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While 3-SAT is NP-hard, 2-SAT is solvable in polynomial time. Austrin, Guruswami, and Håstad [SICOMP’17]

proved a result known as “(2 + 𝜀)-SAT is NP-hard”. They showed that the problem of distinguishing 𝑘-CNF

formulas that are 𝑔-satisfiable (i.e. some assignment satisfies at least 𝑔 literals in every clause) from those

that are not even 1-satisfiable is NP-hard if
𝑔

𝑘
< 1

2
and is in P otherwise. We study a generalisation of SAT

on arbitrary finite domains, with clauses that are disjunctions of unary constraints, and establish analogous

behaviour. Thus we give a dichotomy for a natural fragment of promise constraint satisfaction problems

(PCSPs) on arbitrary finite domains.

The hardness side is proved using the algebraic approach via a new general NP-hardness criterion on

polymorphisms, which is based on a gap version of the Layered Label Cover problem. We show that previously

used criteria are insufficient – the problem hence gives an interesting benchmark of algebraic techniques for

proving hardness of approximation in problems such as PCSPs.
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1 INTRODUCTION
It is a classic result that while 3-SAT is NP-hard [15, 26], 2-SAT can be solved in polynomial-

time [25]. Austrin, Guruswami, and Håstad [5] considered the promise problem (1, 𝑔, 𝑘)-SAT (for

integers 1 ≤ 𝑔 ≤ 𝑘): given a 𝑘-CNF formula with the promise that there is an assignment that

satisfies at least 𝑔 literals in each clause, find an assignment that satisfies at least one literal in each

clause. They showed that the problem is NP-hard if
𝑔

𝑘
< 1

2
and in P otherwise. Viewing 𝑘-SAT as

(1, 1, 𝑘)-SAT, this shows that, in a natural sense, the transition from tractability to hardness occurs

just after 2 and not just before 3.

The set-satisfiability (SetSAT) problem generalises the Boolean satisfiability problem to larger

domains and we prove that it exhibits an analogous hardness transition. As in (𝑎,𝑔, 𝑘)-SAT, for
integer constants 1 ≤ 𝑎 ≤ 𝑔 ≤ 𝑘 and 1 ≤ 𝑠 < 𝑑 , an instance of the (𝑎,𝑔, 𝑘)-SetSAT problem is a

conjunction of clauses, where each clause is a disjunction of 𝑘 literals. However, variables 𝑥1, . . . , 𝑥𝑛
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can take values in a larger domain [𝑑] = {1, . . . , 𝑑}, while literals take the form “𝑥𝑖 ∈ 𝑆”, where 𝑆 is

any subset of the domain [𝑑] of size 𝑠 . As in the Boolean case, an assignment 𝜎 : {𝑥1, . . . , 𝑥𝑛} → [𝑑]
is 𝑔-satisfying if it satisfies at least 𝑔 literals in every clause. In (𝑎,𝑔, 𝑘)-SetSAT with set size 𝑠

and domain size 𝑑 , given an instance promised to be 𝑔-satisfiable, we are to find an 𝑎-satisfying

assignment. When 𝑠 = 1 and 𝑑 = 2 we recover Boolean promise SAT, whereas when 𝑎 = 𝑔 = 1 we

recover the non-promise version of SetSAT.

The most natural case of SetSAT is when we allow all nontrivial unary constraints (sets) as

literals, i.e., the case 𝑠 = 𝑑 − 1. (While we defined sets specifying literals to have size exactly 𝑠 , one

can simulate sets of size at most 𝑠 by replacing them with all possible supersets of size 𝑠; see the

proof of Proposition 6.3.) More generally one could consider the problem restricted to any family

of literals. Our work deals with the “folded” case: if a set 𝑆 is available as a literal, then for all

permutations of the domain 𝜋 , 𝜋 (𝑆) is also available as a literal. In this case only the cardinality of

𝑆 matters, and in fact only the maximum available cardinality matters, so all such problems are

equivalent to (𝑎,𝑔, 𝑘)-SetSAT, for some constants 𝑎,𝑔, 𝑘, 𝑠, 𝑑 .

1.1 Related work
Our main motivation to study SetSAT as a promise problem is the fact that it constitutes a natural

fragment of so-called promise constraint satisfaction problems (PCSPs), which are problems defined

by homomorphisms between relational structures (see Section 2 for more details). PCSPs were

studied as early as in the classic work of Garey and Johnson [19] on approximate graph colouring,

but a systematic study originated in the paper of Austrin et al. [5]. In a series of papers [8–10],

Brakensiek and Guruswami linked PCSPs to the universal-algebraic methods developed for the

study of non-uniform CSPs [7]. In particular, the notion of (weak) polymorphisms, formulated

in [5], allowed some ideas developed for CSPs to be used in the context of PCSPs. The algebraic

theory of PCSPs was then lifted to an abstract level by Barto, Bulín, Krokhin, and Opršal in [6, 13].

Consequently, this theory was used by Ficak, Kozik, Olšák, and Stankiewicz to obtain a dichotomy

for symmetric Boolean PCSPs [18], thus improving on an earlier result from [9], which gave a

dichotomy for symmetric Boolean PCSPs with folding. Further recent results on PCSPs include

the work of Krokhin and Opršal [24], Brakensiek and Guruswami [11], and Austrin, Bhangale, and

Potukuchi [4].

Variants of the Boolean satisfiability problem over larger domains have been defined using CNFs

by Gil, Hermann, Salzer, and Zanuttini [20] and DNFs by Chen and Grohe [14] but, as far as we are

aware, have not been studied as promise problems before.

1.2 Results
We completely resolve the complexity of (𝑎,𝑔, 𝑘)-SetSAT.

Theorem 1.1. Let 1 ≤ 𝑠 < 𝑑 and 1 ≤ 𝑔 ≤ 𝑘 . The problem (𝑎,𝑔, 𝑘)-SetSAT with set size 𝑠 and
domain size 𝑑 is solvable in polynomial time if 𝑔−𝑎+1

𝑘−𝑎+1 ≥
𝑠

𝑠+1 and is NP-complete otherwise.

Theorem 1.1 easily follows, as described in Section 6, from our main result, in which we show

that the complexity of (1, 𝑔, 𝑘)-SetSAT depends only on the ratio
𝑔

𝑘
.

Theorem 1.2. (1, 𝑔, 𝑘)-SetSAT with set size 𝑠 and domain size 𝑠 + 1 is solvable in polynomial time
if 𝑔

𝑘
≥ 𝑠

𝑠+1 and is NP-complete otherwise.

Theorem 1.2 generalises the case of (1, 𝑔, 𝑘)-SAT studied in [5], where 𝑠 = 1 and the hardness

threshold is
1

2
.
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The positive side of Theorem 1.2 is proved in Section 3 by a simple randomised algorithm based

on classical work of Papadimitriou [27], just as in the Boolean case [5]. We also establish the

(non-)applicability of certain convex relaxations for SetSAT.

The main difficulty is in proving NP-hardness when the ratio
𝑔

𝑘
is close to, but below

𝑠
𝑠+1 . In

Appendix A, we show that for certain (but not all) choices of the parameters NP-hardness can be

derived easily by simple gadget constructions and via a result of Guruswami and Lee on hypergraph

colourings [21].

Following [5] and the more abstract algebraic framework of [6], the hardness proof relies

on understanding polymorphisms, i.e., high-arity functions 𝑓 : [𝑑]𝑛 → [𝑑] which describe the

symmetries of our computational problem. In the Boolean case, the proof of [5] relies on showing

that every polymorphism depends on only a few variables (in other words, is a junta), and that this

condition suffices for a reduction from the Gap Label Cover problem. In our case, this condition does

not hold, and neither do the various generalisations of it used in later work on PCSPs [6, 18, 24]. In

fact, we show in Section 7 that SetSAT has significantly richer, more robust polymorphisms, which

makes the application of many such conditions impossible. Our main technical contribution is a

new condition that guarantees an NP-hardness reduction from a multilayered variant of the Gap

Label Cover problem.

As in previous work, the combinatorial core of our NP-hardness results for SetSAT relies on

identifying, in every polymorphism 𝑓 : [𝑑]𝑛 → [𝑑], a small set of distinguished coordinates. The

rough idea is that a polymorphism encodes a 1-in-𝑛 choice analogously to the long code, and the

reduction relies on being able to decode 𝑓 with small ambiguity.

The set of distinguished coordinates could be, in the simplest case, those on which 𝑓 depends

(called essential coordinates) and, as shown in [5], a small set of essential coordinates is sufficient for

hardness of (1, 𝑔, 𝑘)-SAT if
𝑔

𝑘
< 1

2
. More generally, the distinguished set 𝑆 could be such that some

partial assignment to 𝑆 makes 𝑓 constant (as a function of its remaining coordinates), or restricts

the range of 𝑓 (called fixing [5, 18] and avoiding [6] sets, respectively). As shown in Section 7, the

polymorphisms of SetSAT on non-Boolean domains do not have small sets of coordinates that are

essential, fixing, or avoiding. Instead, in this paper we introduce the notion of a smug set of 𝑓 . We

say that a set 𝑆 ⊆ [𝑛] is smug if for some input (𝑎1, . . . , 𝑎𝑛) to 𝑓 , the coordinates 𝑖 whose values 𝑎𝑖
agree with the output 𝑓 (𝑎1, . . . , 𝑎𝑛) are exactly those in 𝑆 . We show that every polymorphism of

SetSAT has a smug set of constant size (independent of 𝑛) and cannot have many disjoint smug

sets.

In previous work, it was crucial that essential coordinates respect minors. We say that (an

𝑚-ary function) 𝑔 is a minor of (an 𝑛-ary function) 𝑓 if 𝑔(𝑥1, . . . , 𝑥𝑚) ≈ 𝑓 (𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑛) ) for
some 𝜋 : [𝑛] → [𝑚] (that is, 𝑔 is obtained from 𝑓 by identifying or permuting coordinates of 𝑓 ,

or introducing inessential coordinates). In that case, if 𝑆 contains all essential coordinates of 𝑓 ,

then 𝜋 (𝑆) contains all essential coordinates of 𝑔. This does not hold for smug sets; instead, if 𝑆 is a

smug set of 𝑔, then its pre-image 𝜋−1 (𝑆) is a smug set of 𝑓 . The pre-image may however be much

larger. Still, these properties of smug sets are enough to guarantee that, in any sufficiently long

chain of minors, if one chooses a random coordinate in a small smug set from each function in

the chain, then for some two functions in the chain the choices will agree, respecting the minor

relation between them with constant probability. We show that this condition is sufficient to obtain

NP-hardness from a Gap Layered Label Cover problem. See Section 4 for details.

We note that several other properties of Label Cover variants were used before in the context of

polymorphisms. Guruswami and Sandeep [22] use “smoothness” of NP-hard Label Cover instances

(introduced by Khot [23]) so that a minor relation 𝜋 needs to be respected only if it is injective on a

small set 𝑆 . This allows them to use sets 𝑆 which are weakly fixing, i.e. the partial assignment to

𝑆 which makes 𝑓 constant does not necessarily have to assign the same value to all coordinates
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in 𝑆 . Layered Label Cover was introduced by Dinur, Guruswami, Khot, and Regev [16] to tighten

the approximation hardness for hypergraph vertex cover. In the proof of hardness of hypergraph

colouring by Dinur, Regev, and Smyth [17], as reinterpreted in [6], Layered Label Cover is used to

partition polymorphisms into an arbitrary constant number 𝐿 of parts, so that only minors within

one part need to be respected. This implies that in any chain of minors with 𝐿 + 1 functions, some

two functions will be in the same part and hence the minor between them will be respected; our

approach is hence similar, though apparently more general, in this aspect. Another feature used

in [6, 17] is that the bound on the size of a set of special coordinates or on the number of disjoint

such sets may be any subpolynomial function in 𝑛, not necessarily a constant. These different

features of NP-hard Label Cover instances can be combined; however, this is not necessary for our

result.

