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1. Introduction. The approximate graph colouring problem (AGC) consists in
finding a d-colouring of a given c-colourable graph, where 3 ≤ c ≤ d. There is a
huge gap in our understanding of this problem. For an n-vertex graph and c = 3, the
best known polynomial-time algorithm of Kawarabayashi, Thorup, and Yoneda [63]
finds a d-colouring with d = Õ(n0.19747), building on a long line of works started by
Wigderson [86]. It was conjectured by Garey and Johnson [52] that the problem is
NP-hard for any fixed constants 3 ≤ c ≤ d even in the decision variant: Given a
graph, output Yes if it is c-colourable and output No if it is not d-colourable.

For c = d, the problem becomes the classic c-colouring problem, which appeared
on Karp’s original list of 21 NP-complete problems [62]. The case c = 3, d = 4 was only
proved to be NP-hard in 2000 by Khanna, Linial, and Safra [64] (and a simpler proof
was given by Guruswami and Khanna in [56]); more generally, [64] showed hardness of
the case d = c+2⌊c/3⌋−1. This was improved to d = 2c−2 in 2016 by Brakensiek and
Guruswami [16], and recently to d = 2c− 1 by Barto, Buĺın, Krokhin, and Opršal [8].
In particular, this last result implies hardness of the case c = 3, d = 5; the complexity
of the case c = 3, d = 6 is still open. Building on the work of Khot [65] and Huang [60],
Krokhin, Opršal, Wrochna, and Živný established NP-hardness for d =

(
c

⌊c/2⌋
)
− 1 for

c ≥ 4 in [70]. NP-hardness of AGC was established for all constants 3 ≤ c ≤ d by
Dinur, Mossel, and Regev in [48] under a non-standard variant of the Unique Games
Conjecture, by Guruswami and Sandeep in [57] under the d-to-1 conjecture [66] for
any fixed d, and (an even stronger statement of distinguishing 3-colourability from
not having an independent set of significant size) by Braverman, Khot, Lifshitz, and
Minzer in [23] under the rich 2-to-1 conjecture of Braverman, Khot, and Minzer [24].
Conditional to suitable strengthened versions of the UGC, Dinur and Shinkar proved
NP-hardness in a 4 vs. superconstant regime in [49].

AGC is a prominent example of so called Promise Constraint Satisfaction Prob-
lems (PCSPs), which we define next. A directed graph (digraph) A consists of a set
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V (A) of elements called vertices and a set E(A) ⊆ V (A)2 of pairs of vertices called
edges. Given two digraphs A and B, a map f : V (A) → V (B) is a homomorphism
from A to B if (f(u), f(v)) ∈ E(B) for any (u, v) ∈ E(A). We shall indicate the
existence of a homomorphism from A to B by writing A → B. Let A and B be two
fixed finite digraphs with A → B; we call the pair (A,B) a template. The PCSP
parameterised by the template (A,B), denoted by PCSP(A,B), is the following de-
cision problem: Given a finite digraph X as input, answer Yes if X → A and No
if X ̸→ B.1 A p-colouring of a digraph X is precisely a homomorphism from X to
the clique Kp—i.e., the digraph on vertex set {1, . . . , p} such that any pair of distinct
vertices is a (directed) edge. Hence, AGC is PCSP(Kc,Kd). It is customary to study
(P)CSPs on more general objects than digraphs, known as relational structures, which
consist of a collection of relations of arbitrary arities on a vertex set, cf. [8].

By letting A = B in the definition of a PCSP, one obtains the standard (non-
promise) Constraint Satisfaction Problem (CSP) [50]. PCSPs were introduced by
Austrin, Guruswami, and H̊astad [5] and Brakensiek and Guruswami [18] as a gen-
eral framework for studying approximability of perfectly satisfiable CSPs and have
emerged as a new exciting direction in constraint satisfaction that requires different
techniques than CSPs. Recent works on PCSPs include those using analytical meth-
ods [13, 14, 19, 24] and those building on algebraic methods [3, 7, 10, 17, 20, 21, 31, 39,
57, 75] developed in [8]. However, most basic questions are still wide open, including
complexity classifications and applicability of different types of algorithms.

Two main algorithmic techniques have been utilised for solving CSPs and their
variants: enforcing (some type of) local consistency, and solving (generalisations of)
linear equations. The first type of algorithms divides a given CSP into multiple small
CSPs, each of which requires meeting local constraints on a portion of the instance
of bounded size, and then enforces consistency between all solutions (called partial
homomorphisms); i.e., it requires that solutions should agree on the intersection of
their domains. Instead, the second type of algorithms seeks a global solution that
satisfies a linearised version of the constraints. More precisely, it is always possible
to formulate a CSP (and, in fact, any homomorphism problem) as a system of linear
equations over {0, 1}; then, the algorithms of the second type work by suitably mod-
ifying the system (in particular, extending the domain of its variables) in a way that
it can be efficiently solved through variants of Gaussian elimination.

Remarkably, all algorithms hitherto proposed in the literature on (variants of)
CSPs can be broadly classified as instances of one of the two aforementioned tech-
niques, or a combination of both. A primary example of the first type is the bounded
width algorithm, which outputs Yes if and only if a consistent collection of partial
homomorphisms exists [50]. More powerful versions of the local consistency technique
require that the partial homomorphisms should be sampled according to a probabil-
ity distribution (which results in the Sherali–Adams LP hierarchy [83]), and that
the probabilities should be treated as vectors satisfying certain orthogonality require-
ments (which gives the sum-of-squares or Lasserre SDP hierarchy [71, 76, 84]). As
for the second type, the linear-system formulation of a CSP can be efficiently solved
in Z by computing the Hermite or the Smith canonical forms of the corresponding
coefficient matrix [81]; this results in the affine integer programming (AIP) relaxation
(also known as the system of linear Diophantine equations), studied in the context of
PCSPs in [8, 18].

1The requirement A → B implies that the two cases cannot happen simultaneously, as homo-
morphisms compose; the promise is that one of the two cases always happens.
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Neither of the two techniques, alone, is powerful enough to solve all tractable
CSPs, even in the non-promise variant and on Boolean domains. In fact, the elu-
sive interaction between consistency-checking methods and linear equations for non-
Boolean CSPs was the major obstacle to the proof of the Feder–Vardi dichotomy con-
jecture [50], finally settled independently by Bulatov [30] and by Zhuk [89,90]. Hence,
efforts have been directed to blending the two techniques, in order to design a stronger
local-global algorithm [15, 17, 20, 34, 41]. In [20], Brakensiek, Guruswami, Wrochna,
and Živný proposed an algorithm that combines the first level of the Sherali–Adams
LP hierarchy (known as the basic linear programming (BLP) relaxation) with the AIP
relaxation. Remarkably, that algorithm, which we call BA in this paper, solves all
tractable cases of Schaefer’s dichotomy of Boolean CSPs [79], as proved in [20]. While
the BA algorithm admits a characterisation in terms of polymorphic identities and,
thus, the class of (P)CSPs solved by it is well understood [20], the power of the hier-
archy2 built on top of BA is still unknown, even for non-promise CSPs. Very recently,
Lichter and Pago have constructed the first example of a tractable, finite-domain CSP
that is not solved by any constant level of such hierarchy [74].

Since polynomial-time algorithms are not expected to solve NP-hard problems,
a well-established line of work has sought lower bounds on the efficacy of these algo-
rithms; see [2,22,33,53,69] for lower bounds on LPs arising from lift-and-project hier-
archies such as that of Sherali–Adams, [32,73,85] for lower bounds on SDPs, and [12]
for lower bounds on linear Diophantine equations. If, as conjectured by Garey and
Johnson [52], AGC is NP-hard and P̸=NP, neither of the two algorithmic techniques
discussed above (nor their blend) should be able to solve it. In a striking sequence of
works by Dinur, Khot, Kindler, Minzer, and Safra [46,47,67,68], the 2-to-2 conjecture
of Khot [66] (with imperfect completeness) was resolved. As detailed in [68], this im-
plies (together with [57]) that AGC is not solved by the sum-of-squares hierarchy (and,
as a consequence, by the weaker Sherali–Adams LP and bounded width hierarchies).
That lower bound is obtained by transferring known sum-of-squares integrality gaps
for linear equations mod 2 [54,80] to AGC. Since linear equations are solved by AIP,
the reduction from [46, 47, 67, 68] cannot be used to produce lower bounds against
AIP-based algorithms.

Contributions. We prove that AGC is not solved by the BA hierarchy. This
substantially extends the state of the art on non-solvability of AGC. In particular,
our result directly implies non-solvability of AGC by the AIP hierarchy and gives a
new proof of non-solvability by the Sherali–Adams LP hierarchy, as both of these
hierarchies are weaker than BA.

