
CLAP: A New Algorithm for Promise CSPs∗†

Lorenzo Ciardo‡ Stanislav Živný§

Abstract

We propose a new algorithm for Promise Constraint Satisfaction Problems (PCSPs). It is a combination
of the Constraint Basic LP relaxation and the Affine IP relaxation (CLAP). We give a characterisation of the
power of CLAP in terms of a minion homomorphism. Using this characterisation, we identify a certain weak
notion of symmetry which, if satisfied by infinitely many polymorphisms of PCSPs, guarantees tractability.

We demonstrate that there are PCSPs solved by CLAP that are not solved by any of the existing algorithms
for PCSPs; in particular, not by the BLP + AIP algorithm of Brakensiek and Guruswami [SODA’20] and not
by a reduction to tractable finite-domain CSPs.

1 Introduction

Constraint Satisfaction Constraint Satisfaction Problems (CSPs) have driven some of the most influential
developments in theoretical computer science, from NP-completeness to the PCP theorem [2, 1, 36] to semidefinite
programming algorithms [58] to the Unique Games Conjecture [49].

A CSP over domain A is specified by a finite collection A of relations over A, and is denoted by CSP(A).
Given on input a set of variables and a set of constraints, each of which uses relations from A, the task is to
decide the existence of an assignment of values from A to the variables that satisfies all the constraints. Classic
examples of CSPs include 2-SAT, graph 3-colouring, and linear equations of fixed width over finite groups.

For Boolean CSPs, which are CSPs with |A| = 2, Schaefer proved that every such CSP is either solvable in
polynomial time or is NP-complete [59]. Feder and Vardi famously conjectured that the same holds true for CSPs
over arbitrary finite domains [38]. Furthermore, they realised the importance of considering closure properties of
solution spaces of CSPs [38], which initiated the algebraic approach [46, 45, 26]. The key notion in the algebraic
approach is that of polymorphisms, which are operations that take solutions to a CSP and are guaranteed to return,
by a coordinatewise application, a solution to the same CSP. All CSPs admit projections (also known as dictators)
as polymorphisms. However, the presence of less trivial polymorphisms, satisfying some notion of symmetry, is
necessary for tractability. For instance, the set of solutions to 2-SAT is closed under the ternary majority operation
maj : {0, 1}3 → {0, 1} that satisfies the following notion of symmetry: maj(a, a, b) = maj(a, b, a) = maj(b, a, a) = a
for any a, b ∈ {0, 1}. Similarly, the set of solutions to Horn-SAT is closed under the binary minimum operation
min : {0, 1}2 → {0, 1} that satisfies a different notion of symmetry: min(a, a) = a, min(a, b) = min(b, a), and
min(a,min(b, c)) = min(min(a, b), c) for any a, b, c ∈ {0, 1}. The binary max operation – which is a polymorphism
of dual Horn-SAT – has the same notion of symmetry, called semilattice [10]. Together with the ternary minority
polymorphism, which captures linear equations on {0, 1}, this gives all non-trivial tractable cases from Schaefer’s
dichotomy result.1

The polymorphisms of any CSP form a clone, in that they include all projections and are closed under
composition. For instance, since Horn-SAT has min as a polymorphism, it also has the 4-ary minimum
operation min4(a, b, c, d) = min(a,min(b,min(c, d))) as a polymorphism. Building on the connection to universal
algebra, the algebraic approach has been tremendously successful beyond decision CSPs, e.g. for robust
satisfiability of CSPs [34, 9, 33], for exact optimisation of CSPs [53, 60, 50], and for characterising the power of

∗The research leading to these results has received funding from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant agreement No 714532). Stanislav Živný was supported by a Royal
Society University Research Fellowship. The paper reflects only the authors’ views and not the views of the ERC or the European
Commission. The European Union is not liable for any use that may be made of the information contained therein.
†The full version of the paper can be accessed at https://arxiv.org/abs/2107.05018.
‡Department of Computer Science, University of Oxford, UK.
§Department of Computer Science, University of Oxford, UK.
1The trivial cases, called 0- and 1-valid, are captured by the constant-0 and constant-1 polymorphisms, respectively.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2107.05018

algorithms [55, 8, 13, 51, 52, 61, 62]. The culmination of the algebraic approach is the positive resolution of the
dichotomy conjecture by Bulatov [28] and Zhuk [65]. We refer the reader to [10] for a survey on the algebraic
approach.

Promise Constraint Satisfaction In this paper, we study Promise Constraint Satisfaction Problems
(PCSPs), whose systematic study was initiated by Austrin, Guruswami, and H̊astad [4], and Brakensiek and
Guruswami [18]. PCSPs form a vast generalisation of CSPs. In PCSP(A,B), each constraint comes in two forms,
a strict one in A and a weak one in B. The goal is to distinguish between (i) the case in which (the strong form
of) the constraints can be simultaneously satisfied in A and (ii) the case in which (even the weak form of) the
constraints cannot be simultaneously satisfied in B. The promise is that it is never the case that the PCSP is not
satisfiable in the strict sense but is satisfiable in the weak sense. If the strict and weak forms coincide in every
constraint (i.e., if A = B) we get the (non-promise) CSPs. However, PCSPs include many fundamental problems
that are inexpressible as CSPs.

The simplest example of strict vs. weak constraints is when the weak constraints are supersets of the strict
constraints on the same domain (the first two examples below) or on a larger domain (the third example below);
the notion of homomorphism from A to B formalises this for any PCSP.

First, can we distinguish a g-satisfiable k-SAT instance (in the sense that there is an assignment that satisfies
at least g literals in each clause) from an instance that is not even 1-satisfiable? This problem was studied in [4],
where it was shown to be solvable in polynomial time if g

k ≥
1
2 and NP-complete otherwise. Recently, this result

has been generalised to arbitrary finite domains [23].
Second, can we distinguish a 3-SAT formula that admits an assignment satisfying exactly 1 literal in each

clause (i.e., a satisfiable instance of 1-in-3-SAT) from one that does not admit an assignment satisfying 1 or 2
literals in each clause (i.e., a non-satisfiable instance of Not-All-Equal-3-SAT)? Remarkably, while both 1-in-3
and NAE are NP-hard, this promise version is solvable in polynomial time [18, 19].

Third, can we distinguish a k-colourable graph from a graph that is not even `-colourable, where k ≤ `? This
is the approximate graph colouring problem, which is believed to be NP-hard for any fixed 3 ≤ k ≤ `, but has
been elusive since the 1970s [40]. The current state of the art is NP-hardness for k = 3 and ` = 5 [7] and for any
k ≥ 4 and ` = `(k) =

(
k
bkc/2

)
− 1 [64].