2 PRELIMINARIES
Let [𝑛] = {1, 2, . . . , 𝑛}. For a set 𝐴, we call 𝑅 ⊆ 𝐴𝑘

a relation of arity ar(𝑅) = 𝑘 and 𝑓 : 𝐴𝑘 → 𝐵 a

function of arity ar(𝑓 ) = 𝑘 .
We take the domain of the variables in SetSAT to be [𝑑] and for a fixed 𝑠 < 𝑑 we identify

each literal with the indicator function of some 𝑆 ⊆ [𝑑], |𝑆 | = 𝑠: 𝑆 (𝑥) = 1[𝑥 ∈ 𝑆]. For a SetSAT
instance (or formula) with 𝑛 variables 𝑥1, . . . , 𝑥𝑛 , an assignment to the variables is a function

𝜎 : {𝑥1, . . . , 𝑥𝑛} → [𝑑]. An assignment 𝜎 is called a 𝑔-satisfying assignment for an instance Ψ if 𝜎

satisfies at least 𝑔 literals in every clause of Ψ. A 1-satisfying assignment is usually simply called a

satisfying assignment. A formula is called 𝑔-satisfiable if there exists a 𝑔-satisfying assignment to

its variables, and satisfiable if there exists a 1-satisfying assignment.

The SAT problem corresponds to the SetSAT problem with 𝑑 = 2 and 𝑠 = 1, so SetSAT does

indeed generalise SAT. Note that every SetSAT instance is trivially unsatisfiable when 𝑠 = 0 and

satisfiable when 𝑠 = 𝑑 , so we exclude these cases in our analysis. We now give the formal definition

of (𝑎,𝑔, 𝑘)-SetSAT.

Definition 2.1. Let 1 ≤ 𝑠 < 𝑑 and 1 ≤ 𝑎 ≤ 𝑔 ≤ 𝑘 . The (𝑎,𝑔, 𝑘)-SetSAT problem is the following

promise problem. In the decision version, given a SetSAT instance where each clause has 𝑘 (not

necessarily distinct) literals, accept the instance if it is𝑔-satisfiable and reject it if it is not𝑎-satisfiable.

In the search version, given a 𝑔-satisfiable SetSAT instance, find an 𝑎-satisfying assignment.

We will prove hardness only for the decision version of (𝑎,𝑔, 𝑘)-SetSAT and tractability only for

the search version. This suffices since the decision version of (𝑎,𝑔, 𝑘)-SetSAT is polynomial-time

reducible to the corresponding search problem. This is discussed in the context of PCSPs in [6, 13].

For completeness, we give the reduction. Suppose we are given a SetSAT formula Ψ. We run the

search algorithm on Ψ, and check that the output of the algorithm does indeed 𝑎-satisfy Ψ. If it
does, accept Ψ; otherwise, reject it. Since in the decision problem we are guaranteed that the input

is either 𝑔-satisfiable or not even 𝑎-satisfiable, the algorithm is correct in both cases. Therefore,

the algorithmic result in Proposition 3.1, which solves the search version, applies to the decision

version as well, while our hardness results, which consider the decision version, apply to the search

version as well.

Promise CSPs. We describe how the SetSAT problem fits into the general framework of promise

CSPs (PCSPs). For a more in-depth algebraic study of PCSPs, we refer the reader to [6].

A relational structure A is a tuple (𝐴;𝑅1, . . . , 𝑅𝑚) where each 𝑅𝑖 is a relation on𝐴. We say that two

relational structures are similar if their relations have the same sequence of arities. A homomorphism
between similar relational structures A = (𝐴;𝑅A

1
, . . . , , 𝑅A𝑚) and B = (𝐵;𝑅B

1
, . . . , 𝑅B𝑚) is a function
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ℎ : 𝐴→ 𝐵 such that (𝑎1, . . . , 𝑎ar(𝑅A
𝑖
) ) ∈ 𝑅A𝑖 implies (ℎ(𝑎1), . . . , ℎ(𝑎ar(𝑅A

𝑖
) )) ∈ 𝑅B𝑖 for all 𝑖 . We denote

this by A→ B.

Definition 2.2. Let (A,B) be a pair of similar relational structures such that there is a homomor-

phism A→ B. The pair (A,B) is called the template of the promise constraint satisfaction problem
PCSP(A,B). The decision version of PCSP(A,B) is as follows: given as input a relational structure

C similar to A and B, decide whether C admits a homomorphism to A, or does not even admit a

homomorphism to B. The promise is that it is never the case that C→ B but C ̸→ A. The search
problem asks to find a homomorphism C→ B, given that there exists a homomorphism C→ A.

Since (𝑎,𝑔, 𝑘)-SetSAT is a PCSP where all relations have fixed arity 𝑘 , it is possible to transform

SetSAT instances from their CNF representation into the PCSP representation of Definition 2.2. For

domain size 𝑑 and set size 𝑠 , there are
(
𝑑
𝑠

)
different literals, and therefore 𝐿 :=

(
𝑑
𝑠

)𝑘
different types of

clauses. Suppose that 𝑓 enumerates the types of clauses. We can represent each SetSAT instance Ψ as

a relational structureC = (𝐶 ;𝑅C
1
, . . . , 𝑅C

𝐿
), where𝐶 = {𝑥1, . . . , 𝑥𝑛} is the set of variables appearing in

Ψ and 𝑅C𝑖 is a 𝑘-ary relation corresponding to the clause 𝑓 (𝑖). For each clause (𝑆1 (𝑥1) ∨ . . .∨𝑆𝑘 (𝑥𝑘 ))
of type 𝑓 (𝑖) in Ψ, we add the tuple (𝑥1, . . . , 𝑥𝑘 ) to 𝑅C𝑖 , so that each 𝑅C𝑖 collects the tuples of variables

appearing in clauses of type 𝑓 (𝑖).
Now define 𝑅A𝑖 (respectively 𝑅B𝑖 ) to be the 𝑘-ary relation over [𝑑] containing (𝑎1, . . . , 𝑎𝑘 ) if and

only if (𝑎1, . . . , 𝑎𝑘 ) 𝑔-satisfies (respectively 𝑎-satisfies) the clause 𝑓 (𝑖) when the variable of the 𝑗-th

literal of 𝑓 (𝑖) is set to 𝑎 𝑗 , for 1 ≤ 𝑗 ≤ 𝑘 . Let A = ( [𝑑], 𝑅A
1
, . . . , 𝑅A

𝐿
) and B = ( [𝑑], 𝑅B

1
, . . . , 𝑅B

𝐿
). Then

(𝑎,𝑔, 𝑘)-SetSAT is precisely PCSP(A,B): the identity function is a homomorphism from A to B, a
homomorphism C→ A represents a 𝑔-satisfying assignment to Ψ, and a homomorphism C→ B
represents an 𝑎-satisfying assignment to Ψ.

Polymorphisms. The following concept from the algebraic study of PCSPs is central to our

hardness result.

Let 𝑓 : 𝐴𝑚 → 𝐵 be a function. We say that 𝑓 is a polymorphism of the template (A,B) if, for
𝑎1, . . . , 𝑎𝑚 ∈ 𝑅A𝑖 , we have that 𝑓 (𝑎1, . . . , 𝑎𝑚) ∈ 𝑅B𝑖 ; here 𝑓 is applied componentwise. We will

denote by Pol(A,B) the set of all polymorphisms of the template (A,B). For every template, trivial

polymorphisms are given by dictators, which are functions 𝑝 of the form 𝑝 (𝑥1, . . . , 𝑥𝑚) = 𝑓 (𝑥𝑖 ),
where 𝑓 is a homomorphism from 𝐴 to 𝐵.

In particular, 𝑓 : [𝑑]𝑚 → [𝑑] is a polymorphism of (𝑎,𝑔, 𝑘)-SetSAT if for every SetSAT clause

𝐶 of width 𝑘 and for every tuple 𝑣1, . . . , 𝑣𝑚 ∈ [𝑑]𝑘 of 𝑔-satisfying assignments to 𝐶 , we have that

𝑓 (𝑣1, . . . , 𝑣𝑚) is an 𝑎-satisfying assignment to 𝐶 .

3 TRACTABILITY
How big must one make the fraction of satisfied literals in order for the SetSAT problem to become

tractable? The following proposition shows that
𝑠

𝑠+1 is sufficient.

Proposition 3.1. For 1 ≤ 𝑠 < 𝑑 and 𝑔

𝑘
≥ 𝑠

𝑠+1 , (1, 𝑔, 𝑘)-SetSAT is solvable in expected polynomial
time.

Proof. Algorithm 1 finds a satisfying assignment to a 𝑔-satisfiable formula in expected polyno-

mial time. The algorithm and its analysis are based on [5, Proposition 6.1], which in turn is based

on Papadimitriou’s randomised algorithm for 2-SAT [27].
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Algorithm 1 Randomised algorithm for (1, 𝑔, 𝑘)-SetSAT with
𝑔

𝑘
≥ 𝑠

𝑠+1

1: 𝑥 ← arbitrary assignment

2: while 𝑥 does not satisfy input formula Ψ do
3: Arbitrarily pick a falsified clause 𝐶

4: Randomly choose from 𝐶 a literal 𝑆 (𝑥𝑖 )
5: Randomly choose a value for 𝑥𝑖 so that 𝑆 (𝑥𝑖 ) is satisfied

return 𝑥

Suppose that Ψ has a 𝑔-satisfying assignment 𝑥∗. Let 𝑥𝑡 be the assignment obtained in iteration

𝑡 of the algorithm, and let 𝐷𝑡 = dist(𝑥𝑡 , 𝑥∗), where dist(𝑥,𝑦) is the Hamming distance between 𝑥

and 𝑦. Since 𝐷𝑡 − 𝐷𝑡−1 ∈ {−1, 0, 1} for every 𝑡 ,1 we have

E(𝐷𝑡 − 𝐷𝑡−1) = P(𝐷𝑡 − 𝐷𝑡−1 = 1) − P(𝐷𝑡 − 𝐷𝑡−1 = −1)

≤ 𝑘 − 𝑔
𝑘
− 𝑔
𝑘

1

𝑠
≤ 0 if and only if

𝑔

𝑘
≥ 𝑠

𝑠 + 1

.

The sequence𝐷0, 𝐷1, . . . is a randomwalk starting between 0 and𝑛 with each step either unbiased

or biased towards 0. This is a “gambler’s ruin” chain with reflecting barrier (because the distance

cannot increase beyond 𝑛). With constant probability, such a walk hits 0 (“the gambler is broke”)

within 𝑛2
steps and the probability that the algorithm fails to find a satisfying assignment within

𝑐𝑟𝑛2
steps is at most 2

−𝑟
for some constant 𝑐 . □

Remark 3.2. The proof of Proposition 3.1 can be modified to show that Algorithm 1 also finds a

satisfying assignment when each literal corresponds to a set of size at most 𝑠 . This makes sense

intuitively, as smaller literals give the algorithm a better chance of setting 𝑥𝑖 equal to 𝑥
∗
𝑖 in Step 5.

We show that if
𝑔

𝑘
≥ 𝑠

𝑠+1 then (1, 𝑔, 𝑘)-SetSAT has a specific family of polymorphisms that leads

to a deterministic algorithm based on linear programming.

A function 𝑓 : 𝐴𝑚 → 𝐵 is symmetric if 𝑓 (𝑎1, . . . , 𝑎𝑚) = 𝑓 (𝑎𝜋 (1) , . . . , 𝑎𝜋 (𝑚) ) for all 𝑎1, . . . , 𝑎𝑚 ∈ 𝐴
and all permutations 𝜋 on [𝑚].

Definition 3.3. A symmetric function 𝑓 : [𝑑]𝑚 → [𝑑] is a plurality if

𝑓 (𝑥1, . . . , 𝑥𝑚) = argmax𝑎∈[𝑑 ]{# of occurrences of 𝑎 in (𝑥1, . . . , 𝑥𝑚)},

with ties broken in such a way that 𝑓 is symmetric.

When 𝑑 = 𝑠 + 1, all polymorphisms of SetSAT are conservative; i.e., they always return one

of their input values, as the following proposition shows. This will be important when showing

hardness, and also has implications for solvability by linear programming algorithms.