Ruling out the first level of the BA hierarchy is trivial using the characterisation
from [20], while the task is significantly more challenging for higher levels. The core
of our proof is geometric. Using the framework recently developed by the authors
in [40] to study algorithmic hierarchies, we reduce the problem of finding a “fooling
instance” for the BA hierarchy applied to AGC to the geometric problem of building
a hollow-shadowed crystal ; i.e., a high-dimensional integral tensor whose projections
onto hyperplanes of low dimension are equal up to reflection (i.e., up to permutations
of the tensor modes; we call such a tensor a crystal) and satisfy a sparsity condition
dictating that certain entries should be set to zero (in this case, we say that the crystal
has a hollow shadow). The main technical result of this work is a constructive proof
of the existence of tensors having these features.

2A hierarchy similar to the BA hierarchy from this paper was considered by Berkholz and
Grohe [12] in the context of the graph isomorphism problem.
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Our construction consists of two phases. The first phase concerns the existence of
crystals (regardless of the hollowness requirement). We perform this task by providing
a complete combinatorial characterisation for realisable systems of shadows; i.e., for
those collections of low-dimensional tensors that can be realised as the projections
of a single high-dimensional tensor. As detailed in the conference version [37], this
construction is sufficient to prove non-solvability of AGC by the AIP hierarchy. To
prove the analogous result for the stronger BA hierarchy, we need to deal with the
problem of enforcing hollowness of the shadow of a given crystal. This is accomplished
in the second phase of our construction (extending the conference version [38]), which
consists in applying local modifications to a tensor through certain crystals that we
call quartzes.

Two-dimensional variants of this problem have appeared in the literature in com-
binatorial matrix theory. The problem of recovering a matrix (i.e., a two-dimensional
tensor) from its row- and column-sum vectors (i.e., one-dimensional projections) has
been studied for different classes of matrices, such as nonnegative integral matri-
ces [29], 0–1 matrices [43, 78], alternating-sign matrices [87], and sign-restricted ma-
trices [28], see also the survey [11]. Moreover, an active research trend in combinatorial
matrix theory investigates the conditions for the existence of matrices over a certain
domain having prescribed row and column sums and a fixed pattern, i.e., a fixed set
of entries allowed (or required) to be nonzero. Examples include 0–1 matrices with
zero trace (i.e., adjacency matrices of digraphs) [51], with at most one fixed zero in
each column [1], or with a fixed zero block [25], real matrices with a fixed pattern [61],
and integral matrices with fixed lower and upper bounds on each entry [36]; see also
related work in [26,35,44].

To the best of our knowledge, the problem of reconstructing a tensor from low-
dimensional projections has hitherto only been studied for matrices (but cf. [27],
where a related problem is investigated in three dimensions in the restricted setting
of alternating-sign three-dimensional tensors). In order to rule out solvability of AGC
for all numbers of colours, we need to build crystals of arbitrarily high dimension and
hence approach the reconstruction problem for arbitrarily high-dimensional tensors.
In addition to its application to AGC, we believe that our result might be of inde-
pendent interest to the linear algebra and tensor theory communities. Furthermore,
within complexity theory, we expect that our method will be useful more broadly in
bringing new insights into the power of algorithmic techniques that blend the consis-
tency and the linear equation approaches—which are gaining much prominence in the
wider context of CSPs and PCSPs [15,17,20,34,41,42,45]. The geometric method we
develop in the current work appears to be particularly well-suited for capturing the
essence of such algorithms.

2. Overview of results and techniques. Let X and A be two digraphs. We
can cast the question “Is there a homomorphism from X to A?” as the question of
checking whether a system of linear equations (over, say, Q) has a solution in the
set {0, 1}. Indeed, introduce variables λx,a for all vertices x ∈ V (X), a ∈ V (A), and
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variables µy,b for all edges y ∈ E(X),b ∈ E(A), and consider the equations

(IP1)
∑

a∈V (A)

λx,a = 1 ∀x ∈ V (X)

(IP2)
∑

b∈E(A)
bi=a

µy,b = λyi,a ∀y ∈ E(X), i ∈ {1, 2}, a ∈ V (A).

(IP)

One readily checks that X → A if and only if (IP) has a solution in {0, 1}. Unless
P=NP, this system is not solvable in polynomial time over {0, 1}, in general. Relaxing
it by allowing that the variables can be assigned rational nonnegative values results
in the so-called basic linear programming (BLP) relaxation. Similarly, allowing that
the variables can be assigned integer values yields the affine integer programming
(AIP) relaxation. The BA relaxation described in [20] combines BLP and AIP. More
concretely, it outputs Yes if and only if there exist a solution to BLP and a solution
to AIP such that the following refinement condition holds: Whenever a variable is
zero in the BLP solution, it is zero in the AIP solution. It follows that BA is at least
as strong as both BLP and AIP; in fact, as shown in [20], it is strictly stronger, in the
sense that there exist templates that are solved by BA but not by BLP or AIP. Note
that the three relaxations mentioned above result in algorithms that are complete but
not necessarily sound, in the sense that they always output Yes if X → A, but may
fail to output No if X ̸→ A.

The system (IP) can be refined by replacing the variables λx,a with variables
λS,f , where S is a set of vertices of X of size at most k and f is a function from S
to V (A). Solving such refined system over the set of nonnegative rational numbers
(integers) would then mean finding rational nonnegative (integer) distributions over
the set of partial assignments from portions of the instance of size at most k to A.
The former choice results in the Sherali–Adams LP hierarchy [83], which we call the
BLP hierarchy; the latter results in the affine integer programming hierarchy [37],
which we call the AIP hierarchy. Similarly, the BA hierarchy we consider in this work
consists in applying the BA relaxation of [20] to progressively larger portions of the
instance, in the same spirit as the BLP and AIP hierarchies. Equivalently, the BA
hierarchy can be described as follows: Its k-th level, applied to two digraphs X and A,
outputs Yes if and only if (i) the k-th level of both BLP and AIP outputs Yes when
applied to X and A, and (ii) the two solutions they provide satisfy the refinement
condition [40]. In this case, we write BAk(X,A) = Yes. Given two digraphs A,B
such that A → B, we say that the k-th level of BA solves PCSP(A,B) if, for any
instance X, BAk(X,A) = Yes implies X → B. (The definition for the BLP and AIP
hierarchies is analogous.) Note that, if PCSP(A,B) is solved by some level of the
BLP or AIP hierarchies, then it is also solved by the same level of the BA hierarchy.

These three hierarchies are complete but not necessarily sound, and they become
progressively stronger as the level k increases. Crucially, the BA hierarchy (and,
in fact, already the weaker BLP hierarchy) ensures local consistency, in the sense
that each assignment receiving nonzero weight corresponds to a partial homomor-
phism. Equivalently, the BA hierarchy is at least as strong as the bounded-width
algorithm3 [6, 9, 50] (and, in fact, strictly stronger, see [4]). In particular, the BA
hierarchy is sound in the limit, in the sense that its k-th level correctly classifies

3More precisely, the k-th level of the BA (or BLP) hierarchy is at least as strong as the k-th level
of the bounded-width algorithm.
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all instances of size k or less—which is clear from the fact that a partial homomor-
phism over the whole domain is a homomorphism. The same is not true for the AIP
hierarchy.

The main result of our work is that no constant level of the BA hierarchy solves
the approximate graph colouring problem.

Theorem 2.1. For any fixed 3 ≤ c ≤ d, there is no k ∈ N such that BAk

solves PCSP(Kc,Kd).

A way to prove that approximate graph colouring is not solved by the BA hierar-
chy is to present fooling instances—digraphs with a large chromatic number but yet
whose structure meets all constraints of the hierarchy. More precisely, it suffices to
build, for every c, d, and k, a digraph G whose chromatic number is higher than d
and such that BAk(G,Kc) = Yes. Thus, the high-level description of our strategy
is:

“Find a fooling instance for the BA hierarchy applied to AGC.”
Instead of directly looking for instances that fool the hierarchy, our approach

shall be to consider the following questions: What does a certificate of acceptance
for the BA hierarchy look like? Can we tell, from the shape of such a certificate,
what the limits of the hierarchy applied to AGC are? The first step of our analysis
is to translate the problem of whether the BA hierarchy accepts an input into a
problem having a different, multilinear nature. Building on the framework developed
in [40], we find that BA acceptance is implied by the existence of a family of tensors
having certain special characteristics. First of all, they need to satisfy (i) a system of
symmetries. At a high level, this requirement results from the marginality constraints
that are enforced by all “lift-and-project” hierarchies such as the BLP, AIP, and
Lasserre SDP hierarchies [72], and is common to all algorithmic hierarchies studied
in [40] through the tensor approach. There is, however, a feature that is unique
to the BA hierarchy. Not only does BA require that both a linear program and a
system of Diophantine equations have a solution; it also requires that any variable
that is assigned zero weight by the former should be assigned zero weight by the
latter. The translation of this refinement condition into the multilinear framework
is (ii) a hollowness requirement: Each tensor certifying BA acceptance needs to be
hollow; i.e., it needs to contain zeros in certain prescribed entries. In sum, the original
problem has now become the following:

“Produce a family of hollow tensors satisfying a system of symmetries.”
There is a natural way to produce a family {Ti} of tensors satisfying such sym-

metries: One starts with a high-dimensional tensor C whose low-dimensional oriented
projections (i.e., projections onto oriented hyperplanes) are equal. Then, the family
of all (not necessarily oriented) low-dimensional projections of C satisfies the required
symmetries. We call such a tensor C a crystal, while the shadow of C is any of its
oriented projections. We then reformulate the problem to its final form; the solution
of this problem is the main technical result of the paper.

