w ∈ Sd−1 for some large d which
depends on ϵ. While this gives an integrality gap instance, it has infinite size and is not that easy to analyze since
it involves functions on the sphere rather than functions with multivariate Gaussian inputs. Thus, we modify this
integrality gap instance as follows:

1. Instead of using vectors w ∈ Sd−1, we will use vectors w ∼ N (0, 1/d)d.

2. For all but a negligible portion of the constraints, our vectors w ∼ N (0, 1/d)d are very close to unit vectors
so we can discard the negligible number of constraints where the vectors are badly behaved.

3. We discretize our instance by splitting our space into regions and mapping all vectors in each region to a
representative vector in that region.

Through a careful analysis, we show that for this modified instance, Ω(1/ log(1/ϵ)) fraction of the constraints
must be violated and even after these modifications, the SDP value for our instance is at least 1− ϵ.

Improved Analysis for Majority. We now switch to designing robust algorithms for families of PCSPs. To
begin, we discuss the algorithm used by Brakensiek, Guruswami, Sandeep [13] for promise templates with Majority
polymorphisms. This algorithm was inspired by the algorithm used by Charikar, Makarychev, Makarychev [23]
for robust MAX 2-SAT.

For convenience, we relabel the Boolean domain as {−1,+1}. Fix a template (P,Q) with MAJ ⊆ Pol(P,Q).
Consider an instance of PCSP(P,Q) on variables x1, . . . , xn and clauses C1, . . . , Cm. The algorithm begins by
solving the Basic SDP for this instance by finding unit vectors v0,v1, . . . ,vn ∈ Rn+1 (with v0 representing the
“truth” vector) such that the average value of the vector assignment to the clauses is 1 − ϵ, where ϵ > 0 is the
specified robustness parameter. Next, we sample a random multivariate normal vector r ∈ N (0n+1, In+1). Then,
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for all i ∈ [n], we round xi to +1 if ⟨vi,v0 + r · ϵ2/3⟩ ≥ 0 and −1 otherwise. Here, we improve ϵ2/3 to
√
ϵ via a

new analysis.
We briefly explain the key ideas in Brakensiek, Guruswami, Sandeep [13] in the analysis of this algorithm.

Using a reduction in their paper, we may also assume without loss of generality that Q = {−1,+1}k \ {(−1)k}.
In other words, assume that the majority vote of any list of assignments to P is never all −1’s. For simplicity,
fix a clause Ci on variables x1, . . . , xk such that the SDP vectors v0,v1, . . . ,vk give a value of 1 − ϵ. It may
be the case that for all i ∈ [n], ⟨vi,v0⟩ ≈ −Θ(ϵ), so purely rounding ⟨vi,v0⟩ will fail to satisfy any of the
clauses. A key observation by BGS is that as long as the vectors have completeness 1 − ϵ, there exists a
probability distribution (w1, . . . , wk) such that

∑k
i=1 wi⟨vi,v0⟩ ≥ −ϵ. Let u :=

∑k
i=1 wivi. By concentration,

we can assume with probability 1 − ϵO(1) that |⟨u, r⟩| = O(log(1/ϵ)). As a key observation, note that since
⟨u,v0 + r · ϵ2/3⟩ =

∑k
i=1 wi⟨vi,v0 + r · ϵ2/3⟩, if all k variables round to −1, then ⟨u,v0 + r · ϵ2/3⟩ is negative.

However, ⟨u,v0⟩ ≥ −ϵ and the standard deviation of ⟨u, r · ϵ2/3⟩ is at most ϵ1/3. Thus, if ⟨u,v0 + r · ϵ2/3⟩ is
negative, it is barely negative. Hence, this tightly constrains the value of each ⟨vi,v0 + r · ϵ2/3⟩, which is unlikely
due to anti-concentration of the normal distribution.