Proposition 3.4. If 𝑑 = 𝑠 + 1, then all polymorphisms of (1, 𝑔, 𝑘)-SetSAT are conservative.

Proof. Let 𝑓 : [𝑑]𝑚 → [𝑑] be such that 𝑓 (𝑎1, . . . , 𝑎𝑚) = 𝑏 and 𝑏 ∉ {𝑎1, . . . , 𝑎𝑚}. If 𝑆 is a literal
not containing 𝑏, then the clause (𝑆 (𝑥1) ∨ . . . ∨ 𝑆 (𝑥𝑘 )) is 𝑔-satisfied (even 𝑘-satisfied) by setting

all 𝑥𝑖 equal to any one of the 𝑎 𝑗 . Thus taking the𝑚 assignments (𝑥1 = · · · = 𝑥𝑘 = 𝑎 𝑗 )1≤ 𝑗≤𝑚 and

applying 𝑓 to each component, we get the assignment 𝑥1 = · · · = 𝑥𝑘 = 𝑏 which clearly does not

1-satisfy the clause, and so 𝑓 cannot be a polymorphism. □

1
In the special case 𝑑 = 2, we have 𝐷𝑡 −𝐷𝑡−1 ∈ {−1, 1}.
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Proposition 3.5. Let 1 ≤ 𝑠 < 𝑑 . If 𝑔

𝑘
> 𝑠

𝑠+1 then every plurality function is a polymorphism of
(1, 𝑔, 𝑘)-SetSAT. If 𝑔

𝑘
= 𝑠

𝑠+1 then every plurality function of arity𝑚 . 0 mod 𝑠 + 1 is a polymorphism
of (1, 𝑔, 𝑘)-SetSAT, and no symmetric function of arity 𝑚 ≡ 0 mod 𝑠 + 1 is a polymorphism of
(1, 𝑔, 𝑘)-SetSAT if we also have 𝑑 = 𝑠 + 1.

Proof. Let 𝑓 be a plurality function of arity𝑚. Given𝑚 𝑔-satisfying assignments to a clause

of width 𝑘 , we are guaranteed to have at least𝑚𝑔 satisfying values among the𝑚𝑘 total values.

Therefore there is a coordinate 𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , containing at least

⌈𝑚𝑔

𝑘

⌉
satisfying values, that is, at

least

⌈𝑚𝑔

𝑘

⌉
values not equal to any of the values 𝑏1, . . . , 𝑏𝑑−𝑠 forbidden by the 𝑖-th literal of the clause.

For 𝑓 to be a polymorphism, we require that the most frequent satisfying value in coordinate 𝑖

appears more often than all the 𝑏1, . . . , 𝑏𝑑−𝑠 combined, for which it suffices that

⌈𝑚𝑔

𝑘

⌉
/𝑠 > 𝑚 −

⌈𝑚𝑔

𝑘

⌉
.

This is equivalent to

⌈𝑚𝑔

𝑘

⌉
> 𝑠

𝑠+1𝑚, which follows from
𝑔

𝑘
> 𝑠

𝑠+1 , so 𝑓 is a polymorphism.

In the case
𝑔

𝑘
= 𝑠

𝑠+1 , the same argument works so long as
𝑚𝑔

𝑘
is not an integer, since by taking

the ceiling we obtain a value strictly greater than
𝑠

𝑠+1𝑚. Since
𝑔

𝑘
= 𝑠

𝑠+1 , we have
𝑔

𝑘
𝑚 = 𝑠

𝑠+1𝑚 and

this is an integer only if𝑚 is a multiple of 𝑠 + 1.

To show that there are no symmetric polymorphisms when
𝑔

𝑘
= 𝑠

𝑠+1 ,𝑚 is a multiple of 𝑠 + 1, and

𝑑 = 𝑠 + 1, note that
𝑔

𝑘
= 𝑠

𝑠+1 implies that 𝑘 is divisible by 𝑠 + 1. Let𝑀 be the (𝑠 + 1) × (𝑠 + 1) matrix

whose first row is 12 · · · 𝑠 + 1 and whose 𝑖-th row for 2 ≤ 𝑖 ≤ 𝑠 + 1 is obtained from the (𝑖 − 1)-st
row by shifting it cyclically to the left by one coordinate. We stack

𝑘
𝑠+1 copies of𝑀 on top of each

other and take
𝑚
𝑠+1 copies of this stack side-by-side to form the 𝑘 ×𝑚 matrix𝑀 ′. If 𝑓 is symmetric,

it returns the same value 𝑏 ∈ {1, . . . , 𝑠 + 1} when applied to each row of𝑀 ′. Every column of𝑀 ′

satisfies exactly an
𝑠

𝑠+1 -fraction of the literals in the clause whose 𝑘 literals are all 𝑆 {1,...,𝑠+1}\{𝑏 } . On
the other hand, the assignment produced by applying 𝑓 to each row of𝑀 ′ does not even 1-satisfy

this clause, so 𝑓 is not a polymorphism. □

Proposition 3.5 has interesting consequences for solvability of (1, 𝑔, 𝑘)-SetSAT via convex relax-

ations. By [6, Theorem 7.9], (1, 𝑔, 𝑘)-SetSAT is solvable by the basic linear programming relaxation

if
𝑔

𝑘
> 𝑠

𝑠+1 (since there exist symmetric polymorphisms of all arities) but not solvable by the

basic linear programming relaxation if
𝑔

𝑘
= 𝑠

𝑠+1 and 𝑑 = 𝑠 + 1 (since there do not exist symmetric

polymorphisms of all arities). By [11, Theorem 3.1], (1, 𝑔, 𝑘)-SetSAT is solvable by the combined

basic linear programming and affine integer programming relaxation if
𝑔

𝑘
≥ 𝑠

𝑠+1 (since there exist

symmetric polymorphisms of infinitely many arities). We note that iterative rounding of the basic

linear programming relaxation could also be used to get a deterministic algorithm as in [5].

4 LAYERED LABEL COVER AND SMUG SETS
In this section we define a variant of the Label Cover problem, which reduces the task of showing

hardness to showing that all polymorphisms satisfy a certain combinatorial property, and then

in Section 5, we show that the polymorphisms of SetSAT satisfy this property. From now on we

assume that 𝑑 = 𝑠 + 1, as in Theorem 1.2.

An ℓ-Layered Label Cover instance is a sequence of ℓ + 1 sets 𝑋0, . . . , 𝑋ℓ (called layers) of variables
with range [𝑚], for some domain size𝑚 ∈ N, and a set of constraints Φ. Each constraint is a function
(often called a projection constraint) from a variable 𝑥 ∈ 𝑋𝑖 to a variable in a further layer 𝑦 ∈ 𝑋 𝑗 ,

𝑖 < 𝑗 : that is, a function denoted 𝜙𝑥→𝑦 which is satisfied by an assignment 𝜎 : 𝑋0 ∪ · · · ∪𝑋ℓ → [𝑚]
if 𝜎 (𝑦) = 𝜙𝑥→𝑦 (𝜎 (𝑥)). A chain is a sequence of variables 𝑥𝑖 ∈ 𝑋𝑖 for 𝑖 = 0, . . . , ℓ such that there

are constraints 𝜙𝑥𝑖→𝑥 𝑗
between them, for 𝑖 < 𝑗 . A chain is weakly satisfied if at least one of these

constraints is satisfied.
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The basis for our hardness result is the hardness of distinguishing fully satisfiable instances

from those where no constant fraction of chains can be weakly satisfied. This follows by a simple

adaptation of a reduction from the work of Dinur, Guruswami, Khot, and Regev [16].

Theorem 4.1. For every ℓ ∈ N and 𝜀 > 0, there is an𝑚 ∈ N such that it is NP-hard to distinguish
ℓ-Layered Label Cover instances with domain size𝑚 that are fully satisfiable from those where not
even an 𝜀-fraction of all chains is weakly satisfied.

Proof. For ℓ = 1 a chain consists of just one constraint, so weakly satisfying the chain is the same

as satisfying its constraint. The claim is then equivalent to the hardness of the standard Bipartite

Gap Label Cover problem, which holds even for bi-regular instances: that is, instances (𝑌, 𝑍 ) such
that every variable in 𝑌 occurs in constraints with exactly 𝑑+ variables in 𝑍 and every variable in 𝑍

occurs in constraints with exactly 𝑑− variables in 𝑌 , for some 𝑑+, 𝑑− ∈ N. (This hardness follows
from the PCP theorem [2, 3] and Raz’s parallel repetition theorem [28], cf. [16] and [1].)

For ℓ > 1 we reduce from a bi-regular instance of Bipartite Gap Label Cover with variable sets 𝑌

and 𝑍 , domain size𝑚, constraints Γ and gap 𝜀 ′ := 𝜀/
(
ℓ+1
2

)
. Let the domain size of the constructed

instance Φ be𝑚ℓ
. Let the variable sets be𝑋𝑖 := 𝑍 𝑖×𝑌 ℓ−𝑖

for 𝑖 = 0, . . . , ℓ (that is, ℓ-tuples of 𝑖 variables

from 𝑍 followed by ℓ − 𝑖 variables from 𝑌 ; this makes indices notationally more convenient than

the other way around). Let the constraints between 𝑋𝑖 and 𝑋 𝑗 (for 0 ≤ 𝑖 < 𝑗 ≤ ℓ) be defined for

pairs of tuples 𝑥 and 𝑥 ′ of the form:

𝑥 = (𝑧1, . . . , 𝑧𝑖 , 𝑦𝑖+1, . . . , 𝑦 𝑗 , 𝑦 𝑗+1, . . . , 𝑦ℓ ) ∈ 𝑋𝑖 and

𝑥 ′ = (𝑧1, . . . , 𝑧𝑖 , 𝑧𝑖+1, . . . , 𝑧 𝑗 , 𝑦 𝑗+1, . . . , 𝑦ℓ ) ∈ 𝑋 𝑗

such that the original instance has a constraint𝜙𝑦𝑘→𝑧𝑘 ∈ Γ for 𝑘 = 𝑖+1, . . . , 𝑗 . Let the new projection

constraint 𝜙𝑥→𝑥 ′ map (𝑎1, . . . , 𝑎ℓ ) to (𝑏1, . . . , 𝑏ℓ ) where 𝑏𝑘 := 𝜙𝑦𝑘→𝑧𝑘 (𝑎𝑘 ) for 𝑘 = 𝑖 + 1, . . . , 𝑗 and

𝑏𝑘 := 𝑎𝑘 otherwise. This concludes the construction.

Note that chains in this instance are in bijection with ℓ-tuples of original constraints in Γ. Indeed,
a chain 𝑥𝑖 ∈ 𝑋𝑖 (𝑖 = 0, . . . , ℓ) is determined by 𝑥0 = (𝑦1, . . . , 𝑦ℓ ) and 𝑥ℓ = (𝑧1, . . . , 𝑧ℓ ) such that Γ
has constraints 𝜙𝑦𝑘→𝑧𝑘 for 𝑘 = 1, . . . , ℓ . Moreover, for each 𝑖 < 𝑗 , every constraint 𝜙𝑥→𝑥 ′ between

𝑥 ∈ 𝑋𝑖 and 𝑥
′ ∈ 𝑋 𝑗 appears in the same number of chains (namely 𝑑 𝑖

− · 𝑑
ℓ−𝑗
+ ).

If the original instance Γ was fully satisfiable then so is the new one Φ: indeed, if 𝜎 is a satisfying

assignment for Γ, then 𝑥 ↦→ (𝜎 (𝑥1), . . . , 𝜎 (𝑥ℓ )) is a satisfying assignment for Φ.
Suppose now that in Φ, an assignment 𝜎 : 𝑋0 ∪ · · · ∪ 𝑋ℓ → [𝑚]ℓ weakly satisfies at least 𝜀 of

all chains. Then there exists 0 ≤ 𝑖 < 𝑗 ≤ ℓ such that at least 𝜀/
(
ℓ+1
2

)
= 𝜀 ′ of all chains are weakly

satisfied at a constraint between 𝑋𝑖 and 𝑋 𝑗 . Every constraint between 𝑋𝑖 and 𝑋 𝑗 is contained in the

same number of chains, say 𝐶 , hence at least 𝜀 ′ of the constraints between 𝑋𝑖 and 𝑋 𝑗 are satisfied

(indeed, the number of thus satisfied chains is exactly 𝐶 times the number of satisfied constraints;

similarly, the number of all chains is exactly 𝐶 times the number of all constraints between 𝑋𝑖 and

𝑋 𝑗 ).

