
Approximate Graph Colouring and Crystals∗†

Lorenzo Ciardo‡ Stanislav Živný§

Abstract

We show that approximate graph colouring is not solved by any level of the affine integer programming
(AIP) hierarchy. To establish the result, we translate the problem of exhibiting a graph fooling a level of
the AIP hierarchy into the problem of constructing a highly symmetric crystal tensor. In order to prove
the existence of crystals in arbitrary dimension, we provide a combinatorial characterisation for realisable
systems of tensors; i.e., sets of low-dimensional tensors that can be realised as the projections of a single
high-dimensional tensor.

1 Introduction

The approximate graph colouring problem (AGC) asks to find a d-colouring of a given c-colourable graph, where
3 ≤ c ≤ d. There is a huge gap in our understanding of the computational complexity of this problem. For an
n-vertex graph and c = 3, the currently best known polynomial-time algorithm finds a d-colouring of the graph
with d = O(n0.19996). It has been long conjectured [36] that the problem is NP-hard for any fixed constants
3 ≤ c ≤ d even in the decision variant: Given a graph, output Yes if it is c-colourable and output No if it is not
d-colourable.

For c = d, the problem becomes the classic c-colouring problem, which appeared on Karp’s original list of 21
NP-complete problems [42]. The case c = 3, d = 4 was only proved to be NP-hard in 2000 [43] (and a simpler
proof was given in [38]); more generally, [43] showed hardness of the case d = c+ 2bc/3c − 1. This was improved
to d = 2c − 2 in 2016 [12], and recently to d = 2c − 1 [6]. In particular, this last result implies hardness of the
case c = 3, d = 5; the complexity of the case c = 3, d = 6 is still open. Building on [44, 40], NP-hardness was
established for d =

(
c
bc/2c

)
− 1 for c ≥ 4 in [57]. NP-hardness of AGC was established for all constants 3 ≤ c ≤ d

in [34] under a non-standard variant of the Unique Games Conjecture, in [39] under the d-to-1 conjecture [45] for
any fixed d, and (an even stronger statement of distinguishing 3-colourability from not having an independent set
of significant size) in [19] under the rich 2-to-1 conjecture [20].

AGC is an example of so called promise constraint satisfaction problem (PCSP). For a positive integer k,
a k-uniform hypergraph H consists of a set V(H) of elements called vertices and a set E(H) ⊆ V(H)k of tuples
of k vertices called hyperedges.1 Given two k-uniform hypergraphs G and H, a map f : V(G) → V(H) is a
homomorphism from G to H if f(g) ∈ E(H) for any g ∈ E(G), where f is applied entrywise to the vertices
in g. We shall denote the existence of a homomorphism from G to H by the expression G → H. The PCSP
parameterised by two k-uniform hypergraphs H and H̃ such that H→ H̃, denoted by PCSP(H, H̃), is the following
computational problem: Given a k-uniform hypergraph G as input, answer Yes if G → H and No if G 6→ H̃.
The requirement H→ H̃ implies that the two cases cannot happen simultaneously, as homomorphisms compose;
the promise is that one of the two cases always happens.2 A 2-uniform hypergraph is a digraph. Moreover, a
p-colouring of a digraph G is precisely a homomorphism from G to the clique Kp – i.e., the digraph on vertex
set {1, . . . , p} such that any pair of distinct vertices is a (directed) edge. Therefore, AGC is PCSP(Kc,Kd).

∗The research leading to these results has received funding from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant agreement No 714532). The paper reflects only the authors’ views
and not the views of the ERC or the European Commission. The European Union is not liable for any use that may be made of the

information contained therein. This work was also supported by UKRI EP/X024431/1.
†The full version of the paper can be accessed at https://arxiv.org/abs/2210.08293.
‡Department of Computer Science, University of Oxford, UK.
§Department of Computer Science, University of Oxford, UK.
1Unless otherwise stated, all hypergraphs appearing in this paper are finite, meaning that their vertex set is finite.
2It is customary to study PCSPs on more general objects known as relational structures, which consist of a collection of relations

of arbitrary arities on a vertex set.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2210.08293

By letting H = H̃ in the definition of a PCSP, one obtains the standard (non-promise) constraint satisfaction
problem (CSP). PCSPs were introduced in [4, 14] as a general framework for studying approximability of perfectly
satisfiable CSPs and have emerged as a new direction in constraint satisfaction that requires different techniques
than CSPs. Recent works on PCSPs include those using analytical methods [10, 20, 15, 11] and those building
on algebraic methods [13, 16, 57, 39, 2, 5, 17, 25, 7, 29, 51] developed in [6]. However, most basic questions are
still left open, including applicability of different types of algorithms. Remarkably, most algorithmic techniques
in constraint satisfaction can be broadly classified into two distinct classes: Algorithms enforcing some type of
local consistency, and algorithms related to (generalisations of) linear equations.

The first class of algorithms is based on the following idea: Rather than directly checking for the existence
of a global map between G and H satisfying constraints (i.e., a homomorphism), which may not be doable in
polynomial time, one tries to draw an atlas of charts covering each region of the instance G. The charts are
partial homomorphisms, i.e., homomorphisms from a substructure of G to H; the atlas must have the property
that the maps are consistent, i.e., whenever two regions overlap, there exist charts of the regions that agree on
the intersection. The bounded width (or local-consistency checking) algorithm outputs Yes if and only if such an
atlas exists – which can be checked in polynomial time provided that the size of each chart is bounded [35]. More
powerful versions of this technique require that the charts of each region should be sampled according to some
probability distribution. In this case, the consistency requirement of the atlas is stronger, as it asks that, whenever
two regions overlap, the probability distribution over the charts of the intersection should be exactly the marginal
of the distributions over the charts of the two regions. Concretely, checking for the existence of such a “random
atlas” amounts to solving a linear program, and results in the so-called Sherali-Adams LP hierarchy [54], which is
provably more powerful than bounded width [3]. Treating probabilities as vectors satisfying certain orthogonality
requirements gives an even stronger algorithm based on semidefinite programming, known as the sum-of-squares
or Lasserre SDP hierarchy [55, 52, 49]. In general, the existence of a (random) atlas is not sufficient to deduce
that a planisphere (i.e., a global map satisfying all constraints) exists. In fact, if P6=NP, we do not expect
polynomial-time algorithms to solve NP-hard problems. Thus, a well-established line of work has sought to prove
lower bounds on the efficacy of these consistency algorithms; see [1, 18, 27, 48, 37] for lower bounds on LPs arising
from lift-and-project hierarchies such as that of Sherali-Adams, and [56, 50, 26] for lower bounds on SDPs.

