
Point-width and Max-CSPs
Clément Carbonnel

CNRS, University of Montpellier, France
clement.carbonnel@lirmm.fr

Miguel Romero
University of Oxford, UK

miguel.romero@cs.ox.ac.uk

Stanislav Živný
University of Oxford, UK

standa.zivny@cs.ox.ac.uk

Abstract—The complexity of (unbounded-arity) Max-CSPs
under structural restrictions is poorly understood. The two most
general hypergraph properties known to ensure tractability of
Max-CSPs, β-acyclicity and bounded (incidence) MIM-width, are
incomparable and lead to very different algorithms.

We introduce the framework of point decompositions for
hypergraphs and use it to derive a new sufficient condition
for the tractability of (structurally restricted) Max-CSPs, which
generalises both bounded MIM-width and β-acyclicity. On the
way, we give a new characterisation of bounded MIM-width and
discuss other hypergraph properties which are relevant to the
complexity of Max-CSPs, such as β-hypertreewidth.

I. INTRODUCTION

The Constraint Satisfaction Problem (CSP) is a well-
known framework for expressing a wide range of both
theoretical and real-life combinatorial problems [14], [25],
[28]. Some examples are satisfiability [33], evaluation of
conjunctive queries [10], [26], graph colorings [23] and
homomorphisms [24]. An instance of the CSP is a set of
variables, a domain of values and a set of constraints; each
constraint is a relation applied to a subset of the variables called
the constraint scope. Given a CSP instance, the goal is to decide
whether one can assign a value to each variable so that all
constraints are satisfied; that is, whether for every constraint,
the assignment restricted to the constraint scope belongs to the
constraint relation. Due to its expressivity, it is not surprising
that the CSP is NP-complete in general. This has motivated a
long line of research aiming to find tractable restrictions of the
problem, sometimes called islands of tractability. The focus
of this paper is on the so-called structural restrictions, which
restricts the ways in which the constraints overlap and intersect
each other.

A standard way of analysing structural restrictions is via the
underlying hypergraph of a CSP instance. The vertex set of
this hypergraph is the set of variables X of the instance and
the edges correspond to the scopes of the constraints: each
constraint whose scope is a subset S ⊆ X yields the edge
S. Given a class H of hypergraphs, we define the problem

Stanislav Živný was supported by a Royal Society University Research
Fellowship. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 714532). The paper reflects only
the authors’ views and not the views of the ERC or the European Commission.
The European Union is not liable for any use that may be made of the
information contained therein. Work done while Clément Carbonnel was at
the University of Oxford.

CSP(H,−) as the restriction of the CSP to instances whose
underlying hypergraphs lie in H. Then the goal is to understand
for which classes H the problem CSP(H,−) is tractable, and
for which classes H it is not.

The situation of CSP instances of bounded arity (i.e., the
maximum edge size in the class H is a constant) is by now
well-understood. In this setting, it follows from [16] and [20]
(see also [22]) that CSP(H,−) is tractable if and only if
H has bounded treewidth (under the complexity theoretical
assumption that FPT 6= W[1]). On the other hand, the case of
unbounded arity, that is, arbitrary classes H of hypergraphs, is
more delicate. Unlike the bounded-arity case, the complexity
of the problem heavily depends on how the constraints in a
CSP instance are represented. We focus on one of the most
natural and well-studied representation of constraints, namely
the positive representation, where each constraint is represented
by the list of tuples satisfying the constraint.

Bounded treewidth is not the right answer for tractability in
the case of unbounded arity, as one can easily find classes H
of hypergraphs of unbounded treewidth such that CSP(H,−)
is tractable. One of the first such classes are the acyclic
hypergraphs [2], [3], [37] (also called α-acyclic [13]). This
tractability result has been extended to more general classes
such as hypergraphs of bounded hypertreewidth [18] and
bounded fractional hypertreewidth [21]. The latter is the most
general natural hypergraph property known to be tractable,
although the precise borderline of polynomial-time solvability
is still unknown (and cannot coincide with bounded fractional
hypertreewidth; see [27] for a brief discussion on that topic).
However, as shown in [27], the classes H for which CSP(H,−)
becomes fixed-parameter tractable (parameterised by the size
of the hypergraph) are precisely those of bounded submodular
width, which are more general than classes of hypergraphs of
bounded fractional hypertreewidth.

In this paper we study the problem Max-CSP1, which is
a well-known generalisation of CSPs for expressing optimi-
sation problems. Now each constraint is of the form f(x),
where |x| = r and f is an r-ary (finite-valued) function
f : Dr → Q≥0 (we assume that f is given as the set of
pairs {(d, f(d)) : d ∈ Dr, f(d) > 0}, which corresponds
to the positive representation). Given a set of variables

1A usual definition of a Max-CSP instance is a CSP instance with the goal
to maximise the number of satisfied constraints. As we explain in Section II-B,
we actually consider a more general framework, sometimes called finite-valued
CSPs [35] or Max-CSPs with payoff functions [29]. Since our main result is
a tractability result, this makes it only stronger.978-1-7281-3608-0/19/$31.00 c©2019 IEEE

X = {x1, . . . , xn}, a domain D of values and a set C of
(finite-valued) constraints, the goal is to compute the maximum
value of f(x1, . . . , xn) =

∑
fc(x)∈C fc(x), over all possible

assignments of values to X .
In the case of bounded arity, tractability of Max-CSP(H,−)

is also characterised by bounded treewidth, which follows
directly from the CSP case. However, the complexity of
unbounded-arity Max-CSPs under structural restrictions is
poorly understood and the techniques used in the CSP context
cannot be easily applied. Indeed, Max-CSP(H,−) is hard
even for classes H of α-acyclic hypergraphs [17]. Moreover,
unlike the CSP case, there is no known maximal hypergraph
property that leads to tractability. The two most general
hypergraph properties known to ensure tractability of Max-
CSP(H,−) are β-acyclicity2 [4], introduced in [13], and having
bounded (incidence) MIM-width3 [32], [36]. These properties
are incomparable [4] and lead to very different algorithms. The
main goal of this paper is to provide a common explanation for
these two tractable properties, and in particular, for all known
tractable hypergraph properties for Max-CSPs. We believe
that such a unified explanation is a necessary first step to a
better understanding of the tractable structural restrictions of
Max-CSPs, and ultimately, to a precise characterisation of the
tractability frontier.

A. Contributions

As our main contribution, we introduce the notions of point
decomposition and point-width that unify β-acyclicity and
bounded MIM-width. We show that Max-CSPs (with positive
representation) are tractable for hypergraphs of bounded point-
width, provided a point decomposition of polynomial size
and bounded width is also part of the input (Theorem 4).
Our tractability result explains the tractability of β-acyclic
and bounded MIM-width hypergraphs. In particular, we prove
that every β-acyclic hypergraph has a point decomposition
of width 1 and polynomial size (Theorem 7), which can be
computed in polynomial time. In the case of MIM-width, we
obtain a stronger result that may be of independent interest:
having bounded MIM-width is equivalent to having bounded
flat point-width (Theorem 10), where the latter is defined via a
syntactic restriction of point decompositions. Finally, we also
discuss some related notions such as β-hypertreewidth [19]
(Section VII).

The high-level idea behind our new notion of width is that
a point decomposition of width k ≥ 1 for a hypergraph H
provides a mechanism to encode several tree decompositions
of hypertreewidth at most k in a compact and controlled
way. In particular, a point decomposition will be expressive

2In fact, the authors in [4] consider a more general framework called the
CSP with default values, and focus on counting solutions. However, they
briefly discuss how to adapt the results to the maximisation version.

3The results for MIM-width in [32], [36] apply to Max-SAT (and #SAT),
but can be adapted to Max-CSPs. Let us also remark that in [32], [36] a more
general notion than that of bounded MIM-width, namely having polynomial
PS-width, is shown to be tractable for Max-SAT and #SAT. This notion is
however not purely structural, as it depends on the entire input instance and
not just its hypergraph.

enough to encode one such a tree decomposition for each
subhypergraph of H . Interestingly, the underlying trees of all
these tree decompositions can be very different from each other,
as long as they respect the “template” tree T given by the point
decomposition. For flat point decompositions, which capture
MIM-width, these underlying trees need to be subtrees of the
template T , and then they are more similar to each other. The
full details of point decompositions and their flat variant are
given in Sections III and VI, respectively.

The algorithm behind our main tractability result (Theorem 4)
uses a form of dynamic programming over the point decompo-
sition where in each step we need to solve an instance of the
weighted maximum independent set problem in chordal graphs
(which is known to be tractable and in fact solvable in linear
time [15]). We can think of this procedure as doing dynamic
programming simultaneously over all the tree decompositions of
the subhypergraphs of H encoded in the point decomposition.

B. Related work

It is also possible to parameterise CSPs and Max-CSPs
by a class of admissible underlying structures, instead of
hypergraphs, which offers a more fine-grained analysis. In the
case of CSPs of bounded arity, a complete classification of the
tractable cases in terms of the underlying relational structures
follows from [11] and [20]. Recently, a similar classification
has been obtained for (finite-valued) Max-CSPs in terms of
the underlying valued structures [8].

Another important type of restrictions (and perhaps the
most studied one) are the non-uniform restrictions, where the
constraint relations (or functions) are restricted to be fixed. In
this case, the situation is fairly clear and now, after two decades
of intense research, complete classifications have been obtained
for CSPs [5], [38], and (finite-valued) Max-CSPs [35].

C. Structure

Section II introduces the necessary notation on hypergraphs
and Max-CSPs. Section III defines point decompositions and
point-width. The main tractability result is given in Section IV.
Sections V and VI show that β-acyclicity and bounded MIM-
width are special cases of bounded point-width, respectively.
We conclude in Section VII. All omitted proofs can be found
in the full version [9].

II. PRELIMINARIES

A. Hypergraphs, points and covers

We assume that the reader is familiar with elementary graph
theory and refer to Diestel’s textbook for more details [12].
Given a graph G, we use V (G) and E(G) to denote its sets
of vertices and edges, respectively. The subgraph of a graph
G induced by a set X ⊆ V (G), denoted by G[X], has vertex
set X and edge set {{u, v} ∈ E(G) : u, v ∈ X}. We use the
same notation for directed graphs.

Hypergraphs. A (finite) hypergraph is a finite set of non-empty
finite sets called edges. The set of vertices of a hypergraph H ,
denoted by V (H), is the union of all its edges. Note that in
this definition, every vertex of a hypergraph belongs to at least

one edge. A subhypergraph of a hypergraph H is a subset
of H . We use S(H) to denote the set of all vertex sets of
subhypergraphs of H .

