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Abstract

The promise constraint satisfaction problem (PCSP) is a recently introduced vast
generalisation of the constraint satisfaction problem (CSP) that captures approximability
of satisfiable instances. A PCSP instance comes with two forms of each constraint: a strict
one and a weak one. Given the promise that a solution exists using the strict constraints,
the task is to find a solution using the weak constraints. While there are by now several
dichotomy results for fragments of PCSPs, they all consider (in some way) symmetric
PCSPs.

1-in-3-SAT and Not-All-Equal-3-SAT are classic examples of Boolean symmetric
(non-promise) CSPs. While both problems are NP-hard, Brakensiek and Guruswami
showed [SICOMP’21] that given a satisfiable instance of 1-in-3-SAT one can find a solution
to the corresponding instance of (weaker) Not-All-Equal-3-SAT. In other words, the PCSP
template (1-in-3,NAE) is tractable.

We focus on non-symmetric PCSPs. In particular, we study PCSP templates obtained
from the Boolean template (t-in-k,NAE) by either adding tuples to t-in-k or removing
tuples from NAE. For the former, we classify all templates as either tractable or not
solvable by one of the strongest known algorithm for PCSPs, the combined basic LP and
affine IP relaxation of Brakensiek, Guruswami, Wrochna, and Živný [SICOMP’20]. For
the latter, we classify all templates as either tractable or NP-hard.

1 Introduction

How hard is it to find a 6-colouring of a graph if it is promised to be 3-colourable? We do
not know but believe it to be NP-hard. Despite sustained effort, this so-called approximate
graph colouring problem has been elusive since it was considered by Garey and Johnson almost
50 years ago [21]. The current state of the art is NP-hardness of finding a 5-colouring of a
3-colourable graph [6]. Approximate graph colouring is an example of the very general promise
constraint satisfaction problem, which is the focus of this paper. We start with (non-promise)
constraint satisfaction problems to set the stage.

∗An extended abstract of this work appeared in the Proceedings of the 48th International Colloquium on
Automata, Languages, and Programming (ICALP’21) [13]. Alex Brandts was supported by a Royal Society
Enhancement Award and an NSERC PGS Doctoral Award. Stanislav Živný was supported by a Royal Society
University Research Fellowship. This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532).
The paper reflects only the authors’ views and not the views of the ERC or the European Commission. The
European Union is not liable for any use that may be made of the information contained therein.
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Constraint satisfaction While deciding whether a graph is 2-colourable is solvable in
polynomial time, deciding 3-colourability is NP-complete [25]. The constraint satisfaction
problem (CSP) is a general framework that captures graph colourings and many other funda-
mental computational problems. Feder and Vardi initiated a systematic study of so-called
fixed-template decision CSPs. Let A be a fixed finite relational structure, called the template
or constraint language; i.e., A consists of a finite universe A and finitely many relations on A,
each of possibly different arity. The fixed-template CSP over A, denoted by CSP(A), is the
class of CSPs in which all constraint relations come from A. In more detail, CSP(A) denotes
the following computational problem: Given a structure X over the same signature as A, is
there a homomorphism from X to A, denoted by X→ A? (Formal definitions can be found
in Section 2.) If A = K3 is a clique on 3 vertices then CSP(A) is precisely the standard graph
3-colouring problem.

A classic result of Schaefer shows that, for any A on a 2-element set, CSP(A) is either
solvable in polynomial time or NP-complete. The non-trivial tractable cases from Schaefer’s
classification are taught in undergraduate algorithms courses: 2-SAT, (dual) Horn-SAT, and
linear equations over {0, 1}. Two concrete CSPs that are NP-hard by Schaefer’s result are the
(positive) 1-in-3-SAT and (positive) Not-All-Equal-3-SAT. For both problems, the instance is
a list of triples of variables. In 1-in-3-SAT, the task is to find a mapping from the variables to
{0, 1} so that in each specified triple exactly one variable is set to 1. Formally, 1-in-3-SAT is
CSP(1-in-3), where 1-in-3 = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}). In Not-All-Equal-3-SAT,
the task is to find a mapping from the variables to {0, 1} so that in each triple not all
variables are assigned the same value. Formally, Not-All-Equal-3-SAT is CSP(NAE), where
NAE = ({0, 1}; {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}).

If A is a graph (i.e., a single symmetric binary relation) then, as shown by Hell and
Nešetřil [23], CSP(A) is either solvable in polynomial time or NP-complete.

Based on these two examples and a connection to logic, Feder and Vardi famously conjec-
tured [19] that, for any finite A, CSP(A) is either solvable in polynomial time or NP-complete.
Bulatov [15], and independently Zhuk [30], proved the conjecture in the affirmative, both
relying on the algebraic approach to CSPs [24, 14, 7].

Promise constraint satisfaction Austrin, Guruswami, and H̊astad [4] and Brakensiek
and Guruswami [10] initiated the investigation of the promise constraint satisfaction problem
(PCSP), which is a vast generalisation of the CSP. Let A and B be two relational structures
such that A→ B. The fixed-template PCSP over A and B, denoted by PCSP(A,B), is the
following computational problem: Given X such that X→ A, find a homomorphism from X
to B (which exists by the composition of the promised homomorphism from X to A and the
homomorphism from A to B). If we take A = K3 to be a clique on 3 vertices and B = K6 to
be a clique on 6 vertices, then PCSP(A,B) is an instance of the approximate graph colouring
problem mentioned at the beginning of this article.

Actually, what we described is the search version of the PCSP. The decision version is
as follows: Given X, return Yes if X → A and return No if X 6→ B. (The promise in the
decision version is that it does not happen that X 6→ A but X→ B.) It is well known that the
decision version reduces to the search version but it is not known whether there is a reduction
the other way [6]. In most results (including ours), hardness is established for the decision
version and tractability for the search version.

If A = B then PCSP(A,B) is the same as CSP(A) and thus PCSPs indeed generalise
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CSPs. For CSPs, the decision and search versions are known to be equivalent [14].
Building on the result of Barto, Opršal, and Pinsker [8] that the complexity of CSP(A) is

captured by certain types of identities of higher-order symmetries (called polymorphisms) of A,
Barto, Buĺın, Krokhin, and Opršal showed that the basics of the algebraic approach developed
for CSPs [8] can be generalised to PCSPs [6], thus introducing a general methodology for
investigating the computational complexity of PCSPs. In particular, among other things, they
showed that finding a 5-colouring of a 3-colourable graph is NP-hard.

Related work Motivated by the goal to understand the computational complexity of all
fixed-template PCSPs, a recent line of research has focused on restricted classes of templates,
with the main directions being Boolean templates (i.e., templates on a two-element set) and
symmetric templates (i.e., all relations in the template satisfy that if a tuple belongs to a
relation then so do all its permutations).

Austrin, Guruswami, and H̊astad [4] considered the (1, g, k)-SAT problem: Given an
instance of k-SAT with the promise that there is an assignment satisfying at least g literals in
each clause, find an assignment that satisfies at least one literal in each clause. They showed
that this problem is NP-hard if g

k <
1
2 , and polynomial-time solvable otherwise. (1, g, k)-SAT

is a Boolean PCSP with a (symmetric) template that includes the binary disequality relation
and a relation containing all tuples of particular Hamming weights. The NP-hardness in [4]
was proved via reduction from the label cover problem using the idea of polymorphisms lifted
from CSPs to PCSPs. Building on the algebraic theory from [6], Brandts, Wrochna, and
Živný [12] extended the classification of (1, g, k)-SAT to arbitrary finite domains.

Brakensiek and Guruswami [10] managed to classify all PCSPs over symmetric Boolean
templates with the disequality relation as NP-hard or solvable in polynomial time. Ficak,
Kozik, Oľsák, and Stankiewicz [20] extended this result to all symmetric Boolean templates.

In very recent work, Barto, Battistelli, and Berg [5] explored symmetric PCSPs on three-
and four-element domains.