Any PCSP can be formulated as a system of linear equations over {0, 1}. The second class of algorithms
essentially consists in solving the equations using (some variant or a generalisation of) Gaussian elimination. This
requires relaxing the problem by admitting a larger range for the variables in the equations (as, in general, the
system cannot be efficiently solved over {0, 1}). In particular, it is possible to solve the system in polynomial
time over Z ([41], cf. also [13]) – which results in the affine integer programming (AIP) relaxation, also known
as linear Diophantine equations,3 that we consider in this work. The “base level” of this algorithm was studied
in [13, 16] in the context of PCSPs, and its power was characterised algebraically in [6]. This algorithmic
technique is substantially different from the first class of algorithms: Instead of looking for an atlas of charts
faithfully describing regions of the world – i.e., a system of local assignments satisfying the constraints – the
algorithms of the second class aim to draw a possibly imprecise planisphere – i.e., a global assignment satisfying a
relaxed version of the constraints. In the context of CSPs, the elusive interaction between consistency-checking and
methods based on (generalisations of) Gaussian-elimination was the major obstacle to the proof of the Feder-Vardi
dichotomy conjecture [35], that was finally settled in [24] and, independently, in [59].

If, as conjectured, AGC is an NP-hard problem and P 6= NP, neither of the two algorithmic techniques should
be able to solve it. In a striking sequence of works [46, 32, 33, 47], the 2-to-2 conjecture of Khot [45] (with
imperfect completeness) was resolved. As detailed in [47], this implies (together with [39]) that polynomially
many levels of the sum-of-squares hierarchy do not solve AGC, which implies the same result for polynomially
many levels of the weaker Sherali-Adams and bounded width algorithms. Recent work [3] established that even
sublinear levels of bounded width do not solve AGC.

Contributions In this paper, we focus on the second class of algorithms and show that no level of the affine
integer programming hierarchy solves AGC. Recently, [30] described a linear-algebraic characterisation of the
algorithm in terms of a geometric construction called tensorisation. Using this characterisation as a black box,
we translate the problem of finding an instance of AGC fooling the algorithm into the problem of finding a tensor

3A hierarchy based on AIP (with additional local-consistency conditions) was considered in [9], where a lower bound on its power
was shown for the graph isomorphism problem.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

with many symmetries, which we call a crystal. Our main technical contribution is the construction of crystals.
More precisely, we prove the following result: Given a collection of low-dimensional tensors (“pictures”) satisfying
a compatibility requirement, it is possible to build a high-dimensional tensor such that by projecting it onto
low-dimensional hyperplanes one recovers the pictures. Variants of this problem have appeared in the literature
in combinatorial matrix theory. In particular, the problem of constructing a matrix (i.e., a 2-dimensional tensor)
having prescribed row-sum and column-sum vectors (i.e., 1-dimensional projections) has been studied for different
classes of matrices, such as nonnegative integer matrices [23], (0, 1) matrices [31, 53], alternating-sign matrices [58],
and sign-restricted matrices [22], see also the survey [8]. For example, the Gale-Ryser theorem [53] provides a
characterisation, based on the notion of majorisation, of the pairs of vectors r, c for which there exists a (0, 1)
matrix whose row-sum and column-sum vectors are r and c, respectively. In a similar fashion, we not only show
that a tensor having prescribed low-dimensional projections exists, but we also prove that a natural necessary
combinatorial condition is in fact also sufficient for a system of low-dimensional “picture” tensors in order to be
the set of projections of a high-dimensional tensor.

We point out that our proof is constructive, as it allows to explicitly find a tensor with the desired
characteristics. As far as we know, the problem of reconstructing a tensor from low-dimensional projections has
hitherto only been studied for matrices (but cf. [21], where a related problem is investigated in three dimensions
in the restricted setting of alternating-sign 3-dimensional tensors). However, in order to rule out affine integer
programming as an algorithm to solve AGC for all numbers of colours, we need to build crystals of arbitrarily high
dimension and hence approach the reconstruction problem for arbitrarily high-dimensional tensors. In addition
to its direct application to the non-solvability of AGC, we believe that our result might be of independent interest
to the linear algebra and tensor theory communities.

In Section 2, we present our main results. The details of all results and proofs can be found in the full version
of this paper [28].

2 Overview

Let k ≥ 2 be an integer. Given a set V , we define
(
V
≤k
)

= {S ⊆ V : 1 ≤ |S| ≤ k}. Let G and H be two digraphs.

We introduce a variable λS(f) for every S ∈
(V(G)
≤k
)

and every function f : S → V(H), and a variable λg(f) for

every g = (g1, g2) ∈ E(G) and every f : {g1, g2} → V(H). The k-th level of the AIP hierarchy is given by the
following constraints:

(AIP1)
∑

f :S→V(H)

λS(f) = 1 S ∈
(V(G)
≤k
)

(AIP2) λR(f) =
∑

f̃ :S→V(H), f̃ |R=f

λS(f̃) ∅ 6= R ⊆ S ∈
(V(G)
≤k
)
, f : R→ V(H)

(AIP3) λR(f) =
∑

f̃ :{g1,g2}→V(H), f̃ |R=f

λg(f̃) g ∈ E(G), ∅ 6= R ⊆ {g1, g2}, f : R→ V(H)

(AIP4) λg(f) = 0 g ∈ E(G), f : {g1, g2} → V(H) with f(g) 6∈ E(H).

We say that AIPk(G,H) = Yes if the system above admits a solution such that all variables take integer values.
For a fixed k, this can be checked in polynomial time in the number of vertices of the input digraph G by solving
a polynomial-sized system of linear equations over the integers [41]. (For the “base level” of the hierarchy k = 1,
cf. [28, Appendix A].)

Let H̃ be a digraph such that H → H̃. One easily checks that AIPk(G,H) = Yes if G → H; we say that
the k-th level of AIP solves PCSP(H, H̃) if G→ H̃ whenever AIPk(G,H) = Yes. Clearly, if AIPk(G,H) = Yes

then AIPk
′
(G,H) = Yes for any level k′ lower than k. It follows that if some level of the hierarchy solves

PCSP(H, H̃) then any higher level of the hierarchy also solves it. It is worth noticing that the AIP hierarchy does
not enforce consistency, in the sense that it is possible that a partial assignment is given nonzero weight without
being a partial homomorphism. This is in sharp contrast to the “consistency-enforcing” algorithms mentioned in
the Introduction, such as the bounded-width, Sherali-Adams LP, and Lasserre SDP hierarchies. We now state
the first main result of this work.

Theorem 2.1. No level of the AIP hierarchy solves approximate graph colouring; i.e., for any fixed 3 ≤ c ≤ d,
there is no k such that the k-th level of AIP solves PCSP(Kc,Kd).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

2.1 Affine integer programming and tensors In order to prove Theorem 2.1, we need to find instances of
AGC that fool the AIP hierarchy. Rather than working with the hierarchy itself, we shall lift the analysis to a
tensor-theoretic framework. Next, we define some terminology on tensors that will be used throughout the paper.