Points. A point of a hypergraph H is a pair (v, e) with e ∈ H
and v ∈ e. We use P (H) to denote the set of all points of
H . Given P ⊆ P (H) and e ∈ H , the restriction of e to P ,
denoted by e|P , is the set {v ∈ e : (v, e) ∈ P}. By extension
the restriction of H to P , denoted by H|P , is the hypergraph
{e|P : e ∈ H, e|P 6= ∅}. If H ′ is a subhypergraph of H
and P ⊆ P (H), we use the notation H ′|P as a shorthand for
H ′|P∩P (H′).

Covers. An edge cover of a hypergraph H is a subhypergraph
C of H such that V (C) = V (H). The cover number of H ,
denoted by cn(H), is the smallest cardinality of an edge cover
of H . We denote by β-cn(H) the maximum of cn(H ′) over
all subhypergraphs H ′ of H .

B. Max-CSP

A finite-valued function of arity r = ar(f) over a domain
D is a mapping f : Dr → Q≥0. A finite-valued constraint
over a set X of variables is an expression of the form f(x),
where f is a finite-valued function and x ∈ Xar(f). The set of
variables appearing in x is called the scope of the constraint
f(x). An instance I of the Max-CSP problem is a finite set
X = {x1, . . . , xn} of variables, a finite domain D of values,
and an objective function of the form

fI(x1, . . . , xn) =

q∑
i=1

fi(xi)

where each fi(xi), 1 ≤ i ≤ q is a finite-valued constraint. The
goal is to compute the maximum value of fI over all possible
assignments to X , which we denote by opt(I). In this paper
we assume that each function fi, 1 ≤ i ≤ q is given in the
input as the table of all pairs (d, fi(d)) where d ∈ Dar(fi) and
fi(d) > 0 (the so-called positive representation). It follows
that the total size ‖I‖ of a Max-CSP instance I is roughly

q∑
i=1

(
ar(fi) log(|X|)

+
∑

d∈Dar(fi)

fi(d)>0

(ar(fi) log(|D|) + |enc(fi(d))|)
)

where enc(·) is a reasonable encoding for rational numbers.
Actually, Max-CSPs are commonly defined with only {0, 1}-

valued functions, or with {0, w}-valued functions, where w
could be different in different functions; the latter are called
weighted Max-CSPs. What we defined as Max-CSPs is a more
general framework, sometimes called finite-valued CSPs [35]
or Max-CSPs with payoff functions [29].

The hypergraph of a Max-CSP instance is the set of scopes
of its constraints. Given a family H of hypergraphs, we denote
by Max-CSP(H,−) the restriction of Max-CSP to the instances
whose hypergraph belongs to H.

Without loss of generality, we will always assume that no
two constraints share the same scope and for every constraint
fi(xi), the entries of xi are pairwise distinct. Given a Max-
CSP instance I with hypergraph H and e ∈ H , we will
use fe(xe) to denote the unique constraint with scope e.
Given a constraint fe(xe) with e ∈ H , its support is the
relation Re := {d ∈ D|e| : fe(d) > 0}. Without ambiguity
we will sometimes treat Re as a set of assignments to
e. If ψ : X ′ → D is an assignment to X ′ ⊆ X , we
define val(ψ) =

∑
e∈H:e⊆X′ fe(ψ(xe)) and call ψ a partial

assignment to X . In particular, for any partial assignment ψ
to X , we have that val(ψ) ≤ opt(I). Finally, given a partial
assignment ψ : X ′ → D, we say that ψ satisfies an edge
e ∈ H if ψ|X′∩e ∈ Re|X′∩e, and satisfies a subhypergraph if
it satisfies all of its edges. Note that ψ can satisfy edges that
are not completely contained in X ′.

III. POINT DECOMPOSITIONS AND POINT-WIDTH

Let H be a hypergraph. Let T = (T, (Bt)t∈V (T)) be a
pair such that T is a rooted tree and Bt ⊆ P (H) is a set of
points, for every t ∈ V (T). For t ∈ V (T), we call the set
Bt the bag of t and the pairs (t, S) with S ∈ S(H|Bt) the
sub-bags of t. We denote by <T the strict partial order on
V (T) such that t1 <T t2 if and only if t1 is a descendant of
t2 in T . A T -structure is a directed graph A whose vertex set
is the set of all sub-bags of V (T) and such that for every arc
((t1, S1), (t2, S2)) in A we have t1 <T t2.
Example 1. Consider the hypergraph H = {e, e1, e2, e3},
where e = {x0, x1, x2, x3} and ei = {x0, xi}, for every
i ∈ {1, 2, 3}; see Figure 1 on the left. In particular, V (H) =
{x0, x1, x2, x3}. The right-hand side of Figure 1 depicts a
pair T = (T, (Bt)t∈V (T)), where T is a path (depicted by
bold arcs) rooted at t0, and the points in each bag Bt are
listed below each node. The sub-bags of each node of T are
depicted within the node. For instance, for the node t4 we have
H|Bt4 = {{x1, x0}, {x1, x2, x0, x3}}. Hence the sub-bags of
t4 are (t4, ∅), (t4, {x1, x0}) and (t4, {x1, x2, x0, x3}). The arcs
between sub-bags represent a possible T -structure A.

Definition 1 (Decomposability). Let A be a T -structure for a
pair T = (T, (Bt)t∈V (T)). We say that A is decomposable if
for any two arcs (s1, s), (s2, s) in A, if

(i) s1, s2 are sub-bags of different vertices of V (T), and
(ii) there exist two sub-bags s′1, s

′
2 (not necessarily distinct)

of the same vertex t ∈ V (T), and directed paths in A
from s′1 to s1, and from s′2 to s2

then either (s1, s2) ∈ E(A) or (s2, s1) ∈ E(A).

Observe that if A is not decomposable due to arcs (s1, s),
(s2, s), where s1, s2 are sub-bags of t1, t2 ∈ V (T), respectively,
then either t1 <T t2 or t2 <T t1 must hold (otherwise,
condition (ii) would fail). Let say that t1 <T t2. Note that
it could be possible that t = t1, in which case, the directed
path from s′1 to s1 is simply the empty path, i.e., s′1 = s1.
If additionally, s′2 = s1, we obtain the simplest case of non-
decomposability, in which there is a directed path in A from
s1 to s2 (and (s1, s2) /∈ E(A)).

x0

x1

x2 x3

e1

e2 e3

e

t4

∅
x1

x2

x0

x3

(x1, e1)
(x0, e1)
(x1, e)
(x2, e)
(x0, e)
(x3, e)

t3

∅
x2

x0

x3

(x2, e2)
(x0, e2)
(x2, e)
(x0, e)
(x3, e)

t2

x0

∅

x3

(x0, e1)
(x0, e2)
(x0, e3)
(x3, e3)
(x0, e)
(x3, e)

t1

∅
x3

(x3, e3)
(x3, e)

t0

∅

Fig. 1. The hypergraph H and its point decomposition from Examples 1–6.

Example 2. The T -structure A from Example 1 and Figure 1
is decomposable. Consider for instance the arcs (s1, s) and
(s2, s) with s = (t2, {x0, x3}), s1 = (t4, {x1, x0}) and s2 =
(t3, {x2, x0, x3}). We have that s1 and s2 are sub-bags of
different vertices of T , and condition (ii) of decomposability
holds if we take s′1 = s1 and s′2 = (t4, {x0, x1, x2, x3}). In
this case decomposability requires that at least one of (s1, s2)
or (s2, s1) is an arc of A, which is true for (s1, s2).

The intuition behind decomposability is as follows. Suppose
we have a sub-bag s in the T -structure and two incoming
arcs (s1, s), (s2, s) in A, where s1, s2 are sub-bags of distinct
vertices t1, t2 ∈ V (T). Let Ts1 be the rooted subtree of T
induced by all the nodes in V (T) that can “reach” s1, i.e.,
that contain a sub-bag s′1 from which s1 is reachable in A.
Similarly, we define Ts2 . Note that the root of Ts1 and Ts2
is t1 and t2, respectively. Then decomposability means that
whenever s1 and s2 are “incomparable” with respect to A (i.e.,
neither (s1, s2) nor (s2, s1) is an arc), then Ts1 and Ts2 must
be disjoint subtrees.

Definition 2 (Realisations). Let A be a T -structure for a pair
T = (T, (Bt)t∈V (T)). A realisation of A is a subgraph A′ of
A induced by a subset X ⊆ V (A) such that

(i) X contains at most one sub-bag of each t ∈ V (T), and
(ii) A′ has exactly one sink, which must be a sub-bag of the

root of T .

For any realisation A′ of a T -structure A, we define TA′ as
the rooted tree whose vertex set is

V (TA′) = {t ∈ V (T) : ∃ a sub-bag (t, S) ∈ V (A′)},

and whose edges are defined as follows. Suppose t1, t2 ∈
V (TA′) due to sub-bags (t1, S1), (t2, S2) ∈ V (A′), respec-
tively. Then t2 is the parent of t1, i.e., (t1, t2) ∈ E(TA′), if t2
is the least vertex with respect to <T of the set

{t ∈ V (T) : ∃(t, S) ∈ V (A′) and ((t1, S1), (t, S)) ∈ E(A′)}.

Example 3. For the T -structure A in Figure 1, consider the
subgraph A1 of A induced by the sub-bags (t4, {x1, x0}),
(t3, {x2, x0, x3}), (t2, {x0, x3}), (t1, {x3}) and (t0, ∅). We
have that A1 is a realisation as the only sink is (t0, ∅). Note
that if we remove from A1 the sub-bag (t1, {x3}) then we
obtain a subgraph that is not a realisation as now (t2, {x0, x3})
becomes a sink. Observe also that TA1

is precisely T . Another
possible realisation is the subgraph A2 of A induced by the
sub-bags (t4, {x1, x0}), (t3, {x2, x0}), (t2, {x0}) and (t0, ∅).
In this case, TA2

is the tree with vertices {t0, t2, t3, t4} and
edges (t2, t0), (t3, t2) and (t4, t2).