With a more careful analysis of these rounding probabilities, we can change the rounding threshold to
⟨vi,v0 + r ·

√
ϵ⟩ and get a 1 − O(

√
ϵ) success probability (soundness). The key idea is, instead of directly

comparing each ⟨u, r⟩ to the individual distributions ⟨vi, r⟩, we use a more careful decomposition of the vectors.
In particular, define v=

i to be the component of vi parallel to u and let v⊥
i be the component of vi perpendicular

to u. Since v=
i and u are related by a scalar, ⟨v=

i , r⟩ and ⟨u, r⟩ are also related by a scalar. However, ⟨v⊥
i , r⟩ is

independent of ⟨u, r⟩. Using this observation, we can split our argument into three high-level cases.
First, if ∥u∥22 = Ω(ϵ log(1/ϵ)), then ⟨u,v0⟩ will dominate ⟨u, r

√
ϵ⟩, so the chances that ⟨u,v0 + r

√
ϵ⟩ ≤ 0 are

quite small.
Second, if a perpendicular component is large, that is ∥wiv

⊥
i ∥2 = Ω(1) for some i ∈ [k], then even if we

condition on ⟨u, r⟩, the value of ⟨wivi,v0 +
√
ϵr⟩ still has considerable variance. In particular, most likely

⟨wivi,v0 +
√
ϵr⟩ will either be (1) too positive, in which case i is rounded correctly, or (2) too negative, in which

case the average of
∑

j ̸=i wj⟨vj ,v0 +
√
ϵr⟩ is positive, so some other j is rounded correctly.

These two cases themselves are enough to get a
√
ϵ log(1/ϵ) loss. To shave the log, in the third and final case,

we finely partition the space of potential “bad” outcomes and show that these in total contribute at most O(
√
ϵ)

loss to the rounding. This is the most technical part of the argument.

New algorithms for Plurality and Separable Families. We extend these rounding techniques for Majority to
non-Boolean domains and more general rounding functions. To do this, we abstract out the essential feature
of the analysis of Majority: the existence of a hyperplane separation between the strong form of the constraint
P and SDP-configurations whose rounding lies outside of the weak form Q. We define templates (P,Q) with a
generalization of this property that we call separable families. The precise description is given in the full version
but, at a high level, here is the idea. In the Boolean Majority case, our analysis relies upon a linear function
separating ⟨vi,v0⟩ from an absent tuple of Q, which in turn can be expressed via the inner product with a weight
vector w. In non-Boolean domains D, we have a separate vector vi,d for each variable xi and each domain element
d ∈ D. Hence, we encode both P and the SDP-configurations whose rounding lies outside of Q as two convex
bodies living in the matrix space Rk×D, where k is the arity of the constraint. The first is the convex hull of
the one-hot encodings Πp of tuples in p ∈ P (where the (i, d)-th entry equals 1 if pi = d and 0 otherwise).
The second is the preimage under the given rounding function ρ of “bad” tuples—those lying outside of Q. If
the polymorphisms of (P,Q) are rich enough, one can show that these two convex sets are disjoint—in which
case, they must admit a hyperplane separation. The latter is naturally expressed via a linear functional over
Rk×D determined by the Frobenius inner product times a suitable weight matrix W—the non-Boolean analogue
of the weight vector w. If, for some rounding function ρ, the template (P,Q) admits such a separation, we call it
ρ-separable.9 Provided that ρ satisfies an extra conservativity condition (roughly speaking, the winning element
of a given distribution must have weight bounded away from zero), we are able to use the hyperplane separation
property to show that (P,Q) is robustly solved by SDP with loss O(

√
ϵ log(1/ϵ)), by generalising part of the

9Such predicates have some resemblance to the “regional polymorphisms” defined by Brakensiek–Guruswami [9].
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analysis performed in the Boolean Majority case. Note that the loss we achieve in this setting is slightly worse
than the one for Majority, by a log(1/ϵ) factor (although, even for Majority, better than the loss achieved in [13]).
This is due to the fact that the trick of splitting the SDP vectors into parallel and orthogonal components does
not carry over in the non-Boolean domain.