Given n in the set N of positive integer numbers, we let [n] = {1, . . . , n}. We also let [0] = ∅. Given a tuple
n = (n1, . . . , nq) ∈ Nq for some q ∈ N, we let [n] = [n1] × · · · × [nq]. Given a tuple b = (b1, . . . , bq) ∈ [n] and a
tuple i = (i1, . . . , ip) ∈ [q]p for p, q ∈ N, the projection of b onto i is the tuple bi = (bi1 , . . . , bip). Notice that
bi ∈ [ni]. For ñ ∈ Np, the concatenation of two tuples b = (b1, . . . , bq) ∈ [n] and c = (c1, . . . , cp) ∈ [ñ] is the tuple
(b, c) = (b1, . . . , bq, c1, . . . , cp). Notice that (b, c) ∈ [(n, ñ)]. It will be handy to extend the notation above to
include tuples of length zero. For any set S, we define S0 = {ε}, where ε denotes the empty tuple. For any tuple
x, we let xε = ε and (x, ε) = (ε,x) = x. We also define [ε] = {ε}. For n ∈ N, define the tuple 〈n〉 = (1, . . . , n).
Also, let 〈0〉 = ε. Given a tuple x, #(x) is the cardinality of the set of elements appearing in x.

Let N0 = N ∪ {0}. Take a set S, an integer q ∈ N0, and a tuple n ∈ Nq. We denote by T n(S) the set of
tensors on q modes of sizes n1, . . . , nq whose entries are in S; formally, T n(S) is the set of functions from [n] to
S. We sometimes denote a tensor in T n(S) by T = (ti)i∈[n], where ti ∈ S is the image of i under T . For example,

T n(S) and T (m,n)(S) are the sets of n-vectors and m× n matrices, respectively, having entries in S. Notice that
T ε(S) is the set of functions from [ε] = {ε} to S, which we identify with S. We will often consider cubical tensors,
all of whose modes have equal size; i.e., tensors in the set T n·1q for some n ∈ N, where 1q is the all-one tuple of
length q.

We shall usually consider tensors having entries in the ring of integers Z. For k, `,m ∈ N0, take n ∈ Nk,
p ∈ N`, and q ∈ Nm. The contraction of two tensors T = (ti)i∈[(n,p)] ∈ T (n,p)(Z) and T̃ = (t̃i)i∈[(p,q)] ∈ T (p,q)(Z),

denoted by T
`∗ T̃ , is the tensor in T (n,q)(Z) such that, for i ∈ [n] and j ∈ [q], the (i, j)-th entry of T

`∗ T̃ is given
by
∑

z∈[p] t(i,z)t̃(z,j). If at least one of k and m equals zero – i.e., if we are contracting over all modes of T or T̃ ,

we write T ∗ T̃ for T
`∗ T̃ , to increase readability. It is not hard to see that tensor contraction is associative, in the

sense that (T
`∗ T̃)

m∗ T̂ = T
`∗ (T̃

m∗ T̂) for any T̂ ∈ T (q,r)(Z), where r ∈ Nn for some n ∈ N0. On the other hand,
the order of operations matters for the “∗” operator. For example, if T ∈ T n(Z), the expression (T ∗T)∗ T̃ is well
defined but the expression T ∗ (T ∗ T̃) is not, in general. For this reason, we define “∗” to be left-associative; i.e.,
T1 ∗ T2 ∗ T3 means (T1 ∗ T2) ∗ T3. The next example shows that contraction generalises various linear-algebraic
products.

Example 2.1. For m,n, p ∈ N, consider the tensors c ∈ T ε(Z) = Z, u,v ∈ T m(Z), w ∈ T n(Z), M,N ∈
T (m,n)(Z), and Q ∈ T (n,p)(Z). The following products can be seen as examples of contraction: c

0∗ u = c∗u = cu,

c
0∗ M = c ∗M = cM (multiplication times scalar); u

1∗ v = u ∗ v = uTv (inner product); u
0∗ w = uwT (outer

product); M
1∗ Q = MQ (standard matrix product); M

2∗ N = tr(MTN) (Frobenius inner product).

Let q ∈ N0 and n ∈ Nq. Given i ∈ [n], we denote by Ei the i-th standard unit tensor ; i.e., the tensor in T n(Z)
all of whose entries are 0, except the i-th entry that is 1. Observe that, for any T ∈ T n(Z), we may express the
i-th entry of T as Ei ∗ T . If q = 1, n ∈ N, and i ∈ [n], notice that Ei is the i-th standard unit vector of length n.
Let i ∈ [q]p for some p ∈ N0. We associate with n and i the tensor Πn

i ∈ T (ni,n)(Z) defined by

Ea ∗Πn
i ∗ Eb =

{
1 if bi = a
0 otherwise

for each
a ∈ [ni],
b ∈ [n].

(2.1)

We will need a few technical lemmas on the tensors defined above,4 whose proofs can be found in the full version
of this paper [28]. The first concerns the “limit case” of the empty tuple ε.

Lemma 2.1. Eε = 1. Moreover, given q ∈ N0 and n ∈ Nq, Πn
ε is the all-one tensor in T n(Z).

The following is a simple description of the entries of Πn
i .

Lemma 2.2. Given p, q ∈ N0, n ∈ Nq, i ∈ [q]p, and a ∈ [ni], we have Ea ∗Πn
i =

∑
b∈[n], bi=aEb.

4The expression “x
L .•
= y” shall mean “x = y by Lemma •”. Similarly, “x

D .•
= y” and “x

(•)
= y” shall mean “x = y by Definition •”

and “x = y by equation (•)”, respectively.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

The assignment i 7→ Πn
i creates a correspondence between tuples and tensors. More specifically, Lemma 2.3

shows that, under this assignment, the operation of tuple projection is translated into the operation of tensor
contraction, while Lemma 2.4 shows that the tuple 〈q〉, that acts by projection as the identity on the set of tuples
of appropriate length, corresponds to a tensor that acts by contraction as the identity on the space of tensors of
appropriate size.

Lemma 2.3. Let m, p, q ∈ N0, and consider two tuples i ∈ [q]p and j ∈ [p]m. Then, for any n ∈ Nq,
Πn

ij
= Πni

j

p∗ Πn
i .

Lemma 2.4. Let q, q′ ∈ N0, n ∈ Nq, n′ ∈ Nq′ , and T ∈ T (n,n′)(Z). Then Πn
〈q〉

q∗ T = T.

In [30], the AIP hierarchy was characterised algebraically by using a multilinear construction. We state the
characterisation in Theorem 2.2 below, after introducing the necessary terminology.