For a T -structure A and a subhypergraph H ′ of H , we denote
by A[H ′] the subgraph of A induced by the set {(t, V (H ′|Bt)) :
t ∈ V (T)}. We denote by A[H ′]∅ the directed graph obtained
from A[H ′] after removing every connected component C in
A[H ′] that satisfies the following: for every sub-bag (t, S) ∈ C,
we have that t is not the root of T and S = ∅. In other words,
A[H ′]∅ contains precisely the connected components of A[H ′]
that contain a sub-bag of the root of T or a sub-bag (t, S)
with S 6= ∅.
Example 4. The subgraph A2 of A from Example 3 is precisely
A[H ′]∅, where H ′ = {e1, e2}. Note that (t1, ∅) needs to be
removed from A[H ′] in order to obtain A[H ′]∅. While A[H ′]∅
is a realisation, A[H ′] is not, as (t1, ∅) is a sink.

Definition 3 (Point decomposition). A point decomposition of
a hypergraph H is a triple (T, (Bt)t∈V (T), A) where T is a
rooted tree, each set Bt ⊆ P (H) is a set of points of H , A
is a decomposable T -structure, where T = (T, (Bt)t∈V (T)),
and

(i) For every edge e ∈ H , there exists t ∈ V (T) such that
P ({e}) = {(v, e) : v ∈ e} ⊆ Bt.

(ii) For every subhypergraph H ′ of H , the subgraph A[H ′]∅
of A is a realisation.

(iii) For every realisation A′ of A and v ∈ ∪(t,S)∈V (A′)S, the
set

{t ∈ V (TA′) : ∃(t, S) ∈ V (A′) and v ∈ S}

induces a connected subtree of TA′ .

A point decomposition is flat if every arc in A is between
sub-bags of nodes adjacent in T . The width of a point
decomposition (T, (Bt)t∈V (T), A) of a hypergraph H is given
by maxt∈V (T) β-cn(H|Bt), the point-width of H , denoted by
pw(H), is the minimum width over all its point decompositions,
and the flat point-width of H , denoted by fpw(H), is the
minimum width over all its flat point decompositions.

Throughout the paper we assume a straightforward encoding
for point decompositions, where each bag is given as a list of
points, the tree T is given as a rooted graph whose vertex set is
the set of all bags, and the T -structure A is given as a directed
graph whose vertex set is the set of all sub-bags. We denote
by ‖P‖ the encoding size of a point decomposition P . We
remark that checking whether a triple (T, (Bt)t∈V (T), A) is a
point decomposition may be a difficult task due to conditions
(ii) and (iii). Whether it can be done in polynomial time is an
interesting question, which we leave for future work.

Example 5. Figure 1 shows a point decomposition of the
hypergraph H to the left. Note that β-cn(H|Bti) = 1, for
1 ≤ i ≤ 4, and then the width of the decomposition is 1.
Hence pw(H) = 1. Note that the decomposition is not flat.

As mentioned in the introduction, the intuition is that a
T -structure A in a point decomposition of width k encodes
various tree decompositions of hypertreewidth at most k (see
the full version [9, Appendix A] for a precise definition of tree
decomposition and hypertreewidth), and in particular, one for
each subhypergraph H ′ of H . Such a tree decomposition for
H ′ is given by the tree TA[H′]∅ and the bags correspond to
the sub-bags in A[H ′]∅.

Finally, let us remark that once we know the T -structure
of a point decomposition, the particular form of the tree T is
irrelevant. Indeed, we can always assume that T is a path: if
it is not the case, we can extend <T to a total order <tot on
V (T), which is precisely <T ′ for a certain path T ′, and then
replace T by T ′ in the point decomposition. However, in the
case of flat point decompositions this is not true. Hence, in
general, we shall not impose any assumption on the tree T .

IV. THE ALGORITHM

In this section we describe a polynomial-time algorithm for
solving Max-CSPs when the input instance is paired with a
point decomposition of bounded width of its hypergraph. We
start with a number of simple definitions and observations
before proving the main result in Theorem 4.

Definition 4 (Partial realisations). Let H be a hypergraph and
(T, (Bt)t∈V (T), A) be a point decomposition of H . A partial
realisation of A is a subgraph A′ of A induced by a subset
X ⊆ V (A) such that (i) X contains at most one sub-bag of
each t ∈ V (T), (ii) A′ has exactly one sink s and (iii) there
is a (possibly empty) directed path in A from s to a sub-bag
of the root of T .

The rooted tree TA′ of a partial realisation A′ is defined
the same way as for realisations: its vertex set is the set

of all t ∈ V (T) with at least one sub-bag in V (A′), and
the parent of t1 ∈ V (TA′) with (t1, S1) ∈ V (A′) is the
least vertex with respect to <T in the set {t ∈ V (T) :
∃(t, S) ∈ V (A′) and ((t1, S1), (t, S)) ∈ E(A′)}. The next ob-
servation is a minor extension of condition (iii) of point
decompositions to partial realisations.

Observation 1. Let H be a hypergraph, (T, (Bt)t∈V (T), A)
be a point decomposition of H , A′ be a partial realisation of
A and v ∈ ∪(t,S)∈V (A′)S. Then, the set

{t ∈ V (TA′) : ∃(t, S) ∈ V (A′) and v ∈ S}

induces a connected subtree of TA′ .

Proof. Let s be the unique sink of A′. If s is a sub-bag of
the root of T then A′ is a realisation and the claim follows
from condition (iii) of point decompositions. Otherwise, let
(s, s1, . . . , sn) be a directed path in A from s to a sub-bag sn
of the root of T . The subgraph A∗ of A induced by V (A′) ∪
{s1, . . . , sn} is a realisation and TA′ is precisely the subtree
of TA∗ rooted at s, so the observation follows.

Definition 5 (Guards). Let H be a hypergraph,
(T, (Bt)t∈V (T), A) be a point decomposition of H and
(t, S) be a sub-bag of t ∈ V (T). A guard of (t, S) is
an inclusion-minimal subhypergraph H ′ of H such that
V (H ′|Bt) = S.

Definition 6 (Consistent assignments). Let H be the hyper-
graph of a Max-CSP instance and (T, (Bt)t∈V (T), A) be a
point decomposition of H . If s = (t, S) is a sub-bag of
t ∈ V (T), an s-valid assignment is an assignment ψ : S → D
such that ψ satisfies some guard C of s. A consistent assignment
to a partial realisation A′ of A is a function φ that maps every
sub-bag s = (t, S) ∈ V (A′) to an s-valid assignment such
that for any two sub-bags (t1, S1), (t2, S2) with t1, t2 adjacent
in TA′ , φ((t1, S1))|S1∩S2

= φ((t2, S2))|S1∩S2
.

The following is a direct consequence from Observation 1.

Observation 2. Let H be the hypergraph of a Max-CSP
instance, (T, (Bt)t∈V (T), A) be a point decomposition of H ,
φ be a consistent assignment to some partial realisation A′ of
A and X ′ := ∪(t,S)∈V (A′)S. Then, there exists an assignment
ψ : X ′ → D such that for every s = (t, S) ∈ V (A′),
φ(s) = ψ|S .

Definition 7. Let H be the hypergraph of a Max-CSP instance,
(T, (Bt)t∈V (T), A) be a point decomposition of H , φ be a
consistent assignment to a partial realisation A′ of A and ψ
be as in Observation 2. The value of (φ,A′) is the quantity

val(φ,A′) :=
∑

e∈H:∃(t,S)∈V (A′), e⊆S

fe(ψ(xe)).

The general idea behind the algorithm is to traverse the tree
T of the point decomposition bottom-up, keeping track for
each sub-bag s and s-valid assignment ψ of the best value
achievable by a partial realisation A′ with sink s and consistent
assignment to A′ that agrees with ψ on s. The fact that A is

decomposable ensures that joining multiple partial realisations
to a common sink always produces a partial realisation, as long
as their initial sinks form an independent set in a certain (easily
computable) chordal graph. This property enables a dynamic
programming approach. It will follow from conditions (i), (ii)
and (iii) in the definition of point decompositions that the
maximum of the values computed by this algorithm at the root
of T is, in fact, the optimum of the Max-CSP instance.

If A′ is a partial realisation and s ∈ V (A′), we use A′[s] to
denote the partial realisation induced by the sub-bags s′ of A′

such that there is a (possibly empty) directed path in A′ from
s′ to s.

Observation 3. Let H be the hypergraph of a Max-CSP
instance, (T, (Bt)t∈V (T), A) be a point decomposition of H ,
φ be a consistent assignment to a partial realisation A′ of A
with sink s = (t, S) and ψ be as in Observation 2. Let W be
the set of all sub-bags s′ = (t′, S′) in V (A′) such that t′ is
a child of t in TA′ . Then, val(φ,A′) =

∑
e∈H:e⊆S

fe(ψ(xe)) +

∑
s′∈W

s′=(t′,S′)

val(φ|V (A′[s′]), A
′[s′])−

∑
e∈H:e⊆S∩S′

fe(ψ(xe))

.

Proof. By definition of TA′ there is no arc (s1, s2) in A with
s1, s2 ∈ W . Since A is decomposable, it follows that the
sets V (A′[s′]), s′ ∈ W , are pairwise disjoint. Furthermore,
by Observation 1, if there exist an edge e ∈ H and two
sub-bags s1, s2 ∈ W with e ⊆

(
∪(t∗,S∗)∈V (A′[s1])S

∗) ∩(
∪(t∗,S∗)∈V (A′[s2])S

∗) then e ⊆ S. Similarly, if there ex-
ist e ∈ H and s1 = (t1, S1) ∈ W such that e ⊆(
∪(t∗,S∗)∈V (A′[s1])S

∗) ∩ S, then e ⊆ S1. Putting everything
together we have

val(φ,A′) =
∑

e∈H:∃(t∗,S∗)∈V (A′), e⊆S∗
fe(ψ(xe))

=
∑

e∈H:e⊆S

fe(ψ(xe))+

∑
s′∈W

 ∑
e∈H,e6⊆S:∃(t∗,S∗)∈V (A′[s′]), e⊆S∗

fe(ψ(xe))

=

∑
e∈H:e⊆S

fe(ψ(xe))+

∑
s′∈W

s′=(t′,S′)

val(φ|V (A′[s′]), A
′[s′])−

∑
e∈H:e⊆S∩S′

fe(ψ(xe))

as claimed.

Proposition 1. Let I be a Max-CSP instance with hypergraph
H and (T, (Bt)t∈V (T), A) be a point decomposition of H .
The maximum of val(φ,A′) over all realisations A′ of A and
consistent assignments φ to A′ is exactly opt(I).

Proof. Let M be the maximum of val(φ,A′) over all realisa-
tions A′ of A and consistent assignments φ to A′.