A notable example of a separable family is the Unique Games problem. Unique Games has been known to have
a robust algorithm for a long time due to the algorithm of Charikar, Makarychev, and Makarychev [22] (although
this algorithm is rather different from the one used by the same authors for 2-SAT). The fact that their 2-SAT
algorithm can be extended to Unique Games may be of independent interest. The underlying polymorphism
driving this is Plurality, which takes the most commonly occurring element in a list of domain elements, even
if its frequency is much less than 1/2. More interestingly, our polymorphism-based result captures all PCSPs
admitting Plurality—in particular, the family of so-called SetSAT PCSPs identified in [15] as a natural non-
Boolean generalization of (2 + ϵ)-SAT [1]. Unlike Unique Games, these problems were previously not known to
be robustly solvable with any loss.

Robust Gadget Reductions (Adding Equality). We now discuss the proofs of Theorem 1.5 and Theorem 1.6.
Assuming Theorem 1.5, Theorem 1.6 is straightforward to establish by combining existing gadget reductions for
robust (P)CSPs [7,13,30] with state-of-the-art gadget reductions for (P)CSPs [5]. The precise details are worked
out in the full version.

As such, we focus on sketching the proof of Theorem 1.5. We crucially build off the algorithm of Brown-
Cohen and Raghavendra [18] (“BCR algorithm”) for solving approximate MAX (P)CSPs.10 For the purposes of
this high-level overview, we assume that the our promise template is a single pair of Boolean relations (P,Q) with
P ⊆ Q ⊆ {−1, 1}k.

We first describe the essential features of the BCR algorithm. For an instance of PCSP(P,Q) on variable
set x1, . . . , xn and clauses C1, . . . , Cm, we can think of an SDP solution as a collection of unit vectors
v0,v1, . . . ,vn ∈ Rn+1. After finding an SDP solution with near-optimal value, the BCR algorithm proceeds
by sampling two random objects: (i) a list of random vectors r1, . . . , rD ∈ Rn+1 sampled from a multivariate
normal distribution, and (ii) a rounding function11 H : RD → [−1, 1]. For each i ∈ [n], we then define a fractional
assignment zi ∈ [−1, 1] via

zi := H(v0 · v1 + v⊥
i · r1, . . . ,vi · v0 + v⊥

i · rD),

where we set v⊥
i = vi − (v0 · vi)v0. We then get an integral solution to the PCSP by independently rounding xi

to +1 with probability 1+zi
2 and −1 otherwise.

Let R be the probability distribution over the choices of (r1, . . . , rD) and H. We can thus think of the BCR
rounding scheme as a map BCR : Rn+1 × R → [−1, 1] for which global shared randomness R ∈ R is picked at
the start of the algorithm, and then for each i ∈ [n], we set zi := BCR(vi, R). The assumed robustness of the
algorithm then translates into the following guarantee.

Key Property. For every SDP solution v0,v1, . . . ,vn with value at least 1 − ϵ, the rounded assignment
BCR(v1, R), . . . , BCR(vn, R) will satisfy 1−f(ϵ) of the constraints of our instance in expectation over the choice
of R ∈ R.

As is, the existing scheme may not be robust for PCSP(EQ) for the following reason: given two vectors vi

and vj that are δ apart in Euclidean distance, the corresponding BCR(vi, R) and BCR(vj , R) might be very
different for a typical R ∼ R.12 In order to make the BCR rounding scheme also robust for equality, we exploit
the Key Property in the following way. Consider a map Mδ : Rn+1 → Rn+1 (not necessarily linear) such that, for

10Technically, Raghavendra’s theorem and the result of Brown-Cohen–Raghavendra are only stated for CSPs, but as noted by
Brakensiek, Guruswami, Sandeep [13], their arguments extend to PCSPs with minimal modification.

11The choice of rounding function is based on the existence of certain approximate polymorphisms, see the full version for a precise
definition.