While a systematic study of PCSPs was initiated only recently [4, 18], concrete PCSPs have been considered
for a while, e.g. approximate graph [40, 63, 15, 47, 48, 41] and hypergraph colouring [37]. A highlight result is
the dichotomy of Boolean symmetric PCSPs [39] (in which all constraint relations are symmetric), following an
earlier classification of Boolean symmetric PCSPs with disequalities [18]. Very recent works have investigated
certain Boolean non-symmetric PCSPs [24] and certain non-Boolean symmetric PCSPs [6]. Other recent results
include, e.g., [3, 42, 21].

Most of the recent progress, including results on the approximate graph colouring problem [7, 64] and on the
approximate graph homomorphism problem [54, 64], rely on the algebraic approach to PCSPs [7]. In particular,
the breakthrough results in [7], building on [11], established that the complexity of PCSPs is captured by the
polymorphism minions and certain types of symmetries these minions satisfy – these are non-nested identities
on polymorphisms, such as the majority example but not the semilattice example. Crucially, minions are less
structured than clones: A minion (of functions) is a set of operations closed under permuting coordinates,
identifying coordinates, and introducing dummy coordinates, but not under composition.2 Thus, unlike in our
earlier CSP example (corresponding to Horn-SAT), a binary minimum polymorphism of a PCSP cannot in general
be used to generate a 4-ary minimum polymorphism of the same PCSP.

Despite the momentous results in [7], there is a long way to go to classify all PCSPs, and it is not even clear
whether a dichotomy for all PCSPs should be expected. When Feder and Vardi conjectured a CSP dichotomy [38],
the Boolean case [59] and the graph case [43] had been fully classified. We seem quite far from these two cases
being classified for PCSPs. Thus, further progress is needed on both the hardness and tractability part. This
paper focusses on the latter.

Finite tractability Although PCSPs are (much) more general than CSPs, some PCSPs can be reduced to
tractable CSPs. This idea was introduced in [19] under the name of homomorphic sandwiching (cf. Section 2 for a
precise definition); PCSPs that are reducible to tractable (finite-domain) CSPs are called finitely tractable. Finite
tractability is not sufficient to explain tractability of all tractable PCSPs. In particular, Barto et al. showed [7]

2In this work, we shall use the more abstract notion of minion introduced in [22], cf. Definition 2.3.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

that the above-mentioned example 1-in-3 vs. NAE is not finitely tractable, despite being a tractable PCSP [18].
We remark that it is not inconceivable (and in fact was conjectured in [19]) that every tractable (finite-domain)
PCSP could be reducible to a tractable CSP possibly over an infinite domain; this is the case for the 1-in-3
vs. NAE problem [19]. However, while certain infinite-domain CSPs are amenable to algebraic methods, the
complexity of infinite-domain CSPs is far from understood, cf. [16, 17, 12] for recent work.

Since finite tractability does not capture all tractable PCSPs, there is need for other algorithmic tools. One
possibility is to attempt to extend algorithmic techniques developed for CSPs.

There are two main algorithmic approaches for CSPs. On the one hand, there are local consistency
methods [38], which have been studied in theoretical computer science but also in artificial intelligence, logic,
and database theory. The power of local consistency for CSPs has been characterised in [25, 8], and it is known
that the third level of consistency solves all so-called bounded-width CSPs [5]. On the other hand, there are CSPs
solvable by algorithms based on generalisations of Gaussian elimination, most notably CSPs with a Mal’tsev
polymorphism [29]. This method has been pushed to its limit, in a way, in [44, 13]. While the NP-hardness part
of the CSP dichotomy has been known since [26], the challenge in proving the algorithmic part is the complicated
interaction of these two very different algorithmic approaches. Although this interaction does not occur in Boolean
CSPs, it occurs already in CSPs on three-element domains [27].

The characterisation of the power of the first level of the consistency methods, 1-consistency (also known
as arc-consistency [57]), has been lifted from CSPs [38] to PCSPs in [7]. Rather than establishing 1-consistency
combinatorially, one can employ convex relaxations.

Relaxations A canonical analogue of 1-consistency is the basic linear programming relaxation (BLP) [55],
which in fact is stronger than 1-consistency [56]. The characterisation of the power of BLP has been lifted from
CSPs [55] to PCSPs in [7], both in terms of a minion and a property of polymorphisms. The power of BLP
is captured by a minion consisting of rational stochastic vectors or, equivalently, by the presence of symmetric
polymorphisms of all arities; these are polymorphisms invariant under any permutation of the coordinates. For
example, we have seen that Horn-SAT, a classic CSP, has a binary symmetric polymorphism, namely min. We
have also seen that min can generate a 4-ary operation min4, which is symmetric. Similarly, min can generate
(via composition) symmetric operations of all arities, and thus Horn-SAT is solved by BLP.

A different relaxation of PCSPs is the basic affine integer programming relaxation (AIP) [19]. The power
of AIP has been characterised, both in terms of a minion and a property of polymorphisms, in [7]. The minion
capturing AIP consists of integer affine vectors. Concerning polymorphisms, AIP is captured by polymorphisms
of all odd arities that are invariant under permutations that only permute odd and even coordinates separately,
and additionally satisfy that adjacent coordinates cancel each other out. The 1-in-3 vs. NAE problem is solved
by AIP (cf. Example 2.3).

Brakensiek and Guruswami [20] proposed a combination of the two above-mentioned relaxations, called
BLP + AIP. Their algorithm has many interesting features. Firstly, it solves PCSPs that admit only infinitely
many symmetric polymorphisms (i.e., not all arities are required as in the case of BLP). Secondly, it solves all
tractable Boolean CSPs, thus demonstrating how research on PCSPs can shed new light on (non-promise) CSPs.
Indeed, although there are no Boolean CSPs that mix bounded width and linear equations, there previously had
not been a single algorithm solving both cases. The BLP + AIP algorithm does that. A follow-up work [22]
established the power of BLP + AIP in terms of a minion and (a property of) polymorphisms. The minion
capturing BLP + AIP is essentially a product of the BLP and AIP minions [22]. Concerning polymorphisms,
BLP + AIP is captured by polymorphisms of all odd arities that are invariant under permutations that only
permute odd and even coordinates.

At present, all known tractable PCSPs are solved either by BLP + AIP or are finitely tractable. It may well
be that BLP + AIP is the only algorithm needed for all tractable Boolean PCSPs. However, as already observed
in [22], BLP + AIP does not solve some rather simple, tractable PCSPs. Motivated by this, we investigate
algorithms that are stronger than BLP + AIP.

Contributions Building on the work of Brakensiek et al. [22], we study stronger relaxations for PCSPs and
give three main contributions.