“Find a crystal whose shadow is hollow.”
Organisation of the paper. The rest of the article is conceptually organised in

three parts, each corresponding to a different phase of the proof of Theorem 2.1: (1) a
pre-processing phase, where BAk acceptance is turned into a multilinear problem; (2)
a multilinear phase, where the multilinear problem is solved (i.e., hollow-shadowed
crystals are built); (3) a post-processing phase, where the solution of the multilinear
problem is translated back to the algorithmic framework, and it is used to recover a
fooling instance. Full details of the three phases are discussed in Sections 4, 5, and 6,
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respectively, after providing some preliminaries in Section 3. Sections 2.1, 2.2, and 2.3
below give a more intuitive overview of the contents of each of them.

2.1. The BA hierarchy through tensors. All relaxation algorithms hitherto
studied for (promise) CSPs, including the BLP, AIP, and BA algorithms, have an
algebraic counterpart described through the notion of linear minion—an algebraic
structure consisting of a set of matrices that is closed under the application of ele-
mentary row operations (summing up or swapping two rows, inserting an extra zero
row). Given a linear minion M and a digraph A with n vertices and m edges, there
exists a natural way of simulating the structure of A in M , by defining a new (po-
tentially infinite) digraph FM (A) (the free structure of M generated by A) whose
vertices are the matrices in M having n rows and whose edges are pairs of matrices
(M,N) such that both M and N can be obtained from some matrix Q having m
rows through certain elementary row operations induced by the edges of A. Then,
the relaxation induced by M works as follows: Given an instance X, rather than
directly checking whether X → A, one checks whether X → FM (A). The advantage
is that, for certain linear minions, the latter can be tested in polynomial time, even
when the former cannot. As an example, stochastic rational vectors form a linear
minion (since they are preserved under elementary row operations) named Qconv,
whose corresponding relaxation is BLP. Similarly, integer vectors whose entries sum
up to 1 form the linear minion Zaff corresponding to AIP. By combining the two
linear minions Qconv and Zaff in a suitable way, one obtains the linear minion MBA

corresponding to BA.
The framework developed in [40] allows to systematically strengthen the relax-

ation corresponding to any linear minion, by making use of the notion of tensor power
of a digraph: For k ∈ N, the k-th tensor power of A is the hypergraph A

k○
whose

vertices are k-tuples of vertices of A, and whose hyperedges are k-dimensional tensors
obtained by “scattering” the edges of A in k dimensions. The k-th level of the hierar-
chy of the relaxation corresponding to some linear minion M essentially amounts to
applying the relaxation to the tensorised digraphs rather than the original digraphs;
in other words, checking if there exists a homomorphism X

k○ → FM (A
k○
).4 In

addition, the homomorphism needs to preserve the tensor structure of the two hyper-
graphs (intuitively, it must “behave well with respect to projections”)—in which case,
we say that it is a k-tensorial homomorphism. The algorithm obtained in this way is
progressively stronger as k increases, and it still runs in polynomial time (for a fixed
k) since the tensorised digraph can be constructed in polynomial time and its size is
polynomial in the size of the original digraph. In particular, if the matrices in M
satisfy a certain positivity requirement—in which case we say that the linear minion
is conic—the hierarchy is sound in the limit, as its k-th level correctly classifies all
instances X on at most k vertices. In fact, the hierarchies based on conic minions
enforce local consistency. Crucially, the linear minions Qconv and MBA are conic,
while the linear minion Zaff is not [40].

It was shown in [40] that the BA hierarchy—as well as the BLP, AIP, and other
algorithmic hierarchies—fits within this framework: The fact that BAk(X,A) = Yes

is equivalent to the existence of a k-tensorial homomorphism fromX
k○
to FMBA(A

k○
).

Moreover, it follows from the structure of MBA that any such homomorphism can
be decoupled into a homomorphism ξ to FQconv

(A
k○
) and a homomorphism ζ to

FZaff
(A

k○
) (cf. Theorem 4.11). If A is a clique—as it happens when the BA hierarchy

4We note that FM (A
k○
) is a hypergraph rather than a digraph; the definition is analogous.



8 L. CIARDO, S. ŽIVNÝ

is applied to AGC—one can design a simpler sufficient criterion, based on the fact
that one may always assume ξ to be the homomorphism mapping a tuple of vertices of
X to a tensor in FQconv

(A
k○
) that is uniform on its support. After dealing with some

combinatorial technicalities, this fact produces the following criterion of acceptance.
(In the statement below, Ea ∗ ζ(x) denotes the a-th entry of the tensor ζ(x), while
a ̸≺ x means that there exist two indices i, j for which ai = aj but xi ̸= xj .)

Theorem 2.2. Let 2 ≤ k ≤ n ∈ N, let X be a loopless digraph, and let ζ : X
k○ →

FZaff
(K

k○
n ) be a k-tensorial homomorphism such that a ̸≺ x implies Ea ∗ ζ(x) = 0 for

any x ∈ V (X)k and a ∈ {1, . . . , n}k. Then BAk(X,Kn) = Yes.

2.2. Crystals. The criterion of acceptance for BAk stated in Theorem 2.2 is
multilinear. Indeed, FZaff

(K
k○
n ) is a space of integer affine tensors (where we call

a tensor affine if its entries sum up to 1), and the existence of a k-tensorial homo-

morphism from X
k○

to FZaff
(K

k○
n ) corresponds to the existence of a family of tensors

satisfying a specific system of symmetries, which are formally described in Remark 4.9,
see also the discussion at the beginning of Section 5. Letting q be the number of ver-
tices in X, such a family can be realised as the family of k-dimensional projections
of a single affine q-dimensional crystal tensor, which we next informally define. We
let T n·1q (Z) denote the set of all integer cubical tensors of dimension q and width
n—i.e., n×n×· · ·×n arrays of integers, where n appears q times. The notion of pro-
jecting should intuitively be thought of as “summing up all entries of a tensor along
a certain set of directions”; the formal definition shall make use of the operation of
tensor contraction, which we define in Section 3.4. By oriented projection we mean
that the directions are considered to be ordered. This is because, for example, the
2-dimensional oriented projection of a 3-dimensional tensor onto the directions 1 and
2 is the transpose of the 2-dimensional oriented projection of the same tensor onto
the directions 2 and 1.

Definition 2.3 (Informal). Let q, n ∈ N and k ∈ {0, . . . , q}. A cubical tensor
C ∈ T n·1q (Z) is a k-crystal if all its k-dimensional oriented projections are equal. In
this case, the k-shadow of C is this common oriented projection.

Equivalently, a k-crystal is required to have equal k-dimensional projections up to
reflection—where a reflection is a higher-dimensional analogue of the transpose oper-
ation for matrices. Let ζC be the map—associated with an affine k-crystal C—that
takes a k-tuple x of vertices of X and maps it to the projection of C onto the hyper-
plane generated by x. By construction, ζC behaves well with respect to projections,
so it is automatically k-tensorial. In order to yield a certificate of acceptance for
BAk(X,Kn), according to Theorem 2.2, ζC also needs to be a homomorphism and
satisfy the extra condition a ̸≺ x ⇒ Ea ∗ ζC(x) = 0. It turns out that both these
requirements translate as a condition on the k-shadow S of C: The only entries of
S allowed to be nonzero are those whose coordinates are all distinct. We say that a
tensor having this property is hollow (the formal definition is given in Section 5). As
an example, if k = 2, the condition means that the n×n matrix S needs to have zero
diagonal; if k = 3, three diagonal planes of the n×n×n tensor S of the form (a, a, b),
(a, b, a), (b, a, a) should be set to zero, and so on.