We first prove M ≥ opt(I). Let ψopt be an assignment
to the variables of I such that val(ψopt) = opt(I), and let
H ′ ⊆ H be the set of edges satisfied by ψopt. Consider
the subgraph A[H ′]∅ of A, which by condition (ii) of point
decompositions is a realisation. We define φ∗ as the function
that maps each (t, S) ∈ V (A[H ′]∅) to ψopt|S . Since ψopt
satisfies H ′, it satisfies at least one guard for each sub-bag
(t, S) ∈ V (A[H ′]∅). Therefore, φ∗ is a consistent assignment
to A[H ′]∅. By condition (i) of point decompositions, for every
edge e ∈ H ′ there exists (t, S) ∈ V (A[H ′]∅) such that e ⊆ S,
and hence M ≥ val(φ∗, A[H ′]∅) = opt(I).

We now prove opt(I) ≥M . Let A′ be a realisation of A and
φ be a consistent assignment to A′ such that val(φ,A′) = M .
By Observation 2, there exists an assignment ψ to X ′ :=
∪(t,S)∈V (A′)S such that

val(ψ) =
∑

e∈H:e⊆X′
fe(ψ(xe)) ≥∑

e∈H:∃(t,S)∈V (A′), e⊆S

fe(ψ(xe)) = val(φ,A′) = M

and hence opt(I) ≥M .

Recall that an independent set in a graph is a subset of
vertices that induces a subgraph with no edges. We will denote
by IS(G) the set of all independent sets in a graph G.

Theorem 4. Let k be a fixed positive integer. There exists
an algorithm which, given as input a Max-CSP instance
I with hypergraph H and a point decomposition P =
(T, (Bt)t∈V (T), A) of H of width at most k, computes opt(I)
in time polynomial in ‖P‖ and ‖I‖.

Proof. We first describe the algorithm. To each bag t ∈ V (T),
sub-bag s = (t, S) and s-valid assignment ψ we will associate
a nonnegative rational value valalg(s, ψ). We will compute these
values bottom-up, starting from the leaves of T .

Let t be a vertex of T , s = (t, S) be a sub-bag of t and ψ
be an s-valid assignment. Suppose that the values valalg(s′, ψ′)
have already been computed for all pairs (s′ = (t′, S′), ψ′)
with t′ <T t. If t is a leaf then we set valalg(s, ψ) :=∑

e∈H:e⊆S fe(ψ(xe)). If t is not a leaf then we define a vertex-
weighted graph G where
• V (G) is the set of all sub-bags s′ = (t′, S′) with t′ <T t

such that (i) there exists at least one s′-valid assignment
ψ′ such that ψ′|S∩S′ = ψ|S∩S′ and (ii) (s′, s) is an arc
in A;

• E(G) is the set of all pairs {(t1, S1), (t2, S2)} ∈ V (G)2

such that either t1 = t2 or ((t1, S1), (t2, S2)) is an arc in
A;

• For every s′ = (t′, S′) ∈ V (G), the weight w(s′) of s′ is
the maximum of

valalg(s′, ψ′)−
∑

e∈H:e⊆S∩S′
fe(ψ(xe))

over all s′-valid assignments ψ′ such that ψ′|S∩S′ =
ψ|S∩S′ ,

and we set valalg(s, ψ) :=
∑
e∈H:e⊆S fe(ψ(xe)) +

maxU∈IS(G)

(∑
s′∈U w(s′)

)
. Once valalg(s, ψ) is computed for

all pairs (s, ψ) where s is a sub-bag of the root of T , the
algorithm outputs the maximum of valalg(s, ψ) over all such
pairs.

Claim 1. For every t ∈ V (T), sub-bag s = (t, S) with a
(possibly empty) directed path in A from s to a sub-bag of
the root of T and s-valid assignment ψ, valalg(s, ψ) is the
maximum of val(φ,A′) over all partial realisations A′ of A
whose sink is s and consistent assignments φ to A′ such that
φ(s) = ψ.

We proceed by induction, proving the claim for all pairs
(s, ψ) in the same order the algorithm computes valalg(s, ψ).
Let s = (t, S) be a sub-bag with a directed path in A to
a sub-bag of the root of T and ψ be an s-valid assignment.
Suppose that the claim holds for all pairs (s′, ψ′) for which
valalg(s′, ψ′) is computed by the algorithm before valalg(s, ψ)
(and in particular for all pairs (s′, ψ′) where s′ is a sub-bag of
t′ with t′ <T t). If t is a leaf then the claim trivially holds, so
suppose that t is not a leaf. Let A′ be any partial realisation
of A with sink s and φ be a consistent assignment to A′ with
φ(s) = ψ. Let W be the set of all sub-bags s′ = (t′, S′) in
V (A′) such that t′ is a child of t in TA′ . By definition of
TA′ , W is a subset of V (G) and form an independent set.
Furthermore, by Observation 3 and the induction hypothesis
we have

val(φ,A′) =
∑

e∈H:e⊆S

fe(ψ(xe))+

∑
s′∈W

s′=(t′,S′)

val(φ|V (A′[s′]), A
′[s′])−

∑
e∈H:
e⊆S∩S′

fe(ψ(xe))

≤

∑
e∈H:e⊆S

fe(ψ(xe))+

∑
s′∈W

s′=(t′,S′)

valalg(s′, φ(s′))−
∑
e∈H:
e⊆S∩S′

fe(ψ(xe))

 .

Then, from the definition of the vertex weights in G we deduce

val(φ,A′) ≤
∑

e∈H:e⊆S

fe(ψ(xe)) +
∑

s′=(t′,S′)∈W

w(s′)

and since valalg(s, ψ) is the maximum of the right-hand side
expression taken over all independent sets W ′ of G, we finally
obtain that val(φ,A′) ≤ valalg(s, ψ), as claimed.

At this point, we need only prove that there exist a partial
realisation A′ with sink s and a consistent assignment φ to
A′ such that φ(s) = ψ and val(φ,A′) is exactly valalg(s, ψ).
Let W be the independent set of G chosen by the algorithm
to compute valalg(s, ψ). For each sub-bag s′ = (t′, S′) ∈ W ,

let ψs′ be an s′-valid assignment such that valalg(s′, ψs′) −∑
e∈H:e⊆S∩S′ fe(ψ(xe)) = w(s′) and ψs′ |S∩S′ = ψ|S∩S′ .

Note that every sub-bag in W can reach a sub-bag of the root
of T via a directed path in A by going through s. Then, by
induction for each s′ ∈W there exist a partial realisation A′s′
with sink s′ and a consistent assignment φs′ to A′s′ such that
φs′(s

′) = ψs′ and val(φs′ , A′s′) = valalg(s′, ψs′) = w(s′) +∑
e∈H:e⊆S∩S′ fe(ψ(xe)). Now, if we define A′ as the subgraph

of A induced by {s}∪(∪s′∈WV (A′s′)), then (i) A′ has a single
sink s, since the sinks of each A′s′ have an outgoing arc to s,
and (ii) A′ contains at most one sub-bag for each t ∈ V (T)
because A is decomposable and W is an independent set in
G. It follows that A′ is a partial realisation of A.

The mapping φ defined on V (A′) such that φ(s∗) := ψ
if s∗ = s and φ(s∗) := φs′(s

∗) otherwise, where s′ is the
only sub-bag in W such that s∗ ∈ V (A′s′), is a consistent
assignment to A′. Finally, by Observation 3 and the induction
hypothesis we obtain

val(φ,A′) =
∑

e∈H:e⊆S

fe(ψ(xe)) +

∑
s′∈W

s′=(t′,S′)

val(φs′ , A′s′)−
∑

e∈H:e⊆S∩S′
fe(ψ(xe))

=

∑
e∈H:e⊆S

fe(ψ(xe)) +
∑
s′∈W

w(s′)

which is exactly valalg(s, ψ).

Corollary 1. The output of the algorithm is the maximum
of val(φ,A′) over all realisations A′ of A and consistent
assignments φ to A′.

We deduce from Corollary 1 and Proposition 1 that the
algorithm correctly outputs opt(I). We now turn to the problem
of estimating the time complexity of the algorithm. To this
end, we will need to bound the time necessary to compute the
maximum-weight independent sets. This will be achieved with
the help of the next claim.

A graph is chordal if every cycle C with at least four vertices
has a chord, that is, an edge connecting two vertices that are
not consecutive in C.

Claim 2. For any given pair (s, ψ), the associated graph G
is chordal.

By way of contradiction let us assume that there exists a pair
(s, ψ) for which G has a chordless cycle C. Let s1 = (t1, S1)
be a sub-bag in C such that t1 is minimal with respect to
<T . Since C is chordless, at least one of the two sub-bags
that are adjacent to s1 in C is not a sub-bag of t1. Let s2 be
that sub-bag, and s3 be the other one. Note that s2 and s3 are
not adjacent in G, which means that they are not sub-bags of
the same vertex of T and none of (s2, s3), (s3, s2) is an arc
in A. Furthermore, since t1 is minimal with respect to <T
in the cycle, there is a directed path (of length 1) in A from

s1 to s2. Likewise, there is always a directed path in A from
some sub-bag of t1 to s3: if s3 is a sub-bag of t1 then this
path is empty, and otherwise we have the path (s1, s3) in A
by minimality of t1. Finally, by construction we have the arcs
(s2, s) and (s3, s) in A, so the triple (s, s2, s3) contradicts the
decomposability of A. Thus the chordless cycle C does not
exist, which establishes the claim.

Claim 3. The runtime of the algorithm is polynomial in ‖I‖
and ‖P‖.

By definition of the width of a point decomposition, for
each bag Bt, t ∈ V (T) we have β-cn(H|Bt) ≤ k. Hence, for
each subhypergraph H ′ ⊆ H there exists a subhypergraph
H∗ ⊆ H ′, |H∗| ≤ k, such that V (H∗|Bt) = V (H ′|Bt);
in particular, every guard of a sub-bag contains at most k
edges. Therefore, given a sub-bag s, any s-valid assignment
is in the join of the projections of the support of at most k
constraints; it follows that there are at most |H|kqk distinct s-
valid assignments, where q := maxe∈H |Re|, and the algorithm
computes valalg(s, ψ) for O(‖P‖|H|kqk) pairs (s, ψ).