While the approximate graph colouring problem remains open, hardness was proved under
stronger assumptions (namely Khot’s 2-to-1 Conjecture [26] for k-colourings with k ≥ 4 and
its non-standard variant for 3-colourings) by Dinur, Mossel, and Regev [17]. Guruswami and
Sandeep [22] recently established this result under a weaker assumption, the so-called d-to-1
conjecture for any fixed d ≥ 2. For approximate hypergraph colouring, another important
PCSP, NP-hardness was established by Dinur, Regev, and Smyth [18]. There has been some
recent progress on approximate graph colourings [29] and related PCSPs, e.g. approximate
graph homomorphism problems [27, 29], and rainbow vs. normal hypergraph colourings [3].

Contributions Unlike most previous works, which focused on symmetric PCSPs, we inves-
tigate non-symmetric PCSPs. Our first motivation is that a classification of more concrete
PCSP templates is needed to improve and extend the general algebraic theory from [6], for
example by identifying new hardness and tractability criteria. At the moment, even an ana-
logue of Schaefer’s result, i.e., classifying all Boolean PCSPs, seems out of reach. Our second
motivation is the pure beauty of the template (1-in-3,NAE). While PCSP(1-in-3,NAE)
admits a polynomial-time algorithm [10, 9], tractability cannot be obtained via a “gadget
reduction” to tractable finite-domain CSPs [6] or via a “local consistency checking” [2].

Let t-in-k denote the Boolean structure with a single relation of arity k that contains
tuples with exactly t 1’s and let NAE denote the Boolean structure with a single relation

3



of arity k, which is always clear from the context, that contains all tuples except for the
two all-equal tuples. (Previously in this section, we used NAE only with k = 3.) Consider
the Boolean PCSP(t-in-k,NAE), which is a natural generalisation of PCSP(1-in-3,NAE).
Similarly to PCSP(1-in-3,NAE), we have that PCSP(t-in-k,NAE) is a symmetric tractable
PCSP.

We study the following two questions: Firstly, when can we add tuples to t-in-k (i.e., how
can we weaken the promise) to keep the PCSP tractable? Secondly, when can we remove
tuples from NAE (i.e., how can we strengthen the relation NAE) to keep the PCSP tractable?
Note that both of these changes generally do not result in symmetric templates.

For the second question, we give a complete answer in Theorem 14: If t is odd, k is even,
and tuples of only even Hamming weight are removed from NAE, the resulting PCSP is
solvable in polynomial time. In all other cases, the resulting PCSP is NP-hard. Put differently,
PCSP(t-in-k,T) is tractable if only if T = NAE or CSP(T) is tractable (assuming P6=NP).

For the first question, we give a second-best possible answer in Theorem 11: If t is odd,
k is even, and tuples of only odd Hamming weight are added to t-in-k, the resulting PCSP
is tractable. In all other cases, the resulting PCSP is not solved by the combined basic LP
and affine IP relaxation (BLP + AIP) of Brakensiek, Guruswami, Wrochna, and Živný [11],
one of the currently strongest known algorithm for PCSPs. The power of this relaxation,
both in terms of minions and polymorphism identities, is known [11]. It is consistent with
the current knowledge that BLP + AIP could solve all tractable Boolean PCSPs. The only
stronger algorithm than BLP + AIP studied in the context of PCSPs is CLAP [16], but
its power is currently only known via a minion-theoretic characterisation (and not via a
polymorphism characterisation). Similarly to PCSP(1-in-3,NAE), the PCSPs that we prove
to be BLP + AIP-hard are not solvable by “local consistency checking” and via a “gadget
reduction” to tractable finite-domain CSPs (cf. Remark 12).

One take-away message from our results is that the tractability of PCSP(t-in-k,NAE)
is very fragile, which gives more support for its importance. Another message is that the
PCSP templates obtained from the template (t-in-k,NAE) by adding a single tuple are
good candidates for testing and/or improving NP-hardness criteria for PCSPs. Finally,
Proposition 16, while with a very simple proof, shows that the classification of Boolean
symmetric PCSP templates (A,B) from [20] holds more generally and requires that only A
should be symmetric.

2 Preliminaries

We denote by [n] the set {1, 2, . . . , n}. For a k-tuple x, we write x = (x1, . . . , xk). We denote by
≤p a polynomial-time many-one reduction and by ≡p a polynomial-time many-one equivalence.

A relational structure is a tuple A = (A;R1, . . . , Rp), where A is a finite set called the
domain of A, and each Ri is a relation of arity ar(Ri) ≥ 1, that is, Ri is a non-empty
subset of Aar(Ri). A relational structure is symmetric if each relation in it is invariant
under any permutation of coordinates. Two relational structures A = (A;R1, . . . , Rp) and
B = (B;S1, . . . , Sq) have the same signature if p = q and ar(Ri) = ar(Si) for every i ∈ [p].
In this case, a mapping φ : A → B is called a homomorphism from A to B, denoted by
φ : A→ B, if φ preserves all relations; that is, for every i ∈ [p] and every tuple x ∈ Ri, we
have φ(x) ∈ Si, where φ is applied component-wise. The existence of a homomorphism from
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A to B is denoted by A→ B. A PCSP template is a pair (A,B) of relational structures over
the same signature such that A→ B.

Definition 1. Let (A,B) be a PCSP template. The decision version of PCSP(A,B) is the
following problem: Given as input a relational structure X over the same signature as A
and B, output Yes if X→ A and No if X 6→ B. The search version of PCSP(A,B) is the
following problem: Given as input a relational structure X over the same signature as A and
B such that X→ A, find a homomorphism from X to B.

We call PCSP(A,B) tractable if any instance of PCSP(A,B) can be solved in polynomial
time in the size of the input structure X. It is easy to show that the decision version reduces to
the search version [6]. Our hardness results will be for the decision version and our tractability
results for the search version. For a relational structure A, the constraint satisfaction problem
with the template A, denoted by CSP(A), is PCSP(A,A).

The following notion of polymorphisms is at the heart of the algebraic approach to (P)CSPs.

Definition 2. Let (A,B) be a PCSP template. A function f : Am → B is a polymorphism
of arity m of (A,B) if for each pair of corresponding relations Ri and Si from A and B,
respectively, the following holds: For any (ar(Ri)×m) matrix M whose columns are tuples
in Ri, the application of f to rows of M gives a tuple in Si. In other words, an arity m
polymorphism is a homomorphism from the m-th Cartesian power of A to B. We denote by
Pol(A,B) the set of all polymorphisms of (A,B).

In a PCSP template (A,B) we view tuples from A and B as columns. When writing tuples
in text we may write them as rows to simplify notation but they should still be understood as
columns. For a k-ary relation R on the set A, we denote by Rc = Ak \R the complement of R.
For a relational structure A, we denote by Ac the structure with relations Rc for each relation
R in A. Most of our relational structures will be on the Boolean domain {0, 1} and contain a
single relation of arity k. The (Hamming) weight of a tuple x ∈ {0, 1}k, denoted throughout
by d, is the number of 1’s in x. For 1 ≤ t < k, the Boolean relational structure t-in-k consists
(of one relation consisting) of all k-tuples with weight t. The Boolean relational structure
NAE contains all k-tuples except 0k and 1k.

We need a definition and some notation to state existing results on Boolean (P)CSPs.

Definition 3. A function f : {0, 1}m → {0, 1} is

• an ORm (ANDm) if it returns the logical OR (respectively logical AND) of its arguments;

• an alternating threshold ATm if m is odd and

f(x1, . . . , xm) = 1 if and only if x1 − x2 + x3 − · · ·+ xm > 0;

• a parity function XORm if f(x1, . . . , xm) = x1 + · · ·+ xm mod 2;

• a q-threshold THRq,m (for q a rational between 0 and 1 and mq not an integer) if
f(x1, . . . , xm) = 0 if

∑m
i=1 xi < mq and 1 otherwise;

• a majority MAJm if f is a 1
2 -threshold and m is odd.