To summarise the discussion above, an affine k-crystal of dimension q and width n
whose k-shadow is hollow yields a certificate that BAk(X,Kn) = Yes for any loopless
digraph X with q vertices. The problem is now to verify whether hollow-shadowed
crystals exist. It is not hard to check that such crystals cannot exist for all choices
of k, q, and n; this parallels the fact that the BA hierarchy is sound in the limit,
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so it cannot be the case that any X is accepted by any level of BA applied to any
clique Kn. This is in sharp contrast with the weaker AIP hierarchy, for which a
similar acceptance result holds, cf. [37]. It follows that, unlike for AIP, one cannot
simply take large cliques as fooling instances for BA. As we shall see in Section 2.3,
a more refined family of digraphs can be shown to provide fooling instances for the
BA hierarchy as long as one can produce hollow-shadowed crystals whose width n
is sub-exponential in the level k. The main technical contribution of this work is a
method for mining hollow-shadowed crystals whose width is quadratic in k, as stated
next.

Theorem 2.4. For any k, q ∈ N with k ≤ q there exists an affine k-crystal C ∈
T k2+k

2 ·1q (Z) with hollow k-shadow.

The key to establishing Theorem 2.4 is proving the following.

Theorem 2.5. For any k ∈ N there exists a hollow affine (k − 1)-crystal C ∈
T k2+k

2 ·1k(Z).

We now discuss the main ideas of the proof of Theorem 2.5 for the case k = 3. Our
goal is to find a hollow affine 2-crystal C ∈ T 6·13(Z). In other words, C must be a
three-dimensional cubical tensor of width 6, such that (i) C is hollow, i.e., the only
entries allowed to be nonzero are the ones whose three coordinates are all distinct;
(ii) C is affine, i.e., its entries sum up to 1; and (iii) C is a 2-crystal, i.e., projecting
it onto the xy-, yz-, and xz-planes results in the same 6 × 6 “shadow” matrix. By
induction, we can assume that Theorem 2.5 holds for k = 2. In fact, it is not hard to
find by inspection that the matrix

U =

 0 0 1
1 0 −1
0 0 0

 =

is a hollow affine 1-crystal in T 3·12(Z). (We indicate the numbers −1, 0, 1, and 2 by
the colours green, light grey, yellow, and orange, respectively.)

The next step is to build a (not necessarily hollow) 3-dimensional 2-crystal hav-
ing shadow U . In order to perform this task, we investigate the following question:
Given a collection S of low-dimensional tensors (which we call a system of shadows),
which property characterises the fact that S is realisable—i.e., that S is the family
of oriented projections of a single high-dimensional tensor T? Now, if r and c are
the row- and column-sum vectors of a matrix, the sums of the entries of r and c
must coincide. We say that S is a realistic system of shadows if its members meet an
analogous compatibility requirement, which is trivially satisfied whenever S consists
of the projections of a common tensor; i.e., if S is realisable, it must be realistic.
In Section 5.2 we prove that the two conditions are in fact equivalent: A system of
shadows is realistic if and only if it is realisable. Concretely, our proof shows how
to build a tensor T realising a given realistic system of shadows, and it is based on
a nested induction (first on the dimension of the shadows, second on the sum of the
sizes of the modes of T ). A key fact, essential to making the process work, is that the
problem is invariant under reflections of the tensors involved, cf. Lemma 5.14.

In particular, this results in a crystalisation procedure: By letting each member
of the system of shadows S be a single lower-dimensional crystal S, one constructs
a higher-dimensional crystal whose shadow is S (see Section 5.3). Applying this
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Figure 2.1: The crystal V . Figure 2.2: The crystal W .

procedure to U results in the crystal

V =

 −1 0 1 0 0 0 1 0 0
2 0 −1 0 0 0 −1 0 0
−1 1 0 0 0 0 1 −1 0

,
shown in Figure 2.1 together with its shadow (recall the colour/number correspon-
dence described above). Clearly, V is not hollow—for example, its (1, 1, 1)-th coor-
dinate is −1 ̸= 0. In fact, it is not hard to check that a hollow affine 2-crystal of
dimension 3 and width 3 cannot exist (see Example 5.5). We need to increase the
width to “make more space”; we do so by padding V with three layers of zeros along
each of the three dimensions. The tensor W we obtain in this way (Figure 2.2) is
clearly still a 2-crystal. We can view W as a block tensor with eight 3× 3× 3 blocks;
note that all non-zero entries of W are in one block.

The strategy is now to “spread” these entries in the other blocks, in a way that
they migrate to positions whose indices have no repetitions. To this end, we make use
of a particular class of “transparent” crystals that we call quartzes. Such crystals are
designed in a way that the shadow they project is identically zero, meaning that we
can freely add them (or their integer multiples) to a given crystal without changing
its shadow and maintaining it a crystal.

a

b

Figure 2.3: The quartz Qa,b. Figure 2.4: W − w(1,1,1) ·Q(1,1,1),b.
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Figure 2.5: The hollow crystal C.

A quartz can be built by choosing two cells a and b having disjoint coordinates,
considering the parallelepiped generated by a and b, assigning value 1 or −1 to its
vertices in a way that two adjacent vertices get values of opposite sign, and assigning
value 0 to all other cells. We refer to such a tensor as to Qa,b, see Figure 2.3; this
construction is easily generalised to arbitrary dimension. Quartzes yield a method
to relocate some nonzero entry of W , while leaving the rest of W almost untouched.
More precisely, if the a-th entry of W has value wa ̸= 0, the a-th entry of W−wa ·Qa,b

is zero, and this operation modifies the value of only 8 cells of W .
The idea is then to modify W with suitable quartzes, so as to transfer all nonzero

entries to positions where they do not violate the hollowness requirement. To this
end, we take as b a fixed cell that generates the smallest number of ties and that lies
in the block of W opposite to the one containing the nonzero entries—for example,
the cell b = (4, 5, 6), as in Figure 2.3. Even with such a choice, it can happen that
adding a multiple of a quartz introduces new nonzero entries in positions that violate
hollowness. For example, Figure 2.4 shows the tensor W − w(1,1,1) · Q(1,1,1),b. The
value of the cell (1, 1, 1) has become zero, as wanted, but three new forbidden cells
((1, 1, 6), (1, 5, 1), and (4, 1, 1)) now have nonzero values. However, the nonzero values
in these forbidden cells cancel out once this procedure is applied to all entries in the
nonzero block of W . In other words, the affine 2-crystal

C = W −
∑

a∈{1,2,3}3

wa ·Qa,b,

shown in Figure 2.5, is hollow.

2.3. Fooling the hierarchy. Let C be an affine k-crystal of dimension q and

width k2+k
2 whose k-shadow is hollow, as per Theorem 2.4. Let X be a loopless



12 L. CIARDO, S. ŽIVNÝ

digraph on vertex set V (X) = {1, . . . , q}. Consider the map ζC taking as input a
tuple x of k vertices of X (i.e., a tuple of k numbers in {1, . . . , q}) and returning the
k-dimensional projection of C onto the hyperplane corresponding to x. As discussed
earlier, ζC yields a k-tensorial homomorphism from X

k○
to FZaff

(K
k○
(k2+k)/2), and the

fact that the shadow of C is hollow translates as ζC satisfying the extra requirement
of Theorem 2.2. Hence, we obtain the following.

Theorem 2.6. Let 2 ≤ k ∈ N and let X be a loopless digraph. Then we have that
BAk(X,K(k2+k)/2) = Yes.

To prove Theorem 2.1, we need to show that BAk does not solve PCSP(Kc,Kd) for all

choices of k ∈ N and 3 ≤ c ≤ d ∈ N. If c = k2+k
2 , any graph with chromatic number

bigger than d (for example, the clique Kd+1) would then yield a fooling instance.
Since increasing c can only make AGC harder, this argument shows that BAk does

not solve PCSP(Kc,Kd) as long as c ≥ k2+k
2 , and the fooling instances are simply

cliques. In order to establish Theorem 2.1 in full generality, however, we shall pick
the fooling instances from a more refined class of digraphs: the so-called shift digraphs
(see Figure 2.6).

Definition 2.7. The line digraph of a digraph X is the digraph δX defined by
V (δX) = E(X) and E(δX) = {((x, y), (y, z)) : (x, y), (y, z) ∈ E(X)}.

Definition 2.8. Let q ∈ N and i ∈ N∪{0}. The shift digraph Sq,i is recursively
defined by setting Sq,0 = Kq, Sq,i = δSq,i−1 for each i ≥ 1.

It is not hard to verify that the following non-recursive description of shift digraphs
is equivalent to Definition 2.8 for i ≥ 1: Sq,i is the digraph whose vertex set consists
of all strings of length i+1 over the alphabet {1, . . . , q} such that consecutive letters
are distinct, and whose edge set contains all pairs (a1 . . . ai+1, b1 . . . bi+1) of strings
such that bℓ = aℓ+1 for ℓ = 1, . . . , i.5 The line digraph has been utilised in [57,70] as a
polynomial-time (and in fact log-space) reduction between PCSPs. This construction
changes the chromatic number in a controlled way, as we now describe. Consider
the integer functions a and b defined by a(p) = 2p and b(p) =

(
p

⌊p/2⌋
)
for p ∈ N,

and notice that a(p) ≥ b(p) for each p. Let a(i) and b(i) be the functions obtained
by iterating a and b, respectively, i-many times, for i ∈ N. The following result
from [58, Theorems 8–9] bounds the chromatic number of the line digraph in terms
of that of the original digraph.