Definition 2.1. ([6, 16]) A minion M is the disjoint union of nonempty sets M (p) for p ∈ N equipped with
operations (·)/π : M (p) → M (q) for all π : [p] → [q] that satisfy, for any p, q, r ∈ N, π : [p] → [q], ρ : [q] → [r],

M ∈M (p), the requirements (i) (M/π)/ρ = M/ρ◦π, and (ii) M/ id = M .
Let H be a k-uniform hypergraph having n vertices and m hyperedges. The free hypergraph FM (H) of a

minion M generated by H is the (potentially infinite) k-uniform hypergraph on the vertex set V(FM (H)) = M (n)

whose hyperedges are defined as follows: Given M1, . . . ,Mk ∈M (n), the tuple (M1, . . . ,Mk) belongs to E(FM (H))
if and only if there exists some Q ∈M (m) such that Mi = Q/πi

for any i ∈ [k], where πi : E(H)→ V(H) maps a
hyperedge h to its i-th entry hi.

Example 2.2. ([6]) For any p ∈ N, let Zaff
(p) be the set of integer vectors of length p whose entries sum up to

one. Given π : [p]→ [q] and v ∈ Zaff
(p), let v/π be the q-vector whose j-th entry is

∑
`∈π−1(j) v` for each j ∈ [q].

One easily shows that Zaff =
⋃
p∈N Zaff

(p) is a minion.

Definition 2.2. ([30]) Given k ∈ N, the k-th tensor power5 of a digraph H is the 2k-uniform hypergraph H
k○

having vertex set V(H
k○

) = V(H)k and hyperedge set E(H
k○

) = {h k○
: h ∈ E(H)}, where, for h ∈ E(H), h

k○
is

the tensor6 in T 2·1k(V(H)k) whose i-th entry is hi for every i ∈ [2]k.

Example 2.3. Let us describe the free hypergraph of Zaff generated by H
k○

, where H is a digraph on n vertices.

FZaff
(H

k○
) is a (potentially infinite) 2k-uniform hypergraph whose vertex set is Zaff

(nk), which we identify with

the set of (cubical) tensors in T n·1k(Z) whose entries sum up to one. Each hyperedge of FZaff
(H

k○
) consists

of 2k vertices, i.e., 2k elements of Zaff
(nk). It is convenient to visualise it as a block tensor T belonging to

T 2·1k(T n·1k(Z)) = T 2n·1k(Z). Using Definition 2.1, we see that T ∈ E(FZaff
(H

k○
)) if and only if there exists

some Q ∈ Zaff
(|E(H

k○
)|) = Zaff

(|E(H)|) such that, for any i ∈ [2]k, the i-th block of T is equal to Q/πi
, where

πi : E(H) → V(H)k maps h ∈ E(H) to hi. It only remains to describe the entries of Q/πi
. According to

Example 2.2, given any h ∈ V(H)k, the h-th entry of Q/πi
is given by

Eh ∗Q/πi
=

∑
`∈π−1

i (h)

E` ∗Q =
∑

`∈E(H)
`i=h

E` ∗Q.(2.2)

The following result characterises acceptance for the AIP hierarchy.7

Theorem 2.2. ([30]) Let G,H be two digraphs and let k ≥ 2. Then AIPk(G,H) = Yes if and only if there

exists a homomorphism ξ : G
k○ → FZaff

(H
k○

) such that ξ(gi) = Πn·1k

i ∗ ξ(g) for any g ∈ V(G)k, i ∈ [k]k.

5The expression “tensor product of digraphs” is sometimes used in the literature to indicate the direct or categorical product of
digraphs. The tensor power used here is unrelated to that notion – in particular, as it is clear from Definition 2.2, the k-th tensor
power of a digraph is not a digraph for k > 1.

6In particular, the number of hyperedges in H
k○

is equal to the number of edges in H.
7The result in [30] is proved for arbitrary relational structures; for the purpose of this work, the less general version concerning

digraphs is enough. Moreover, the definition of the AIP hierarchy and the other hierarchies characterised in [30] is formally different
from the definition used here, in that it requires preprocessing the PCSP template and instance by “k-enhancing” them, i.e., adding

dummy constraints on k-tuples of variables. As proved in [30, Section A.1], that definition is equivalent to the more standard hierarchy
definition used in [25], which we follow in this work.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

2.2 The quest for crystals Theorem 2.1 is established by proving the existence of certain highly symmetric
tensors (Theorem 2.3, our second main result) and using them to fool the AIP hierarchy (Proposition 2.2). The
tensors we will build enjoy the remarkable property of looking identical when observed from any angle, which is
why we shall refer to them as to crystals.

Given p, q ∈ N, we let [q]p→ denote the set of increasing tuples in [q]p; i.e., [q]p→ = {(i1, . . . , ip) ∈ [q]p s.t. i1 <
i2 < · · · < ip}. Moreover, we let [q]0→ = {ε} for any q ∈ N. Observe that [q]p→ 6= ∅ if and only if p ≤ q.

Definition 2.3. For q, n ∈ N, let M be an n × n integer matrix. A tensor C ∈ T n·1q (Z) is a q-dimensional

M -crystal if Π
n·1q

i ∗ C = M for each i ∈ [q]2→.

Remark 2.1. For n ∈ Nq and i ∈ [q]p, the tensor Πn
i introduced in Section 2.1 should be understood as a

projection operator, that projects a given tensor T living in T n(Z) onto a new system of modes – namely, ni.
As an example, we have seen (cf. Lemma 2.4) that, if i is the identity tuple (i.e., the tuple 〈q〉), contracting
by Πn

i leaves T unaffected. More in general, if i is a permutation (i.e., #(i) = p = q), Πn
i simply rotates the

tensor by rearranging its modes. For instance, for p = q = 2, Πn
(1,2) is the identity operator, while Πn

(2,1) is the

transpose operator. Indeed, letting n = (n1, n2) ∈ N2 and considering an n1 × n2 matrix M , Πn
(1,2) ∗M = M and

Πn
(2,1) ∗M = MT . If p ≤ q, as it is the case for Definition 2.3, Πn

i projects a tensor T having q modes onto a
smaller, p-dimensional space. In other words, Πn

i ∗ T is a “p-dimensional picture” of T .

Theorem 2.3. Let q, n ∈ N, and let M be an n × n integer matrix satisfying M1n = MT1n. Then there exists
a q-dimensional M -crystal.

Our approach to prove Theorem 2.3 will be to show something slightly more general: Given a collection
C of pictures that is realistic – i.e., such that each pair of pictures is “locally compatible” with each other –
one can always produce a tensor C such that photographing C from all angles results in the pictures in C. After
establishing this result (Proposition 2.1), Theorem 2.3 will easily follow, by letting all pictures be the same matrix
M . We note that, even if the pictures in the definition of a crystal are two-dimensional objects (matrices), the
results we shall prove are more conveniently phrased in terms of arbitrary-dimensional pictures.