12In general H is very slightly smooth, so one can directly combine the BCR algorithm with a correlated rounding trick to get
a robust algorithm for equality. The “catch” is that soundness of the robust algorithm depends on the arity of the approximate
polymorphisms considered by BCR. However, no effective bound is given by BCR on the size of these approximate polymorphisms,
resulting in guarantees much worse than Theorem 1.5.
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every unit vector v, the distance between v and Mδ(v) is at most δ. We can then consider the following scheme:
Sδ(v, R) := BCR(Mδ(v), R). A key observation is that Sδ is still a robust rounding scheme with slightly worse
parameters.

To see why, using Sδ to round a solution v1, . . . ,vn is effectively the same as using BCR to round
Mδ(v1), . . . ,Mδ(vn). Since each vi is close in Euclidean distance to Mδ(vi), for δ sufficiently small, the SDP
value of the solution13 Mδ(v1), . . . ,Mδ(vn) is still approximately 1−ϵ, and as such we still satisfy roughly 1−f(ϵ)

constraints on average.
More generally, Mδ : Rn+1 → Rn+1 does not need to be deterministic, rather it can be any randomized map

such that the input vector can never be more than δ far from the output vector. We call such a randomized map
a δ-spread if for each unit vector v, if the probability distribution Mδ(v) is supported within the ball B(v, δ) and
the probability degrades smoothly with distance.

For a given δ-spread (a distribution of Mδ’s), the corresponding rounding scheme Sδ(v, R) :=

EMδ
[BCR(Mδ(v), R)] is called a δ-smoothing of BCR. By the aforementioned logic, any δ-smoothing of BCR

is still approximately (ϵ, f(ϵ))-robust. In particular, we now have a large collection of rounding schemes that are
all robust for PCSP(P,Q).

Our next step is to pick one of these δ-smoothings that is also robust for equality. For each unit vector
v ∈ Rn+1, we look at the following L2 norm:

∥Sδ(v)∥2 :=
√

ER∼R[Sδ(v, R)2].

Recall that the range of Sδ is [−1, 1], so Sδ(v, R)2 roughly measures the certainty the rounding scheme has for
this value. Rather unintuitively, we select the δ-smoothing of BCR such that ∥Sδ(v)∥2 is minimized for all unit
vectors v ∈ Rn+1. We call this scheme REQδ, as we shall soon see it is Robust for EQuality. Roughly speaking,
REQδ is the δ-smoothing of BCR with maximal entropy.

The key lemma we seek to show is that there are (small) constants c1, c2 ≥ 1 such that if two vectors v and
w are within distance δc1 of each other, then

√
ER∼R[(REQδ(v, R)− REQδ(w, R)2] ≤ δc2 . The proof of this

lemma uses the fact that the possible δ-smoothings around v are quite similar to the δ-smoothings around w. If
we think of these spaces of δ-smoothings as convex bodies, the L2 minimizer of one of these convex bodies must
then be in close proximity to the L2 minimizer of the other convex body. This is enough to prove the key lemma.

However, REQδ by itself is not a robust rounding scheme for (P,Q) with equality. The reason why is that so
far we have only established that if vi and vj are close, then on average over the choice of R ∈ R, the outputs
zi = REQδ(v, R) and zj = REQδ(w, R) are close. However, remember that the zi’s are rounded into an integral
assignment with independent coin flips for each i ∈ [n]. In particular, if zi = zj = 0, then the equality constraint
is satisfied only 1/2 of the time.

To correct this issue, as our final step we modify the independent rounding into correlated rounding. In the
Boolean setting, this involves picking a random global threshold t ∈ [−1/2, 1/2] and rounding each xi to 1 if
zi > t and −1 otherwise. Now, if zi ≈ zj , the corresponding equality constraint will almost always be satisfied.
The tradeoff is that the robustness f(ϵ) for PCSP(P,Q) gets worse by a constant factor. See the full version for
precise details.

Altogether, our rounding scheme is REQδ for δ = ϵO(1) with correlated rounding. Due to various polynomial
losses in the course of the proof, the new scheme is (approximately) (ϵ, f(ϵ1/6))-robust.

Acknowledgments. The authors are grateful to the American Institute of Mathematics (AIM) SQuaREs
program that funded and allowed for this collaboration. The authors also thank Marcin Kozik for many useful
discussions.
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