Theorem 2.9 ([58]). Let X be a digraph and let p ∈ N. If δX → Kp, then
X → Ka(p); if X → Kb(p), then δX → Kp.

An interesting feature of the line digraph operator is that it preserves acceptance
by hierarchies of relaxations corresponding to conic minions, at the only cost of halving
the level (see Proposition 6.3). As stated next, this in particular holds for the BA
hierarchy, whose corresponding minion MBA is conic.

Proposition 2.10. Let 2 ≤ k ∈ N, let X,A be digraphs, and suppose that
BA2k(X,A) = Yes. Then BAk(δX, δA) = Yes.

The key point is that, under the application of the line digraph operator, the
chromatic number of a digraph decreases exponentially fast, while the BA acceptance
level decreases only polynomially fast. Intuitively, our strategy to fool BAk as an al-

5In [59, §2.5], a slightly different definition of shift digraphs is given, where the case i = 0 is a
transitive tournament rather than a clique; there, the vertex set of Sq,i only includes monotonically
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S3,0 S3,1 S3,2 S3,3

Figure 2.6: Shift digraphs.

gorithm to solve PCSP(Kc,Kd) will be to take as the fooling instance a shift digraph

Sq,i where q ∼ exp(i)(d+1), rather than the clique Kd+1. Here, by exp(i)(·) (pol(i)(·)),
we mean a function obtained by iterating i-many times an exponential (polynomial)
function. Chromatically, this digraph is similar to Kd+1 by Theorem 2.9, so it is
not d-colourable. On the other hand, for large enough i, the difference in speed

decrease guarantees that BApol(i)(k)(Kq,Kexp(i)(c)) = Yes by Theorem 2.6—which,
after applying Proposition 2.10 for a suitable number of times, eventually implies
BAk(Sq,i,Kc) = Yes. We note that this argument crucially depends on the fact that

the size k2+k
2 of the clique in Theorem 2.6—i.e., the width of the hollow-shadowed

crystals constructed in Section 2.2—is sub-exponential in k. Before proving Theo-
rem 2.1 in full detail, we present a result—which holds for hierarchies corresponding
to all linear minions—stating that acceptance of some instance X by some level of
the BA hierarchy is preserved under homomorphisms of the template.

Proposition 2.11. Let 2 ≤ k ∈ N, let X,A,B be digraphs such that A → B,
and suppose that BAk(X,A) = Yes. Then BAk(X,B) = Yes.

Proof of Theorem 2.1. Since BA2 is at least as powerful as BA1, we can assume
that k ≥ 2. Suppose first that c ≥ 4. In this case, we can find i ∈ N such that
b(i)(c) ≥ k24i. Take q > a(i)(d). We claim that the shift digraph Sq,i is a fooling
instance for the k-th level of BA applied to PCSP(Kc,Kd); in other words, we claim
that (1) BAk(Sq,i,Kc) = Yes and (2) Sq,i ̸→ Kd.

For (1), we start by applying Theorem 2.6 to find that BAk2i(Kq,K(k24i+k2i)/2) =
Yes. Observe that

k24i + k2i

2
≤ k24i ≤ b(i)(c),

so
K(k24i+k2i)/2 → Kk24i → Kb(i)(c).

By Proposition 2.11, we deduce that BAk2i(Kq,Kb(i)(c)) = Yes. Applying Proposi-

tion 2.10 repeatedly, we obtain BAk(Sq,i,Sb(i)(c),i) = Yes. Noticing that Kb(i)(c) →
Kb(i)(c) and applying the second part of Theorem 2.9 repeatedly, we find Sb(i)(c),i →
Kc. Again by Proposition 2.11, we conclude that BAk(Sq,i,Kc) = Yes, as required.
For (2), we first note that Kq ̸→ Ka(i)(d) as q > a(i)(d). Applying the (contrapositive
of the) first part of Theorem 2.9 repeatedly, we deduce that Sq,i ̸→ Kd, as required.

increasing strings.
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Suppose now that c = 3. Assume, for the sake of contradiction, that the k-th level
of BA solves PCSP(K3,Kd). Let X be a digraph such that BA4k(X,K4) = Yes.
Applying Proposition 2.10 twice, we find that BAk(δ(δX),S4,2) = Yes. It was
observed in [88] (see also [77]) that S4,2 → K3. Combining this with Proposi-

tion 2.11 yields BAk(δ(δX),K3) = Yes. Since we are assuming that BAk solves
PCSP(K3,Kd), we must have δ(δX) → Kd, whence it follows, through a double
application of the first part of Theorem 2.9, that X → Ka(2)(d). Note now that

d ≥ c = 3 implies a(2)(d) = 22
d ≥ 22

3 ≥ 4, so K4 → Ka(2)(d), which means that
PCSP(K4,Ka(2)(d)) is well defined. Hence, we have shown that the (4k)-th level of
BA solves PCSP(K4,Ka(2)(d)), thus contradicting the first part of the proof.

3. Preliminaries. Throughout this work, the expression “x
L .•
= y” shall mean

“x = y by Lemma •”. Similarly, “x
P .•
= y” and “x

(•)
= y” shall mean “x = y by

Proposition •” and “x = y by equation (•)”, respectively.

3.1. Hypergraphs. For k ∈ N, a k-uniform hypergraph H consists of a set
V (H) of elements called vertices and a set E(H) ⊆ V (H)k of tuples of k vertices
called hyperedges. A 2-uniform hypergraph is a digraph, as defined in Section 1. The
notion of homomorphism, defined in Section 1 for digraphs, naturally extends to
hypergraphs: Given two k-uniform hypergraphs H and H̃, a map f : V (H) → V (H̃)
is a homomorphism fromH to H̃ if f(h) ∈ E(H̃) for any h ∈ E(H), where f is applied
component-wise to the vertices in h. We indicate the existence of a homomorphism
from H to H̃ by writing H → H̃.

3.2. Tuples. We let N be the set of positive integers, and we let N0 = N ∪ {0}.
Given n ∈ N, [n] denotes the set {1, . . . , n}. We additionally set [0] = ∅. Given a
tuple n = (n1, . . . , nq) ∈ Nq for some q ∈ N, we denote by [n] the set [n1]× · · · × [nq].
Given a tuple a = (a1, . . . , aq) ∈ [n] and a tuple i = (i1, . . . , ip) ∈ [q]p for p ∈ N, the
projection of a onto i is the tuple ai obtained by selecting from a the entries indexed by
i; i.e., ai = (ai1 , . . . , aip). Notice that ai ∈ [ni]. Tuple projection is associative, in the
sense that, for j ∈ [p]m, (ai)j = a(ij). Hence, we will omit parantheses when dealing
with iterated projections. For ñ ∈ Np and b = (b1, . . . , bp) ∈ [ñ], the concatenation
of a and b is the tuple (a,b) = (a1, . . . , aq, b1, . . . , bp). Notice that (a,b) ∈ [(n, ñ)].
It will be handy to extend the notation above to include tuples of length zero. For
any set S, we define S0 = {ϵ}, where ϵ denotes the empty tuple. For any tuple x, we
let xϵ = ϵ and (x, ϵ) = (ϵ,x) = x. We also define [ϵ] = {ϵ}. For n ∈ N, we define the
tuple ⟨n⟩ = (1, . . . , n). Also, we let ⟨0⟩ = ϵ. The cardinality of a set S is denoted by
|S|. Given a tuple s ∈ Sk for some k ∈ N0, set(s) = {si : i ∈ [k]} is the set of elements
appearing in s, while |s| = | set(s)| is the number of distinct entries in s. Given two
sets S, S̃ and two tuples s = (s1, . . . , sk) ∈ Sk, s̃ = (s̃1, . . . , s̃k) ∈ S̃k, we write s ≺ s̃
if, for any i, j ∈ [k], si = sj implies s̃i = s̃j . We write s ∼ s̃ if s ≺ s̃ and s̃ ≺ s. The
symbols “ ̸≺” and “ ̸∼” denote the negations of “≺” and “∼”, respectively. Observe
that, for every k-tuple s, it holds that ⟨k⟩ ≺ s ≺ c, where c is a constant k-tuple. We
denote by 0k and 1k the all-zero tuple and the all-one tuple of length k, respectively.