(1) CLAP Our first contribution is the introduction of CLAP to the study of PCSPs. Our goal was to design
an algorithm that, unlike BLP + AIP, solves all CSPs of bounded width. While all bounded-width CSPs can be
solved by 3-consistency [5], and thus also by the third level of the Sherali-Adams hierarchy for BLP (e.g., by [61]),
Kozik showed that already (a special case of) the singleton arc-consistency (SAC) algorithm, introduced in [35]

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

(cf. [14, 30]), solves all bounded-width CSPs [52]. Thus, we study the LP relaxation that we call the singleton
BLP (SBLP), which is at least as strong as SAC. A special case of SBLP (without this name) implicitly appeared
in the literature, e.g. in [4, 18] for Boolean PCSPs. The idea behind SBLP is essentially to run SAC but replace
the arc-consistency check by the BLP; i.e., the algorithm repeatedly takes a variable-value pair (x, a) and tests
the feasibility of the BLP with the requirement that x should be assigned the value a. If this LP is infeasible then
a is removed from the domain of x. This is repeated until convergence. If any variable ends up with an empty
domain then SBLP rejects, otherwise it accepts. Overall, the number of BLP calls occurring for an instance
of PCSP(A,B) with variable-set X is at most polynomial in the size of X. As mentioned above, this simple
algorithm solves all bounded-width CSPs [52].

We adopt a modification of SBLP that turns out to be more naturally captured by a minion-oriented analysis:
the constraint BLP (CBLP). This (possibly) stronger algorithm is a generalisation of SBLP in which we do not
consider only variable-value pairs (x, a), but rather the constraint-assignment pairs (x,a) for every constraint
in the instance. As in SBLP, if fixing a (local) assignment to a constraint yields an infeasible BLP then the
assignment is removed from the constraint relation. Upon convergence, which takes at most polynomially many
BLP calls, if any constraint ends up with an empty relation then CBLP rejects, otherwise it accepts.

Our algorithm CLAP first runs CBLP and then runs AIP upon termination of CBLP. If one believes the
suggestion in [22] that constantly many rounds of the Sherali-Adams hierarchy for BLP + AIP could solve all
tractable (non-promise) CSPs, then it is not outrageous to believe that the same could be true for CLAP, and
CLAP might be easier to analyse.

(2) Characterisation Our second contribution is a minion characterisation of the power of CLAP, stated as
Theorem 3.1. The objects in the minion are essentially matrices with a particular structure, which we call skeletal
(cf. Definition 3.1). These matrices capture the CBLP part of CLAP and together with certain integer affine
vectors form the minion (cf. Definition 3.2).

(3) H-symmetric polymorphisms Building on the minion characterisation, our third contribution is the
identification of a sufficient condition for CLAP to work in terms of the symmetries of the polymorphisms. This
is stated as Theorem 3.2, using the notion of H-symmetricity. For a matrix H, a polymorphism f is H-symmetric
if f is invariant under permutations of the coordinates but only on a specific set of inputs determined by H
(cf. Definition 3.3). For instance, if H is a row vector then we obtain the requirement that f be symmetric on all
inputs. If H is the identity matrix then we require that f be symmetric only on inputs in which different entries
occur with different multiplicities. In general, the intuition is that we capture “symmetry with exceptions that
depend on multiplicities”. We refer the reader to the discussion in Section 3 for details. Thanks to the AIP part of
CLAP, only infinitely many (as opposed to of all arities) H-symmetric polymorphisms suffice for CLAP to work.
The link between CLAP and H-symmetricity lies in the notion of skeletal matrices and in their key “tiebreak
property” stated as [31, Lemma 32] in the full version: Finitely many skeletal matrices can be simultaneously
reduced to vectors that avoid ties. Finally, we give an example of a PCSP that is neither finitely tractable nor is
it solved by BLP + AIP, but is solved by our new algorithm.

After necessary background material in Section 2, our algorithm CLAP and the main results are presented
in Section 3. The details of all results and proofs can be found in the full version of this paper [31].

2 Preliminaries

We let N = {1, 2, . . .} and N0 = N ∪ {0}. The cardinality of N shall be denoted by ℵ0. For k ∈ N, [k] denotes the
set {1, . . . , k}. For a set A, P(A) denotes the set of all subsets of A. We denote by ≤p many-one polynomial-time
reductions. We shall use standard notation for vectors and matrices. Vectors will be treated as column vectors
and whenever convenient identified with the corresponding (row) tuples. Both tuples and vectors will be typed
in bold font. We denote by ei the i-th standard unit vector of the appropriate size (which will be clear from the
context); i.e., ei is equal to 1 in the i-th coordinate and 0 elsewhere. We denote by 0p and by 1p the all-zero
and all-one vector, respectively, of size p; if the size is clear, we occasionally drop the subscript. The support of a
vector v = (vi) of size p is the set supp(v) = {i ∈ [p] : vi 6= 0}. Ip denotes the identity matrix of order p, while O
denotes an all-zero matrix of suitable size.

Promise CSPs A signature σ is a finite set of relation symbols R, each with its arity ar(R) ≥ 1. A
relational structure over a signature σ, or a σ-structure, is a finite universe A, called the domain of A, and a
relation RA ⊆ Aar(R) for each symbol R ∈ σ. For two σ-structures A and B, a mapping f : A → B is called a

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

homomorphism from A to B, denoted by f : A → B, if f preserves all relations; that is, for every R ∈ σ and
every tuple a ∈ RA, we have f(a) ∈ RB, where f is applied coordinatewise. The existence of a homomorphism
from A to B is denoted by A → B. A PCSP template is a pair (A,B) of relational structures over the same
signature such that A→ B. Without loss of generality, we will often assume that A, the domain of A, is [n].

Definition 2.1. Let (A,B) be a PCSP template. The decision version of PCSP(A,B) is the following problem:
Given as input a relational structure X over the same signature as A and B, output Yes if X → A and No if
X 6→ B. The search version of PCSP(A,B) is the following problem: Given as input a relational structure X
over the same signature as A and B and such that X→ A, find a homomorphism from X to B.

For a relational structure A, the constraint satisfaction problem (CSP) with template A [38], denoted by
CSP(A), is PCSP(A,A).

Example 2.1. For k ≥ 2, let Kk be the structure with domain [k] and a binary relation {(i, j) | i 6= j}. Then,
CSP(Kk) is the standard graph k-colouring problem. For k ≤ `, PCSP(Kk,K`) is the approximate graph
colouring problem [40]. In the decision version, the task is to decide whether a graph is k-colourable or not
even `-colourable. In the search version, given a k-colourable graph G, the task is to find an `-colouring of G.
It is widely believed that for any fixed 3 ≤ k ≤ `, PCSP(Kk,K`) is NP-hard; i.e., constantly many colours do
not help. The current most general NP-hardness result is known for k = 3 and ` = 5 by Buĺın, Krokhin, and
Opršal [7] and for k ≥ 4 and ` = `(k) =

(
k
bkc/2

)
− 1 by Wrochna and Živný [64].