Choose an arbitrary coordinate 𝑘 in 𝑖 + 1, . . . , 𝑗 . Partition 𝑋𝑖 into equivalence classes such that

𝑥, 𝑥 ′ are in the same class if they are identical on all coordinates except possibly coordinate 𝑘 .

Partition 𝑋 𝑗 in the same way. There exists a pair of classes between which constraints exist and at

least 𝜀 ′ of them are satisfied. That is, there are

𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥ℓ ∈ 𝑌 ∪ 𝑍 and

𝑥 ′
1
, . . . , 𝑥 ′

𝑘−1
, 𝑥 ′

𝑘+1, . . . , 𝑥
′
ℓ ∈ 𝑌 ∪ 𝑍
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such that 𝜎 satisfies at least 𝜀 ′ of the constraints between pairs of the form

(𝑥1, . . . , 𝑥𝑘−1, 𝑦, 𝑥𝑘+1, . . . , 𝑥ℓ ) ∈ 𝑋𝑖

(𝑥 ′
1
, . . . , 𝑥 ′

𝑘−1
, 𝑧, 𝑥 ′

𝑘+1, . . . , 𝑥
′
ℓ ) ∈ 𝑋 𝑗

where a constraint 𝜙𝑦→𝑧 exists in Γ. Therefore, one can define an assignment 𝜎 ′ : 𝑌 ∪ 𝑍 → [𝑚] by
letting 𝜎 ′(𝑦) and 𝜎 ′(𝑧) be the 𝑘-th element of the value in [𝑚]ℓ resulting from applying 𝜎 to the

above tuples, respectively for 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍 . This assignment then satisfies at least 𝜀 ′ of all the
constraints 𝜙𝑦→𝑧 of the original instance Γ. □

In order to use Theorem 4.1 to derive hardness for PCSPs, we use the algebraic approach: every

PCSP is equivalent to a promise problem about satisfying minor conditions with polymorphisms.

We give definitions first, following [6], to where we refer the reader for a more detailed exposition.

For 𝑓 : 𝐴𝑛 → 𝐵, 𝑔 : 𝐴𝑚 → 𝐵, and 𝜋 : [𝑛] → [𝑚], we say that 𝑔 is the minor of 𝑓 obtained from 𝜋

if

𝑔(𝑥1, . . . , 𝑥𝑚) ≈ 𝑓 (𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑛) ), (1)

where 𝑔 ≈ 𝑓 means that the values of 𝑔 and 𝑓 agree on every input in 𝐴𝑚
. We write 𝑓

𝜋−→ 𝑔 as a

shorthand for (1). For 𝜋 : [𝑛] → [𝑚], the expression 𝑓 𝜋−→ 𝑔 is called a minor identity.
A minion on a pair of sets (𝐴, 𝐵) is a non-empty set of functions from 𝐴𝑛

to 𝐵 (for 𝑛 ∈ N) that is
closed under taking minors.

A bipartite minor condition is a finite set Σ of minor identities where the sets of function symbols

used on the left- and right-hand sides are disjoint. More precisely, Σ is a pair of disjoint sets 𝑈 and

𝑉 of function symbols of arity 𝑛 and𝑚, respectively, and a set of minor identities of the form 𝑓
𝜋−→ 𝑔,

where 𝑔 ∈ 𝑈 , 𝑓 ∈ 𝑉 and 𝜋 : [𝑛] → [𝑚]. A bipartite minor condition Σ is satisfied in a minionM if

there is an assignment 𝜉 : 𝑈 ∪𝑉 →M that assigns to each function symbol a function fromM
of the corresponding arity so that for every identity 𝑓

𝜋−→ 𝑔 in Σ, we have 𝜉 (𝑓 ) 𝜋−→ 𝜉 (𝑔) inM. A

bipartite minor condition is called trivial if it is satisfied in every minion, or equivalently, in the

minion consisting of all projections on {0, 1}. Since choosing a projection of arity 𝑛 is the same as

choosing an element of [𝑛], deciding whether a bipartite minor condition is trivial is the same as

the standard Label Cover [1].

We can now define the promise satisfaction of a minor condition problem. For a minionM and an

integer𝑚, PMCM (𝑚) is the following promise problem: given a bipartite minor condition Σ that

involves only symbols of arity at most𝑚, the answer should be YES if Σ is trivial and NO if Σ is not

satisfiable inM (the promise is that either of those two cases holds, i.e. an algorithm can behave

arbitrarily otherwise). Barto et al. [6] show that PCSP(A,B) is log-space equivalent to PMCM (𝑚),
forM = Pol(A,B) and𝑚 a constant depending on A only.

A final piece of notation before we prove a corollary of Theorem 4.1. A chain of minors is a
sequence of the form 𝑓0

𝜋0,1−−→ 𝑓1
𝜋1,2−−→ . . .

𝜋ℓ−1,ℓ−−−−→ 𝑓ℓ . We shall then write 𝜋𝑖, 𝑗 : [ar(𝑓𝑖 )] → [ar(𝑓𝑗 )] for
the composition of 𝜋𝑖,𝑖+1, . . . , 𝜋 𝑗−1, 𝑗 , for any 0 ≤ 𝑖 < 𝑗 ≤ ℓ . Note that 𝑓𝑖

𝜋𝑖,𝑗−−→ 𝑓𝑗 .

Corollary 4.2 (of Theorem 4.1). LetM be a minion. Suppose there are constants 𝑘, ℓ ∈ N and an
assignment of a set of at most 𝑘 coordinates sel(𝑓 ) ⊆ [ar(𝑓 )] to every 𝑓 ∈ M such that for every chain
of minors 𝑓0

𝜋0,1−−→ 𝑓1
𝜋1,2−−→ . . .

𝜋ℓ−1,ℓ−−−−→ 𝑓ℓ , there are 0 ≤ 𝑖 < 𝑗 ≤ ℓ such that 𝜋𝑖, 𝑗 (sel(𝑓𝑖 )) ∩ sel(𝑓𝑗 ) ≠ ∅.
Then PMCM (𝑚) is NP-hard, for𝑚 large enough. In particular, ifM = Pol(A,B), then PCSP(A,B) is
NP-hard.

Proof. For ℓ, 𝑘 as in the assumption, let 𝜀 := 1

𝑘2
and let𝑚 be as given by Theorem 4.1. We reduce

an ℓ-Layered Label Cover instance by replacing each variable 𝑥 with a symbol 𝑓𝑥 of arity𝑚 and
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each constraint 𝜙𝑥→𝑦 : [𝑚] → [𝑚] by the minor condition 𝑓𝑥
𝜙𝑥→𝑦−−−−→ 𝑓𝑦 . If the original instance was

fully satisfiable, the new instance is trivial (i.e., fully satisfiable by projections).

If the constructed instance is satisfied by functions in the minionM, we define an assignment

to the original instance by selecting, for each variable 𝑥 , a random coordinate from sel(𝑓𝑥 ) ⊆ [𝑚]
(uniformly, independently). The assumption guarantees a set of constraints 𝜙𝑥→𝑦 such that (1) each

chain contains at least one and (2) for each such constraint 𝜙𝑥→𝑦 , we have 𝜙𝑥→𝑦 (sel(𝑓𝑥 ))∩sel(𝑓𝑦) ≠
∅. The random choice then satisfies each of these constraints, and hence weakly satisfies each chain,

with probability at least
1

𝑘2
= 𝜀. The expected fraction of weakly satisfied chains is thus at least

𝜀 and a standard maximisation-of-expectation procedure deterministically finds an assignment

which certifies this. □

We now introduce the combinatorial property of polymorphisms which is crucial for our results.

Definition 4.3. For a function 𝑓 : 𝐴ar(𝑓 ) → 𝐵 we say that a set of coordinates 𝑆 ⊆ [ar(𝑓 )] is a
smug set if there is an input vector 𝑣 ∈ 𝐴ar(𝑓 )

such that 𝑆 = {𝑖 | 𝑣𝑖 = 𝑓 (𝑣)}.
Since 𝑑 = 𝑠 + 1, Proposition 3.4 applies and so for every polymorphism 𝑓 of SetSAT and every 𝑣 ,

the set {𝑖 | 𝑣𝑖 = 𝑓 (𝑣)} is nonempty. The following result connects Layered Label Cover to smug

sets and will be used to prove hardness of (1, 𝑔, 𝑘)-SetSAT.
Corollary 4.4. LetM be a minion. Suppose there are constants 𝑘, ℓ ∈ N such that the following

holds, for every 𝑓 ∈ M:
• 𝑓 has a smug set of at most 𝑘 coordinates,
• 𝑓 has no family of more than ℓ (pairwise) disjoint smug sets,
• if 𝑓

𝜋−→ 𝑔 and 𝑆 is a smug set of 𝑔, then 𝜋−1 (𝑆) is a smug set of 𝑓 .
Then PMCM (𝑚) is NP-hard, for𝑚 large enough. In particular, ifM = Pol(A,B), then PCSP(A,B) is
NP-hard.

Proof. For each 𝑓 ∈ M, we define sel(𝑓 ) as a smug set of at most 𝑘 coordinates, arbitrarily

chosen (some such set exists by the first condition). Consider a chain 𝑓0
𝜋0,1−−→ 𝑓1

𝜋1,2−−→ . . .
𝜋ℓ−1,ℓ−−−−→ 𝑓ℓ .

Suppose to the contrary that for each 0 ≤ 𝑖 < 𝑗 ≤ ℓ , 𝜋𝑖, 𝑗 (sel(𝑓𝑖 )) is disjoint from sel(𝑓𝑗 ), or
equivalently, that sel(𝑓𝑖 ) is disjoint from 𝜋 −1

𝑖, 𝑗 (sel(𝑓𝑗 )). This implies that 𝜋 −1

0,𝑖 (sel(𝑓𝑖 )) is disjoint
from 𝜋 −1

0,𝑖 (𝜋 −1

𝑖, 𝑗 (sel(𝑓𝑗 ))) = 𝜋 −1

0, 𝑗 (sel(𝑓𝑗 )). That is, the sets 𝜋 −1

0,𝑖 (sel(𝑓𝑖 )) for 𝑖 = 0 . . . ℓ are pairwise

disjoint. By the third condition they are smug sets of 𝑓0. But by the second condition this is

impossible. □

We note that in the proof of Corollary 4.4, the exact definition of “smug” is irrelevant, as long as

it satisfies the above three conditions.

It is easy to check that the definition of “smug” satisfies the third condition for any functions

𝑓
𝜋−→ 𝑔, not necessarily polymorphisms. Indeed, if an input 𝑣 ∈ 𝐴ar(𝑔)

to 𝑔 gives a smug set 𝑆 = { 𝑗 |
𝑣 𝑗 = 𝑔(𝑣)}, then the corresponding input 𝑢 ∈ 𝐴ar(𝑓 )

to 𝑓 defined as 𝑢𝑖 := 𝑣𝜋 (𝑖) satisfies 𝑓 (𝑢) = 𝑔(𝑣)
and hence gives a smug set {𝑖 | 𝑢𝑖 = 𝑓 (𝑢)} = {𝑖 | 𝑣𝜋 (𝑖) = 𝑔(𝑣)} = {𝑖 | 𝜋 (𝑖) ∈ 𝑆} = 𝜋−1 (𝑆).
The definition of “smug” is particularly well-suited to our problem, because whether 𝑓 is a

polymorphisms or not depends only on its family of smug sets.