5



We denote by OR and AND the set of all ORm and ANDm functions, respectively, for all
m ≥ 2. We denote by AT and XOR the set of all ATm and XORm functions, respectively, for
odd m ≥ 1. Finally, THRq denotes the set of all THRq,m functions for qm 6∈ Z.

Define f , the negation of f , as the function x 7→ 1− f(x), and for a family of functions F ,
define the negation of F by F = {f |f ∈ F}.

Schaefer’s dichotomy theorem [28] classified all Boolean CSP templates and can be stated
in various forms (see e.g. [7] for further discussion). Here we give a modern formulation in
terms of polymorphisms.

Theorem 4. Let B be a Boolean CSP template. If Pol(B) contains a constant, AND2, OR2,
MAJ3, or XOR3, then CSP(B) is tractable. Otherwise, CSP(B) is NP-hard.

Ficak et al. classified all symmetric Boolean PCSP templates [20].

Theorem 5 ([20]). Let (A,B) be a symmetric Boolean PCSP template. If Pol(A,B) contains
a constant or at least one of OR, AND, XOR, AT, THRq (for some q) or their negations,
then PCSP(A,B) is tractable. Otherwise, PCSP(A,B) is NP-hard.

The only possibly unresolved promise templates are those with NP-hard CSP templates.

Proposition 6. Let (A,B) be a promise template such that at least one of CSP(A), CSP(B)
is tractable. Then PCSP(A,B) is tractable.

Proposition 6 is a direct consequence of the important concept of homomorphic relaxation,
which we now define. Let (A,B) and (A′,B′) be two PCSP templates over the same signature.
We call (A′,B′) a homomorphic relaxation of (A,B) if A′ → A and B → B′. It is easy to
show [6] that PCSP(A′,B′) ≤p PCSP(A,B).1

Proof of Proposition 6. We have PCSP(A,B) ≤p PCSP(A,A) = CSP(A), since (A,B) is
a homomorphic relaxation of (A,A) as A→ B by assumption. Similarly, PCSP(A,B) ≤p
PCSP(B,B) = CSP(B), since (A,B) is a homomorphic relaxation of (B,B) as A→ B by
assumption.

Theorem 4 established NP-hardness of two natural CSPs: CSP(1-in-3) and CSP(NAE).
Interestingly, PCSP(1-in-3,NAE) is solvable in polynomial-time, as first shown by Brakensiek
and Guruswami [10]. (This shows that the converse of Proposition 6 is false.) A natural
generalisation of 1-in-3 is t-in-k. Theorem 4 implies that CSP(t-in-k) is NP-hard, which also
follows from Proposition 25. Theorem 5 implies that the tractability of PCSP(1-in-3,NAE)
also holds for PCSP(t-in-k,NAE).

Proposition 7. For k ≥ 3 and 1 ≤ t < k,CSP(t-in-k) is NP-hard.

Proposition 8. For k ≥ 2 and 1 ≤ t < k,PCSP(t-in-k,NAE) is tractable.

1In fact, more is known: The trivial (identity) reduction from PCSP(A′,B′) to PCSP(A,B) is correct if
and only if (A′,B′) is a homomorphic relaxation of (A,B).
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2.1 Algorithms

We now present three relaxations for PCSPs: BLP, AIP, and BLP + AIP. The first one, BLP,
is needed for the description of the third one. The second one, AIP, solves all tractable cases
in our classification results. Finally, the third one, BLP + AIP, is one of the strongest known
algorithms for PCSPs and the strongest one with a characterisation of its power in terms
of polymorphism identities. Our “algorithmic dichotomy” result (Theorem 11) shows AIP
solvability vs. BLP + AIP-hardness.

In the rest of this section, let (A,B) be a PCSP template, where A = (A;R1, . . . , Rp)
and B = (B;S1, . . . , Sp). Let X = (X;T1, . . . , Tp) be an instance of PCSP(A,B). We assume
without loss of generality that all three structures contain a unary relation equal to X in X,
equal to A in A, and equal to B in B; the relation is called Ru in A. If this is not the case,
the template and the instance can be extended without changing the set of solutions.

The basic linear programming relaxation (BLP) of X, denoted by BLP(X,A), is defined
as follows. The variables are λx,i(a) for every i ∈ [p], x ∈ Ti, and a ∈ Ri, and the constraints
are given in Figure 1. (Note that BLP(X,A) does not depend on B.)

0 ≤ λx,i(a) ≤ 1 ∀i ∈ [p],∀x ∈ Ti, ∀a ∈ Ri (1)∑
a∈Ri

λx,i(a) = 1 ∀i ∈ [p],∀x ∈ Ti (2)

∑
a∈Ri,aj=a

λx,i(a) = λxj ,Ru(a) ∀i ∈ [p],∀x ∈ Ti, ∀a ∈ A,∀j ∈ [ar(Ri)] (3)

Figure 1: Definition of BLP(A,X).

The basic affine integer programming relaxation (AIP) of X, denoted by AIP(X,A), is
defined as follows. The variables are τx,i(a) for every i ∈ [p], x ∈ Ti, and a ∈ Ri, and the
constraints are given in Figure 2.

τx,i(a) ∈ Z ∀i ∈ [p],∀x ∈ Ti, ∀a ∈ Ri (4)∑
a∈Ri

τx,i(a) = 1 ∀i ∈ [p],∀x ∈ Ti (5)

∑
a∈Ri,aj=a

τx,i(a) = τxj ,Ru(a) ∀i ∈ [p],∀x ∈ Ti, ∀a ∈ A,∀j ∈ [ar(Ri)] (6)

Figure 2: Definition of AIP(A,X).

We say that AIP(X,A) accepts if the affine program in Figure 2 is feasible, and rejects
otherwise. By construction, if X → A then AIP(X,A) accepts. We say that AIP solves
PCSP(A,B) if for every instance X accepted by AIP(X,A) we have X→ B.

A (2m + 1)-ary function f : A2m+1 → B is called alternating if f(a1, . . . , a2m+1) =
f(aπ(1), . . . , aπ(2m+1)) for every a1, . . . , a2m+1 ∈ A and every permutation π : [2m + 1] →
[2m + 1] that preserves parity, and f(a1, . . . , a2m−1, a, a) = f(a1, . . . , a2m−1, a

′, a′) for every

7



a1, . . . , a2m−1, a, a
′ ∈ A. Intuitively, an alternating function is invariant under permutations

of its odd and even coordinates and has the property that adjacent coordinates cancel each
other out. The power of AIP for PCSPs is characterised by the following result.2

Theorem 9 ([6]). Let (A,B) be a PCSP template. Then (the decision version of) PCSP(A,B)
is tractable via AIP if and only if Pol(A,B) contains alternating functions of all odd arities.

The combined basic LP and affine IP algorithm (BLP + AIP) [11] is presented in Al-
gorithm 1. If X → A then BLP + AIP accepts X [11]. We say that BLP + AIP solves

Algorithm 1: The BLP + AIP algorithm

Input: an instance X of PCSP(A,B)
Output: yes if X→ A and no if X 6→ B

1 find a relative interior point (λx,i(a))i∈[p],x∈Ti,a∈Ri
of BLP(X,A);

2 if no relative interior point exists then
3 return no;
4 end
5 refine AIP(X,A) by setting τx,i(a) = 0 if λx,i(a) = 0;
6 if the refined AIP(X,A) accepts then
7 return yes;
8 end
9 return no;

PCSP(A,B) if for every instance X accepted by BLP + AIP we have X→ B.
A (2m+ 1)-ary function f : A2m+1 → B is called 2-block-symmetric if f(a1, . . . , a2m+1) =

f(aπ(1), . . . , aπ(2m+1)) for every a1, . . . , a2m+1 ∈ A and every permutation π : [2m + 1] →
[2m+ 1] that preserves parity. In other words, f is 2-block-symmetric if its 2m+ 1 coordinates
can be partitioned into two blocks of size m+ 1 and m in such a way that the value of f is
invariant under any permutation of coordinates within each block. Without loss of generality,
we will assume that the two blocks are the odd and even coordinates of f .