3.3. Hierarchies of relaxations. Given two digraphs X and A and an integer
k ∈ N, introduce a variable λx,a for each x ∈ V (X)k and a ∈ V (A)k, and a variable
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µy,b for each y ∈ E(X) and b ∈ E(A). Consider the following system of equations:

(IPk)

(IPk
1)

∑
a∈V (A)k

λx,a = 1 x ∈ V (X)k

(IPk
2)

∑
â∈V (A)k

âi=a

λx,â = λxi,a x ∈ V (X)k, i ∈ [k]k, a ∈ V (A)k

(IPk
3)

∑
b∈E(A)
bi=a

µy,b = λyi,a y ∈ E(X), i ∈ [2]k, a ∈ V (A)k

(IPk
4) λx,a = 0 x ∈ V (X)k, a ∈ V (A)k, x ̸≺ a

(IPk
5) µy,b = 0 y ∈ E(X), b ∈ E(A), y ̸≺ b.

The equations (IPk
1) enforce that the variables be properly scaled6—which is partic-

ularly desirable if we wish to interpret them as probability distributions over the set
of assignments of vertices of A (“colours”) to sets of vertices of X. Given a joint
probability distribution over some random variables, the corresponding probability
distribution over a subset of the variables is obtained by marginalising ; i.e., by sum-
ming up over all variables that are ignored. The equations (IPk

2) and (IPk
3) simulate

this marginality requirement for the distributions λ and µ, respectively. Finally, the
equations (IPk

4) and (IPk
5) simply make sure that a vertex of X appearing multiple

times in the same tuple receives the same colour. Note that (IPk
5) is superfluous when

X is loopless since, in that case, no edge y satisfies y ̸≺ b.7

Let k ≥ 2. We write BLPk(X,A) = Yes if the system (3.3) admits a solution such
that all variables take rational nonnegative values. We write AIPk(X,A) = Yes if the
system (3.3) admits a solution such that all variables take integer (possibly negative)
values. We write BAk(X,A) = Yes if the system (3.3) admits both a solution such
that all variables take rational nonnegative values and a solution such that all variables
take integer values, and the following refinement condition holds: Denoting by the
superscript (B) the variables in the BLPk solution and by the superscript (A) those
in the AIPk solution, we require that

λ(B)
x,a = 0 ⇒ λ(A)

x,a = 0 for each x ∈ V (X)k, a ∈ V (A)k(3.1a)

µ
(B)
y,b = 0 ⇒ µ

(A)
y,b = 0 for each y ∈ E(X), b ∈ E(A).(3.1b)

Remark 3.1. The following is a procedure to check whether BAk(X,A) = Yes in
polynomial time in the size of X (cf. [20]):

1. Check whether (3.3) has a rational nonnegative solution. If it does not, output
No; otherwise:

2. Select a solution (λri, µri) lying in the relative interior of the polytope of
solutions.

3. Check whether there exists an integer solution to the system (3.3), refined
with the requirement that all variables whose value in (λri, µri) is zero should
be set to zero. If there is one, output Yes; otherwise, output No.

6(IPk
1) requires that only the λ variables should sum up to 1, but combining (IPk

1) and (IPk
3)

yields the same requirement for the µ-variables as well.
7A different formulation of the system (3.3) would consider λ-variables corresponding to sets

rather than tuples of vertices; by virtue of (IPk
4), the two formulations are equivalent.
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The procedure above can be implemented in a way that it runs in polynomial time
in the size of X: Step 1 corresponds to checking whether an LP on polynomially
many variables is feasible; step 2 has polynomial run-time by virtue of a result in [55]
(cf. [17]); step 3 corresponds to checking feasibility of a system of linear Diophantine
equations on polynomially many variables, which can be done in polynomial time
by computing the Hermite or the Smith normal forms of the matrix of coefficients,
see [81].

Clearly, if such procedure outputs Yes, then BAk(X,A) = Yes. For the converse
implication, suppose that BAk(X,A) = Yes and let (λ(B), µ(B)) and (λ(A), µ(A)) be
solutions to (3.3) witnessing it. Notice that, in this case, the procedure does produce
a solution (λri, µri), but this may differ from (λ(B), µ(B)). Nevertheless, any variable
that is zero in (λri, µri) is also zero in (λ(B), µ(B)) (by the definition of relative interior,
cf. [82]), so (λ(A), µ(A)) does witness that the refined system of step 3 has an integer
solution and, thus, that the procedure outputs Yes.

We also define BLP1, AIP1, and BA1 as BLP, AIP, and BA, respectively, as
described in Section 2. Notice that this almost entirely corresponds to taking k = 1
in the definition above, except for the fact that the equations (IP1

5) are dropped.
Indeed, looking at (IP), we observe that (IP1

1) is equivalent to (IP1), (IP
1
3) is equivalent

to (IP2), while (IP1
2) and (IP1

4) are vacuous; however, (IP1
5) is not implied by the

system (IP).

Remark 3.2. For k ≥ 2, the equations (3.1b) are implied by the equations (3.1a).

Indeed, suppose that µ
(B)
y,b = 0 for some y ∈ E(X), b ∈ E(A). Observe that, for the

tuple i = (1, 2, 1, . . . , 1) ∈ [2]k, we have {c ∈ E(A) : ci = bi} = {b}. Hence, (IPk
3)

yields

µ
(B)
y,b =

∑
c∈E(A)
ci=bi

µ(B)
y,c = λ

(B)
yi,bi

and, similarly, µ
(A)
y,b = λ

(A)
yi,bi

. Therefore, µ
(B)
y,b = 0 implies λ

(B)
yi,bi

= 0, whence it follows

through (3.1a) that λ
(A)
yi,bi

= 0, thus forcing µ
(A)
y,b = 0. In fact, the same holds if

the hierarchy is applied to arbitrary relational structures rather than digraphs—in
which case, we require that k be at least the maximum arity of the relations in the
structures.

Given two digraphs A and B such that A → B, we say that BAk (BLPk, AIPk)
solves PCSP(A,B) if X → B whenever BAk(X,A) = Yes (BLPk(X,A) = Yes,
AIPk(X,A) = Yes). Note that the algorithms are complete: If X → A then
BAk(X,A) = BLPk(X,A) = AIPk(X,A) = Yes. Indeed, given a homomorphism f :
X → A, the distributions assigning weight 1 to (x, f(x)) for each x ∈ V (X)k ∪E(X)
and weight 0 to any other pair (x,a) are easily seen to yield both a BLPk and an
AIPk solution, and to satisfy the extra refinement condition. Hence, the algorithms
do not produce false negatives (but may produce false positives).

3.4. Tensors. Take a set S, an integer q ∈ N0, and a tuple n ∈ Nq. We denote
by T n(S) the set of functions from [n] to S. We call a function T in T n(S) a
tensor on q modes of sizes n1, . . . , nq, and we visualise T as a q-dimensional array
or hypermatrix, each of whose cells contains an element of S. We sometimes use the
notation T = (ti)i∈[n] where, for i ∈ [n], ti ∈ S is the i-th entry of T ; i.e., the image

of i under T . For example, T n(S) and T (m,n)(S) are the sets of n-vectors and m× n
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matrices, respectively, having entries in S. Notice that T ϵ(S) is the set of functions
from [ϵ] = {ϵ} to S, which we identify with S. We will often consider cubical tensors,
all of whose modes have equal length; i.e., tensors in the set T n·1q (S) for some n ∈ N.

Many tensors appearing throughout this work have entries in the field Q of ra-
tional numbers. Such tensors can be multiplied with each other via an operation
that generalises several linear-algebraic products. Take three integers a, b, c ∈ N0

and three tuples a ∈ Na, b ∈ Nb, c ∈ Nc. The contraction of two tensors T =

(ti)i∈[(a,b)] ∈ T (a,b)(Q) and U = (ui)i∈[(b,c)] ∈ T (b,c)(Q), denoted by T
b∗ U , is the

tensor in T (a,c)(Q) whose (j, ℓ)-th entry is∑
k∈[b]

t(j,k)u(k,ℓ)

for j ∈ [a] and ℓ ∈ [c]. If at least one of a and c equals zero—i.e., if we are contracting

over all modes of T or U—we write T ∗ U for T
b∗ U to increase readability.

Example 3.3. For m,n, p ∈ N, consider the tensors z ∈ T ϵ(Q) = Q; u,v ∈
T m(Q); w ∈ T n(Q); M,N ∈ T (m,n)(Q); and Q ∈ T (n,p)(Q). Following [40, Ex-
ample 22], we can list several classic linear-algebraic products as instances of tensor
contraction:

z
0∗ u = z ∗ u = zu (scalar times vector)

z
0∗M = z ∗M = zM (scalar times matrix)

u
1∗ v = u ∗ v = uTv (inner product of vectors)

u
0∗w = uwT (outer product of vectors)

M
1∗Q = MQ (standard matrix product)

M
2∗N = M ∗N = tr(MTN) (Frobenius inner product of matrices).