Lemma 4.5. Let 1 ≤ 𝑠 and 1 ≤ 𝑔 < 𝑘 . A function 𝑓 : [𝑠 + 1]𝑚 → [𝑠 + 1] is a polymorphism of
(1, 𝑔, 𝑘)-SetSAT if and only if there is no multiset 𝑆1, . . . , 𝑆𝑘 of smug sets of 𝑓 , such that each coordinate
ℓ ∈ [𝑚] is contained in at most 𝑘 − 𝑔 of them.

Before setting out to prove Lemma 4.5, we give an example in Figure 1 of a function that is not a

polymorphism of (1, 3, 5)-SetSAT with set size 2 and domain size 3.
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3 3 3 3 3 1 1 2 1 2

3 3 2 2 1 1 2 2 3 3

3 3 2 2 1 1 1 2 3 3

1 2 1 2 1 2 1 2 3 3

1 2 1 2 1 2 1 2 3 3

𝑘 = 5

𝑚

−→ 3

𝑓

−→ 2

−→ 1

−→ 3

−→ 3

𝑜

clause

𝑥1 ≠ 3

𝑥2 ≠ 2

𝑥3 ≠ 1

𝑥4 ≠ 3

𝑥5 ≠ 3

∨
∨
∨
∨

¯𝑏

Fig. 1. Illustration of Lemma 4.5. Smug sets 𝑆 ⊆ [𝑚] are highlighted in each row.

Proof of Lemma 4.5. A function 𝑓 : [𝑠 + 1]𝑚 → [𝑠 + 1] is not a polymorphism if and only if

there is a clause of the form 𝑥1 ≠ 𝑏1 ∨ · · · ∨ 𝑥𝑘 ≠ 𝑏𝑘 (for some column vector
¯𝑏 ∈ [𝑠 + 1]𝑘 ) and a

sequence of𝑚 column vectors 𝑣1, . . . , 𝑣𝑚 ∈ [𝑠 + 1]𝑘 each of which 𝑔-satisfies the clause, but for

which the vector 𝑜 = 𝑓 (𝑣1, . . . , 𝑣𝑚) (with 𝑓 applied coordinatewise) does not even 1-satisfy the

clause. The latter is equivalent to saying that 𝑜𝑖 = 𝑏𝑖 for 𝑖 ∈ [𝑘], that is, applying 𝑓 to the 𝑖-th row

gives 𝑓 (𝑣1

𝑖 , . . . , 𝑣
𝑚
𝑖 ) = 𝑏𝑖 . The former is equivalent to saying that for each column 𝑣 in 𝑣1, . . . , 𝑣𝑚 , the

condition 𝑣𝑖 ≠ 𝑏𝑖 holds for at least 𝑔 indices 𝑖 ∈ [𝑘] of that column. The two are hence equivalent

to saying that for each column 𝑣 ℓ , ℓ ∈ [𝑚], the condition 𝑣 ℓ𝑖 = 𝑓 (𝑣1

𝑖 , . . . , 𝑣
𝑚
𝑖 ) holds for at most 𝑘 − 𝑔

indices 𝑖 ∈ [𝑘] in that column. In other words, the 𝑘 row vectors (𝑣1

𝑖 , . . . , 𝑣
𝑚
𝑖 ) for 𝑖 ∈ [𝑘] have smug

sets such that ℓ is contained in at most 𝑘 − 𝑔 of these sets, for each coordinate ℓ ∈ [𝑚]. □

Checking the second condition for polymorphisms of our SetSAT problem is easy.

Lemma 4.6. For every polymorphism 𝑓 of (1, 𝑔, 𝑘)-SetSAT, if 𝑆1, . . . , 𝑆𝑡 are disjoint smug sets of 𝑓 ,
then 𝑡 < 𝑘

𝑘−𝑔 .

Proof. Suppose to the contrary that 𝑡 ≥ 𝑘
𝑘−𝑔 . Then we can build a multiset containing each 𝑆𝑖

up to 𝑘 − 𝑔 times until we have exactly 𝑘 in total. We thus obtain a multiset of 𝑘 smug sets such

that every coordinate is contained in at most 𝑘 − 𝑔 of them. □

We have now shown that the second and third conditions of Corollary 4.4 hold, so it remains

only to show that SetSAT has small smug sets.

5 FINDING SMALL SMUG SETS
It is easy to show NP-hardness when

𝑔

𝑘
≤ 1

2
(cf. Proposition A.4). We now show a general reduction

by finding a small smug set for (1, 𝑔, 𝑘)-SetSAT whenever
𝑔

𝑘
< 𝑠

𝑠+1 . Again we assume 𝑑 = 𝑠 + 1.

Lemma 5.1. Let 𝑓 : [𝑠 + 1]𝑚 → [𝑠 + 1] be a polymorphism of (1, 𝑔, 𝑘)-SetSAT with set size 𝑠 and
domain size 𝑠 + 1. There exists a smug set of 𝑓 of size at most 𝑠 − 1, or a family of 𝑠 disjoint minimal
smug sets 𝑆1, . . . , 𝑆𝑠 .

Proof. Suppose that every smug set has size at least 𝑠 . We show by induction on 𝑡 that there is

a family of 𝑡 disjoint minimal smug sets 𝑆1, . . . , 𝑆𝑡 . Suppose we found 𝑆1, . . . , 𝑆𝑡 for some 0 ≤ 𝑡 < 𝑠
and we want to find 𝑆𝑡+1. Let𝑇 be a set containing one arbitrary coordinate from each 𝑆𝑖 , 𝑖 = 1 . . . 𝑡 .

Let 𝑣 ∈ [𝑠 + 1]𝑚 be the input vector with values 𝑡 + 2 on𝑇 , 𝑖 on 𝑆𝑖 \𝑇 (for 𝑖 = 1 . . . 𝑡 ) and 𝑡 + 1 on the

remaining coordinates 𝑅 := [𝑚] \ (𝑆1 ∪ · · · ∪ 𝑆𝑡 ). Since |𝑇 | ≤ 𝑡 < 𝑠 , 𝑇 is not smug, so 𝑓 (𝑣) ≠ 𝑡 + 2.

By minimality, 𝑆𝑖 \ 𝑇 are not smug for 𝑖 = 1 . . . 𝑡 , so 𝑓 (𝑣) ≠ 𝑖 . Therefore, by conservativity of 𝑓

(Proposition 3.4), the only remaining option is 𝑓 (𝑣) = 𝑡 + 1. Thus 𝑅 is smug and disjoint from 𝑆𝑖 .

Taking 𝑆𝑡+1 to be a minimal smug set contained in 𝑅 proves the induction step. □
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Together with Lemma 4.6, Lemma 5.1 already establishes (via Corollary 4.4) NP-hardness when

𝑠 ≥ 𝑘
𝑘−𝑔 =

𝑔

𝑘−𝑔 + 1 (equivalently,
𝑔

𝑘
≤ 𝑠−1

𝑠
): since there cannot be 𝑠 disjoint smug sets, every

polymorphism has a smug set of size at most 𝑠 − 1. The proof in the general case, when
𝑔

𝑘
< 𝑠

𝑠+1 ,
extends this approach by first finding (assuming there are no small smug sets) disjoint minimal

smug sets 𝑆1, . . . , 𝑆𝑠 , then exploiting the fact that each has a special coordinate whose removal

makes it not smug, and using these coordinates to find further variants of each 𝑆𝑖 with new special

coordinates.

Lemma 5.2. Let 𝑔

𝑘
< 𝑠

𝑠+1 and let 𝑓 : [𝑠 + 1]𝑚 → [𝑠 + 1] be a polymorphism of (1, 𝑔, 𝑘)-SetSAT with
set size 𝑠 and domain size 𝑠 + 1. Then 𝑓 has a smug set of size at most 𝑔.

Proof. Consider a polymorphism 𝑓 : [𝑠+1]𝑚 → [𝑠+1] of (1, 𝑔, 𝑘)-SetSAT.We prove by induction

on 𝑡 that there is a smug set of size at most 𝑡 − 1, or there is a sequence of smug sets 𝑆1, . . . , 𝑆𝑡 and

a set 𝑇 such that (see Figure 2):

(i) |𝑇 | = 𝑡 and |𝑇 ∩ 𝑆𝑖 | = 1 for 𝑖 = 1 . . . 𝑡 (hence 𝑆𝑖 ∩𝑇 ≠ 𝑆𝑖′ ∩𝑇 for 𝑖 ≠ 𝑖 ′);
(ii) 𝑆𝑖 \𝑇 is not smug for 𝑖 = 1 . . . 𝑡 ;

(iii) 𝑆𝑖 ∩ 𝑆𝑖′ = ∅ if 𝑖 . 𝑖 ′ mod 𝑠;

(iv) 𝑆𝑖 ⊇ 𝑆𝑖−𝑠 \𝑇 for 𝑖 > 𝑠 .

By Lemma 5.1 we can start with 𝑡 = 𝑠 (by taking any 𝑇 containing one coordinate from each 𝑆𝑖 ).

Suppose the above is true for 𝑡 ≥ 𝑠 and let us prove the same for 𝑡 + 1. If there is a smug set of size

at most 𝑡 then we are done, so assume that 𝑇 is not smug. Let 𝑣 ∈ [𝑠 + 1]𝑚 be the input vector with

value 𝑠 + 1 on 𝑇 and different values from {1, . . . , 𝑠} on 𝑆𝑡−𝑖 \𝑇 for 𝑖 = 0 . . . 𝑠 − 2 and on the set of

remaining coordinates 𝑅 := [𝑚] \ (𝑆𝑡 ∪ · · · ∪ 𝑆𝑡−𝑠+2 ∪𝑇 ). Then by (ii), 𝑅 is smug.

Observe that 𝑅 contains 𝑆𝑡−𝑠+1 \𝑇 , because 𝑆𝑡 , . . . , 𝑆𝑡−𝑠+2,𝑇 are disjoint from that set by (iii). We

define 𝑆𝑡+1 to be a minimal subset of 𝑅 among smug sets containing 𝑆𝑡−𝑠+1 \𝑇 . By (ii) 𝑆𝑡−𝑠+1 \𝑇
itself is not smug, so there exists some coordinate ℓ in 𝑆𝑡+1 \ 𝑆𝑡−𝑠+1. We choose it arbitrarily and set

𝑇 ′ := 𝑇 ∪ {ℓ}.
We claim that the sequence of smug sets 𝑆1, . . . , 𝑆𝑡+1 and the set 𝑇 ′ satisfy the above conditions.

By minimality 𝑆𝑡+1 \𝑇 ′ is not smug, so it satisfies (ii) and by definition it satisfies (iv). The set 𝑆𝑡+1 is
disjoint from 𝑆𝑡 , . . . , 𝑆𝑡−𝑠+2,𝑇 , because 𝑅 was. It is also disjoint from 𝑆𝑖 for 𝑖 . 𝑡 + 1 mod 𝑠 , because

for every such 𝑖 , 𝑆𝑖 \𝑇 is contained in one of 𝑆𝑡 , . . . , 𝑆𝑡−𝑠+2; this proves (iii). In particular ℓ is not

contained in any of these sets, and since it is not contained in 𝑆𝑡−𝑠+1, it is in fact not contained

in any 𝑆𝑖 with 𝑖 < 𝑡 + 1. Hence |𝑇 ′ | = 𝑡 + 1 and |𝑇 ′ ∩ 𝑆𝑖 | = |𝑇 ∩ 𝑆𝑖 | = 1 for 𝑖 < 𝑡 + 1. Clearly also

|𝑇 ′ ∩ 𝑆𝑡+1 | = |{ℓ}| = 1. Therefore, (i) is satisfied, concluding the inductive proof.

Let us now consider sets as guaranteed above for 𝑡 = 𝑔 + 1 (assuming there is no smug set of

size at most 𝑔). Let 𝑣 ∈ [𝑠 + 1]𝑚 be the input vector with value 𝑖 + 1 on 𝑆𝑡−𝑖 \𝑇 for 𝑖 = 0 . . . 𝑠 − 1,

and value 𝑠 + 1 on the remaining coordinates 𝑅 := ( [𝑚] \ (𝑆𝑡 ∪ · · · ∪ 𝑆𝑡−𝑠+1)) ∪𝑇 . By (ii) the sets

𝑆𝑡−𝑖 \𝑇 are not smug, so 𝑅 is smug. We claim that the multiset obtained from {𝑆1, . . . , 𝑆𝑡 } by adding
(𝑘 − 𝑔 − 1) copies of the set 𝑅 contradicts Lemma 4.5: that is, each coordinate in [𝑚] is covered at

most 𝑘 − 𝑔 times by this multiset.