The power of BLP + AIP for PCSPs is characterised by the following result.3

Theorem 10 ([11]). Let (A,B) be a PCSP template. Then (the decision version of)
PCSP(A,B) is tractable via BLP + AIP if and only if Pol(A,B) contains 2-block-symmetric
functions of all odd arities.

3 Results

Our results are concerned with templates that arise from (t-in-k,NAE) either by adding
tuples to t-in-k or removing tuples from NAE. For a set of tuples S ⊆ {0, 1}k, we write
t-in-k ∪ S for the relational structure whose (only) relation contains all k-tuples of weight t
and the tuples from S, and similarly for NAE \ S.

Our first result is an algorithmic dichotomy for templates constructed by adding tuples to
t-in-k.

2We note that [6] proves several other equivalent statements in Theorem 9.
3We note that [11] proves several other equivalent statements in Theorem 10.
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Theorem 11 (Main #1). Let k ≥ 3 and ∅ 6= S ⊆ (t-in-k)c ∩NAE. If t is odd, k is even,
and S contains tuples of only odd weight, then PCSP(t-in-k ∪ S,NAE) is tractable via AIP.
Otherwise, PCSP(t-in-k ∪ S,NAE) is not solved by BLP + AIP.

Ruling out the applicability of BLP + AIP as stated in Theorem 11 is done, via Theorem 10,
in Section 4.

Remark 12. Barto et al. [6] showed that PCSP(1-in-3,NAE) is not “finitely tractable”,
meaning that there is no finite C such that 1-in-3→ C→ NAE and CSP(C) is tractable.
In other words, the tractability of PCSP(1-in-3,NAE) cannot be achieved via a “gadget
reduction” to tractable finite-domain CSPs. This result was then extended by Asimi and
Barto [1] to PCSP(t-in-k,NAE) for k ≥ 3, t < k when t is even or k is odd. Since the
BLP + AIP-hard cases in Theorem 11 are homomorphically sandwiched by templates proved
finitely intractable in [1], they are also finitely intractable.

A recent result of Atserias and Dalmau that gives a necessary condition for PCSPs to
be solvable by a “local consistency checking” algorithm [2] implies that all templates from
Theorem 11 (and in particular those not solved by BLP + AIP) are not solved by a “local
consistency checking” algorithm. By [2, Corollary 4.2], such an algorithm does not solve
PCSP(t-in-k,NAE) for any k ≥ 3 and t < k, and since (t-in-k,NAE) is a homomorphic
relaxation of the templates from Theorem 11, our claim follows from [6, Lemma 7.5].

Our second result is a complexity dichotomy for templates constructed by removing tuples
from NAE. The key result here is the following.

Theorem 13. Let k ≥ 3 and let T ⊆ {0, 1}k be a relation such that t-in-k→ T and CSP(T)
is NP-hard. Then PCSP(t-in-k,T) is tractable if and only if T = NAE, unless P=NP.

In other words, PCSP(t-in-k,T) is tractable if CSP(T) is tractable or T = NAE, and is
NP-hard otherwise. Theorem 13 then easily implies the following.

Theorem 14 (Main #2). Let k ≥ 3 and ∅ 6= S ⊆ (t-in-k)c ∩ NAE. If t is odd, k is
even, and S contains tuples of only even weight, then PCSP(t-in-k,NAE \ S) is tractable.
Otherwise, PCSP(t-in-k,NAE \ S) is NP-hard.

Theorem 13 is proved in Section 5 and relies on Theorem 5, as well as a symmetrisation
trick (Proposition 16, observed independently in [5]) and the following observation.

Proposition 15. Let R be a symmetric relation on a set A. For any function f : A→ B, the
component-wise image of R under f , denoted f(R), is a symmetric relation on B.

Proof. Suppose that y ∈ f(R), so y = f(x) for some x ∈ R. We must show that π(y) ∈ f(R)
for an arbitrary permutation π. But since R is symmetric, we have π(x) ∈ R, and so
f(π(x)) = π(y) since f is applied component-wise.

Proposition 16. Let (A,B) be a PCSP template with A symmetric. For each relation
R ∈ B, let R′ be the largest symmetric relation contained in R. Let B′ be the relational
structure with the same domain as B but with relations R′ instead of R. Then PCSP(A,B) is
polynomial-time equivalent to PCSP(A,B′).
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Proof. We first check that (A,B′) is a valid PCSP template, i.e., that there is a homomorphism
A → B′. Let φ be a homomorphism from A to B. By Proposition 15, φ(A) is symmetric,
and since B′ is the largest symmetric relational structure contained in B, we have φ(A) ⊆ B′.
Therefore (A,B′) is a valid PCSP template. For f ∈ Pol(A,B), f(A) is symmetric and is
contained in B, so f(A) ⊆ B′ and Pol(A,B) ⊆ Pol(A,B′). The reverse inclusion follows
from B′ ⊆ B and gives Pol(A,B) = Pol(A,B′), which implies by [6, Theorem 3.1] that
PCSP(A,B) ≡p PCSP(A,B′).

The tractability parts in Theorem 11 and Theorem 14 follow easily from existing work,
as we now show. Using (the sufficiency of) Theorem 9, it is easy to establish Proposition 8,
i.e., tractability of PCSP(t-in-k,NAE). Indeed, by [10, Claim 4.6], the AT family maps
collections of t-in-k tuples into NAE, and so PCSP(t-in-k,NAE) is tractable.

Proposition 17. For k even, (the search version of) CSP(odd-in-k) is tractable.

Proof. We claim that XOR3 ∈ Pol(odd-in-k) so that tractability will follow from Theorem 4.
To see that XOR3 ∈ Pol(T), suppose that XOR3 returns a tuple of even weight d. Then in
the k × 3 matrix of inputs with three odd weight tuples as columns, there are d rows with an
odd number of 1’s and k − d rows with an even number of 1’s. Together these give an even
total number of 1’s in the matrix. But since the three input columns have odd weight, the
total number of 1’s in the matrix is odd. Contradiction.

Proof of the tractability part of Theorems 11 and 14. Under the tractability criterion of The-
orem 11, t-in-k ∪ S ⊆ odd-in-k ⊆ NAE and thus (t-in-k ∪ S,NAE) is a homomorphic
relaxation of (odd-in-k,odd-in-k). As discussed in Section 2 (and proved in [6]), this
implies that PCSP(t-in-k ∪ S,NAE) ≤p PCSP(odd-in-k,odd-in-k) = CSP(odd-in-k),
where CSP(odd-in-k) is tractable by Proposition 17 (for even k). Similarly, under the
tractability criterion of Theorem 14, we have t-in-k ⊆ odd-in-k ⊆ NAE \ S and thus
PCSP(t-in-k,NAE \ S) ≤p CSP(odd-in-k). By composing XOR3 functions from the
proof of Proposition 17, or by observing that odd-in-k is an affine subspace, we have
XOR ⊆ Pol(odd-in-k), which implies via the inclusion that our PCSP templates have the
XOR family of polymorphisms and thus are solvable by AIP.

4 Adding tuples

The following result implies, by Theorem 10, the non-tractability part of Theorem 11.

Theorem 18. Let k ≥ 3, 1 ≤ t < k, and x be a k-tuple of weight 1 ≤ d < k with d 6= t. Then,
(t-in-k∪ {x},NAE) does not have 2-block-symmetric polymorphisms of all odd arities, unless
t is odd, k is even, and d is odd.

The implication is as follows: In the non-tractability case of Theorem 11, S contains
a tuple x of weight d such that if d is odd, then t is even, k is odd, or both. Therefore
Pol(t-in-k ∪ S,NAE) ⊆ Pol(t-in-k ∪ {x},NAE), so it suffices to rule out 2-block-symmetric
polymorphisms for templates of the form (t-in-k ∪ {x},NAE).