Let a ∈ N0 and a ∈ Na. Given i ∈ [a], we denote by Ei the i-th standard unit tensor ;
i.e., the tensor in T a(Q) all of whose entries are 0, except the i-th entry that is 1.
(While this tensor is defined in terms of both i and a, the latter tuple shall always be
clear from the context, and we do not indicate it explicitly in the notation to improve
readability.) Observe that, for any T ∈ T a(Q), we may express the i-th entry of T as
Ei∗T . In other words, if T = (ti)i∈[a], then Ei∗T = ti. We let the support of T be the
set of indices of all nonzero entries of T ; i.e., the set supp(T ) = {i ∈ [a] : Ei ∗ T ̸= 0}.

Remark 3.4. Since N0 = {ϵ} and [ϵ] = {ϵ}, the tensor Eϵ is well defined and lives
in T ϵ(Q) = Q. Observe that Eϵ = 1, as its unique entry—i.e., its ϵ-th entry—is 1 by
definition.

As noted in [40], tensor contraction satisfies a specific form of associativity. We include
a simple proof of this fact for completeness.

Lemma 3.5. Take five integers a, b, c, d, e ∈ N0, five tuples a ∈ Na,b ∈ Nb, c ∈
Nc,d ∈ Nd, e ∈ Ne, and three tensors T ∈ T (a,b)(Q), U ∈ T (b,c,d)(Q), V ∈ T (d,e)(Q).
Then

(T
b∗ U)

d∗ V = T
b∗ (U d∗ V ).

Proof. Let W = (T
b∗ U)

d∗ V and Z = T
b∗ (U d∗ V ), and observe that both W and

Z are tensors in T (a,c,e)(Q). Take i ∈ [a], j ∈ [c], and k ∈ [e], and observe that the



18 L. CIARDO, S. ŽIVNÝ

(i, j,k)-th entry of W is

E(i,j,k) ∗W =
∑
ℓ∈[d]

[
E(i,j,ℓ) ∗ (T

b∗ U)

]
·
[
E(ℓ,k) ∗ V

]
=

∑
ℓ∈[d]

∑
m∈[b]

[
E(i,m) ∗ T

]
·
[
E(m,j,ℓ) ∗ U

]
·
[
E(ℓ,k) ∗ V

]
while the (i, j,k)-th entry of Z is

E(i,j,k) ∗ Z =
∑

m∈[b]

[
E(i,m) ∗ T

]
·
[
E(m,j,k) ∗ (U

d∗ V )

]
=

∑
m∈[b]

[
E(i,m) ∗ T

]
·
∑
ℓ∈[d]

[
E(m,j,ℓ) ∗ U

]
·
[
E(ℓ,k) ∗ V

]
.

The value of the two expressions is the same, so W = Z, as required.

Remark 3.6. Lemma 3.5 establishes that tensor contraction is associative if it
is taken over disjoint sets of modes. It is easy to check that, if this hypothesis is
dropped, associativity may not hold (see [40, §4.1]). For example, consider three
tensors T ∈ T (a,b)(Q), U ∈ T (b,c)(Q), and V ∈ T (a,c)(Q), where a,b, c are as in

Lemma 3.5. Then, the expression (T
b∗ U)

a+c∗ V is well defined, while the expression
obtained by switching the order of the contractions is not well defined in general. For
this reason, we define the contraction operation to be left-associative by default, in

the sense that the expression T1
k1∗ T2

k2∗ T3 shall mean (T1
k1∗ T2)

k2∗ T3. Whenever this
is possible (i.e., whenever we are contracting over disjoint sets of modes), we shall
tacitly make use of the associativity property of Lemma 3.5. In particular, in this
way, we can express the entry of index (i, j) of a tensor T ∈ T (a,b)(Q) (where i ∈ [a]
and j ∈ [b]) by the notation Ei ∗ T ∗ Ej; note that this is the same as E(i,j) ∗ T .

3.5. The projection tensor. Take a, b ∈ N0, a ∈ Na, and ℓ ∈ [a]b, and consider
the projection tensor Πa

ℓ ∈ T (aℓ,a)(Q) defined, for each i ∈ [aℓ] and each j ∈ [a], by

Ei ∗Πa
ℓ ∗ Ej =

{
1 if jℓ = i
0 otherwise.

(3.2)

In particular, observe that setting b = 0 yields [a]b = {ϵ}, so Πa
ϵ is well defined and

lives in T (aϵ,a)(Q) = T a(Q).
We now present some basic results on this special tensor, which justify its name

and which shall be used throughout this work.

Lemma 3.7. Given a ∈ N0 and a ∈ Na, Πa
ϵ is the all-one tensor in T a(Q).

Proof. Using that Eϵ = 1, as seen in Remark 3.4, and applying the definition (3.2),
we find that, for any j ∈ [a],

Πa
ϵ ∗ Ej = Eϵ ∗Πa

ϵ ∗ Ej = 1,

as required.

The following description of the entries of the projection tensor is essentially a re-
formulation of [40, Lemma 34] in the notation of the current paper. We include the
straightforward proof for completeness.
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Lemma 3.8. Given a, b ∈ N0, a ∈ Na, ℓ ∈ [a]b, and i ∈ [aℓ], Ei ∗ Πa
ℓ =∑

j∈[a], jℓ=i Ej.

Proof. If b = 0, we have ℓ = i = ϵ. Using Remark 3.4 and Lemma 3.7, we find

Eϵ ∗Πa
ϵ = Πa

ϵ =
∑
j∈[a]

Ej =
∑
j∈[a]
jϵ=ϵ

Ej,

as required. Suppose now that b ∈ N. In this case, we can assume that a ∈ N as
[0]b = ∅b = ∅. For any j′ ∈ [a], we have∑

j∈[a]
jℓ=i

Ej ∗ Ej′ =
∑
j∈[a]
jℓ=i
j=j′

1 =

{
1 if j′ℓ = i
0 otherwise

= Ei ∗Πa
ℓ ∗ Ej′ ,

thus proving the result.

Given a tensor T ∈ T a(Q), we have from Lemma 3.8 and from the associativity
rule of Lemma 3.5 that, for i ∈ [aℓ], the i-th entry of Πa

ℓ ∗ T is

Ei ∗Πa
ℓ ∗ T =

∑
j∈[a], jℓ=i

Ej ∗ T ;

i.e., the sum of all entries of T whose index j projected onto ℓ gives i. In other words,
contracting T by Πa

ℓ amounts to selecting a set of modes of T (given by the tuple
ℓ) and projecting T onto the hyperplane corresponding to those modes—whence the
name “projection tensor”. In particular, if one lets a = b = |ℓ| in the definition of the
projection tensor Πa

ℓ , contracting T by Πa
ℓ has the effect of permuting the modes of T .

We call the resulting tensor Πa
ℓ∗T a reflection of T . For instance, for a = (a1, a2) ∈ N2,

contracting by Πa
(1,2) results in the identity operator (cf. Lemma 3.10 below), while

contracting by Πa
(2,1) gives the transpose operator. Indeed, for any a1×a2 matrix M ,

Πa
(1,2) ∗M = M and Πa

(2,1) ∗M = MT .
The assignment ℓ 7→ Πa

ℓ creates a correspondence between tuples and projection
tensors. Under this assignment, Lemma 3.9 below shows that the operation of tuple
projection is translated into the operation of tensor contraction, while Lemma 3.10
shows that the tuple ⟨a⟩, that acts by projection as the identity on the set of tuples
of appropriate length, corresponds to the projection tensor that acts by contraction
as the identity on the space of tensors of appropriate size.

Lemma 3.9. Let a, b, c ∈ N0, and consider two tuples ℓ ∈ [a]b and m ∈ [b]c. Then,

for any a ∈ Na, Πa
ℓm

= Πaℓ
m

b∗Πa
ℓ .

Proof. Take i ∈ [aℓm ] and j′ ∈ [a], and observe that

Ei ∗ (Πaℓ
m

b∗Πa
ℓ ) ∗ Ej′

L .3.5
= Ei ∗Πaℓ

m ∗Πa
ℓ ∗ Ej′

L .3.8
=

∑
j∈[aℓ]
jm=i

Ej ∗Πa
ℓ ∗ Ej′ =

∑
j∈[aℓ]
jm=i
j′ℓ=j

1

=

{
1 if j′ℓm = i
0 otherwise

= Ei ∗Πa
ℓm ∗ Ej′ ,

whence the result follows.



20 L. CIARDO, S. ŽIVNÝ

Lemma 3.10. Let a, b ∈ N0, a ∈ Na, b ∈ Nb, and T ∈ T (a,b)(Q). Then Πa
⟨a⟩

a∗T =
T.