Consider first the coordinates contained in 𝑅. By definition of 𝑅, they are disjoint from 𝑆𝑡−𝑖 \𝑇
for 𝑖 = 0 . . . 𝑠 − 1. By (iv), they are also disjoint from all sets 𝑆𝑖 \ 𝑇 for 𝑖 = 0 . . . 𝑡 , because every

such set is contained in one of the former. Hence if a coordinate in 𝑅 is also contained in one of

𝑆1, . . . , 𝑆𝑡 , then it is contained in 𝑇 and therefore in at most one of 𝑆1, . . . , 𝑆𝑡 , by (i). In total, it is

thus covered at most (𝑘 − 𝑔 − 1) + 1 = 𝑘 − 𝑔 times.

Consider now coordinates outside of 𝑅. By (iii), they can be covered only by sets 𝑆𝑖 with congruent

indices 𝑖 mod 𝑠 . Since 𝑠 >
𝑔

𝑘−𝑔 , we have 𝑠 (𝑘 − 𝑔) > 𝑔, so there are 𝑡 = 𝑔 + 1 ≤ 𝑠 (𝑘 − 𝑔) distinct
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indices in total in {1, . . . , 𝑡}. Hence at most 𝑘 − 𝑔 of them can be pairwise congruent to each other

mod 𝑠 . Thus coordinates outside of 𝑅 are also covered at most 𝑘 − 𝑔 times. □

This concludes the proof that smug sets satisfy the first condition of Corollary 4.4 for polymor-

phisms of (1, 𝑔, 𝑘)-SetSAT with set size 𝑠 and domain size 𝑠 + 1, assuming
𝑔

𝑘
< 𝑠

𝑠+1 . Therefore, the
problem is NP-hard and we have established the hardness part of Theorem 1.2.

6 THE GENERAL CASE
In this section we will show how Theorem 1.2 implies Theorem 1.1. This amounts to arguing that a

classification of (𝑎,𝑔, 𝑘)-SetSAT can be obtained from the special case with 𝑎 = 1 and 𝑑 = 𝑠 + 1. We

start with two easy reductions.

Proposition 6.1. For any 1 ≤ 𝑠 < 𝑑 , the problems (𝑎,𝑔, 𝑘)-SetSAT and (𝑎 + 1, 𝑔 + 1, 𝑘 + 1)-SetSAT
are polynomial-time reducible to each other.

Proof. To reduce (𝑎,𝑔, 𝑘)-SetSAT to (𝑎 + 1, 𝑔 + 1, 𝑘 + 1)-SetSAT, introduce a new variable 𝑦 and

add 𝑆 (𝑦) to each existing clause, where 𝑆 is any literal. If the original instance has a 𝑔-satisfying

assignment, then the same assignment, extended by assigning 𝑦 to a value satisfying 𝑆 , is a (𝑔 + 1)-
satisfying assignment to the new instance. Conversely, if the old instance is not 𝑎-satisfiable, then

the new instance cannot be (𝑎 + 1)-satisfiable, as each new clause contains at most one additional

satisfied literal.

In the other direction, from (𝑎 + 1, 𝑔 + 1, 𝑘 + 1)-SetSAT to (𝑎,𝑔, 𝑘)-SetSAT, let Ψ be the orignal

instance. For each clause𝐶 of Ψ we make 𝑘 + 1 new clauses by taking all subsets of 𝑘 literals of𝐶 . If

Ψ has a (𝑔+ 1)-satisfying assignment, then the same assignment is 𝑔-satisfying for the new instance

since we have removed only one literal from each clause of Ψ. Conversely, if every assignment

to Ψ is not (𝑎 + 1)-satisfying, then every assignment is at most 𝑎-satisfying. Removing one of

the satisfied literals from a clause 𝐶 of Ψ creates a new clause that is at most (𝑎 − 1)-satisfiable.
Therefore, in the new instance, every assignment is at most (𝑎 − 1)-satisfying. □

Proposition 6.2. There is a polynomial-time reduction from (1, 𝑔, 𝑘)-SetSAT with set size 𝑠 and
domain size 𝑑 to (1, 𝑔, 𝑘)-SetSAT with set size 𝑠 and domain size 𝑑 + 1.

Proof. The new instance produced by the reduction is the same as the old instance Ψ. If Ψ is

𝑔-satisfiable, then it is again 𝑔-satisfiable by the same assignment and we ignore the new domain

𝑡

𝑚

𝑆1

𝑆𝑠
𝑆𝑠+1

𝑆2𝑠

𝑆𝑠+1

𝑆2𝑠

𝑆2𝑠+1 𝑆2𝑠+1 𝑆2𝑠+1

𝑣 = 1 1 T 2 2 T T 𝑠 𝑠 T 1 1 T 2 2 T T 𝑠 T 1 1 T 2 2

Fig. 2. Illustration of smug sets obtained in the proof of Lemma 5.2. Each row represents one of the sets in
the sequence 𝑆1, . . . , 𝑆𝑡 . The set 𝑇 is formed by coordinates with a T and get values 𝑠 + 1. The vector 𝑣 is used
to find the next row 𝑆𝑡+1.
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value. Conversely, a satisfying assignment over [𝑑 + 1] to Ψ restricts to a satisfying assignment

over [𝑑] by replacing 𝑑 + 1 with any value from [𝑑]. This does not falsify any literals since all the

literals of Ψ range over [𝑑] only. □

Proof of Theorem 1.1. By Proposition 6.1, we can assume 𝑎 = 1. The algorithm in Proposi-

tion 3.1 solves the problem in polynomial time as long as
𝑔

𝑘
≥ 𝑠

𝑠+1 (independent of 𝑑). Theorem 1.2

states that (1, 𝑔, 𝑘)-SetSAT is NP-hard when
𝑔

𝑘
< 𝑠

𝑠+1 and 𝑑 = 𝑠 + 1. Proposition 6.2 then extends

this to larger 𝑑 . □

We finish this section with proving the claim from Section 1 that literals described by sets of size

less than 𝑠 can be emulated by literals of size exactly 𝑠 .

Proposition 6.3. If 𝑠 ≤ 𝑑 − 2, there is a polynomial-time reduction from (1, 𝑔, 𝑘)-SetSAT with set
size 𝑠 and domain size 𝑑 to (1, 𝑔, 𝑘)-SetSAT with set size 𝑠 + 1 and domain size 𝑑 .

Proof. We replace each clause 𝑆1 (𝑥1) ∨ · · · ∨ 𝑆𝑘 (𝑥𝑘 ) with a set of (𝑑 − 𝑠)𝑘 clauses 𝑆 ′
1
(𝑥1) ∨ · · · ∨

𝑆 ′
𝑘
(𝑥𝑘 ), where 𝑆 ′𝑖 ranges over all supersets of 𝑆𝑖 of size 𝑠 + 1. Any 𝑔-satisfying assignment to the

former clearly satisfies the latter. For a 1-satisfying assignment 𝜎 to the latter, we claim that for

every new clause 𝑆 ′
1
(𝑥1) ∨ · · · ∨ 𝑆 ′𝑘 (𝑥𝑘 ), at least one of the literals in 𝑆1 (𝑥1) ∨ · · · ∨ 𝑆𝑘 (𝑥𝑘 ) must be

satisfied by 𝜎 . Suppose to the contrary that 𝜎 (𝑥𝑖 ) = 𝑎𝑖 where 𝑎𝑖 ∉ 𝑆𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 . Then the

clause formed by the literals 𝑆 ′𝑖 = 𝑆𝑖 ∪ {𝑏𝑖 }, where 𝑏𝑖 ∈ [𝑑] \ (𝑆𝑖 ∪ {𝑎𝑖 }), would not be satisfied by

𝜎 , a contradiction. Note that as 𝑑 − 𝑠 ≥ 2, the set [𝑑] \ (𝑆𝑖 ∪ {𝑎𝑖 }) is non-empty. □

7 IMPOSSIBILITY RESULTS
Here we show that (1, 𝑔, 𝑘)-SetSAT has rich polymorphisms (satisfying many non-trivial minor

conditions), even in the NP-hard range of parameters. We thus demonstrate that certain sufficient

condition for NP-hardness from [6] and earlier work cannot be used to establish hardness of

(1, 𝑔, 𝑘)-SetSAT for non-Boolean domains. We start with a few definitions.

Given an 𝑛-ary function 𝑓 : 𝐴𝑛 → 𝐵, the first coordinate is called essential if there exist 𝑎, 𝑎′ ∈ 𝐴
and 𝑎 ∈ 𝐴𝑛−1

such that 𝑓 (𝑎, 𝑎) ≠ 𝑓 (𝑎′, 𝑎); otherwise, the first coordinate is called inessential.
Analogously, one defines the 𝑖-th coordinate to be (in)essential. The essential arity of 𝑓 is the

number of essential coordinates. A minion has bounded essential arity if there is some 𝑘 such that

every function in the minion has essential arity at most 𝑘 .

Let M and N be two minions. A map 𝜉 : M → N is called a minion homomorphism if (1) it

preserves arities; i.e., maps 𝑛-ary functions to 𝑛-ary functions, for all 𝑛; and (2) it preserves taking

minors; i.e., for each 𝜋 : [𝑛] → [𝑚] and each 𝑛-ary 𝑔 ∈ M , we have 𝜉 (𝑔) (𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑛) ) =
𝜉 (𝑔(𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑛) )). A minion homomorphism M → N implies that all minor conditions

satisfied in M are also satisfied in N ; this provides an algebraic way to give reductions between

PCSPs [6]. The basic example of this is the following theorem, based on the techniques used for

promise SAT [5].

Theorem 7.1 ([6, Proposition 5.15]). Let (A,B) be a template. Assume that there exists a minion
homomorphism 𝜉 : Pol(A,B) → M for some minion M of bounded essential arity which does
not contain a constant function (i.e., a function without essential coordinates). Then PCSP(A,B) is
NP-hard.

In fact, this follows from a slightly more general condition.

Definition 7.2. Let 𝜖 > 0. We say that a bipartite minor condition Σ is 𝜖-robust if no 𝜖-fraction of

identities from Σ is trivial (i.e. satisfiable by projections).
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Theorem 7.3 ([6, Corollary 5.11]). If there exists an 𝜖 > 0 such that Pol(A,B) does not satisfy
any 𝜖-robust minor condition, then PCSP(A,B) is NP-hard.

Theorem 7.1 follows from Theorem 7.3 by observing that minions of bounded essential arity

cannot satisfy any sufficiently robust condition. We give a proof for completeness.

Lemma 7.4. Let M be a minion where every function of arity𝑚 has essential arity at most 𝑓 (𝑚).
ThenM cannot satisfy any 1

𝑓 (𝑚) -robust bipartite minor condition involving symbols of arity at most𝑚.

Proof. Let Σ be a
1

𝑓 (𝑚) -robust bipartite minor condition involving symbols of arity at most𝑚.