We start with two simple observations which reduce the number of cases to deal with.
Since permuting the rows of a matrix of inputs to a polymorphism permutes the values of the
output tuple and does not affect membership in the symmetric NAE relation, we have the
following.
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Observation 19. Let x and y be two k-tuples of weight d. Then, Pol(t-in-k∪ {x},NAE) =
Pol(t-in-k ∪ {y},NAE).

By Observation 19, it suffices to prove Theorem 18 for x of the form x = 1d0k−d.

Observation 20. There is a bijection between Pol(t-in-k∪{x},NAE) and Pol((k− t)-in-k∪
{x},NAE) given by f(x1, . . . , xm) 7→ f(1− x1, . . . , 1− xm), where x is the negation of x.

Observation 20 implies that 2-block-symmetry of polymorphisms is preserved when swap-
ping 0’s and 1’s.

There are eight combinations of the parities of k, t, and d. The case (k, t, d) ≡ (0, 1, 1) is
out of the scope of Theorem 18 and is covered by the tractable case of Theorem 11. The case
(k, t, d) ≡ (1, 0, 0) is covered for d > t in Proposition 23 and d < t in Proposition 24, and all
other cases are covered for d > t in Proposition 21 and d < t in Proposition 22. By applying
Observation 20, we may assume that d+ t ≤ k, which allows a single construction to work in
each of these propositions. We start with a brief account of the idea behind the proofs.

Let Ctk be the k× k matrix containing the k cyclic shifts of the column 1t0k−t. The matrix
Ctk can be used to fill one of the coordinate blocks of a 2-block-symmetric function f of arity
2k ± 1. For example, suppose that Ctk is used to fill the “first” coordinate block. It does not
matter whether the first block contains the odd or even coordinates. Then f depends only on
the weights in each row of the “second” block, since the first block has the same weight in
every row. This allows f to be analysed as a symmetric (1-block-symmetric) function.

For each k, t, and d, and for any f such that one of its blocks can be filled by Ctk, we exhibit
a set of tableaux for the other block that prevents f from being a polymorphism. Suppose we
have filled one block with Ctk, so that f can now be represented as a unary function of the
weight on its other block. For any weights w1, w2, w3, we have at least one of f(w1) = f(w2),
f(w1) = f(w3), and f(w2) = f(w3). For each pair of weights, we construct a tableau where
each row of the second block is one of the two weights. Thus we are guaranteed that f will
return an all-equal tuple and hence not be a polymorphism.

Proposition 21. Let k ≥ 3, 1 ≤ t < k, and t < d < k be such that d+ t ≤ k, and t ≡ k or
d 6≡ t (mod 2). Let x be a tuple of weight d. Then Pol(t-in-k ∪ {x},NAE) does not have
2-block-symmetric functions of arity 2k − 1.

Proof. Let f be a 2-block-symmetric function of arity 2k − 1. We will show that f is not
a polymorphism of (t-in-k ∪ {x},NAE). Let the odd block contain the tableau Ctk and
denote by Ct−k the tableau obtained from Ctk by removing its last column. We describe how
to construct the even block with k − 1 columns in the cases below. We use t− 1, t, and t+ 1
as our three weights.
Case 1: weights t− 1 and t.
The even tableau is Ct−k . Thus each row in the even block has weight either t − 1 or t. If
f(t− 1) = f(t) then f returns an all-equal tuple 0k or 1k, so f 6∈ Pol(t-in-k ∪ {x},NAE).
Case 2: weights t− 1 and t+ 1.
We take Ct−k and replace some of the t-in-k tuples with x as necessary.
Case 2a: t ≡ k (mod 2).
The tableau Ct−k has an even number k− t of rows with weight t. These can be paired up and
1’s exchanged so that each row has weight either t− 1 or t+ 1. In particular, in the columns
t+1, t+3, . . . , k−1, we swap the values in the pairs of rows (t, t+1), (t+2, t+3), . . . , (k−2, k−1),
respectively. An illustration is given in Figure (3a).
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1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1


(a) Case 2a with t = 3.



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
0 1 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(b) Case 2b with t = 2 and d = 5.

Figure 3: Example with k = 9 for f(t− 1) = f(t+ 1). Swapped values in bold.

Case 2b: (k, t, d) ≡ (0, 1, 0) or (1, 0, 1) (mod 2).
The tableau Ct−k has an odd number k − t of rows with weight t. We replace the first column
with x. This adds d− t 1’s to the first column, and the d− t rows with the added 1’s now
have weight t + 1. There remains an even number k − d of rows of weight t, which can be
paired up to exchange 1’s and achieve weight t− 1 or t+ 1 in each row. In particular, we swap
the values at positions (t, 2) and (d+ 1, 2), and then in the columns d+ 3, d+ 5, . . . , k − 1, we
swap the values in the pairs of rows (d+ 2, d+ 3), (d+ 4, d+ 5), . . . , (k− 2, k− 1), respectively.
An illustration is given in Figure (3b).

Cases 2a and 2b cover all possible parities of k, t, and d under the proposition’s assumptions.
In both cases, each row in the even block has weight either t− 1 or t+ 1. If f(t− 1) = f(t+ 1)
then f returns an all-equal tuple, so f 6∈ Pol(t-in-k ∪ {x},NAE).
Case 3: weights t and t+ 1.

We first give a general description of the tableau, and then derive values for its parameters.
We place the tuple x in the first r columns and fill the remaining k − 1 − r columns with
t-in-k tuples that have specific behaviours in the upper d rows and lower k − d rows. Our
goal is to distribute the weight of the t-in-k tuples between these two blocks of rows so that
every row in the full tableau has weight t or t+ 1.

Denoting by a the average column weight within the upper group of rows, we place either
b or b + 1 1’s from each t-in-k tuple in the upper block, where b is an integer close to a.
More precisely, to fill the upper d rows, we use 0 ≤ s ≤ k − 1 − r columns of weight b and
k − 1 − r − s columns of weight b + 1, and in the lower block of rows, we use s columns of
weight t − b and k − 1 − r − s columns of weight t − (b + 1), respectively, so that the full
columns are t-in-k tuples.

We now describe the position of the 1’s in the upper group of rows; the construction for
the lower group is analogous. We fill columns with 1’s from top to bottom, starting at the
left-most column, and moving to the right after placing a column’s quota of 1’s (either b or
b+ 1). The order of the weight b and b+ 1 tuples does not matter. When moving right to the
next column, we continue placing 1’s in the row immediately below the lowest row containing
a 1 in the previous column. Once we reach the bottom of the group of rows, we wrap around
to the top and continue in this way.

A k × (k − 1) tableau containing only t-in-k tuples needs at least t more 1’s to achieve
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weight ≥ t in each row. Each time we replace a t-in-k tuple with x, the tableau gains d− t
1’s, and therefore at least r =

⌈
t
d−t

⌉
occurrences of x are necessary. This turns out to be

sufficient. The remainder of the proof is devoted to showing that there exist a, b, and s which
allow our construction to work.

A crucial observation connecting the column and row weights in our tableau is that within
each block of rows, the weight between rows varies by at most one. It therefore suffices for the
average row weight in each block to be between t and t+ 1.

To achieve average row weight at least t, a must be such that the total weights in the
upper and lower blocks are at least d(t − r) and t(k − d), respectively. This is guaranteed
when both a(k − 1− r) ≥ d(t− r) and (t− a)(k − 1− r) ≥ t(k − d), or equivalently,

d(t− r)
k − 1− r

≤ a ≤ t(d− r − 1)

k − 1− r
. (7)

To achieve average row weight at most t + 1, a must be such that the total weights in
the upper and lower blocks are at most d(t+ 1− r) and (k − d)(t+ 1), respectively. This is
guaranteed when both a(k − 1− r) ≤ d(t+ 1− r) and (t− a)(k − 1− r) ≤ (k − d)(t+ 1), or
equivalently,

t(d− r − 1)− k + d

k − 1− r
≤ a ≤ d(t− r + 1)

k − 1− r
. (8)

Finally, to ensure that each block of rows is tall enough to accommodate the 1’s specified
in the construction, it suffices that 0 ≤ a ≤ d and 0 ≤ t − a ≤ k − d, which together are
equivalent to max(0, d+ t− k) ≤ a ≤ min(d, t). By our assumptions, this reduces to 0 ≤ a ≤ t.