The computation of valalg(s, ψ) for a given pair (s, ψ)
reduces to computing a maximum weighted independent
set in the graph G, which can be achieved in time linear
in ‖G‖ = O(‖P‖) since G is chordal [15] by Claim 2.
Constructing the graph G takes time polynomial in ‖P‖ and
|H|kqk, which concludes the proof.

V. RELATIONSHIP WITH β-ACYCLICITY

A hypergraph H is α-acyclic [3] if it has a join tree. A join
tree is a pair (T, λ) where T is a tree and λ is a bijection
from V (T) to (the edges of) H , such that for every v ∈ V (H)
the set {t ∈ V (T) : v ∈ λ(t)} induces a connected subtree of
T . A hypergraph H is β-acyclic [13] if every subhypergraph
of H is α-acyclic. It is known that β-acyclic hypergraphs are
tractable for Max-CSPs:

Theorem 5 ([4]). Max-CSP(H,−) can be solved in polynomial
time if H is a family of β-acyclic hypergraphs.

The algorithm of Brault-Baron, Capelli, and Mengel [4]
works by variable elimination, making use of a well-known
alternative characterisation of β-acyclic hypergraphs in terms
of the so-called β-elimination orders [3]. In this section we
show that such hypergraphs are covered by our framework as
they always have a point decomposition of polynomial size and
width 1, which can be computed in polynomial time. Hence,
together with Theorem 4, we can obtain Theorem 5.

An ordering (x1, . . . , xn) of the vertices of a hypergraph H
is a β-elimination order if for any xi ∈ V (H) and e, e′ ∈ H
such that xi ∈ e∩ e′, either e∩ {xj : j ≥ i} ⊆ e′ or e′ ∩ {xj :
j ≥ i} ⊆ e. A hypergraph is β-acyclic if and only if it has a
β-elimination order [3].

Our construction of point decompositions for β-acyclic hy-
pergraphs is inspired by recent work of Capelli [7], from whom
we borrow some notation and lemmas. Let H be a β-acyclic
hypergraph and <β be a β-elimination order of H . Given a
vertex x ∈ V (H), let V (H)≤x := {v ∈ V (H) : v ≤β x}

and V (H)≥x := {v ∈ V (H) : v ≥β x}. Let <H be the
total order on the edges of H such that e1 <H e2 if and
only if max<β (e1∆e2) ∈ e2, where ∆ denotes the symmetric
difference. A walk from e ∈ H to f ∈ H is a sequence
(e1, x1, e2, x2, . . . , xn−1, en), with n ≥ 1, where each ei is an
edge of H , e1 = e, en = f , and each xi is a vertex of H
such that xi ∈ ei ∩ ei+1. Given x ∈ V (H) and e ∈ H , let Hx

e

denote the set of edges of H reachable from e through a walk
that contains only vertices ≤β x and edges ≤H e.
Example 6. Consider the hypergraph H from Figure 1 defined
as H = {e, e1, e2, e3}, where e = {x0, x1, x2, x3} and ei =
{x0, xi}, for i ∈ {1, 2, 3}. We have that H is β-acyclic. A
possible β-elimination order is x1 <β x2 <β x0 <β x3. The
induced order <H is e1 <H e2 <H e3 <H e. For instance, note
that e1 6∈ Hx2

e3 as the only possible walk would be (e3, x0, e1)
but x0 >β x2. We have Hx2

e3 = {e3} and Hx0
e3 = {e3, e1, e2}.

Note that e 6∈ Hx0
e3 as e >H e3.

Lemma 1 ([7, Lemma 2]). Let x, y ∈ V (H) such that x ≤β y
and e, f ∈ H such that e ≤H f and V (Hx

e) ∩ V (Hy
f) ∩

V (H)≤x 6= ∅. Then, Hx
e ⊆ H

y
f .

Theorem 6 ([7, Theorem 3]). For every x ∈ V (H) and e ∈ H ,
V (Hx

e) ∩ V (H)≥x ⊆ e.

Now we are ready to state the main result of this section:

Theorem 7. Every β-acyclic hypergraph has a point decom-
position of polynomial size and width 1. Moreover, such a
decomposition can be computed in polynomial time.

Proof. Let H be a β-acyclic hypergraph with β-elimination
order <β . The rooted tree T of the point decomposition of H
has one vertex tx for each vertex x ∈ V (H), plus a special
vertex t⊥. The root of T is t⊥ and its only child is tz , where z
is the last vertex in the β-elimination order of H . The remainder
of T is then a path, where tx is the child of ty if and only
if y is the vertex that directly follows x in the β-elimination
order. In particular, for any two vertices x, y ∈ V (H) we have
that tx <T ty if and only if x <β y.

For any tx ∈ V (T), the associated bag Btx is the set of
all points (y, e) ∈ P (H) with x ∈ e and x ≤β y. The bag
of t⊥ is an empty set of points. We denote by T the pair
(T, (Bt)t∈V (T)).

By definition of a β-elimination order, for each tx ∈ V (T)
it holds that β-cn(H|Btx) = 1 and the possible sub-bags are of
the form (tx, e ∩ V (H)≥x) with e ∈ H . We now describe the
directed graph A on the sub-bags of T that will complete the
point decomposition. Given any two sub-bags sx = (tx, Sx)
and sy = (ty, Sy) with x, y ∈ V (H) and x <β y, we add an
arc from sx to sy if one of the following conditions is satisfied:
• |Sx| = 1 and there exist e, f ∈ H such that Sx = e ∩
V (H)≥x, Sy = f ∩ V (H)≥y and e ∈ Hy

f ;
• |Sx| > 1 and there exist e, f ∈ H such that Sx = e ∩
V (H)≥x, Sy = f ∩V (H)≥y , e ∈ Hy

f and y ≤β z, where
z = min<β (Sx\{x}).

In addition, if |Sx| = 1 we add the arc ((tx, Sx), (t⊥, ∅)). By
construction, A is a T -structure. The next claim will be used

in conjunction with Lemma 1 and Theorem 6 to show that A
is decomposable.

Claim 4. Let sx = (tx, Sx) and sy = (ty, Sy) be two sub-
bags with x, y ∈ V (H) and Sx, Sy 6= ∅, such that there is a
directed path in A from sx to sy. Then, there exist e, f ∈ H
such that Sx = e ∩ V (H)≥x, Sy = f ∩ V (H)≥y and e ∈ Hy

f .

We prove the claim by induction on the length of the path.
If the path has length 1, then the claim holds by the definition
of A. Now, suppose that the path has length n > 1 and that
the claim holds for all paths of length n− 1. Let z ∈ V (H)
be such that sz = (tz, Sz) is the predecessor of sy in the
path. Note that Sz cannot be empty. By induction, there exist
e, f ∈ H such that Sx = e∩V (H)≥x, Sz = f ∩V (H)≥z and
e ∈ Hz

f . Since (sz, sy) is an arc in A, there exist f ′, g ∈ H
such that Sz = f ′∩V (H)≥z , Sy = g∩V (H)≥y and f ′ ∈ Hy

g .
If f <H g, then f ∈ Hy

g as a walk to f ′ can be extended to a
walk to f by going through z. This implies that e ∈ Hy

g and the
claim would follow. If instead g <H f , then by Theorem 6 we
have f ∩ V (H)≥y = f ′ ∩ V (H)≥y ⊆ V (Hy

g) ∩ V (H)≥y ⊆ g.
It follows from g <H f that f∩V (H)≥y = g∩V (H)≥y = Sy ,
and the claim follows since e ∈ Hz

f implies e ∈ Hy
f .

Claim 5. A is decomposable.

We prove the claim by contradiction. Suppose that A is
not decomposable, that is, there exist five sub-bags s, sx =
(tx, Sx), sy = (ty, Sy), s1z = (tz, S

1
z), s2z = (tz, S

2
z) with

x, y, z ∈ V (H) and x 6= y such that (i) (sx, s) and (sy, s)
are arcs in A, (ii) neither (sx, sy) nor (sy, sx) is an arc in A,
and (iii) there are directed paths in A from s1z to sx and from
s2z to sy. By the definition of A, we can further assume that
none of Sx, Sy, S1

z , S
2
z is empty.

By Claim 4, there exist fx, e1z, fy, e
2
z ∈ H such that Sx =

fx ∩ V (H)≥x, Sy = fy ∩ V (H)≥y, S1
z = e1z ∩ V (H)≥z ,

S2
z = e2z ∩ V (H)≥z , e1z ∈ Hx

fx
and e2z ∈ H

y
fy

. Without loss of
generality we assume x <β y.

We distinguish two cases:
• fx ≤H fy. Observe that z ∈ e1z ∩ e2z ∩ V (H)≤x ⊆
V (Hx

fx
) ∩ V (Hy

fy
) ∩ V (H)≤x, so by Lemma 1 we have

Hx
fx
⊆ Hy

fy
. In particular, it holds that fx ∈ Hy

fy
.

Since (sx, sy) is not an arc in A, we can deduce that
|Sx| > 1; it follows that s is of the form (tw, Sw) where
w ≤β min<β (Sx\{x}). However, the arc (sy, s) implies
that y <β w, which means that (sx, sy) should have been
an arc in A, a contradiction.

• fx ≥H fy. Then, we have z ∈ V (Hy
fx

) ∩ V (Hy
fy

) ∩
V (H)≤y, so by Lemma 1 we have Hy

fy
⊆ Hy

fx
. By

Theorem 6 it holds that fy ∩ V (H)≥y ⊆ fx, and in
particular y ∈ fx. Then, since (sx, s) is an arc in A
and |Sx| = |fx ∩ V (H)≥x| > 1 (as it contains both x
and y), it follows that s is of the form (tw, Sw) where
w ≤β min<β (Sx\{x}). Again, the arc (sy, s) implies
that y <β w. Finally, since y ∈ Sx\{x}, we have w ≤β
min<β (Sx\{x}) ≤β y <β w, a contradiction.

Claim 6. The triple (T, (Bt)t∈V (T), A) is a point decomposi-
tion of H .

T is a rooted tree, each Bt with t ∈ V (T) is a set of
points, and A is a decomposable T -structure by Claim 5. That
leaves conditions (i), (ii) and (iii) in the definition of a point
decomposition to verify.

By construction, for any edge e ∈ H , we have that P ({e}) =
{(v, e) : v ∈ e} ⊆ Btx , where x is the smallest vertex in e
with respect to <β . Hence condition (i) holds.

For condition (ii), let H ′ be a subhypergraph of H and note
that A′ := A[H ′]∅ is precisely the subgraph of A induced by

{(t⊥, ∅)} ∪ {(tx, V (H ′|Btx)) : x ∈ V (H), V (H ′|Btx) 6= ∅}.