Definition 2.4. For p, q ∈ N and n ∈ Nq, a (p,n)-album of pictures is a set C = {Ci}i∈[q]p→ such that Ci ∈ T ni(Z)
for each i ∈ [q]p→. C is a realistic album if

Πni
r ∗ Ci = Π

nj
s ∗ Cj for any i, j ∈ [q]p→, r, s ∈ [p]p−1

→ such that ir = js.(2.3)

C is a realisable album if there exists a tensor C ∈ T n(Z) such that Πn
i ∗ C = Ci for each i ∈ [q]p→.

Remark 2.2. Crucially, the pictures in Definition 2.4 are oriented; this is enforced by taking i ∈ [q]p→ instead of
i ∈ [q]p. Similarly, in Definition 2.3, we only require that “oriented pictures” of a crystal C should look identical.

If we strengthened this requirement by asking that Π
n·1q

i ∗C = M for all i ∈ [q]2, an M -crystal could only exist for a
symmetric matrix M . Indeed, applying this strengthened requirement to the tuples i = (i1, i2) and i(2,1) = (i2, i1),
we would find

M = Π
n·1q

i ∗ C = Π
n·1q

i(2,1)
∗ C L .2.3

= Πn·12

(2,1)

2∗ Π
n·1q

i ∗ C = Πn·12

(2,1) ∗ (Π
n·1q

i ∗ C) = Πn·12

(2,1) ∗M = MT ,

where the last equality follows from the discussion in Remark 2.1. This is not a sacrifice we are willing to make,
as the crystal we shall need in Proposition 2.2 to fool AIP corresponds to an integer matrix having zero diagonal
and whose entries sum up to one – which, as a consequence, cannot be symmetric, see (2.4).

It is not difficult to show that, if the pictures in an album are indeed photographs of some unique tensor,
then they must be compatible. In other words, a realisable album must be realistic (cf. the beginning of the proof
of Proposition 2.1). Proving that a realistic album is always realisable shall require some more work. We start
by showing that the problem of checking if a realistic album is realisable does not change if we rotate the space
where the tensors live.

Lemma 2.5. Let p, q ∈ N, let ` ∈ [q]q be such that #(`) = q, and let n ∈ Nq. If every realistic (p,n`)-album of
pictures is realisable then every realistic (p,n)-album of pictures is realisable.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proposition 2.1 is proved through a nested induction, first on the dimension of the pictures (i.e., p), and second
on the sum of the sizes of the modes of the tensor C that the pictures claim to depict (i.e., nT1q). Lemmas 2.6
and 2.7 contain the base cases for the second and the first inductions, respectively.

Lemma 2.6. A realistic (p,1q)-album of pictures is realisable for any p, q ∈ N.

Lemma 2.7. A realistic (1,n)-album of pictures is realisable for any q ∈ N and n ∈ Nq.

Proposition 2.1. Let p, q ∈ N and n ∈ Nq. A (p,n)-album of pictures is realistic if and only if it is realisable.

Proof. [Proof of Theorem 2.3] Consider the (2, n · 1q)-album of pictures C = {Ci}i∈[q]2→
given by Ci = M for each

i ∈ [q]2→. To check that C is a realistic album, we only need to notice that Πn·12
1 ∗M = M1n and Πn·12

2 ∗M = MT1n
and use that, by hypothesis, M1n = MT1n. It then follows from Proposition 2.1 that C is a realisable album.
Hence, there exists a tensor C ∈ T n·1q (Z) such that Π

n·1q

i ∗ C = M for each i ∈ [q]2→. By Definition 2.3, C is a
q-dimensional M -crystal.

The results in this section are proved in in the full version of this paper [28]. We point out that the proofs
of Proposition 2.1 and of the lemmas needed to establish it are constructive, in that they allow to explicitly
build a tensor whose projections are prescribed by a realistic album of pictures. As a consequence, the proof of
Theorem 2.3 on the existence of crystals is constructive, too. We now give an example to illustrate the proof
strategy.

Example 2.4. Throughout this example (and Example 2.5), we shall indicate the numbers −2, −1, 0, 1, 2, and
3 by the colours blue, green, light grey, yellow, orange, and red, respectively. The goal is to build a 4-dimensional
M -crystal, where

M =

0 0 1
1 0 −1
0 0 0

 = .

To this end, we consider the (2, 3 · 14) album of pictures C such that all pictures are equal to . It is easy

to check that C is realistic (cf. the proof of Theorem 2.3); the goal is to show that C is realisable, as the tensor
C ∈ T 3·14(Z) witnessing this fact would be the crystal we are looking for.

Figure 1:

A 4-dimensional -crystal.

Following the proof of Proposition 2.1, we create two auxiliary albums
Ĉ and C̃ from C. Ĉ is a (1, 3 · 13)-album – i.e., both the pictures and
the tensor that Ĉ claims to depict have one fewer dimension than those
for the original album C. In particular, we see from the proof that all

pictures in Ĉ are the same vector . Again, it is not hard to check that

Ĉ is a realistic album. To check that it is realisable, we only need to
find a 3-dimensional tensor such that summing its entries along all three

modes yields . Either by inspection or using the proof of Lemma 2.7,

we find that Ĉ = ∈ T 3·13(Z) satisfies these conditions. The

second album we build is the (2, (3, 3, 3, 2))-album C̃ defined as follows:

C̃1,4 = C̃2,4 = C̃3,4 = (i.e., the matrix obtained by slicing off the

rightmost column of); each other picture in the album is obtained
by taking the corresponding picture in C and subtracting from it the

corresponding projection of Ĉ (i.e., C̃i = Ci − Π
(3·13)
i ∗ Ĉ). In this way,

we obtain C̃(1,2) = C̃(1,3) = C̃(2,3) = . This album is also realistic,
and it is such that the sum of the dimensions is strictly smaller than
the sum of the dimensions for the album C. At this point, we simply
iterate the process, by repeatedly “slicing” C̃ into an album of 1-dimensional pictures (which we handle through

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Lemma 2.7) and a smaller album of 2-dimensional pictures, until we end up with an album such that all dimensions
are shrunk to one, so that the tensor it depicts is a single number (see Lemma 2.6). Throughout this process,
Lemma 2.5 guarantees that the tensors can be rotated in a way that we slice along the rightmost mode, thus
avoiding complications with the orientations of the pictures. In this way, we find that the album C̃ depicts the

tensor C̃ whose two blocks are and the all-zero 3× 3× 3 tensor, respectively. Finally, to obtain a tensor

depicted by the initial album C (i.e., a 4-dimensional -crystal), we glue together C̃ and Ĉ. The result is shown
in Figure 1.