We now show that these inequalities can all be simultaneously satisfied. In 7, the upper
bound is at least the lower bound if and only if r ≥ t

d−t , which holds for our choice of r, and

in 8, the upper bound is at least the lower bound if and only if r ≤ t
d−t + k

d−t , which holds

since k
d−t ≥ 1. Exchanging the upper/lower bound pairs in 7 and 8 results in two pairs of

inequalities on a that are always satisfied. Finally, for 0 ≤ a ≤ t, it suffices that at least one of
the lower bounds is nonnegative, and at least one of the upper bounds is at most t. The lower
bound in 7 is nonnegative if and only if t ≥ r, which always holds, and the upper bound is at
most t if and only if d ≤ k, which also always holds.

Therefore there exists 0 ≤ a ≤ t satisfying 7 and 8, and since these inequalities are not
strict, we can take a to be rational with denominator k − 1− r. Let b = bac. Recalling that s
is the number of columns of weight b in the upper block, computing the total weight in the
upper block gives sb+ (k− 1− r− s)(b+ 1) = a(k− 1− r), so that s = (k− 1− r)(b+ 1− a).
This is an integer since a is a fraction with denominator k − 1− r. As a sanity check, note
that if a = b or a = b+ 1, then s = k − 1− r or s = 0, respectively.

We have shown that there exist a, b, and s which permit us to construct the tableau with
weight t or t+ 1 in each row. Thus if f(t) = f(t+ 1), then f returns the all-equal tuple 0k or
1k, so f 6∈ Pol(t-in-k ∪ {x},NAE). This ends the proof of Case 3.

Since we must have at least one of f(t− 1) = f(t), f(t− 1) = f(t+ 1), and f(t) = f(t+ 1),
the three cases complete the proof.

An example with t = 7, k = 15, and d = 10 is illustrated in Figure 4. In this case, we have

r =
⌈

t
d−t

⌉
= 3 and we get the inequalities 40

11 ≤ a ≤
42
11 and 37

11 ≤ a ≤
50
11 . We take a = 41

11 ; the

values 40
11 and 42

11 would also work. Then b = 3 and s = 3, so in the upper group we have 3
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columns of weight b = 3 and 8 columns of weight b+ 1 = 4. The columns containing x are
shown in addition to the construction on k − 1− r columns.



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1


Figure 4: Example with t = 7, k = 15, and d = 10 from Case 3, for f(t) = f(t+ 1).

Proposition 22. Let k ≥ 3, 1 < t < k, and 1 ≤ d < t be such that d+ t ≤ k, and t ≡ k or
d 6≡ t (mod 2). Let x be a tuple of weight d. Then Pol(t-in-k ∪ {x},NAE) does not have
2-block-symmetric functions of arity 2k + 1.

Proof. The proof is similar to the case d > t established in Proposition 21, except that now
we can reduce the number of 1’s in the tableaux by replacing t-in-k tuples with x. We place
the tableau Ctk in the even coordinates, so that there are k + 1 columns to be filled in the odd
coordinates. As before, we give tableaux for the three pairs of weights from t− 1, t, and t+ 1.

Let Ct+k be the k × (k + 1) matrix Ctk with an extra column 1t0k−t.
Case 1: weights t and t+ 1.
The odd tableau is Ct+k , so each row in the odd block has weight either t or t+ 1.
Case 2: weights t− 1 and t+ 1.
The tableaux are similar to Case 2 in the proof of Proposition 21. When t ≡ k, we modify Ct+k
in the columns t+2, t+4, . . . , k by swapping the values in the pairs of rows (t+1, t+2), (t+3, t+
4), . . . , (k− 1, k), respectively. When (k, t, d) ≡ (0, 1, 0) or (1, 0, 1), we replace the first column
of Ct+k with x, which leaves an even number k − d of rows of weight t. Therefore in columns
d+2, d+4, . . . , k we swap the values in the pairs of rows (d+1, d+2), (d+3, d+4), . . . , (k−1, k),
respectively, to get weight t− 1 or t+ 1 in each row.
Case 3: weights t− 1 and t.
This case is similar to Case 3 in the proof of Proposition 21. The tableau Ct+k has t rows with
weight t+ 1 and k − t rows with weight t, so we must reduce the total weight by at least t.

Replacing a t-in-k tuple with x reduces the weight by t− d, which suggests r =
⌈

t
t−d

⌉
such

replacements.
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Let a be the average column weight in the upper d rows. To achieve average row weight
at most t, a must be such that the total weights in the upper and lower blocks are at most
d(t− r) and t(k − d), respectively. This is guaranteed when both a(k + 1− r) ≤ d(t− r) and
(t− a)(k + 1− r) ≤ t(k − d), or equivalently,

t(d− r + 1)

k + 1− r
≤ a ≤ d(t− r)

k + 1− r
. (9)

To achieve average row weight at least t − 1, a must be such that the total weights in
the upper and lower blocks are at least d(t− 1− r) and (k − d)(t− 1), respectively. This is
guaranteed when both a(k + 1− r) ≥ d(t− 1− r) and (t− a)(k + 1− r) ≥ (k − d)(t− 1), or
equivalently,

d(t− 1− r)
k + 1− r

≤ a ≤ t(d− r + 1) + k − d
k + 1− r

. (10)

Finally, to ensure that each block of rows is tall enough to accommodate the 1’s specified
by the construction, it suffices that 0 ≤ a ≤ d and 0 ≤ t − a ≤ k − d, which together are
equivalent to max(0, d+ t−k) ≤ a ≤ min(d, t). By our assumptions, this reduces to 0 ≤ a ≤ d.

We now show that these inequalities can all be simultaneously satisfied. In 9, the upper
bound is at least the lower bound if and only if r ≥ t

t−d , which holds for our choice of r.

In 10, the upper bound is at least the lower bound if and only if r ≤ t
t−d + k

t−d , which holds

since k
t−d ≥ 1. Exchanging the upper/lower bound pairs in 9 and 10 results in two pairs of

inequalities on a that are always satisfied. Finally, for 0 ≤ a ≤ d, it suffices that at least one
of the lower bounds is nonnegative, and at least one of the upper bounds is at most d. The
lower bound in 9 is nonnegative if and only if t ≥ d+ 1, and the upper bound is at most d
if and only if t ≤ k + 1, both of which always hold. The rest of the proof follows the same
reasoning as in Proposition 21.

Proposition 23. Let k ≥ 3, 1 ≤ t < k, and t < d < k be such that d + t ≤ k and
(k, t, d) ≡ (1, 0, 0) (mod 2). Let x be a tuple of weight d. Then Pol(t-in-k ∪ {x},NAE) does
not have 2-block-symmetric functions of all odd arities.

Proof. The parities of k, t, and d prevent us from using the weights t− 1 and t+ 1 in Case 2,
which necessitates a different choice of weights and a slightly more complicated construction
for Case 3. We take L ≥ 1 copies of Ctk in the even block of the tableau, and leave Lk + 1
columns to be filled in the odd block, for a total arity of 2Lk + 1. The three weights we use
are Lt, Lt+ 1, and Lt+ 2, with L determined later.
Case 1: weights Lt and Lt+ 1.
We take L− 1 copies of Ctk and one copy of Ct+k , so that each row has weight Lt or Lt+ 1.
Case 2: weights Lt and Lt+ 2.
We take L − 1 copies of Ctk and one copy of Ct+k , leaving t rows of weight Lt + 1, and
since t is even, these rows can be paired and values swapped so that each row has weight
Lt or Lt + 2. In particular, in columns 2, 4, . . . , t, we swap the values in the pairs of rows
(1, 2), (3, 4), . . . , (t− 1, t), respectively.
Case 3: weights Lt+ 1 and Lt+ 2.