We show that A′ is a realisation of A. Suppose for the sake of
contradiction that it is not the case. The only possibility is that
A′ has two sinks, and one of them is of the form sx = (tx, Sx)
with x ∈ V (H) and Sx 6= ∅. The sub-bag s⊥ = (t⊥, ∅) belongs
to V (A′), which implies |Sx| > 1 since otherwise we would
have (sx, s⊥) as an arc in A′. Let y = min<β (Sx\{x}), and let
ex ∈ H ′ be such that Sx = ex∩V (H)≥x. Let sy = (ty, Sy) be
the (unique) sub-bag of ty in V (A′), and let ey ∈ H ′ be such
that Sy = ey∩V (H)≥y . If ex∩V (H)≥y = ey∩V (H)≥y then
(sx, sy) would be an arc in A and thus of A′, so this cannot be
the case. Recall that <β is a β-elimination order, ex ∈ H ′ and
y ∈ ex, so we must have ex ∩ V (H)≥y ⊂ ey ∩ V (H)≥y. It
follows that ex <H ey , and since (ey, y, ex) is a walk in H we
have ex ∈ Hy

ey . Hence (sx, sy) is an arc in A, a contradiction.
For condition (iii), let A′ be a realisation of A and x ∈
∪(t,S)∈V (A′)S. By the definition of A and Theorem 6, for
any arc (s, s′) of A′ where s = (ty, Sy), y ∈ V (H) and
s′ = (t′, S′) it holds that Sy\S′ = {y}. It follows that if t′ is
the parent of t in TA′ and (t, S), (t′, S′) are the sub-bags in
V (A′), then x ∈ S and x 6∈ S′ if and only if t = tx. Since x
may only appear in a set Sy for sub-bags of the form (ty, Sy)
with y ≤β x, the set

{t ∈ V (TA′) : ∃(t, S) ∈ V (A′) and x ∈ S}

induces a connected subtree of TA′ , which proves the claim.

The point decomposition (T, (Bt)t∈V (T), A) has polynomial
size. Moreover, it can be computed in polynomial time since
a β-elimination order can be computed efficiently from H .
Recall that for each tx ∈ V (T) it holds that β-cn(H|Btx) = 1;
it follows that (T, (Bt)t∈V (T), A) has width 1. Together with
Claim 6, these last observations establish Theorem 7.

Figure 1 shows the construction from the proof of Theorem 7
applied to the β-acyclic hypergraph H to the left and β-
elimination order x1 <β x2 <β x0 <β x3. Note how
we need a non-flat point decomposition. It can be verified
that the construction produces a non-flat point decomposition
independently of the β-elimination order we pick for H . As
we shall see in the next section, this is not coincidence
as β-acyclic hypergraphs cannot be captured by flat point
decompositions of any constant width. The reason is that the

latter captures precisely the so-called hypergraphs of constant
MIM-width, which are known to be incomparable with β-
acyclic hypergraphs [4].

VI. FLAT POINT-WIDTH AND MIM-WIDTH

In this section, we show how our main tractability result
from Theorem 4 also explains the tractability of Max-CSPs
for classes of hypergraphs of bounded MIM-width [32], [36].
Before doing so, we need some notation and definitions.

An induced matching in a graph G is a set M ⊆ E(G)
such that no two edges of M share a common vertex and
for every edge e = {u, v} ∈ E(G) \M , we have {u, v} 6⊆⋃
{u′,v′}∈M{u′, v′}. For a graph G, we denote by MIM(G)

the maximum size of an induced matching in G. A graph G
is bipartite if there is a partition V1, V2 of its vertex set V (G)
such that every edge of G has one endpoint in V1 and the other
in V2. For a graph G and disjoint subsets V1, V2 of V (G),
we define G[V1, V2] to be the bipartite graph with vertex set
V1 ∪ V2 that contains all edges of G with one endpoint in V1
and the other in V2.

A branch decomposition of a graph G is a pair (T, δ) where
T is a binary rooted tree and δ is a bijection from V (G) to the
leaves of T . For t ∈ V (T), we let Tt denote the subtree of T
rooted at t and Vt denote the set {δ−1(`) : ` is a leaf of Tt}.
The MIM-width of the branch decomposition (T, δ) is the
maximum MIM(G[Vt, V (G) \ Vt]), taken over all t ∈ V (T).
The MIM-width [36] of G, denoted by mimw(G), is the
minimum MIM-width over all branch decompositions of G.

The incidence graph of a hypergraph H , denoted by inc(H),
is the bipartite graph with vertex set V (H) ∪H and edge set
{{v, e} : v ∈ V (H), e ∈ H and v ∈ e}. We define the MIM-
width mimw(H) of the hypergraph H to be mimw(inc(H)).
It follows from the work of Sæther, Telle and Vatshelle [32]
that Max-CSPs are tractable for hypergraphs of bounded MIM-
width, provided a branch decomposition of bounded MIM-
width is given with the input. More formally:

Theorem 8 ([32]). Let k ≥ 1 be fixed. There exists an algorithm
which, given as input a Max-CSP instance I with hypergraph
H and a branch decomposition of inc(H) of MIM-width at
most k, computes opt(I) in time polynomial in ‖I‖.

Let us stress that the results in [32], [36] are given for
Max-SAT (and #SAT). However, Theorem 8 can be obtained
by adapting the algorithm from [32], [36] to Max-CSPs. We
omit the details as Theorem 8 is implied by the results of this
section.

The goal of this section is to prove the following:

Theorem 9. Let k ≥ 1 be fixed. For every hypergraph H and
branch decomposition of inc(H) of MIM-width k, there exists
a point decomposition of H of polynomial size in ‖H‖ and of
width at most 2k. Moreover, this point decomposition can be
computed in time polynomial in ‖H‖.

Note that we obtain Theorem 8 as a consequence of Theorem
9 and Theorem 4. In order to prove Theorem 9, we show that

the MIM-width of a hypergraph is equivalent to its flat point-
width modulo constant factors. This is the main technical result
of this section which we state below:

Theorem 10. For every hypergraph H , we have mimw(H) ≤
4 · fpw(H) and fpw(H) ≤ 2 ·mimw(H). Moreover, for a fixed
k ≥ 1, a flat point decomposition (of polynomial size) of width
at most 2k can be computed in time polynomial in ‖H‖ from
a branch decomposition of H of MIM-width k.

Note how Theorem 10 directly implies Theorem 9. In order
to prove Theorem 10, we present several notions of width
and show that they are equivalent modulo constant factors.
As an intermediate step, we show a characterisation of the
MIM-width of a bipartite graph in terms of its line graph. This
characterisation of MIM-width and the one from Theorem 10
may be of independent interest.

A. A characterisation of the MIM-width of bipartite graphs

A tree decomposition of a graph G is a pair (T, (Bt)t∈V (T)),
where T is a tree and each bag Bt is a subset of V (G) such
that

(i) V (G) =
⋃
t∈V (T)Bt,

(ii) for each edge {u, v} ∈ E(G), there exists t ∈ V (T) such
that {u, v} ⊆ Bt, and

(iii) for each v ∈ V (G) the set {t ∈ V (T) : v ∈ Bt} induces
a connected subtree of T .

For any function f : 2V (G) → Q≥0, we define the f -width of
the decomposition (T, (Bt)t∈V (T)) to be the maximum f(Bt),
taken over all t ∈ V (T), and the f -width of the graph G to
be the minimum f -width over all its tree decompositions. For
instance, the standard notion of treewidth [30] corresponds to
s-width, where s(X) = |X| − 1, for every X ⊆ V (G).

For a graph G, we say that a set U ⊆ V (G) is a distance-2
independent set if for every pair of distinct nodes u, v ∈ U ,
there is no path from u to v in G of length at most 2, where
the length of a path is the number of edges. We denote by
α2(G) the maximum size of a distance-2 independent set in
G. For G, we define the function α2

G : 2V (G) → Q≥0 as
α2
G(X) := α2(G[X]), for every X ⊆ V (G). (Recall that
G[X] denotes the subgraph of G induced by X , i.e., G[X] =
(X, {{u, v} ∈ E(G) : u, v ∈ X}).) We also consider the
function mon-α2

G : 2V (G) → Q≥0 defined by mon-α2
G(X) :=

min{α2
G(Y) : X ⊆ Y ⊆ V (G)}, for every X ⊆ V (G).

Observation 11. For a graph G, we have the following:
• α2

G is subadditive, i.e., α2
G(X ∪ Y) ≤ α2

G(X) + α2
G(Y),

for all X,Y ⊆ V (G).
• mon-α2

G(X) ≤ α2
G(X), for all X ⊆ V (G).

• mon-α2
G is monotone (unlike α2

G), i.e., mon-α2
G(X) ≤

mon-α2
G(Y), if X ⊆ Y ⊆ V (G).

We are particularly interested in the notions of α2
G-width and

mon-α2
G-width for a graph G, which we denote by α2-w(G)

and mon-α2-w(G), respectively. For a graph G, we define
the line graph of G, denoted by L(G), to be the graph with
vertex set E(G) such that {e, f} is an edge in L(G), where
e, f ∈ E(G) and e 6= f , if e and f share a common vertex.

Observation 12. Let G be a graph. Every induced matching
in G is a distance 2-independent set in L(G) and vice versa.
In particular, MIM(G) = α2(L(G)).

Below we show that for bipartite graphs, the MIM-width and
the α2-w (and also mon-α2-w) of the line graph are equivalent,
modulo constant factors. The proof is an adaptation of the
classical equivalence between treewidth and branchwidth [31].
The proof of the following propositions can be found in the
full version of the paper [9, Propositions 23 and 24].

Proposition 2. For every graph G, we have α2-w(L(G)) ≤
2 · mimw(G).

Proposition 3. For every bipartite graph G, we have
mimw(G) ≤ 2 · mon-α2-w(L(G)).

By Propositions 2 and 3, for every bipartite graph G:
1
2 · mimw(G) ≤ mon-α2-w(L(G)) ≤ α2-w(L(G)) ≤ 2 ·
mimw(G).
Remark 1. As in the case of treewidth, the widths α2-w and
mon-α2-w can be related with other notions such as brambles
and games. For instance, α2-w and mon-α2-w can be lower
bounded by the (natural adaptation of the) bramble number [34].
Also, mon-α2-w can be characterised in terms of the monotone
version of the cops and robber game [34] (this is the reason
why we work explicitly with mon-α2-w in the first place). Now
the cops are not restricted to play on a set X of size k, but on
a set X with mon-α2-w(X) ≤ k. The minimum k for which
the cops can win the game in a monotone way is precisely the
mon-α2-w (this follows for instance from [1, Theorem 2.2.12
and Remark 2.1.18]). Hence these connections could be used
to obtain bounds on the mimw of bipartite graphs.