2.3 Approximate graph colouring In this section, we prove the following result.

Theorem 2.4. (Theorem 2.1 restated) No level of the AIP hierarchy solves approximate graph colouring;
i.e., for any fixed 3 ≤ c ≤ d, there is no k such that the k-th level of AIP solves PCSP(Kc,Kd).

The next proposition shows that the crystals we mined in Section 2.2 are able to fool the affine integer
programming hierarchy. After establishing this result, Theorem 2.1 will easily follow.

Proposition 2.2. Let k, n ∈ N with k ≥ 2, n ≥ 3, and let G be a loopless digraph. Then AIPk(G,Kn) = Yes.

Example 2.5. We first illustrate Proposition 2.2 and its proof for the case k = n = 3 and G = K4. Take the 4-

dimensional -crystal C in Figure 1, and consider the map ξ : [4]3 → T 3·13(Z) defined by g 7→ Π3·14
g ∗ C;

i.e., ξ applied to a triplet g of modes is the projection of the 4-dimensional crystal onto the 3-dimensional
hyperplane corresponding to g. In particular, ξ(g) is a 3 × 3 × 3 cube. According to Theorem 2.2, to show
that AIP3(K4,K3) = Yes, we need to prove that ξ is a homomorphism from K

3○
4 to FZaff

(K
3○

3); i.e., that

ξ maps hyperedges of K
3○

4 to hyperedges of FZaff
(K

3○
3). (The extra condition ξ(gi) = Π3·13

i ∗ ξ(g) easily

follows from the definition of ξ). Take, for example, the hyperedge (1, 2)
3○ ∈ E(K

3○
4). Applying ξ entrywise

to the 23 = 8 entries of (1, 2)
3○

yields the tensor T ∈ T 2·13(T 3·13(Z)) = T 6·13(Z) in Figure 2. According

to Example 2.3, to conclude that T ∈ E(FZaff
(K

3○
3)), we need to exhibit some Q ∈ Zaff

(|E(K3)|) = Zaff
(6)

(i.e., some integer distribution over the edges of K3) such that, for any i ∈ [2]3, the i-th block of T is Q/πi
.

Here it is where we use that the two-dimensional pictures of a crystal are all identical: The i-th block of T is

ξ((1, 2)i) = Π3·14

(1,2)i
∗ C L .2.3

= Π3·12

i ∗ (Π3·14

(1,2) ∗ C) = Π3·12

i ∗ . As a consequence, we can let Q be the distribution

encoded by the picture ; i.e., the distribution assigning weight 1 to the edges (1, 3) and (2, 1), and weight −1

to the edge (2, 3).

Proof. [Proof of Proposition 2.2] Suppose, without loss of generality, that V(G) = [q] for some q ∈ N. If q = 1,
the proposition is trivially true, so we can assume q ≥ 2. Consider the matrices

M̂ =

0 0 1
1 0 −1
0 0 0

 ∈ T 3·12(Z) and M =

[
M̂ O
O O

]
∈ T n·12(Z),(2.4)

where O denotes the all-zero matrix of suitable size. Notice that M1n = MT1n = E1. (Recall that Ei is the i-th
standard unit vector of length n for any i ∈ [n].) Then, Theorem 2.3 provides us with a q-dimensional M -crystal
C ∈ T n·1q (Z). Consider the map

ξ : V(G)k → T n·1k(Z)

g 7→ Π
n·1q
g ∗ C,

(2.5)

which is well defined since Π
n·1q
g ∈ T (n·1k,n·1q)(Z) = T n·1k+q (Z) for any g ∈ V(G)k. We claim that ξ yields a

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 2: The tensor ξ((1, 2)
3○

). Each of the 8 blocks is obtained by projecting the 4-dimensional crystal from
Figure 1 onto a 3-dimensional hyperplane.

homomorphism from G
k○

to FZaff
(K

k○
n). First, observe that, for any g ∈ V(G)k,∑

a∈[n]k

Ea ∗ ξ(g)
(2.5)
=

∑
a∈[n]k

Ea ∗Π
n·1q
g ∗ C L .2.1

= Πn·1k
ε ∗Π

n·1q
g ∗ C L .2.3

= Π
n·1q
ε ∗ C

L .2.3
= Πn·12

ε ∗Π
n·1q

〈2〉 ∗ C
D .2.3

= Πn·12
ε ∗M L .2.1

=
∑

b∈[n]2

Eb ∗M = 1TnM1n = 1.

Hence, ξ(g) ∈ Zaff
(nk) = V(FZaff

(K
k○
n)), as required.

We now show that ξ preserves the hyperedges of G
k○

. Recall from Definition 2.2 that E(G
k○

) =

{g k○
: g ∈ E(G)}. Take g ∈ E(G); we need to prove that ξ(g

k○
) ∈ E(FZaff

(Kn
k○)). Observe first that

ξ(g
k○

) = (ξ(gi))i∈[2]k ∈ T 2·1k(T n·1k(Z)). Let α ∈ [2]2 be such that gα ∈ [q]2→ (which is possible since #(g) = 2

as G is loopless). Notice that αα = 〈2〉. Consider the vector Q ∈ T n2−n(Z) whose entries are indexed by the
edges of Kn and are defined as follows: For each a ∈ E(Kn), the a-th entry of Q is Ea ∗Πn·12

α ∗M . Observe that,
for any a ∈ [n], we have

E(a,a) ∗Πn·12
α ∗M L .2.2

=
∑

b∈[n]2

bα=(a,a)

Eb ∗M =
∑

b∈[n]2

b=(a,a)α

Eb ∗M = E(a,a) ∗M = 0,(2.6)

where we have used that α is an involution and the diagonal entries of M are zero. We find∑
a∈E(Kn)

Ea ∗Q =
∑

a∈E(Kn)

Ea ∗Πn·12
α ∗M (2.6)

=
∑

a∈[n]2

Ea ∗Πn·12
α ∗M L .2.1

= Πn·12
ε ∗Πn·12

α ∗M

L .2.3
= Πn·12

ε ∗M L .2.1
=

∑
b∈[n]2

Eb ∗M = 1TnM1n = 1,

which means that Q ∈ Zaff
(|E(Kn)|). We now aim to show that ξ(gi) = Q/πi

for any i ∈ [2]k. We obtain

ξ(gi)
(2.5)
= Π

n·1q
gi ∗ C = Π

n·1q
gααi

∗ C L .2.3
= Πn·12

i

2∗ Π
n·1q
gαα
∗ C L .2.3

= Πn·12

i

2∗ (Πn·12
α

2∗ Π
n·1q
gα) ∗ C

= Πn·12

i ∗ (Πn·12
α ∗ (Π

n·1q
gα ∗ C))

D .2.3
= Πn·12

i ∗ (Πn·12
α ∗M) = Πn·12

i

2∗ Πn·12
α ∗M.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Hence, for any a ∈ [n]k,

Ea ∗ ξ(gi) = Ea ∗Πn·12

i ∗Πn·12
α ∗M L .2.2

=
∑

b∈[n]2

bi=a

Eb ∗Πn·12
α ∗M (2.6)

=
∑

b∈E(Kn)
bi=a

Eb ∗Πn·12
α ∗M

=
∑

b∈E(Kn)
bi=a

Eb ∗Q
(2.2)
= Ea ∗Q/πi

.