We call a PCSP template (A,B) tractable if any instance of PCSP(A,B) can be solved in polynomial time
in the size of the input structure X. It is easy to show that the decision version reduces to the search version [7]
(but the converse is not known in general); for CSPs, the two versions are equivalent [32, 26]. Our results are for
the decision version.

Example 2.2. Let 1-in-3 be the Boolean structure with domain {0, 1} and a single ternary relation
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Let NAE be the structure with domain {0, 1} and a single ternary relation {0, 1}3 \
{(0, 0, 0), (1, 1, 1)}. Then, CSP(1-in-3) is the (positive) 1-in-3-SAT problem and CSP(NAE) is the (positive) Not-
All-Equal-3-SAT problem. Since both of these problems are NP-hard [59], the PCSP templates (1-in-3,1-in-3)
and (NAE,NAE) are both intractable. However, the PCSP template (1-in-3,NAE) is tractable, as shown by
Brakensiek and Guruswami [18].

Definition 2.2. Let (A,B) be a PCSP template with signature σ. An operation f : AL → B, where L ≥ 1, is
a polymorphism of arity L of (A,B) if for every R ∈ σ of arity k = ar(R) and for any possible L × k matrix
whose rows are tuples in RA, the application of f on the columns of the matrix gives a tuple in RB. We denote
by Pol(A,B) the set of all polymorphisms of (A,B).

Example 2.3. The unary operation ¬ : {0, 1} → {0, 1} defined by ¬(a) = 1 − a is a polymorphism of
(NAE,NAE) but not a polymorphism of (1-in-3,1-in-3). For any odd L, the L-ary operation f : {0, 1}L →
{0, 1} defined by f(a1, . . . , aL) = 1 if a1−a2+a3−· · ·+aL > 0 and f(a1, . . . , aL) = 0 otherwise is a polymorphism
of (1-in-3,NAE).

Minions Polymorphisms of CSPs form clones; i.e., Pol(A,A) contains all projections (also known as
dictators) and is closed under composition [10]. Polymorphisms of the (more general) PCSPs form minions;
i.e, they are closed under taking minors.3 Formally, given an L-ary function f : AL → B, its minor relative to a
map π : [L]→ [L′] is the L′-ary function f/π : AL

′ → B defined by

f/π(a1, . . . , aL′) = f(aπ(1), . . . , aπ(L)).(2.1)

Equivalently, a minor of f is a function obtained from f by identifying variables, permuting variables, and
introducing dummy variables. Rather than focussing on minions of functions, we consider here abstract minions,
as described and used in [22].

3We remark that clones are also closed under taking minors.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Definition 2.3. A minion M consists in the disjoint union of sets M (L) for L ∈ N equipped with operations
(·)/π : M (L) →M (L′) for all functions π : [L]→ [L′], which satisfy

• (M/π)/π̃ = M/π̃◦π for π : [L]→ [L′], π̃ : [L′]→ [L′′] and

• M/ id = M

for all M ∈M (L).

Definition 2.4. For two minions M and N , a minion homomorphism ξ : M → N is a map that preserves
arities and minors: Given M ∈M (L) and π : [L]→ [L′], ξ(M) ∈ N (L) and ξ(M/π) = ξ(M)/π.

For any PCSP template (A,B), the set Pol(A,B) of its polymorphisms equipped with the operations
described by (2.1) is a minion [7]. One of the results in [7] established that minion homomorphisms give
rise to polynomial-time reductions: If there is a minion homomorphism from Pol(A,B) to Pol(A′,B′), then
PCSP(A′,B′) ≤p PCSP(A,B). Minions are also useful for characterising the power of algorithms, as we will
discuss later.

Existing algorithms One way to establish tractability of PCSPs is to reduce to CSPs. Let (A,B) be a
PCSP template. A structure C is called a (homomorphic) sandwich if A→ C→ B. It is known that, in this case,
PCSP(A,B) ≤p CSP(C).4 Thus, if C is a tractable CSP template then (A,B) is a tractable PCSP template. If
C has a finite domain, we say that (A,B) is finitely tractable.

Example 2.4. The PCSP template (1-in-3,NAE) from Example 2.2 is tractable [18] but not finitely tractable
unless P=NP, as shown in [7].

Another way to establish tractability for PCSPs is to leverage convex relaxations. In the introduction, we
mentioned three studied relaxations: BLP [55], AIP [18], and BLP + AIP [20]. Their powers have been
characterised in [7, 22] in terms of certain minions and polymorphism identities. The details of these relaxations
and the characterisations are provided in Appendix A of the full version [31].

All known tractable PCSPs are solved by finite tractability (i.e., by a reduction to a tractable finite-domain
CSP) or by BLP + AIP. The next example identifies a simple PCSP template not captured by either of these two
methods.

Example 2.5. Consider the relational structures A = (A;RA
1 , R

A
2) and B = (B;RB

1 , R
B
2) on the domain

A = B = {0, . . . , 6} with the following relations: RA
1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} is 1-in-3 on {0, 1},

RB
1 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} is NAE on {0, 1}, and RA

2 = RB
2 = {(2, 3), (3, 2), (4, 5), (5, 6), (6, 4)}. The

identity mapping is a homomorphism from A to B, so (A,B) is a PCSP template. Since the directed graph
corresponding to RA

2 = RB
2 is a disjoint union of a directed 2-cycle and a directed 3-cycle, [22, Example 6.1]

shows that the BLP + AIP algorithm does not solve PCSP(A,B). We claim that the template (A,B) is not
finitely tractable. For contradiction, assume that there is a finite relational structure C = (C;RC

1 , R
C
2) such that

A→ C→ B and CSP(C) is tractable. We will argue that this would imply finite tractability of (1-in-3,NAE),
which contradicts the result in [7] (unless P=NP); cf. Example 2.4. Indeed, the existence of such C gives the
following chain of homomorphisms:

1-in-3 = ({0, 1};RA
1)→ (A;RA

1)→ (C;RC
1)→ (B;RB

1)→ ({0, 1};RB
1) = NAE(2.2)

where the first map is the inclusion of {0, 1} in A, the second and the third are the maps witnessing A→ C→ B,
and the fourth is any map g : B → {0, 1} such that g(0) = 0 and g(1) = 1. Let C̃ = (C;RC

1). Observe
that C̃ is tractable since the inclusion map gives a minion homomorphism Pol(C,C) → Pol(C̃, C̃), and thus
CSP(C̃) = PCSP(C̃, C̃) ≤p PCSP(C,C) = CSP(C) by [7, Theorem 3.1]. This proves the claim, as (2.2)

established 1-in-3→ C̃→ NAE.

The template from Example 2.5 will be proved tractable later (in Example 3.1) using our new algorithm,
which we will present next.