Let r =
⌈
k−t
d−t

⌉
and let a be the average column weight in the upper d rows. To achieve

average row weight at least Lt+ 1, a must be such that the total weights in the upper and
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lower blocks are at least d(Lt+1−r) and (Lt+1)(k−d), respectively. This is guaranteed when
both a(Lk + 1− r) ≥ d(Lt+ 1− r) and (t− a)(Lk + 1− r) ≥ (Lt+ 1)(k − d), or equivalently,

d(Lt+ 1− r)
Lk + 1− r

≤ a ≤ t(Ld+ 1− r)− k + d

Lk + 1− r
. (11)

To achieve average row weight at most Lt+ 2, a must be such that the total weights in
the upper and lower blocks are at most d(Lt+ 2− r) and (k− d)(Lt+ 2), respectively. This is
guaranteed when both a(Lk+ 1− r) ≤ d(Lt+ 2− r) and (t− a)(Lk+ 1− r) ≤ (k− d)(Lt+ 2),
or equivalently,

t(Ld+ 1− r)− 2(k + d)

Lk + 1− r
≤ a ≤ d(Lt+ 2− r)

Lk + 1− r
. (12)

Finally, to ensure that each block of rows is tall enough to accommodate the 1’s specified
in the construction, it suffices that 0 ≤ a ≤ d and 0 ≤ t − a ≤ k − d, which together are
equivalent to max(0, d+ t− k) ≤ a ≤ min(d, t). By our assumptions, this reduces to 0 ≤ a ≤ t.

We now show that these inequalities can all be simultaneously satisfied. In 11, the upper
bound is at least the lower bound if and only if r ≥ k−t

d−t , which holds for our choice of r, and

in 12, the upper bound is at least the lower bound if and only if r ≤ k−t
d−t + k

d−t , which holds

since k
d−t ≥ 1. Exchanging the upper/lower bound pairs in 11 and 12 results in two pairs of

inequalities on a that are always satisfied. Finally, for 0 ≤ a ≤ t, it suffices that at least one
of the lower bounds is nonnegative, and at least one of the upper bounds is at most t. The
lower bound in 11 is nonnegative if and only if L ≥ r−1

t , and the upper bound is at most t
if and only if L ≥ −1

t , so it suffices to take L ≥ r−1
t . The rest of the proof follows the same

reasoning as in Proposition 21.

Proposition 24. Let k ≥ 3, 1 < t < k, and 1 ≤ d < t be such that t + d ≤ k and
(k, t, d) ≡ (1, 0, 0) (mod 2). Let x be a tuple of weight d. Then Pol(t-in-k ∪ {x},NAE) does
not have 2-block-symmetric functions of all odd arities.

Proof. We place L ≥ 1 copies of Ctk in the odd block of our tableau, leaving Lk− 1 columns to
be filled in the even block for a total arity of 2Lk − 1. The three weights used are Lt, Lt− 1,
and Lt− 2, with L determined later.
Case 1: weights Lt and Lt− 1.
We take L− 1 copies of Ctk and one copy of Ct−k , so that each row has weight Lt or Lt− 1.
Case 2: weights Lt and Lt− 2.
We take L− 1 copies of Ctk and one copy of Ct−k , leaving t rows of weight Lt− 1, and since
t is even, these rows can be paired and values swapped so that each row has weight Lt or
Lt − 2. In particular, in columns 2, 4, . . . , t − 2, we swap the values in the pairs of rows
(1, 2), (3, 4), . . . , (t − 3, t − 2), respectively. Finally, in column k − 1, we swap the values in
rows k and t− 1.
Case 3: weights Lt− 1 and Lt− 2.

Let r =
⌈
k−t
t−d

⌉
and let a be the average column weight in the upper d rows. To achieve

average row weight at most Lt− 1, a must be such that the total weights in the upper and
lower blocks are at most d(Lt− 1− r) and (Lt− 1)(k − d), respectively. This is guaranteed
when both a(Lk − 1 − r) ≤ d(Lt − 1 − r) and (t − a)(Lk − 1 − r) ≤ (Lt − 1)(k − d), or
equivalently,
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t(Ld− 1− r) + k − d
Lk − 1− r

≤ a ≤ d(Lt− 1− r)
Lk − 1− r

. (13)

To achieve average row weight at least Lt− 2, a must be such that the total weights in
the upper and lower blocks are at least d(Lt− 2− r) and (k− d)(Lt− 2), respectively. This is
guaranteed when both a(Lk− 1− r) ≥ d(Lt− 2− r) and (t− a)(Lk− 1− r) ≥ (k− d)(Lt− 2),
or equivalently,

d(Lt− 2− r)
Lk − 1− r

≤ a ≤ t(Ld− 1− r) + 2(k − d)

Lk − 1− r
. (14)

Finally, to ensure that each block of rows is tall enough to accommodate the 1’s specified
in the construction, it suffices that 0 ≤ a ≤ d and 0 ≤ t − a ≤ k − d, which together are
equivalent to max(0, d+ t−k) ≤ a ≤ min(d, t). By our assumptions, this reduces to 0 ≤ a ≤ d.

We now show that these inequalities can all be simultaneously satisfied. In 13, the upper
bound is at least the lower bound if and only if r ≥ k−t

t−d , which holds for our choice of r, and

in 14, the upper bound is at least the lower bound if and only if r ≤ k−t
t−d + k

t−d , which holds

since k
t−d ≥ 1. Exchanging the upper/lower bound pairs in 13 and 14 results in two pairs of

inequalities on a that are always satisfied. Finally, for 0 ≤ a ≤ d, it suffices that at least one
of the lower bounds is nonnegative, and at least one of the upper bounds is at most d. The
lower bound in 14 is nonnegative if and only if L ≥ r+2

t , and the upper bound in 13 is at most
d if and only if t ≤ k, so it suffices to take L ≥ r+2

t . The rest of the proof follows the same
reasoning as in Proposition 21.

5 Removing tuples

In this section we prove Theorem 13 and show how it implies Theorem 14.
Schaefer’s dichotomy theorem (Theorem 4) allows us to obtain a simple description of all

T with CSP(T) tractable and t-in-k→ T.

Proposition 25. Let k ≥ 3, 1 ≤ t < k, and suppose that t-in-k → T. Then CSP(T) is
tractable if and only if

1. 0k ∈ T or 1k ∈ T, or

2. t is odd, k is even, and T = odd-in-k.

Observe that Proposition 25 in particular implies Proposition 7, NP-hardness of CSP(t-in-k).

Proof. In Case 1, Pol(T) contains a constant function so CSP(T) is tractable by Theorem 4,
and in Case 2, tractability is given by Proposition 17.

We now turn to hardness. For the rest of the proof, assume that neither (1) nor (2) of the
proposition statement applies.

Suppose that t-in-k→ T by the function φ : {0, 1} → {0, 1}. If φ is constant, then either
T = {0k} or T = {1k} and we are in case (1), a contradiction. If φ(x) = 1 − x, note that
φ(t-in-k) satisfies conditions (1) and (2) precisely when t-in-k does, so it suffices to consider
only the case where φ is the identity and t-in-k ⊆ T.