It follows that ξ(gi) = Q/πi
for any i ∈ [2]k, as wanted, so ξ(g

k○
) ∈ E(FZaff

(Kn
k○)), which means that ξ is indeed

a homomorphism.
To be able to apply Theorem 2.2 and conclude that AIPk(G,Kn) = Yes, we are only left to observe that,

for any g ∈ V(G)k and any i ∈ [k]k,

ξ(gi)
D .2.5

= Π
n·1q
gi ∗ C L .2.3

= Πn·1k

i

k∗ Π
n·1q
g ∗ C = Πn·1k

i ∗ (Π
n·1q
g ∗ C)

(2.5)
= Πn·1k

i ∗ ξ(g),

as desired.

We remark that Proposition 2.2 does not hold for n = 2, cf. the discussion in [28].

Proof. [Proof of Theorem 2.1] Consider three integers c, d, k such that 3 ≤ c ≤ d and 2 ≤ k. Taking Kd+1 as G
in Proposition 2.2, we find that AIPk(Kd+1,Kc) = Yes; however, clearly, Kd+1 6→ Kd. Hence, the k-th level of
AIP does not solve PCSP(Kc,Kd).

References

[1] S. Arora, B. Bollobás, L. Lovász, and I. Tourlakis. Proving Integrality Gaps without Knowing the Linear Program.
Theory Comput., 2(2):19–51, 2006.

[2] K. Asimi and L. Barto. Finitely tractable promise constraint satisfaction problems. In Proc. 46th International
Symposium on Mathematical Foundations of Computer Science (MFCS’21), volume 202 of LIPIcs, pages 11:1–11:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[3] A. Atserias and V. Dalmau. Promise Constraint Satisfaction and Width. In Proc. 2022 ACM-SIAM Symposium on
Discrete Algorithms (SODA’22), pages 1129–1153, 2022, arXiv:2107.05886.

[4] P. Austrin, V. Guruswami, and J. H̊astad. (2+ε)-Sat is NP-hard. SIAM J. Comput., 46(5):1554–1573, 2017,
eccc:2013/159.

[5] L. Barto, D. Battistelli, and K. M. Berg. Symmetric Promise Constraint Satisfaction Problems: Beyond the Boolean
Case. In Proc. 38th International Symposium on Theoretical Aspects of Computer Science (STACS’21), volume 187
of LIPIcs, pages 10:1–10:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, arXiv:2010.04623.

[6] L. Barto, J. Buĺın, A. A. Krokhin, and J. Opršal. Algebraic approach to promise constraint satisfaction. J. ACM,
68(4):28:1–28:66, 2021, arXiv:1811.00970.

[7] L. Barto and M. Kozik. Combinatorial Gap Theorem and Reductions between Promise CSPs. In Proc. 2022 ACM-
SIAM Symposium on Discrete Algorithms (SODA’22), pages 1204–1220, 2022, arXiv:2107.09423.

[8] A. Barvinok. Matrices with prescribed row and column sums. Linear Algebra Appl., 436(4):820–844, 2012.
[9] C. Berkholz and M. Grohe. Linear Diophantine Equations, Group CSPs, and Graph Isomorphism. In Proc. 28th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pages 327–339. SIAM, 2017, arXiv:1607.04287.
[10] A. Bhangale and S. Khot. Optimal Inapproximability of Satisfiable k-LIN over Non-Abelian Groups. In Proc. 53rd

Annual ACM Symposium on Theory of Computing (STOC’21), pages 1615–1628. ACM, 2021, arXiv:2009.02815.
[11] A. Bhangale, S. Khot, and D. Minzer. On Inapproximability of Satisfiable k-CSPs: I. In Proc. 54th Annual ACM

Symposium on Theory of Computing (STOC’22), pages 976–988. ACM, 2022.
[12] J. Brakensiek and V. Guruswami. New hardness results for graph and hypergraph colorings. In Proc. 31st Conference

on Computational Complexity (CCC’16), volume 50 of LIPIcs, pages 14:1–14:27. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

[13] J. Brakensiek and V. Guruswami. An algorithmic blend of LPs and ring equations for promise CSPs. In Proc. 30th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19), pages 436–455, 2019, arXiv:1807.05194.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

[14] J. Brakensiek and V. Guruswami. Promise Constraint Satisfaction: Algebraic Structure and a Symmetric Boolean
Dichotomy. SIAM J. Comput., 50(6):1663–1700, 2021, arXiv:1704.01937.

[15] J. Brakensiek, V. Guruswami, and S. Sandeep. Conditional Dichotomy of Boolean Ordered Promise CSPs. In Proc.
48th International Colloquium on Automata, Languages, and Programming (ICALP’21), volume 198 of LIPIcs, pages
37:1–37:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, arXiv:2102.11854.

[16] J. Brakensiek, V. Guruswami, M. Wrochna, and S. Živný. The power of the combined basic LP and affine relaxation
for promise CSPs. SIAM J. Comput., 49:1232–1248, 2020, arXiv:1907.04383.

[17] A. Brandts, M. Wrochna, and S. Živný. The complexity of promise SAT on non-Boolean domains. ACM Trans.
Comput. Theory, 13(4):26:1–26:20, 2021, arXiv:1911.09065.

[18] G. Braun, S. Pokutta, and D. Zink. Inapproximability of Combinatorial Problems via Small LPs and SDPs. In Proc.
47th Annual ACM on Symposium on Theory of Computing (STOC’15), pages 107–116. ACM, 2015.

[19] M. Braverman, S. Khot, N. Lifshitz, and D. Minzer. An Invariance Principle for the Multi-slice, with Applications. In
Proc. 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS’21), pages 228–236. IEEE, 2021.

[20] M. Braverman, S. Khot, and D. Minzer. On rich 2-to-1 games. In Proc. 12th Innovations in Theoretical Computer
Science Conference (ITCS’21), volume 185 of LIPIcs, pages 27:1–27:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[21] R. A. Brualdi and G. Dahl. Alternating sign matrices and hypermatrices, and a generalization of Latin squares. Adv.
in Appl. Math., 95:116–151, 2018.

[22] R. A. Brualdi and G. Dahl. Sign-restricted matrices of 0’s, 1’s, and −1’s. Linear Algebra and its Applications,
615:77–103, 2021.