4This is a special case of homomorphic relaxation [7], which we do not need here.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

3 The CLAP algorithm

Let (A,B) be a PCSP template with signature σ and let X be an instance of PCSP(A,B). Without loss of
generality, we assume that σ contains a unary symbol Ru such that RX

u = X, RA
u = A, and RB

u = B. If this
is not the case, the signature and the instance can be extended without changing the set of solutions. Our
algorithm – the combined CBLP+AIP algorithm (CLAP), presented in Algorithm 1 – builds on BLP [7] and
BLP + AIP [22]. As in Appendix A of the full version [31], where BLP, AIP, and BLP + AIP are presented
in full detail for completeness, by λx,R(a) we denote the variable of BLP(X,A) associated with x ∈ RX and
a ∈ RA, where R ∈ σ. The algorithm has polynomial time complexity in the size of the input instance: Letting
g =

∑
R∈σ |RX||RA|, O(g2) BLP calls and O(g) BLP + AIP calls occur. We say that CLAP solves PCSP(A,B)

if, for every instance X of PCSP(A,B), we have (i) if X→ A then CLAP accepts X, and (ii) if X is accepted by
CLAP then X→ B.

Algorithm 1 The CLAP algorithm

Input: an instance X of PCSP(A,B) of signature σ
Output: yes if X→ A and no if X 6→ B

1: for R ∈ σ, x ∈ RX

2: set Sx := RA;
3: end for
4: repeat
5: for R ∈ σ,x ∈ RX, a ∈ Sx

6: if BLP(X,A) with λx,R(a) = 1 and λx′,R′(a′) = 0 for every R′ ∈ σ, x′ ∈ R′X, and a′ 6∈ Sx′ is not
feasible

7: remove a from Sx;
8: end if
9: end for

10: until no set Sx is changed;
11: if some Sx is empty
12: return No;
13: else
14: for R ∈ σ,x ∈ RX, a ∈ Sx

15: if BLP + AIP(X,A) with λx,R(a) = 1 and λx′,R′(a′) = 0 for every R′ ∈ σ, x′ ∈ R′X, and a′ 6∈ Sx′ is
feasible

16: return Yes;
17: end if
18: end for
19: return No;
20: end if

Characterisation Our first main result – Theorem 3.1 – is a minion-theoretic characterisation of the power
of the CLAP algorithm. In particular, we will introduce in Definition 3.2 a minion C such that, for any PCSP
template (A,B), the CLAP algorithm solves PCSP(A,B) if and only if there is a minion homomorphism from C
to Pol(A,B). The two directions are proved in the full version [31]. Combining the sufficiency condition with our
second main result – Theorem 3.2, proved in the full version [31] – will then yield a sufficient condition for CLAP
to solve a given PCSP template, in terms of a weak notion of symmetry for the polymorphisms of the template.

The L-ary objects of the minion C are pairs (M,µ), where M is a matrix with L rows and infinitely many
columns5 encoding the BLP computations of CLAP and µ is an L-ary vector of integers encoding the AIP
computation of CLAP. The matrices M in C have a special structure, which we call “skeletal”.

Definition 3.1. Let M be a p × ℵ0 matrix with p ∈ N. We say that M is skeletal if, for each j ∈ [p], either
eTj M = 0Tℵ0 or Mei = ej for some i ∈ N.

5This is a notational convenience which could be replaced with finitely many columns but less elegant statements.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

In other words, either the j-th row of M is the zero vector or some column of M is the j-th standard unit
vector. Equivalently, M is skeletal if there exist permutation matrices P ∈ Rp,p and Q ∈ Rℵ0,ℵ0 such that

PMQ =

[
Ik M̃
O O

]
for some k ≤ p and some M̃ ∈ Rk,ℵ0 . The name indicates that the “body” of a skeletal matrix

(the nonzero rows) is completely supported by a “skeleton” (the identity block).
We are now ready to define the minion C . The L-ary objects of C are pairs (M,µ), where M is a skeletal

matrix of size L×ℵ0 and µ is an affine vector (i.e., an integer vector whose entries sum up to one) of size L. We
require that every column of M should be stochastic and M should have only finitely many different columns.
Moreover, we require a particular relationship between M and µ formalised in (c4) in Definition 3.2.

Definition 3.2. For L ∈ N, let C (L) be the set of pairs (M,µ) such that M ∈ QL,ℵ0 , µ ∈ ZL, and the following
requirements are met:

(c1) M is entrywise nonnegative; (c4) supp(µ) ⊆ supp(Me1);
(c2) 1TLM = 1Tℵ0 ; (c5) ∃t ∈ N such that Mei = Met ∀i ≥ t;
(c3) 1TLµ = 1; (c6) M is skeletal.

We define C as the disjoint union of L-ary parts, C :=
⋃
L≥1 C (L).

We defined C as a set. For C to be a minion, we need to define the minor operation on C and verify that it
preserves the structure of C . This is easy and done in the full version [31].

Our first result is the following characterisation of the power of CLAP.

Theorem 3.1. Let (A,B) be a PCSP template. Then, CLAP solves PCSP(A,B) if and only if there is a minion
homomorphism from C to Pol(A,B).

H-symmetry Our second main result is a sufficient condition on a PCSP template (A,B) to guarantee that
CLAP solves PCSP(A,B). The condition is through symmetries satisfied by polymorphisms of the template.
In particular, in Theorem 3.2 we will show that if Pol(A,B) contains infinitely many operations that are “H-
symmetric” for a suitable matrix H, then there is a minion homomorphism from C to Pol(A,B), and thus CLAP
solves PCSP(A,B) by (the sufficiency part of) Theorem 3.1.

In order to define the notion of H-symmetricity, we need a few auxiliary definitions. A vector w = (wi) ∈ Rp
is tieless if, for any two indices i 6= i′ ∈ [p], wi 6= 0 ⇒ wi 6= wi′ . A tie matrix is a matrix having integer
nonnegative entries, each of whose columns is a tieless vector. Given an m× p tie matrix H, we say that a vector
v ∈ Rp is H-tieless if Hv is tieless.

Let A be a finite set, let L ∈ N, and take a = (a1, . . . , aL) ∈ AL. We define the (multiplicity) vector a# ∈ N|A|0

whose a-th entry is |{i ∈ [L] : ai = a}| for each a ∈ A.

Definition 3.3. Let A,B be finite sets, and consider a function f : AL → B for some L ∈ N. Given an m× |A|
tie matrix H, we say that f is H-symmetric if

f/π(a) = f(a) ∀π : [L]→ [L] permutation, ∀a ∈ AL such that a# is H-tieless.

Our second result is the following sufficient condition for tractability of PCSPs.