Suppose Σ is satisfied by M , that is, there is an assignment 𝜉 from symbols in Σ to functions in

M of the same arity such that for every condition 𝑓
𝜋−→ 𝑔 in Σ we have 𝜉 (𝑓 ) 𝜋−→ 𝜉 (𝑔). Let 𝐼 (𝜉 (𝑓 ))

be the set of essential coordinates in 𝜉 (𝑓 ). It is easy to check that essential coordinates of a minor

𝜉 (𝑔) of a function 𝜉 (𝑓 ) correspond to essential coordinates of 𝜉 (𝑓 ), that is: 𝜉 (𝑓 ) 𝜋−→ 𝜉 (𝑔) implies

𝐼 (𝜉 (𝑔)) ⊆ 𝜋 (𝐼 (𝜉 (𝑓 ))). Hence if we fix 𝜄 (𝑔) ∈ 𝐼 (𝜉 (𝑔)) arbitrarily, for each symbol 𝑔 on one side of Σ,
and choose 𝜄 (𝑓 ) ∈ 𝐼 (𝜉 (𝑓 )) uniformly at random, for each symbol 𝑓 on the other side of Σ, then for

each condition 𝑓
𝜋−→ 𝑔 the corresponding condition 𝜋 (𝜄 (𝑓 )) = 𝜄 (𝑔) is satisfied with probability at

least
1

𝑓 (𝑚) . Equivalently, replacing 𝜉 (𝑔) with the projection to 𝜄 (𝑔) and 𝜉 (𝑓 ) with the projection

𝜄 (𝑓 ), the condition 𝑝𝜄 (𝑓 )
𝜋−→ 𝑝𝜄 (𝑔) is satisfied with probability at least

1

𝑓 (𝑚) . Therefore, there exists

an assignment with projections that satisfies at least
1

𝑓 (𝑚) of the conditions, which means Σ is not

1

𝑓 (𝑚) -robust. □

We show that polymorphisms of SetSAT satisfy robust conditions and therefore the assumptions

of Theorem 7.1 and Theorem 7.3 are not met. The same construction will also give polymorphisms

excluding other approaches (e.g. polymorphisms without small “fixing” sets). We first define how

to reconstruct a polymorphism from a family of smug sets.

Definition 7.5. Consider (1, 𝑔, 𝑘)-SetSAT with domain size 𝑠 + 1. Let 𝑈 be a finite set and let

S = {𝑆1, . . . , 𝑆 |S |} be a sequence of non-empty subsets of𝑈 with the following properties:

• for every partition𝑈 = 𝑈1∪· · ·∪𝑈𝑠+1 into 𝑠+1 possibly empty sets, at least one of𝑈1, . . . ,𝑈𝑠+1
is in S .

• for every 𝑘-tuple (𝑆𝑖1 , . . . , 𝑆𝑖𝑘 ) ∈ S 𝑘
, some 𝑢 ∈ 𝑈 is contained in at least 𝑘 − 𝑔 + 1 of the 𝑘

sets.

Let 𝑞S : [𝑠 + 1] |𝑈 | → [𝑠 + 1] be defined as follows. For an input 𝑥 ∈ [𝑠 + 1] |𝑈 | , partition the

coordinates according to their value: that is, for 𝑖 ∈ [𝑠 + 1] let 𝑈𝑖 := {𝑢 ∈ 𝑈 : 𝑥𝑢 = 𝑖}. Let 𝑞S (𝑥)
be the value 𝑖 ∈ [𝑠 + 1] such that 𝑈𝑖 ∈ S ; if there are many such 𝑖 , choose 𝑈𝑖 to be first in the

sequence S .

By construction, all the smug sets of𝑞S are contained inS . By Lemma 4.5,𝑞S is a polymorphism.

Note that because of the preference for earlier sets in S , not all sets in S have to be smug, and

there may exist different functions with the same family of smug sets. On the other hand, the

ordering in S matters only when comparing disjoint sets.

The following polymorphisms satisfy many non-trivial minor conditions. For notational conve-

nience we consider only the case 𝑘 − 𝑔 + 1 = 3.

Definition 7.6. For𝑚 ∈ N, let 𝑈 :=
( [𝑚]

3

)
∪ {⊥}. That is, we will index coordinates with triples

{𝑖1, 𝑖2, 𝑖3} in [𝑚], with one additional special coordinate ⊥. For 𝑖 ∈ [𝑚], let 𝑆𝑖 ⊆ 𝑈 be the set of

triples containing 𝑖 . Let S𝑚 be the family of all supersets of sets in {𝑆1, . . . , 𝑆𝑚, {⊥}}, ordered so

that sets not containing ⊥ are all earlier than sets containing ⊥. Let 𝑞𝑚 := 𝑞S𝑚
.
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Observe that the minimal smug sets of 𝑞𝑚 are exactly 𝑆1, . . . , 𝑆𝑚, {⊥}. Note also that every two

sets in 𝑆1, . . . , 𝑆𝑚 (and hence any two of their supersets) intersect, so the ordering between them is

irrelevant, and similarly for every two sets containing ⊥; hence 𝑞𝑚 is defined unambiguously.

Proposition 7.7. Let𝑚 ≥ 4, 𝑘 − 𝑔 + 1 = 3, and 𝑔

𝑘
> 1

2
. Then

(i) 𝑞𝑚 is a polymorphism of (1, 𝑔, 𝑘)-SetSAT of arity
(
𝑚
3

)
+ 1;

(ii) 𝑞𝑚 and projections of arity𝑚 + 1 satisfy a 4

𝑚
-robust minor condition;

(iii) for every partial assignment to less than 𝑚
3
coordinates of 𝑞𝑚 and every value 𝑎 ∈ [𝑠 + 1], there

is an assignment to the remaining coordinates that makes 𝑞𝑚 take value 𝑎. (In particular this
means 𝑞𝑚 does not have small “weakly fixing” or “avoiding” sets).

Proof. To check (i), we have to check that S𝑚 satisfies the two conditions of Definition 7.5. The

first condition is trivial because all sets containing ⊥ are in S𝑚 . To check the second condition,

suppose for contradiction that some 𝑘-tuple of sets in S𝑚 covers every coordinate at most 𝑘 −𝑔 = 2

times. In particular ⊥ would be covered at most 2 times, leaving at least 𝑔 ≥ 𝑘 − 𝑔 + 1 = 3 sets not

containing ⊥. By definition of S𝑚 these three sets would be supersets of 𝑆𝑖1 , 𝑆𝑖2 , 𝑆𝑖3 respectively

for some 𝑖1, 𝑖2, 𝑖3 ∈ [𝑚] (not necessarily distinct), hence taking 𝐼 ∈
( [𝑚]

3

)
⊆ 𝑈 to be any triple

containing {𝑖1, 𝑖2, 𝑖3}, we see that the coordinate 𝐼 is covered by all three sets, and hence by some

3 = 𝑘 − 𝑔 + 1 sets.

For (ii), we start with an informal description; the formal argument is below. Let us first consider a

minor of 𝑞𝑚 defined by identifying all coordinates that are triples containing some 𝑖 ∈ [𝑚]. Observe
that this minor is a projection to the resulting coordinate, for all 𝑖 ∈ [𝑚]. This gives𝑚 identities

between 𝑞𝑚 and a projection 𝑝 . However, the same identities could be satisfied by replacing 𝑞𝑚
with a projection to ⊥; to avoid this, we map ⊥ to a different coordinate of 𝑝 for each 𝑖 ∈ [𝑚].

Formally, let 𝑝 : [𝑠 + 1]𝑚+1 → [𝑠 + 1] be the projection of arity 𝑚 + 1 to the last coordinate,

𝑝 (𝑥1, . . . , 𝑥𝑚+1) = 𝑥𝑚+1. For 𝑖 ∈ [𝑚], let 𝜋𝑖 : 𝑈 → [𝑚 + 1] be defined as 𝜋𝑖 (𝐼 ) = 𝑚 + 1 if 𝐼 ∈
( [𝑚]

3

)
and 𝐼 ∋ 𝑖 , otherwise set 𝜋𝑖 (𝐼 ) = 𝑖 (in particular 𝜋𝑖 (⊥) = 𝑖). Then 𝑞𝑚

𝜋𝑖−→ 𝑝 for each 𝑖 ∈ [𝑚].
Consider the bipartite minor condition Σwith two symbols 𝑓 , 𝑔 of arity |𝑈 | and𝑚+1, respectively,

and 𝑚 identities 𝑓
𝜋𝑖−→ 𝑔. Clearly this condition is satisfied by 𝑞𝑚, 𝑝 . We claim the condition is

4

𝑚
-robust, that is, no four identities out of the𝑚 identities of Σ can be simultaneously satisfied

by projections. Suppose the opposite, that is, assigning 𝑓 = 𝑝𝐼 for some 𝐼 ∈ 𝑈 and 𝑔 = 𝑝𝑖 for

some 𝑖 ∈ [𝑚 + 1] satisfies four identities. Without loss of generality these identities are 𝑝𝐼
𝜋1−−→ 𝑝𝑖 ,

𝑝𝐼
𝜋2−−→ 𝑝𝑖 , 𝑝𝐼

𝜋3−−→ 𝑝𝑖 , and 𝑝𝐼
𝜋4−−→ 𝑝𝑖 . Equivalently, 𝜋1 (𝐼 ) = 𝑖 , 𝜋2 (𝐼 ) = 𝑖 , 𝜋3 (𝐼 ) = 𝑖 , and 𝜋4 (𝐼 ) = 𝑖 . The

first condition implies that 𝑖 is either 1 or𝑚 + 1; similarly the second implies that 𝑖 is either 2 or

𝑚 + 1; hence 𝑖 =𝑚 + 1. The condition 𝜋1 (𝐼 ) =𝑚 + 1 then implies that 𝐼 is a triple in
( [𝑚]

3

)
containing

1. Similarly 𝐼 must contain 2, 3, and 4. This is a contradiction, so Σ is indeed
4

𝑚
-robust.

For (iii), consider a partial assignment to some 𝑘 < 𝑚
3
coordinates 𝐼1, . . . , 𝐼𝑘 of 𝑞𝑚 . Let 𝐼 be the set

of values 𝑖 ∈ [𝑚] that are contained in some triple among 𝐼1, . . . , 𝐼𝑘 . Then |𝐼 | ≤ 3𝑘 < 𝑚, so there

is a value 𝑖∗ ∈ [𝑚] \ 𝐼 . This means no coordinate in 𝑆𝑖∗ has been assigned yet. Therefore, for any

𝑎 ∈ [𝑠 + 1], assigning the value 𝑎 to all coordinates in 𝑆𝑖∗ (and remaining coordinates arbitrarily)

makes 𝑞𝑚 take the value 𝑎. □

As a side note, another way to obtain a projection as a minor of 𝑞𝑚 is as follows. Let 𝑇 ⊆ 𝑈 be

any set intersecting each of 𝑆1, . . . , 𝑆𝑚, {⊥}. Then identifying all coordinates in𝑇 yields a projection

to the resulting coordinate; indeed, for any input 𝑥 ∈ [𝑠 + 1]𝑈 , the smug set of 𝑥 in 𝑞𝑚 contains

one of 𝑆1, . . . , 𝑆𝑚, {⊥} and hence contains a coordinate in 𝑇 .
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Corollary 7.8. Suppose 𝑘 − 𝑔 + 1 = 3 and 𝑔 ≥ 3. Then the polymorphisms of (1, 𝑔, 𝑘)-SetSAT do
not admit a minion homomorphism to a minion of bounded essential arity (or in fact to any minion
with functions of arity𝑚 having essential arity at most 𝑚1/3

4
).

Therefore, by Corollary 7.8, the bounded essentially arity assumption of Theorem 7.1 does not

apply and thus NP-hardness cannot be derived fromTheorem 7.1. By Proposition 7.7 (ii), Theorem 7.3

does not apply either and neither does the weaker assumption where constants (bounding essential

arity or 1/𝜖 in assumptions involving 𝜖-robustness) can be replaced by functions subpolynomial in

the arity of the polymorphisms (as in [6, Theorem 5.10]).

Even with the most general assumption used in [6, Theorem 5.22], which is also proved using a

layered version of the PCP theorem, we were unable to prove hardness (specifically in our Corol-

lary 4.4) despite several attempts. On the other hand, we were unable to construct polymorphisms

to show that this general assumption fails for SetSAT.

We now turn to another sufficient condition for NP-hardness based on so-called Olšák functions.