[23] R. A. Brualdi and H. J. Ryser. Combinatorial matrix theory, volume 39. Springer, 1991.
[24] A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th Annual IEEE Symposium on Foundations

of Computer Science (FOCS’17), pages 319–330, 2017, arXiv:1703.03021.
[25] S. Butti and V. Dalmau. Fractional Homomorphism, Weisfeiler-Leman Invariance, and the Sherali-Adams Hierarchy

for the Constraint Satisfaction Problem. In Proc. 46th International Symposium on Mathematical Foundations of
Computer Science (MFCS’21), volume 202 of LIPIcs, pages 27:1–27:19. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021, arXiv:2107.02956.

[26] S. O. Chan. Approximation Resistance from Pairwise-Independent Subgroups. J. ACM, 63(3):27:1–27:32, 2016.
[27] S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer. Approximate Constraint Satisfaction Requires Large LP

Relaxations. J. ACM, 63(4):34:1–34:22, 2016.
[28] L. Ciardo and S. Živný. Approximate graph colouring and crystals. Technical report, 2022, arXiv:2210.08293.
[29] L. Ciardo and S. Živný. CLAP: A New Algorithm for Promise CSPs. SIAM Journal on Computing, 2022,

arXiv:2107.05018.
[30] L. Ciardo and S. Živný. Hierarchies of minion tests for PCSPs through tensors. In Proc. 2023 ACM-SIAM Symposium

on Discrete Algorithms (SODA’23), 2023, arXiv:2207.02277. To appear.
[31] C. M. da Fonseca and R. Mamede. On (0, 1)-matrices with prescribed row and column sum vectors. Discrete

mathematics, 309(8):2519–2527, 2009.
[32] I. Dinur, S. Khot, G. Kindler, D. Minzer, and M. Safra. On non-optimally expanding sets in Grassmann graphs. In

Proc. 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC’18), pages 940–951. ACM, 2018.
[33] I. Dinur, S. Khot, G. Kindler, D. Minzer, and M. Safra. Towards a proof of the 2-to-1 games conjecture? In Proc.

50th Annual ACM SIGACT Symposium on Theory of Computing (STOC’18), pages 376–389. ACM, 2018.
[34] I. Dinur, E. Mossel, and O. Regev. Conditional Hardness for Approximate Coloring. SIAM J. Comput., 39(3):843–

873, 2009.
[35] T. Feder and M. Y. Vardi. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A

Study through Datalog and Group Theory. SIAM J. Comput., 28(1):57–104, 1998.
[36] M. R. Garey and D. S. Johnson. The complexity of near-optimal graph coloring. J. ACM, 23(1):43–49, 1976.
[37] M. Ghosh and M. Tulsiani. From Weak to Strong Linear Programming Gaps for All Constraint Satisfaction Problems.

Theory Comput., 14(1):1–33, 2018.
[38] V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. SIAM Journal on Discrete

Mathematics, 18(1):30–40, 2004.
[39] V. Guruswami and S. Sandeep. d-To-1 Hardness of Coloring 3-Colorable Graphs with O(1) Colors. In Proc. 47th

International Colloquium on Automata, Languages, and Programming (ICALP’20), volume 168 of LIPIcs, pages
62:1–62:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

[40] S. Huang. Improved hardness of approximating chromatic number. In Proc. 16th International Workshop
on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques and the 17th
International Workshop on Randomization and Computation (APPROX-RANDOM’13), pages 233–243. Springer,
2013, arXiv:1301.5216.

[41] R. Kannan and A. Bachem. Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Integer Matrix. SIAM Journal on Computing, 8(4):499–507, Nov. 1979.
[42] R. M. Karp. Reducibility Among Combinatorial Problems. In Proc. Complexity of Computer Computations, pages

85–103, 1972.
[43] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic number. Comb., 20(3):393–415,

2000.
[44] S. Khot. Improved Inaproximability Results for MaxClique, Chromatic Number and Approximate Graph Coloring.

In Proc. 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS’01), pages 600–609. IEEE
Computer Society, 2001.

[45] S. Khot. On the power of unique 2-prover 1-round games. In Proc. 34th Annual ACM Symposium on Theory of
Computing (STOC’02), pages 767–775. ACM, 2002.

[46] S. Khot, D. Minzer, and M. Safra. On independent sets, 2-to-2 games, and Grassmann graphs. In Proc. 49th Annual
ACM SIGACT Symposium on Theory of Computing (STOC’17), pages 576–589. ACM, 2017.

[47] S. Khot, D. Minzer, and M. Safra. Pseudorandom sets in Grassmann graph have near-perfect expansion. In Proc.
59th IEEE Annual Symposium on Foundations of Computer Science (FOCS’18), pages 592–601. IEEE Computer
Society, 2018.

[48] P. K. Kothari, R. Meka, and P. Raghavendra. Approximating rectangles by juntas and weakly-exponential lower
bounds for LP relaxations of CSPs. In Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC’17), pages 590–603. ACM, 2017.

[49] J. B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear 0-1 programs. SIAM J. Optim.,
12(3):756–769, 2002.

[50] J. R. Lee, P. Raghavendra, and D. Steurer. Lower Bounds on the Size of Semidefinite Programming Relaxations. In
Proc. 47th Annual ACM on Symposium on Theory of Computing (STOC’15), pages 567–576. ACM, 2015.

[51] T. Nakajima and S. Živný. Linearly ordered colourings of hypergraphs. In Proc. 49th International Colloquium on
Automata, Languages, and Programming (ICALP’22), volume 229 of LIPIcs, pages 128:1–128:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022, arXiv:2204.05628.

[52] P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization.
California Institute of Technology, 2000.

[53] H. J. Ryser. Combinatorial properties of matrices of zeros and ones. Canadian Journal of Mathematics, 9:371–377,
1957.

[54] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and convex hull representations
for zero-one programming problems. SIAM J. Discret. Math., 3(3):411–430, 1990.

[55] N. Z. Shor. Class of global minimum bounds of polynomial functions. Cybernetics, 23(6):731–734, 1987.
[56] M. Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proc. 41st Annual ACM Symposium on Theory

of Computing (STOC’09), pages 303–312. ACM, 2009.
[57] M. Wrochna and S. Živný. Improved hardness for H-colourings of G-colourable graphs. In Proc. 2020 ACM-SIAM

Symposium on Discrete Algorithms (SODA’20), pages 1426–1435, 2020, arxiv:1907.00872.
[58] D. Zeilberger. Proof of the alternating sign matrix conjecture. Electron. J. Combin., 3(2), 1996.
[59] D. Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020, arXiv:1704.01914.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Overview
	Affine integer programming and tensors
	The quest for crystals
	Approximate graph colouring