Theorem 3.2. Let (A,B) be a PCSP template and suppose Pol(A,B) contains H-symmetric operations of
arbitrarily large arity for some m × |A| tie matrix H, m ∈ N. Then there exists a minion homomorphism
from C to Pol(A,B).

Recall from Definition 3.1 the notion of a skeletal matrix. The “skeleton” represents the link between CLAP
and the above-defined notion of H-symmetricity. Indeed, on the one hand the presence of the identity block
captures the fact that each BLP solution computed by CLAP gives probability 1 to some constraint assignment
(cf. line 6 of Algorithm 1). On the other hand, the “Tiebreak Lemma” [31, Lemma 32] – stated and proved in the
full version – shows that, by virtue of this feature, finitely many skeletal matrices can always be simultaneously
reduced to H-tieless vectors; through some technicalities detailed in the proof of Theorem 3.2, this last property
mirrors the behaviour of H-symmetric operations.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

We now mention some consequences of Theorem 3.2. First, observe that a vector of size 1 is always tieless.
Hence, if we take any 1 × |A| integer nonnegative matrix as H, we see that H is a tie matrix and that a# is
H-tieless for each tuple a in the domain of f ; therefore, for such an H, f being H-symmetric reduces to f being
symmetric. On the other hand, having Definition 3.3 in mind, adding rows to H increases the chance that Ha#

has some ties, in which case f is released from the requirement of being symmetric on a. In this sense, H encodes
the “exceptions to symmetry” that f is allowed to have: The more rows H has, the stronger Theorem 3.2 becomes.
If, for instance, H is the identity matrix of order |A|, then an H-symmetric operation needs to be symmetric
only on those tuples where each entry occurs with a different multiplicity. A very special example of such an
I|A|-symmetric operation is a function f that returns (the homomorphic image of) the most-frequent entry in the
input tuple whenever it is unique, and, in any other case, f is, say, (the homomorphic image of) a projection.
Other, more creative choices for H allow capturing operations having more complex exceptions to symmetry, as
shown in Example 3.1.

Theorems 3.1 and 3.2 together establish that the CLAP algorithm solves any PCSP template admitting
arbitrarily large polymorphisms having some exceptions to symmetry that can be encoded via a tie matrix.

Example 3.1. Recall the PCSP template (A,B) from Example 2.5, where it was shown that PCSP(A,B) is not
finitely tractable and not solved by the BLP + AIP algorithm from [20]. We will show that PCSP(A,B) is solved
by CLAP.

Take L ∈ N and consider the function f : AL → B defined as follows: For a = (a1, . . . , aL) ∈ AL,

• if a ∈ {0, 1}L, look at a#1 , i.e., the multiplicity of 1 ∈ A in the tuple a;6

∗ if a#1 < L
3 , set f(a) = 0;

∗ if a#1 > L
3 , set f(a) = 1;

∗ if a#1 = L
3 , set f(a) = a1;

• if a ∈ {2, 3, 4, 5, 6}L,

∗ if there is a unique element a ∈ A having maximum multiplicity in a, set f(a) = a;

∗ if there is more than one element of A having maximum multiplicity in a, set f(a) = a1;

• otherwise, set f(a) = 0.7

We claim that f ∈ Pol(A,B). To see that f preserves R1, consider a tuple ρ = (r1, . . . , rL) of elements of RA
1 ,

where ri = (ai, bi, ci) for i ∈ [L]. We shall let a = (a1, . . . , aL), b = (b1, . . . , bL), and c = (c1, . . . , cL). Notice that

a#1 + b#
1 + c#1 = L.(3.3)

If f(a) = f(b) = f(c) = 0, then a#1 ≤ L
3 , b#

1 ≤ L
3 , and c#1 ≤ L

3 ; by (3.3), this implies that a#1 = b#
1 = c#1 = L

3 .
Hence, (0, 0, 0) = (f(a), f(b), f(c)) = (a1, b1, c1) = r1 ∈ RA

1 , a contradiction. Similarly, f(a) = f(b) = f(c) = 1

would yield a#1 ≥ L
3 , b#

1 ≥ L
3 , and c#1 ≥ L

3 ; again by (3.3), this implies that a#1 = b#
1 = c#1 = L

3 ,
hence (1, 1, 1) = (f(a), f(b), f(c)) = (a1, b1, c1) = r1 ∈ RA

1 , also a contradiction. We conclude that
f(ρ) = (f(a), f(b), f(c)) ∈ RB

1 , thus showing that f preserves R1.
As for R2, let ρ = (r1, . . . , rL) be a tuple of elements of RA

2 , where ri = (ai, bi) for i ∈ [L], and let
a = (a1, . . . , aL) and b = (b1, . . . , bL). By definition, the directed graph having vertex set {2, 3, 4, 5, 6} and edge
set RA

2 = RB
2 consists of the disjoint union of a directed 2-cycle and a directed 3-cycle and, hence, all of its

vertices have in-degree and out-degree one. As a consequence, the multiplicity of a directed edge (a, b) in the
tuple ρ equals both the multiplicity of a in a and the multiplicity of b in b. Therefore, if the tuple ρ has a
unique element r = (a, b) with maximum multiplicity, then f(ρ) = (f(a), f(b)) = (a, b) = r ∈ RB

2 . Otherwise,
f(ρ) = (a1, b1) = r1 ∈ RB

2 . This shows that f preserves R2, too, and is thus a polymorphism of (A,B).
Consider the matrix H = diag(1, 2, 1, 1, 1, 1, 1), and observe that H is a tie matrix. We claim that f is H-

symmetric. Let π : [L]→ [L] be a permutation, and take a tuple a = (a1, . . . , aL) ∈ AL such that a# is H-tieless;

6Since the elements of A are numbered starting from 0, a#
1 is the second entry of the vector a#.

7Assigning any value in {0, . . . , 6} to f(a) would work here.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

i.e., the vector Ha# = (a#0 , 2a
#
1 ,a

#
2 ,a

#
3 ,a

#
4 ,a

#
5 ,a

#
6) is tieless. Write ã = (aπ(1), . . . , aπ(L)), and observe that

ã# = a#.

• If a ∈ {0, 1}L, we get a#0 6= 2a#1 ; since a#0 + a#1 = L, this gives 2a#1 6= L − a#1 so that a#1 6= L
3 . As a

consequence, f(a) = f(ã).

• If a ∈ {2, 3, 4, 5, 6}L, the condition above implies that the tuple (a#2 ,a
#
3 ,a

#
4 ,a

#
5 ,a

#
6) has a unique maximum

element and, hence, there is a unique element a of A having maximum multiplicity in a (and in ã).
Therefore, f(a) = a = f(ã).

• If a 6∈ {0, 1}L ∪ {2, 3, 4, 5, 6}L, then f(a) = 0 = f(ã).