Dinur, Regev, and Smyth [17] proved that the following PCSP is NP-hard, for any 𝑘 : given a

3-uniform hypergraph that is 2-colourable, find a 𝑘-colouring. One can hence deduce hardness

of a PCSP by giving a minion homomorphism to the polymorphisms of this problem. This was

used by the authors of [6] to improve the state-of-the-art for hardness of classical graph colouring

approximation. They also characterised when this approach is viable: such a minion homomorphism

exists if and only if there is no Olšák function, that is, a 6-ary function 𝑜 that satisfies

𝑜 (𝑥, 𝑥,𝑦,𝑦,𝑦, 𝑥) ≈
≈ 𝑜 (𝑥,𝑦, 𝑥,𝑦, 𝑥,𝑦) ≈
≈ 𝑜 (𝑦, 𝑥, 𝑥, 𝑥,𝑦,𝑦).

(The six columns in this condition correspond to the satisfying assignments of the problem of

2-colouring 3-uniform hypergraphs, or, equivalently, (monotone) Not-All-Equal 3-SAT). We show

that the polymorphisms of SetSAT include an Olšák function, proving that this approach is not

viable for showing NP-hardness of SetSAT.

Proposition 7.9. Suppose 𝑔

𝑘
> 1

2
. There is a polymorphism of (1, 𝑔, 𝑘)-SetSAT with domain size

𝑠 + 1 that is an Olšák function.

Proof. Let us define three sets corresponding to positions of 𝑥 in the three rows defining an Olšák

function: 𝑆1 = {1, 2, 6}, 𝑆2 = {1, 3, 5}, 𝑆3 = {2, 3, 4}. Let 𝑆4 be an arbitrary singleton, say 𝑆4 = {1}.
Let S be the set of supersets of 𝑆1, 𝑆2, 𝑆3, 𝑆4, ordered so that supersets of 𝑆1, 𝑆2, 𝑆3 come earlier.

We claim the sequence of sets S = 𝑆1, 𝑆2, 𝑆3, 𝑆4 satisfies the conditions of Definition 7.5. The first

condition is trivially satisfied because all sets containing 1 are in S . To check the second condition

suppose for contradiction there is a 𝑘-tuple of sets in S that covers every coordinate at most 𝑘 − 𝑔
times. For each of these 𝑘 sets, choose one of the sets 𝑆1, 𝑆2, 𝑆3, 𝑆4 it contains. Let 𝑛1, 𝑛2, 𝑛3, 𝑛4 be

the number of times we chose 𝑆1, 𝑆2, 𝑆3, 𝑆4, respectively. Then 𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 = 𝑘 . Since the first

coordinate (contained in 𝑆1, 𝑆2, 𝑆4) is covered at most 𝑘 − 𝑔 times, we have 𝑛1 + 𝑛2 + 𝑛4 ≤ 𝑘 − 𝑔.
Similarly, other coordinates give us inequalities 𝑛1 + 𝑛3 ≤ 𝑘 − 𝑔, 𝑛2 + 𝑛3 ≤ 𝑘 − 𝑔. This implies

𝑘 ≤ 𝑛1 + 2𝑛2 + 𝑛3 + 𝑛4 ≤ 2(𝑘 − 𝑔) and hence 2𝑔 ≤ 𝑘 . This contradicts 𝑔

𝑘
> 2, so S satisfies the

second condition of Definition 7.5.

We claim that 𝑞S is an Olšák function. Indeed, by definition, 𝑞S (𝑥, 𝑥,𝑦,𝑦,𝑦, 𝑥) = 𝑥 , for all

𝑥,𝑦 ∈ [𝑠 + 1]. Similarly 𝑞S (𝑥,𝑦, 𝑥,𝑦, 𝑥,𝑦) = 𝑞S (𝑦, 𝑥, 𝑥, 𝑥,𝑦,𝑦) = 𝑥 . □

Consider now a related condition. A Siggers function is a 6-ary function 𝑠 that satisfies

𝑠 (𝑥,𝑦, 𝑥, 𝑧,𝑦, 𝑧) ≈ 𝑠 (𝑦, 𝑥, 𝑧, 𝑥, 𝑧,𝑦).

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:18 Alex Brandts, Marcin Wrochna, and Stanislav Živný

More generally, for a non-biparite graph 𝐺 , a 𝐺-loop function is a function satisfying the following

condition, where (𝑢1, 𝑣1), . . . , (𝑢2𝑚, 𝑣2𝑚) lists both orientations of all𝑚 edges of 𝐺 :

𝑓 (𝑥𝑢1
, 𝑥𝑢2

, . . . , 𝑥𝑢2𝑚
) ≈ 𝑓 (𝑥𝑣1

, 𝑥𝑣2
, . . . , 𝑥𝑣2𝑚

).

The Siggers condition corresponds to 𝐺 = 𝐾3. As shown in [6, Theorem 6.9], the conjectured

NP-hardness of the classical approximate colouring is equivalent to the following statement: for

every A,B such that Pol(A,B) contains no Siggers function, PCSP(A,B) is NP-hard. In a similar

way, 𝐺-loop functions characterise the conjectured NP-hardness of promise graph homomorphism

(see [6, Theorem 6.12]). In particular if Pol(A,B) contains no Siggers or 𝐺-loop function, for a

non-bipartite 𝐺 , this would imply that PCSP(A,B) is NP-hard conditional on those conjectures.

However, Siggers polymorphism and 𝐺-loop polymorphisms of (1, 𝑔, 𝑘)-SetSAT for
𝑔

𝑘
> 1

2
are

easily constructed similarly as in Proposition 7.9: In detail, in the first case, it suffices to define

𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) as 𝑥1 if 𝑥1 = 𝑥3 ∧ 𝑥2 = 𝑥5 ∧ 𝑥3 = 𝑥6 and 𝑥2 otherwise. Thus, even conditional

NP-hardness of SetSAT would not follow this way. As far as we know, SetSAT is the first known

NP-hard promise CSP problem that admits 𝐺-loop polymorphisms.
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A SIMPLE REDUCTIONS
Proposition A.1. For any 1 ≤ 𝑠 < 𝑑 , there is a polynomial-time reduction from (𝑎,𝑔, 𝑘)-SetSAT to
(𝑎,𝑔, 𝑘 + 1)-SetSAT.

Proof. For 𝑖 ∈ [𝑠 + 1], let 𝑁𝑖 (𝑥) = 1[𝑥 ∈ [𝑠 + 1] \ {𝑖}] be a literal not satisfied by 𝑖 . For

each original clause, create 𝑠 + 1 new clauses by adding in turn each of the literals 𝑁𝑖 (𝑦) to the

original clause, where 𝑦 is a variable not appearing in the original instance. Note that a 𝑔-satisfying

assignment to the original instance is also a𝑔-satisfying assignment to the new instance. Conversely,

if the original instance is not 𝑎-satisfiable, then neither is the new instance, as the literals 𝑁𝑖 (𝑦)
cannot simultaneously be satisfied in all the new clauses for any value of 𝑦. □

NP-hardness for the case
𝑔

𝑘
≤ 1

2
is much easier to obtain when 𝑑 ≥ 3 compared to 𝑑 = 2 [5], as

shown below in Corollary A.4. First we prove more directly that the generalisation of (1,1,3)-SAT

to larger domains remains hard.

Proposition A.2. Let 𝑠 ≥ 2 and 𝑑 = 𝑠 + 1. Then (1, 1, 3)-SetSAT is NP-hard.

Proof. We give a reduction from 3-SAT. We interpret the value 1 as false and 2 as true. To

illustrate the reduction, consider the clause (𝑥1 ∨ 𝑥2 ∨ 𝑥3). From this clause we create a new clause

(𝑁1 (𝑥1) ∨𝑁2 (𝑥2) ∨𝑁2 (𝑥3)) where 𝑁𝑖 (𝑥) is defined as in the proof of Proposition A.1. We add such
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a clause for each clause in the original 3-SAT instance. Then to enforce the binary nature of the

original variables, we add the clauses (𝑁𝑖 (𝑥 𝑗 ) ∨ 𝑁𝑖 (𝑥 𝑗 ) ∨ 𝑁𝑖 (𝑥 𝑗 )) for 3 ≤ 𝑖 ≤ 𝑠 + 1 and 1 ≤ 𝑗 ≤ 𝑛,
which restrict the new variables to take values in {1, 2}.

If the 3-SAT instance is satisfiable, then the (1,1,3)-SetSAT instance is also satisfiable. Conversely,

if the SetSAT instance is satisfiable, then its variables take only the values 1 and 2 and we can

translate back to a satisfying assignment for the 3-SAT instance. □

The first deviation from the results of the SAT world is that the SetSAT analogue of 2-SAT is

hard except in the case 𝑠 = 1, which corresponds to 2-SAT.

Proposition A.3. Let 𝑠 ≥ 2 and 𝑑 = 𝑠 + 1. Then (1, 1, 2)-SetSAT is NP-hard.

Proof. Each clause can be represented as 𝑆𝑎,𝑏 (𝑥,𝑦), which forbids (𝑥,𝑦) = (𝑎, 𝑏). Therefore∧𝑠+1
𝑖=1

𝑆𝑖,𝑖 (𝑥,𝑦) is the disequality relation 𝑥 ≠ 𝑦, so we can simulate graph colouring, which is

NP-hard for 𝑠 + 1 ≥ 3 colours. □

We can extend this result to larger clauses as follows.

Corollary A.4. Let 𝑠 ≥ 2 and 𝑑 = 𝑠 + 1. Then (1, 𝑔, 2𝑔)-SetSAT is NP-hard for all 𝑔 ≥ 1.

Proof. A reduction from (1, 1, 2)-SetSAT analogous to the reduction from (1, 1, 3)-SAT to

(1, 𝑔, 3𝑔)-SAT in [5] gives the result. The clauses of the new (1, 𝑔, 2𝑔)-SetSAT instance are ob-

tained by taking the union of all 𝑔-tuples of clauses from the (1, 1, 2)-SetSAT instance.

If the (1, 1, 2)-SetSAT instance is satisfiable, then the obtained (1, 𝑔, 2𝑔)-SetSAT instance is 𝑔-

satisfiable for the same assignment. Conversely, since the (1, 𝑔, 2𝑔)-SetSAT instance contains clauses

made from copying an old clause 𝑔 times, satisfiability of the new formula implies satisfiability of

the old one, again for the same assignment. □

Finally we show that certain results on hypergraph colouring hardness obtained by Guruswami

and Lee [21] already imply NP-hardness fairly close to the real boundary.

Proposition A.5. For 𝑑 = 𝑠 + 1 and all 𝑔 ≥ 1, (1, 𝑠 (𝑔 − 1), (𝑠 + 1)𝑔)-SetSAT is NP-hard.

Proof. We give a reduction from the following hypergraph colouring problem, whose hardness

was proved in [21]. For 𝑔, 𝑟, 𝑐 ≥ 2, given as input a 𝑔𝑟 -uniform hypergraph that is promised to have

an 𝑟 -colouring where each colour appears at least 𝑔− 1 times in every hyperedge, find a 𝑐-colouring

that does not create a monochromatic hyperedge. The hardness reduction is as follows.

Let 𝑟 = 𝑐 = 𝑠 + 1. For each hyperedge {𝑥1, . . . , 𝑥 (𝑠+1)𝑔} we create, for 1 ≤ 𝑖 ≤ 𝑠 + 1, the SetSAT

clauses 𝐶𝑖 =
(
𝑁𝑖 (𝑥1) ∨ . . . ∨ 𝑁𝑖 (𝑥 (𝑠+1)𝑔)

)
, where 𝑁𝑖 are as in the proof of Proposition A.1. If the

hypergraph instance has an (𝑠 +1)-colouring where every colour appears at least 𝑔−1 times in each

hyperedge, then the obtained formula will be 𝑠 (𝑔 − 1) satisfiable: under the promised assignment,

the clause 𝐶𝑖 contains the group of satisfied literals whose variables are not equal to 𝑖 , and there

are at least 𝑔 − 1 literals in each of the 𝑠 such groups.

Conversely, if the SetSAT formula is satisfied, the variables 𝑥1, . . . , 𝑥 (𝑠+1)𝑔 cannot all take the
same value 𝑖 for any 𝑖 , as otherwise the clause 𝐶𝑖 would be false. Therefore no hyperedge in the

hypergraph is left monochromatic by a satisfying assignment. □
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