B. Proof of Theorem 10

We now show the equivalence of fpw and mimw. Let us
start with a definition.

Definition 8 (Simplified point decomposition). A simpli-
fied point decomposition of a hypergraph H is a pair
(T, (Bt)t∈V (T)) where T is a rooted tree, each set Bt ⊆ P (H)
is a set of points of H and
(1) For every edge e ∈ H , there exists t ∈ V (T) such that

P ({e}) = {(v, e) : v ∈ e} ⊆ Bt.
(2) For every subhypergraph H ′ of H , and v ∈ V (H ′), the

set {t ∈ V (T) : v ∈ V (H ′|Bt)} induces a connected
subtree of T .

As before, the width of a simplified point decomposition
(T, (Bt)t∈V (T)) is maxt∈V (T) β-cn(H|Bt), and the simplified
point-width of H , denoted by spw(H), is the minimum width
over all its simplified point decompositions.

Proposition 4. For every hypergraph H , we have fpw(H) =
spw(H).

Proof. We start by showing fpw(H) ≤ spw(H). Let
(T, (Bt)t∈V (T)) be a simplified point decomposition of H
of width k. We say that two sub-bags (t, S) and (t′, S) with
t 6= t′ are consistent if there exists a subhypergraph H ′ of

H such that S = V (H ′|Bt) and S′ = V (H ′|Bt′). Consider
the triple (T, (Bt)t∈V (T), A), where ((t, S), (t′, S′)) is an arc
in A if and only if t′ is the parent of t in T and, (t, S) and
(t′, S′) are consistent. We claim that (T, (Bt)t∈V (T), A) is a
flat point decomposition of H , and hence fpw(H) ≤ k. Let H ′

be a subhypergraph of H and note that if t′ is the parent of t
in T then there is an arc from (t, V (H ′|Bt)) to (t′, V (H ′|Bt′))
in A as they are consistent. Hence A[H ′]∅ (actually we have
A[H ′]∅ = A[H ′]) is a realisation of A.

Now let A′ be an arbitrary realisation of A. By definition of
A, we have that the subtree TA′ associated with A′ is actually
a subtree of T that contains the root. By contradiction, suppose
the connectivity condition fails for some v ∈

⋃
(t,S)∈V (A′) S.

Then, there exists a sequence (t0, S0), . . . , (tn, Sn), with n ≥ 2,
such that (i) each (ti, Si) ∈ V (A′), (ii) t0, . . . , tn is a path
in T , and (iii) v ∈ S0 ∩ Sn but v /∈ Si, for 0 < i < n. We
show by induction that for all i ∈ {1, . . . , n}, there exists
a subhypergraph Hi of H such that v ∈ V (Hi|Bt0), v 6∈
V (Hi|Bti) and Si ⊆ V (Hi|Bti). In particular, v 6∈ V (Hn|Btn)
and Sn ⊆ V (Hn|Btn). This is a contradiction since v ∈ Sn.

For the base case, recall that by construction of A, (t0, S0)
is consistent with (t1, S1), and similarly, (t1, S1) with (t2, S2).
Hence, there are subhypergraphs H ′0 and H ′1 of H such that
S0 = V (H ′0|Bt0), S1 = V (H ′0|Bt1) = V (H ′1|Bt1) and S2 =
V (H ′1|Bt2). We define H1 = H ′0 ∪ H ′1. Then we have that
S0 ⊆ V (H1|Bt0) and S1 = V (H1|Bt1). In particular, v ∈
S0 ⊆ V (H1|Bt0), v 6∈ S1 = V (H1|Bt1) and S1 ⊆ V (H1|Bt1),
as required. For the inductive case, suppose we have Hi with
the desired properties, for i ∈ {1, . . . , n− 1}. As (ti, Si) and
(ti+1, Si+1) are consistent, there is a subhypergraph H ′i of H
such that Si = V (H ′i|Bti) and Si+1 = V (H ′i|Bti+1

). We take
Hi+1 = Hi ∪H ′i . Note that Si+1 ⊆ V (Hi+1|Bti+1

) and v ∈
V (Hi+1|Bt0) (using the inductive hypothesis v ∈ V (Hi|Bt0)).
Observe that V (Hi+1|Bti) = V (Hi|Bti) ∪ Si. Since v 6∈ Si
and v 6∈ V (Hi|Bti) (by inductive hypothesis), we derive that
v 6∈ V (Hi+1|Bti). Since v ∈ V (Hi+1|Bt0), it follows that
v 6∈ V (Hi+1|Bti+1

); otherwise the connectivity condition (2)
for simplified point decompositions would be violated for Hi+1.
Hence Hi+1 satisfies all the required conditions.

For fpw(H) ≥ spw(H), let (T, (Bt)t∈V (T), A) be a
flat point decomposition of H of width k. We claim that
(T, (Bt)t∈V (T)) is a simplified point decomposition of H ,
and the result follows. Let H ′ be a subhypergraph of H . By
definition of point decompositions, A[H ′]∅ is a realisation of
A and for every v ∈ V (H ′), the set {t ∈ V (TA[H′]∅) : v ∈
V (H ′|Bt)} induces a connected subtree of TA[H′]∅ . For every
t ∈ V (T)\V (TA[H′]∅), we have V (H ′|Bt) = ∅ and then {t ∈
V (TA[H′]∅) : v ∈ V (H ′|Bt)} = {t ∈ V (T) : v ∈ V (H ′|Bt)}.
Since TA[H′]∅ must be a subtree of T , the latter set induces a
connected subtree of T . Hence condition (2) of Definition 8
(simplified point decompositions) holds.

Observe how a simplified point decomposition of H encodes
tree decompositions for the subhypergraphs of H without
the need of a T -structure, unlike the case of flat point
decompositions. Whether arbitrary point decompositions can

also be captured by a notion of decomposition that does not
use T -structures explicitly is an interesting question which we
leave for future work.

For a hypergraph H , we define the point graph of H ,
denoted by pg(H), as pg(H) := (P (H), {{(v, e), (v′, e′)} :
v = v′ or e = e′}). Note that the point graph pg(H) of H is
isomorphic to L(inc(H)). There is a known duality between
β-cn and MIM (see e.g. [6, Theorem 2.18]):

Observation 13. For every hypergraph H , we have
β-cn(H) = MIM(inc(H)). By Observation 12, we have
β-cn(H) = α2(pg(H)).

Proposition 5. For every hypergraph H , we have spw(H) ≤
α2-w(pg(H)) and α2-w(pg(H)) ≤ 2 · spw(H).

Proof. For spw(H) ≤ α2-w(pg(H)), let (T, (Bt)t∈V (T)) be
a tree decomposition of pg(H) of α2-width k. We claim
that (T, (Bt)t∈V (T)) is a simplified point decomposition of
H of width k. By Observation 13, we have β-cn(H|Bt) =
α2(pg(H|Bt)) = α2(pg(H)[Bt]) = α2

pg(H)(Bt), for every
t ∈ V (T). Hence, the width of (T, (Bt)t∈V (T)) is k. For
condition (1) of Definition 8, let e ∈ H and note that the
set {(v, e) ∈ P (H) : v ∈ e} forms a clique in pg(H). Hence,
there exists t ∈ V (T) such that {(v, e) ∈ P (H) : v ∈ e} ⊆ Bt.
Towards a contradiction, suppose that condition (2) of Defini-
tion 8 is violated, i.e., there is a subhypergraph H ′ of H ,
a vertex v ∈ V (H ′) and distinct nodes t1, t2, t3 ∈ V (T)
such that t3 is in the unique path from t1 to t2 in T ,
and v ∈ V (H ′|Bt1) ∩ V (H ′|Bt2) but v 6∈ V (H ′|Bt3). In
particular, there exist edges e1, e2 ∈ H ′ such that (v, e1) ∈
Bt1 , (v, e2) ∈ Bt2 and {(v, e1), (v, e2)} ∩ Bt3 = ∅. Since
{(v, e1), (v, e2)} is an edge in pg(H), there is a node t ∈ V (T)
such that {(v, e1), (v, e2)} ⊆ Bt. Using the connectivity
of the tree decomposition (T, (Bt)t∈V (T)), we obtain that
{(v, e1), (v, e2)} ∩Bt3 6= ∅; a contradiction.

For α2-w(pg(H)) ≤ 2 · spw(H), let (T, (Bt)t∈V (T)) be a
simplified point decomposition of H of width k. We define T ′

to be the tree obtained from T by subdividing every edge in
E(T), i.e., replacing every edge e = {t1, t2} ∈ E(T) by two
edges {t1, te} and {te, t2}, where te is a fresh node. For t ∈
V (T ′), we define B′t := Bt, if t ∈ V (T), or B′t := Bt1 ∪Bt2 ,
if t = te with e = {t1, t2}.

We claim that (T ′, (B′t)t∈V (T ′)) is a tree decomposition of
pg(H). First note that, for every point (v, e) in H , by condition
(1) of simplified point decompositions, there is t ∈ V (T) ⊆
V (T ′), such that (v, e) ∈ Bt = B′t, and hence condition
(i) of tree decompositions holds. For condition (ii), suppose
(v, e) and (v′, e) are points with v 6= v′. Again by condition
(1), we obtain that there is t ∈ V (T) ⊆ V (T ′), such that
{(v, e), (v′, e)} ∈ Bt = B′t. Now suppose that (v, e) and
(v, e′) are points with e 6= e′ and pick t, t′ ∈ V (T) such
that (v, e) ∈ Bt and (v, e′) ∈ Bt′ . By applying condition
(2) of simplified point decompositions to the subhypergraph
H ′ = {e, e′}, we have that {(v, e), (v, e′)}∩Bs 6= ∅, for every
s ∈ V (T) in the unique path from t to t′ in T . In particular,
there is an edge ê = {s1, s2} in this path such that (v, e) ∈

Bs1 and (v, e′) ∈ Bs2 . It follows that {(v, e), (v, e′)} ⊆ B′tê ,
for tê ∈ V (T ′), and hence condition (ii) holds. For a point
(v, e) of H , condition (iii) follows from applying condition
(2) to the subhypergraph H ′ = {e}. Finally, note that, by
Observation 13 and subadditivity of α2

pg(H), the α2
pg(H)-width

of (T ′, (B′t)t∈V (T ′)) is at most 2k, as required.