We conclude that, in each case, f(a) = f(ã) = f/π(a), which means that f is H-symmetric. By Theorems 3.1
and 3.2, CLAP solves PCSP(A,B).8

Remark 3.1. Consider the minion MBLP+AIP from [22] (cf. [31, Appendix A.3]). A direct consequence of
Example 3.1, Theorem 3.1, and [22, Lemma 5.4] is that there is no minion homomorphism from MBLP+AIP to
C . On the other hand, the function

ϑ : C →MBLP+AIP

(M,µ) 7→ (Me1,µ)

is readily seen to be a minion homomorphism. It follows that CLAP solves any PCSP template solved by
BLP + AIP (as is also clear from the description of the two algorithms).

Remark 3.2. Similar to [20], the assumption in Theorem 3.2 can be weakened as follows: Instead of requiring
H-symmetric polymorphisms of arbitrarily large arity, it turns out to be enough requiring H-block-symmetric
polymorphisms of arbitrarily large width, where the definition of an H-block-symmetric operation mirrors that of
a block-symmetric operation in [20]. The proof of this stronger result is very similar to that of Theorem 3.2. The
details can be found in the full version [31, Appendix C].

Remark 3.3. A (possibly) stronger version of the CLAP algorithm consists in running BLP + AIP (instead of
just BLP) at each iteration in the for loop in lines 5–9 of Algorithm 1, and then removing the additional for loop
in lines 14–18. This algorithm can be called C(BLP + AIP). An analysis entirely analogous to the one presented
in this paper shows that the power of C(BLP + AIP) is captured by the minion C̃ defined like C with the following
difference: The L-ary elements of C̃ are pairs (M,N), where M is as in C while N is an integer matrix of the
same size as M taking the role of µ (in particular, N satisfies the “refinement condition” supp(Nei) ⊆ supp(Mei)
∀i ∈ N, analogous to (c4) in Definition 3.2). A possible direction for future research is to investigate whether the
richer structure of C̃ can be exploited to obtain a stronger version of Theorem 3.2.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation
problems. J. ACM, 45(3):501–555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J. ACM, 45(1):70–122, 1998.
[3] P. Austrin, A. Bhangale, and A. Potukuchi. Improved inapproximability of rainbow coloring. In Proceedings of the

31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’20), pages 1479–1495, 2020, arXiv:1810.02784.
[4] P. Austrin, V. Guruswami, and J. H̊astad. (2+ε)-Sat is NP-hard. SIAM J. Comput., 46(5):1554–1573, 2017,

eccc:2013/159.
[5] L. Barto. The collapse of the bounded width hierarchy. J. Log. Comput., 26(3):923–943, 2016.

8The discussion in Example 3.1 shows that the PCSP template (1-in-3,NAE) admits H-symmetric polymorphisms of all arities;

hence, the AIP part of the CLAP algorithm is not needed in this case (cf. [31, Remark 33]). In fact, the template is already solved
by SBLP, since it admits alternating-threshold polymorphisms of all odd arities (cf. Example 2.3 and [18]).

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

[6] L. Barto, D. Battistelli, and K. M. Berg. Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean
Case. In Proceedings of the 38th International Symposium on Theoretical Aspects of Computer Science (STACS’21),
volume 187 of LIPIcs, pages 10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, arXiv:2010.04623.

[7] L. Barto, J. Buĺın, A. A. Krokhin, and J. Opršal. Algebraic approach to promise constraint satisfaction. Journal of
the ACM, 68(4):28:1–28:66, 2021, arXiv:1811.00970.

[8] L. Barto and M. Kozik. Constraint Satisfaction Problems Solvable by Local Consistency Methods. J. ACM, 61(1),
2014. Article No. 3.

[9] L. Barto and M. Kozik. Robustly solvable constraint satisfaction problems. SIAM J. Comput., 45(4):1646–1669,
2016, arXiv:1512.01157.

[10] L. Barto, A. Krokhin, and R. Willard. Polymorphisms, and how to use them. In A. Krokhin and S. Živný, editors,
The Constraint Satisfaction Problem: Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2017.

[11] L. Barto, J. Opršal, and M. Pinsker. The wonderland of reflections. Isr. J. Math, 223(1):363–398, Feb 2018,
arXiv:1510.04521.

[12] L. Barto and M. Pinsker. Topology is irrelevant (in a dichotomy conjecture for infinite domain constraint satisfaction
problems). SIAM J. Comput., 49(2):365–393, 2020, arXiv:1909.06201.

[13] J. Berman, P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard. Varieties with few subalgebras of
powers. Trans. Am. Math. Soc., 362(3):1445–1473, 2010.

[14] C. Bessiere and R. Debruyne. Theoretical analysis of singleton arc consistency and its extensions. Artif. Intell.,
172(1):29–41, 2008.

[15] A. Blum. New approximation algorithms for graph coloring. J. ACM, 41(3):470–516, 1994.
[16] M. Bodirsky, B. Martin, and A. Mottet. Discrete temporal constraint satisfaction problems. J. ACM, 65(2):9:1–9:41,

2018, arXiv:1503.08572.
[17] M. Bodirsky, A. Mottet, M. Oľsák, J. Opršal, M. Pinsker, and R. Willard. ω-categorical structures avoiding height 1

identities. Transactions of the American Mathematical Society, 374(1):327–350, 2021, arXiv:2006.12254.
[18] J. Brakensiek and V. Guruswami. Promise Constraint Satisfaction: Structure Theory and a Symmetric Boolean

Dichotomy. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’18), pages
1782–1801. SIAM, 2018, arXiv:1704.01937.

[19] J. Brakensiek and V. Guruswami. An algorithmic blend of LPs and ring equations for promise CSPs. In Proceedings of
the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19), pages 436–455, 2019, arXiv:1807.05194.

[20] J. Brakensiek and V. Guruswami. Symmetric polymorphisms and efficient decidability of promise CSPs. In Proceed-
ings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA’20), pages 297–304, 2020, arXiv:1907.04383.

[21] J. Brakensiek, V. Guruswami, and S. Sandeep. Conditional Dichotomy of Boolean Ordered Promise CSPs. In
Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP’21), volume
198 of LIPIcs, pages 37:1–37:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 2102.11854.

[22] J. Brakensiek, V. Guruswami, M. Wrochna, and S. Živný. The power of the combined basic LP and affine relaxation
for promise CSPs. SIAM J. Comput., 49:1232–1248, 2020, arXiv:1907.04383.

[23] A. Brandts, M. Wrochna, and S. Živný. The complexity of promise SAT on non-Boolean domains. ACM Trans.
Comput. Theory, 13(4):26:1–26:20, 2021, arXiv:1911.09065.

[24] A. Brandts and S. Živný. Beyond PCSP(1-in-3,NAE). In Proceedings of the 48th International Colloquium on
Automata, Languages, and Programming (ICALP’21), volume 198 of LIPIcs, pages 121:1–121:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, arXiv:2104.12800.