We show that Pol(T) contains none of the functions AND2, OR2, MAJ3, and XOR3 from
Theorem 4. To accomplish this, we assume that one of these functions f is present in Pol(T),
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and then show that repeated application of f to a certain set of tuples leads to (1) or (2) of the
proposition, a contradiction. Recall that we denote by f(R) the image of the relation R under
f . We make seven claims below, which together exclude the four functions as polymorphisms:
case (i) covers AND2, case (ii) covers OR2, (overlapping) cases (iii) and (iv) cover MAJ3, and
cases (v), (vi), and (vii) cover XOR3. Case (vii) contradicts (2) of the proposition; all others
contradict (1).4

We give more details for case (i) for illustration. Taking AND2 of the two tuples, we get
AND2(1

t0k−t, 01t0k−t−1) = 01t−10k−t, a tuple of weight t − 1. By symmetry, we obtain all
tuples of weight t− 1, which is the statement of case (i). Continuing this way, we obtain all
tuples of weight t− 2, t− 3, etc. until we eventually obtain 0k, which gives a contradiction as
we assume that (1) of the proposition does not apply, so 0k 6∈ T.

i (t− 1)-in-k ⊆ AND2(t-in-k)

tuples: 1t0k−t and 01t0k−t−1

eventual output: 0k

ii (t + 1)-in-k ⊆ OR2(t-in-k)

tuples: 1t0k−t and 01t0k−t−1

eventual output: 1k

iii if t ≥ 2 then (t + 1)-in-k ⊆ MAJ3(t-in-k)

tuples: 1t−20k−t−1110, 1t−20k−t−1101, and 1t−20k−t−1011

eventual output: 1k

iv if t ≤ k − 2 then (t− 1)-in-k ⊆ MAJ3(t-in-k)

tuples: 1t−10k−t−2100, 1t−10k−t−2010, and 1t−10k−t−2001

eventual output: 0k

v if t is even, then (t− 2)-in-k ⊆ XOR3(t-in-k)

tuples: 1t−20k−t−1110, 1t−20k−t−1101, and 1t−20k−t−1011

eventual output: 0k

vi if t and k are odd, then (t + 2)-in-k ⊆ XOR3(t-in-k)

tuples: 1t−10k−t−2100, 1t−10k−t−2010, and 1t−10k−t−2001

eventual output: 1k

vii if t is odd and k is even,
then (t + 2)-in-k ⊆ XOR3(t-in-k) if t < k − 2,
and (t− 2)-in-k ⊆ XOR3(t-in-k) if t > 2.

tuples:

1t−10k−t−2100, 1t−10k−t−2010, and 1t−10k−t−2001

4Another way of establishing this result for XOR3 is via linear algebra (being closed under XOR3 is the
same as being an affine subspace) and for MAJ3 from the fact that relations closed under MAJ3 are determined
by their binary projections.

18



1t−20k−t−1110, 1t−20k−t−1101, and 1t−20k−t−1011

eventual output: all odd weight tuples

With Proposition 25 in hand, we can prove Theorems 13 and 14.

Theorem (Theorem 13 restated). Let k ≥ 3 and let T ⊆ {0, 1}k be a relation such that
t-in-k → T and CSP(T) is NP-hard. Then PCSP(t-in-k,T) is tractable if and only if
T = NAE.

Proof. By Proposition 16, we can assume that T is symmetric. If T = NAE then PCSP(t-in-k,T)
is tractable by Proposition 8. Otherwise, we show that Pol(t-in-k,T) does not contain any of
the tractable polymorphism families identified in the symmetric Boolean PCSP dichotomy
(Theorem 5), and therefore PCSP(t-in-k,T) is NP-hard.

The families we need to rule out are constants, OR, AND, XOR, AT, and THRq for q ∈ Q,
as well as their negations. We deal first with the non-negated families. Since CSP(T) is
NP-hard, by Proposition 25, we have 0k 6∈ T and 1k 6∈ T. Hence, Pol(t-in-k,T) does not
contain constants.

Let Ctk be the k × k matrix containing the k cyclic shifts of the column 1t0k−t. Then Ctk
prevents the polymorphism families OR, AND, XOR (if k is odd), and THRq for all q 6= t

k .
The case q = t

k is ruled out by [20, Fact B.3], and AT is ruled out by [10, Claim 4.6]. Since
CSP(T) is NP-hard, by Proposition 25, it remains to show that for even k, Pol(t-in-k,T)
excludes XOR when t is even, and likewise when t is odd and T is missing a tuple of odd
weight.

Let k and t be even. Applying XORk to the matrix Ctk returns the tuple 0k, so applying
XORk−1 to the first k − 1 columns of Ctk returns the last column 1t−10k−t1. We can “fill
in” the 0’s in the output by swapping 0/1 pairs of values in the input matrix. In particular,
in the columns k − 1, k − 3, . . . , t + 1, we swap the entries in the pairs of rows (k − 1, k −
2), (k − 3, k − 4), . . . , (t+ 1, t), respectively. The resulting k × (k − 1) matrix M then satisfies
XORk−1(M) = 1k and the arity k − 1 is odd as required. An example with swapped values in
bold is illustrated in Figure (5a).

XOR7



1 0 0 0 0 1 1
1 1 0 0 0 0 1
1 1 1 0 0 0 0
1 1 1 1 1 0 0
0 1 1 1 0 0 0
0 0 1 1 1 1 1
0 0 0 1 1 1 0
0 0 0 0 1 1 1


=

1
1
1
1
1
1
1
1

(a) t = 4 and k = 8.

XOR5



1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

0 0 0 0 0

 =

1
1
1
1
1
0

(b) t = 3, k = 6, and d = 5.

Figure 5: XOR.

Now let k be even, t be odd, and suppose that T does not contain the tuple x = 1d0k−d of
odd weight d. By Observation 20, we can assume without loss of generality that t < d. Then
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XORd applied to the matrix Ctd padded with k − d rows of 0’s returns x. An illustration is
given in Figure (5b). Therefore XOR 6⊆ Pol(t-in-k,T).

Negations: Let F be a family of functions. We reduce the task of showing F 6⊆
Pol(t-in-k,T) to the already completed task of showing F 6⊆ Pol(t-in-k,T). Let x ∈ {0, 1}k\T,
let f ∈ F be a function of arity m, and let M be a k × m matrix of inputs to f whose
columns are t-in-k tuples. We established F 6⊆ Pol(t-in-k,T) by finding f and M with
f(M) = x, and in the remaining cases we must find f ∈ F and M such that f(M) = x.
But since f(M) = x ⇔ f(M) = x, it suffices to find f ∈ F such that f(M) = x, where
x = (1− x1, . . . , 1− xk) if x = (x1, . . . , xk).

The families AND, OR, XOR (except when k is even and t is odd), and THRq for all
q 6= t

k are excluded from Pol(t-in-k,T) in the same way as AND, OR, XOR, and THRq with
the same matrices serving as counterexamples. In detail, the matrix Ctk, which contains k
cyclic shifts of the column 1t0k−t, prevents the polymorphism families AND, OR, XOR (if k
is odd), and THRq (if q 6= t

k ). The case XOR with k even, t even is ruled out the same way
as before, illustrated in Figure (5a).

To see that AT and THR t
k

(with q = t
k ) are also excluded, let x 6∈ T be a tuple of weight

d 6= t. Then the tuple x of weight k − d can be returned by an AT function [10, Claim 4.6]
and a THR t

k
function [20, Fact B.3]. If k− d = t, then the AT and THR t

k
functions of arity 1

output x on input x.
Finally, when k is even, t is odd, and T does not contain the tuple x of odd weight d, the

XOR argument above (illustrated in Figure 5b) applies since x also has odd weight k − d.
Again, if k − d = t, then the XOR function of arity 1 outputs x on input x.

Theorem (Theorem 14 restated). Let k ≥ 3 and ∅ 6= S ⊆ (t-in-k)c ∩NAE. If t is odd, k is
even, and S contains tuples of only even weight, then PCSP(t-in-k,NAE \ S) is tractable.
Otherwise, PCSP(t-in-k,NAE \ S) is NP-hard.

Proof. The tractability in the first statement of the theorem is proved in Section 3. Otherwise,
t is even, or k is odd, or S contains a tuple of odd weight. Take T = NAE \ S. Observe that
case (1) of Proposition 25 does not apply as neither 0k nor 1k is part of the template. Moreover,
case (2) of Proposition 25 does not apply either: If t is odd and k is even then S contains a tuple
of odd weight and hence NAE \S cannot have all odd weight tuples. Thus, by Proposition 25,
CSP(T) is NP-hard. Then, by Theorem 13, PCSP(t-in-k,T) = PCSP(t-in-k,NAE \ S) is
NP-hard.
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