Theorem 10 follows from Propositions 5, 4, 2, and 3. Let
us stress that given a branch decomposition (T, δ) of inc(H)
of MIM-width k ≥ 1, we can efficiently compute a flat point
decomposition (of polynomial size) of width at most 2k. By
applying the construction in the proof of Proposition 2 (and
due to Proposition 5), from (T, δ) we can efficiently compute
a simplified point decomposition for H of width at most 2k.
Finally, the construction in the proof of Proposition 4 of a flat
point decomposition from the simplified point decomposition
of width 2k, in particular, of the T -structure A, can be done
in polynomial time. The main step is given two nodes t, t′ ∈
V (T), where t′ is the parent of t, and two sub-bags of the form
(t, S1) and (t′, S2), to check whether they are consistent. This
is equivalent to checking the existence of two subhypergraphs
H1 and H2 with |H1| ≤ 2k, |H2| ≤ 2k, such that (i) S1 =
V (H1|Bt), S2 = V (H2|Bt′), and (ii) V (H1|Bt′) ⊆ S2 and
V (H2|Bt) ⊆ S1. This can be checked in polynomial time.

VII. CONCLUSIONS

We have introduced a new width that unifies β-acyclicity and
bounded MIM-width. We have also identified a novel island
of tractability for structurally restricted Max-CSPs. The main
open problem is to obtain more general hypergraph properties
that lead to tractability, and ultimately find the precise boundary
of tractability. There are many natural hypergraph properties
that generalise bounded point-width whose tractability status is
unclear (from less to more general): bounded β-hypertreewidth
(β-hw) [19], bounded β-fractional hypertreewidth (β-fhw), and
bounded β-submodular width (β-subw). In particular, we have
β-subw ≤ β-fhw ≤ β-hw ≤ pw. For precise definitions, see
the full version of the paper [9, Appendix A].

We have focused on polynomial-time solvability for Max-
CSPs. Regarding fixed-parameter tractability (FPT), it is easy
to show (see the full version [9, Appendix B]) that Marx’s clas-
sification of CSPs [27] implies an FPT classification of {0,1}-
valued Max-CSPs and the FPT frontier is given by the classes
with bounded β-submodular width. This classification implies
that for a class of unbounded β-submodular width the {0, 1}-
valued, and hence the finite-valued, problem Max-CSP(H,−)
is not fixed-parameter (and thus not polynomial-time) tractable.
Note that a collapse between bounded point-width and bounded
β-submodular width would give us a complete classification
of Max-CSPs in terms of polynomial time-solvability (and
FPT). Hence, a natural research direction is to study the
relationship between all these measures (pw, β-hw, β-fhw
and β-subw). As a related result, which could be interesting
in its own right, we show in the full version [9, Appendix C]
that bounded β-fractional hypertreewidth collapses to bounded
β-hypertreewidth.

REFERENCES

[1] I. Adler, “Width functions for hypertree decompositions,” Ph.D. disserta-
tion, Albert Ludwig University of Freiburg, 2006.

[2] C. Beeri, R. Fagin, D. Maier, A. Mendelzon, J. Ullman, and M. Yan-
nakakis, “Properties of acyclic database schemes,” in Proceedings of
the 13th Annual ACM Symposium on Theory of Computing (STOC’81),
1981, pp. 355–362.

[3] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, “On the desirability
of acyclic database schemes,” Journal of the ACM, vol. 30, no. 3, pp.
479–513, 1983.

[4] J. Brault-Baron, F. Capelli, and S. Mengel, “Understanding model
counting for beta-acyclic CNF-formulas,” in Proceedings of the 32nd
International Symposium on Theoretical Aspects of Computer Science
(STACS’15), 2015, pp. 143–156.

[5] A. Bulatov, “A dichotomy theorem for nonuniform CSPs,” in Proceedings
of the 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’17). IEEE, 2017, pp. 319–330.

[6] F. Capelli, “Structural restrictions of CNF-formulas: applications to model
counting and knowledge compilation,” Ph.D. dissertation, Université Paris
Diderot, 2016.

[7] ——, “Understanding the complexity of #SAT using knowledge compi-
lation,” in Proceedings of the 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS’17), 2017, pp. 1–10.

[8] C. Carbonnel, M. Romero, and S. Živný, “The complexity of general-
valued CSPs seen from the other side,” in Proceedings of the 59th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’18). IEEE,
2018, pp. 319–330.

[9] C. Carbonnel, M. Romero, and S. Živný, “Point-width and Max-
CSPs,” Tech. Rep., April 2019, arXiv:1904.07388 [Online]. Available:
http://arxiv.org/abs/1904.07388

[10] A. K. Chandra and P. M. Merlin, “Optimal implementation of conjunctive
queries in relational data bases,” in Proceedings of the 9th Annual ACM
Symposium on Theory of Computing (STOC’77). ACM, 1977, pp. 77–90.

[11] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi, “Constraint Satisfaction,
Bounded Treewidth, and Finite-Variable Logics,” in Proceedings of the
8th International Conference on Principles and Practice of Constraint
Programming (CP’02), ser. Lecture Notes in Computer Science, vol.
2470. Springer, 2002, pp. 310–326.

[12] R. Diestel, Graph Theory, Fourth ed. Springer, 2010.
[13] R. Fagin, “Degrees of Acyclicity for Hypergraphs and Relational Database

Schemes,” Journal of the ACM, vol. 30, pp. 514–550, 1983.
[14] T. Feder and M. Y. Vardi, “The Computational Structure of Monotone

Monadic SNP and Constraint Satisfaction: A Study through Datalog and
Group Theory,” SIAM Journal on Computing, vol. 28, no. 1, pp. 57–104,
1998.

[15] A. Frank, “Some polynomial algorithms for certain graphs and hyper-
graphs,” in Proceedings of the 5th British Combinatorial Conference,
1975. Utilitas Mathematica, 1975.

[16] E. C. Freuder, “Complexity of K-Tree Structured Constraint Satisfaction
Problems,” in Proceedings of the 8th National Conference on Artificial
Intelligence (AAAI’90), 1990, pp. 4–9.

[17] G. Gottlob, G. Greco, and F. Scarcello, “Tractable Optimization Problems
through Hypergraph-Based Structural Restrictions,” in Proceedings
of the 36th International Colloquium on Automata, Languages and
Programming (ICALP’09), Part II, ser. Lecture Notes in Computer
Science, vol. 5556. Springer, 2009, pp. 16–30.

[18] G. Gottlob, N. Leone, and F. Scarcello, “Hypertree decomposition and
tractable queries,” Journal of Computer and System Sciences, vol. 64,
no. 3, pp. 579–627, 2002.

[19] G. Gottlob and R. Pichler, “Hypergraphs in model checking: Acyclicity
and hypertree-width versus clique-width,” SIAM J. Comput., vol. 33,
no. 2, pp. 351–378, 2004.

[20] M. Grohe, “The complexity of homomorphism and constraint satisfaction
problems seen from the other side,” Journal of the ACM, vol. 54, no. 1,
pp. 1–24, 2007.

[21] M. Grohe and D. Marx, “Constraint solving via fractional edge covers,”
ACM Transactions on Algorithms, vol. 11, no. 1, pp. 4:1–4:20, 2014.

[22] M. Grohe, T. Schwentick, and L. Segoufin, “When is the evaluation of
conjunctive queries tractable?” in Proceedings of the 33th Annual ACM
Symposium on Theory of Computing (STOC’01), 2001, pp. 657–666.

[23] P. Hell and J. Nešetřil, “On the Complexity of H-coloring,” Journal of
Combinatorial Theory, Series B, vol. 48, no. 1, pp. 92–110, 1990.

[24] ——, Graphs and Homomorphisms. Oxford University Press, 2004.
[25] P. G. Jeavons, “On the Algebraic Structure of Combinatorial Problems,”

Theoretical Computer Science, vol. 200, no. 1-2, pp. 185–204, 1998.
[26] P. G. Kolaitis and M. Y. Vardi, “Conjunctive-query containment and

constraint satisfaction,” in Proceedings of the 17th SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS’98), 1998,
pp. 205–213.

[27] D. Marx, “Tractable hypergraph properties for constraint satisfaction and
conjunctive queries,” Journal of the ACM, vol. 60, no. 6, 2013, article
No. 42.

[28] U. Montanari, “Networks of Constraints: Fundamental properties and
applications to picture processing,” Information Sciences, vol. 7, pp.
95–132, 1974.

[29] P. Raghavendra, “Optimal algorithms and inapproximability results for
every CSP?” in Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC’08), 2008, pp. 245–254.

[30] N. Robertson and P. D. Seymour, “Graph minors. III. Planar tree-width,”
Journal of Combinatorial Theory, Series B, vol. 36, no. 1, pp. 49–64,
1984.

[31] ——, “Graph minors. X. Obstructions to tree-decomposition,” Journal
of Combinatorial Theory, Series B, vol. 52, no. 2, pp. 153–190, 1991.

[32] S. H. Sæther, J. A. Telle, and M. Vatshelle, “Solving #SAT and MAXSAT
by dynamic programming,” J. Artif. Intell. Res., vol. 54, pp. 59–82, 2015.

[33] T. J. Schaefer, “The Complexity of Satisfiability Problems,” in Pro-
ceedings of the 10th Annual ACM Symposium on Theory of Computing
(STOC’78). ACM, 1978, pp. 216–226.

[34] P. D. Seymour and R. Thomas, “Graph searching and a min-max theorem
for tree-width,” Journal of Combinatorial Theory Series B, vol. 58, no. 1,
pp. 22–33, 1993.

[35] J. Thapper and S. Živný, “The complexity of finite-valued CSPs,” Journal
of the ACM, vol. 63, no. 4, 2016, article No. 37.

[36] M. Vatshelle, “New width parameters of graphs,” Ph.D. dissertation,
University of Bergen, 2012.

[37] M. Yannakakis, “Algorithms for acyclic database schemes,” in Proceed-
ings of the 7th International Conference on Very Large Data Bases
(VLDB’81). IEEE Computer Society, 1981, pp. 82–94.

[38] D. Zhuk, “A proof of CSP dichotomy conjecture,” in Proceedings of
the 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’17). IEEE, 2017, pp. 331–342.