[25] A. Bulatov. Bounded relational width. Unpublished manuscript, 2009.
[26] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using finite algebras. SIAM J.

Comput., 34(3):720–742, 2005.
[27] A. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM, 53(1):66–120,

2006.
[28] A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proceedings of the 58th Annual IEEE Symposium on

Foundations of Computer Science (FOCS’17), pages 319–330, 2017, arXiv:1703.03021.
[29] A. A. Bulatov and V. Dalmau. A Simple Algorithm for Mal’tsev Constraints. SIAM J. Comput., 36(1):16–27, 2006.
[30] H. Chen, V. Dalmau, and B. Grußien. Arc consistency and friends. J. Log. Comput., 23(1):87–108, 2013.
[31] L. Ciardo and S. Živný. CLAP: A New Algorithm for Promise CSPs. 2021, arXiv:2107.05018.
[32] D. A. Cohen. Tractable decision for a constraint language implies tractable search. Constraints, 9(3):219–229, 2004.
[33] V. Dalmau, M. Kozik, A. A. Krokhin, K. Makarychev, Y. Makarychev, and J. Oprsal. Robust algorithms with

polynomial loss for near-unanimity CSPs. SIAM J. Comput., 48(6):1763–1795, 2019, arXiv:1607.04787.
[34] V. Dalmau and A. A. Krokhin. Robust Satisfiability for CSPs: Hardness and Algorithmic Results. ACM Trans.

Comput. Theory, 5(4):15:1–15:25, 2013.
[35] R. Debruyne and C. Bessière. Some Practicable Filtering Techniques for the Constraint Satisfaction Problem. In

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97), pages 412–417. Morgan
Kaufmann, 1997.

[36] I. Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.
[37] I. Dinur, O. Regev, and C. Smyth. The hardness of 3-uniform hypergraph coloring. Comb., 25(5):519–535, Sept.

2005.
[38] T. Feder and M. Y. Vardi. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A

Study through Datalog and Group Theory. SIAM J. Comput., 28(1):57–104, 1998.
[39] M. Ficak, M. Kozik, M. Oľsák, and S. Stankiewicz. Dichotomy for Symmetric Boolean PCSPs. In Proceedings

of the 46th International Colloquium on Automata, Languages, and Programming (ICALP’19), volume 132, pages
57:1–57:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, arXiv:1904.12424.

[40] M. R. Garey and D. S. Johnson. The complexity of near-optimal graph coloring. J. ACM, 23(1):43–49, 1976.
[41] V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. SIAM J. Discret. Math., 18(1):30–

40, 2004.
[42] V. Guruswami and S. Sandeep. d-To-1 Hardness of Coloring 3-Colorable Graphs with O(1) Colors. In Proceedings of

the 47th International Colloquium on Automata, Languages, and Programming (ICALP’20), volume 168 of LIPIcs,
pages 62:1–62:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[43] P. Hell and J. Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B, 48(1):92–110, 1990.
[44] P. M. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard. Tractability and learnability arising from

algebras with few subpowers. SIAM J. Comput., 39(7):3023–3037, 2010.
[45] P. G. Jeavons. On the Algebraic Structure of Combinatorial Problems. Theor. Comput. Sci., 200(1-2):185–204, 1998.
[46] P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure Properties of Constraints. J. ACM, 44(4):527–548, 1997.
[47] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic number. Comb., 20(3):393–415,

2000.
[48] S. Khot. Improved Inaproximability Results for MaxClique, Chromatic Number and Approximate Graph Coloring.

In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS’01), pages 600–609.
IEEE Computer Society, 2001.

[49] S. Khot. On the power of unique 2-prover 1-round games. In Proc. 34th Annual ACM Symposium on Theory of
Computing (STOC’02), pages 767–775. ACM, 2002.

[50] V. Kolmogorov, A. A. Krokhin, and M. Roĺınek. The complexity of general-valued CSPs. SIAM J. Comput.,
46(3):1087–1110, 2017, arXiv:1502.07327.

[51] V. Kolmogorov, J. Thapper, and S. Živný. The power of linear programming for general-valued CSPs. SIAM J.
Comput., 44(1):1–36, 2015, arXiv:1311.4219.

[52] M. Kozik. Solving CSPs Using Weak Local Consistency. SIAM J. Comput., 50(4):1263–1286, 2021, arXiv:1605.00565.
[53] M. Kozik and J. Ochremiak. Algebraic properties of valued constraint satisfaction problem. In Proceedings of the

42nd International Colloquium on Automata, Languages, and Programming (ICALP’15), volume 9134 of Lecture
Notes in Computer Science, pages 846–858. Springer, 2015, arXiv:1403.0476.

[54] A. Krokhin and J. Opršal. The complexity of 3-colouring H-colourable graphs. In Proceedings of the 60th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’19), pages 1227–1239, 2019, arxiv:1904.03214.

[55] G. Kun, R. O’Donnell, S. Tamaki, Y. Yoshida, and Y. Zhou. Linear programming, width-1 CSPs, and robust
satisfaction. In Proceedings of the 3rd Innovations in Theoretical Computer Science (ITCS’12), pages 484–495. ACM,
2012.

[56] G. Kun and M. Szegedy. A new line of attack on the dichotomy conjecture. Eur. J. Comb., 52:338–367, 2016.
[57] A. K. Mackworth. Consistency in networks of relations. Artif. Intell., 8(1):99–118, 1977.
[58] P. Raghavendra. Optimal algorithms and inapproximability results for every CSP? In Proceedings of the 40th Annual

ACM Symposium on Theory of Computing (STOC’08), pages 245–254, 2008.
[59] T. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual ACM Symposium on the

Theory of Computing (STOC’78), pages 216–226, 1978.
[60] J. Thapper and S. Živný. The complexity of finite-valued CSPs. J. ACM, 63(4), 2016, arXiv:1210.2987. Article No.

37.
[61] J. Thapper and S. Živný. The power of Sherali-Adams relaxations for general-valued CSPs. SIAM J. Comput.,

46(4):1241–1279, 2017, arXiv:1606.02577.
[62] J. Thapper and S. Živný. The limits of SDP relaxations for general-valued CSPs. ACM Trans. Comput. Theory,

10(3):12:1–12:22, 2018, arXiv:1612.01147.
[63] A. Wigderson. Improving the performance guarantee for approximate graph coloring. J. ACM, 30(4):729–735, 1983.
[64] M. Wrochna and S. Živný. Improved hardness for H-colourings of G-colourable graphs. In Proceedings of the 14th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’20), pages 1426–1435, 2020, arxiv:1907.00872.
[65] D. Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020, arXiv:1704.01914.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Preliminaries
	The CLAP algorithm