Proof. For any i ∈ [a], we find

Ei ∗ (Πa
⟨a⟩

a∗ T ) L .3.5
= Ei ∗Πa

⟨a⟩ ∗ T
L .3.8
=

∑
j∈[a]
j⟨a⟩=i

Ej ∗ T =
∑
j∈[a]
j=i

Ej ∗ T = Ei ∗ T,

as required.

4. The BA hierarchy through tensors. When does BAk(X,A) = Yes? In
this section, we shall see that the acceptance problem for the BA hierarchy can
be conveniently translated and studied in an algebraic—in fact, linear-algebraic—
framework, through the notions of linear minions and tensorisation. The final result
of this process, Theorem 2.2, will allow us to see BAk acceptance (when the hierarchy
is applied to AGC) as the problem of checking for the existence of some integer tensors
satisfying certain geometric properties. This “ultra-processed” acceptance criterion
will allow turning the quest for a fooling instance for BAk (the goal of this paper)
into the problem of building certain special hollow-shadowed crystal tensors—which
will be accomplished in later sections.

4.1. Relaxations and linear minions. All relaxation algorithms studied in
the literature on CSPs and their promise variant are captured algebraically through
the notion of linear minion, which we describe in this section.

Given two integers ℓ,m ∈ N and a function π : [ℓ] → [m], let Pπ be the m × ℓ
matrix such that, for i ∈ [m] and j ∈ [ℓ], the (i, j)-th entry of Pπ is 1 if π(j) = i, and
0 otherwise.

Definition 4.1 ([40]). A linear minion M of depth d ∈ N consists of the union
of sets M (ℓ) of ℓ× d rational matrices for ℓ ∈ N, that satisfy the following condition:
PπM ∈ M (m) whenever ℓ,m ∈ N, π : [ℓ] → [m], and M ∈ M (ℓ).8

Observe that pre-multiplying a matrixM by Pπ amounts to performing a combination
of the following three elementary operations to the rows of M : swapping two rows,
replacing two rows with their sum, and inserting a zero row. Hence, a linear minion
is simply a set of matrices having a fixed number of columns that is closed under such
elementary operations.

Example 4.2. For each ℓ ∈ N, let
• Qconv

(ℓ) be the set of rational vectors of length ℓ whose entries are nonnegative
and sum up to 1,

• Zaff
(ℓ) be the set of integer vectors of length ℓ whose (possibly negative)

entries sum up to 1, and
• MBA

(ℓ) be the set of ℓ× 2 matrices whose left column v belongs to Qconv
(ℓ),

whose right column w belongs to Zaff
(ℓ), and such that, for each i ∈ [ℓ],

vi = 0 implies wi = 0.
Using that 1T

mPπ = 1T
ℓ for each π : [ℓ] → [m], we easily check that Qconv =⋃

ℓ∈N Qconv
(ℓ) and Zaff =

⋃
ℓ∈N Zaff

(ℓ) are both linear minions of depth 1, while

MBA =
⋃

ℓ∈N MBA
(ℓ) is a linear minion of depth 2.

8The definition of linear minions we give here is less general than the one in [40, Definition 16],
which includes linear minions of infinite depth and whose matrices have entries in arbitrary semirings
rather than Q.
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In order to be consistent with the notation of [20, Definition 5], given a linear minion
M , a function π : [ℓ] → [m], and a matrix M ∈ M (ℓ), we shall often denote the
product PπM by the notation M/π.

Remark 4.3. For two maps π : [ℓ] → [m] and σ : [m] → [p], we easily check that
Pσ◦π = PσPπ. As a consequence,

M/σ◦π = (M/π)/σ.(4.1)

Also, if id is the identity function on [ℓ], Pid is the identity matrix of size ℓ × ℓ, so
M/ id = M . This shows that linear minions form a subclass of the so-called abstract
minions (or simply minions) introduced in [20] (see also [8]).

Each linear minion corresponds to a relaxation for (P)CSPs through the notion
of free structure. Intuitively, the free structure of a linear minion M generated by a
hypergraph H simulates the structure of H inside M : The vertices become matrices
of M , while the hyperedges are tuples of matrices that can all be obtained from a
single other matrix through elementary row operations. The formal definition is given
below. We define the free structure for uniform hypergraphs rather than digraphs,
because we will later use it in that more general case. In fact, the same construction
can be applied to arbitrary relational structures, see [8, Definition 4.1].

Definition 4.4 ([8]). Let H be a p-uniform hypergraph having n vertices and m
hyperedges. Without loss of generality, let the domain of H be [n]. The free structure
FM (H) of a linear minion M generated by H is the (potentially infinite) p-uniform
hypergraph on the vertex set V (FM (H)) = M (n) whose hyperedges are defined as
follows: Given M1, . . . ,Mp ∈ M (n), the tuple (M1, . . . ,Mp) belongs to E(FM (H)) if
and only if there exists some Q ∈ M (m) such that Mi = Q/πi

for each i ∈ [p], where
πi : E(H) → V (H) maps a hyperedge h to its i-th entry hi.

Take a linear minion M and two digraphs X (the instance) and A (the template).
The relaxation corresponding to M outputs Yes if X → FM (A) and No otherwise.9

For certain linear minions, the problem of deciding whether X → FM (A) can be
solved in polynomial time (in the size of the input X) for any A. In particular,
this is the case for the linear minions Qconv, Zaff , and MBA from Example 4.2. It
was shown in [8] that Qconv and Zaff correspond to the polynomial-time relaxations
BLP and AIP, respectively, while it was shown in [20] that MBA corresponds to the
polynomial-time relaxation BA.

In [40], a class of linear minions enjoying particularly desirable features was iden-
tified.

Definition 4.5 ([40]). A conic minion M is a linear minion of depth d such
that (i) M does not contain any all-zero matrix, and (ii) for every ℓ ∈ N, every
M ∈ M (ℓ), and every V ⊆ [ℓ], the following implication is true:∑

i∈V Ei ∗M = 0d ⇒ Ei ∗M = 0d ∀i ∈ V.

In other words, a linear minion M is conic if it does not contain all-zero matrices and
if summing up nonzero rows of a matrix in M does not yield the all-zero vector.

Example 4.6. It is not hard to check that Qconv and MBA are conic, while Zaff

is not (cf. [40]).

9In [40], this relaxation was described as the “minion test” associated with M .
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The following property of the entries of Pπ is a reformulation of [40, Lemma 30] and
shall prove useful on multiple occasions. We include the simple proof for completeness.

Lemma 4.7. Let ℓ,m ∈ N, let π : [ℓ] → [m], and let i ∈ [m]. Then Ei ∗ Pπ =∑
j∈π−1(i) Ej.

Proof. For any z ∈ [ℓ], we have∑
j∈π−1(i)

Ej ∗ Ez =

{
1 if z ∈ π−1(i)
0 otherwise

=

{
1 if π(z) = i
0 otherwise

= Ei ∗ Pπ ∗ Ez,

which means that
∑

j∈π−1(i) Ej = Ei ∗ Pπ, as required.

4.2. Hierarchies and tensors. The framework developed in [40] allows to pro-
gressively strengthen the relaxation corresponding to any linear minion (called “min-
ion test” therein) through the notion of tensor power of a digraph (given in [40, Def-
inition 10] for the more general case of relational structures).

Definition 4.8 ([40]). Given k ∈ N, the k-th tensor power of a digraph A is

the 2k-uniform hypergraph A
k○

having vertex set V (A
k○
) = V (A)k and hyperedge set

E(A
k○
) = {a k○

: a ∈ E(A)} where, for a ∈ E(A), a
k○

is the tensor in T 2·1k(V (A)k)
whose i-th entry is ai for every i ∈ [2]k.

Let us see what happens when we take the free structure generated by the tensor
power of a digraph.

Remark 4.9. Let M be a linear minion of depth d and let A be a digraph with
n vertices10 and m edges. Just like A

k○
, FM (A

k○
) is a 2k-uniform hypergraph. Its

vertex set is V (FM (A
k○
)) = M (nk). Hence, the vertices of FM (A

k○
) are nk × d

rational matrices; it will be convenient to identify them with tensors in T (n·1k,d)(Q).

A family {M (i)}i∈[2]k of vertices (i.e., of tensors in V (FM (A
k○
))) forms a hyperedge

if and only if there exists some matrix Q ∈ M (m) such that M (i) = Q/πi
for each

i ∈ [2]k, where πi : E(A) → V (A)k maps a ∈ E(A) to ai. Note that Q/πi
can be

expressed as a contraction by the multilinear version of the matrix Pπi
associated

with the map πi from Definition 4.4; i.e., Q/πi
= Pπi

1∗ Q, where Pπi
∈ T (n·1k,m)(Q)

is the tensor whose (a,b)-th entry is 1 if bi = a and 0 otherwise, for a ∈ V (A)k and
b ∈ E(A).

The strategy introduced in [40] for strengthening a minion test consists in applying
the test to the tensor powers of both the instance and the template—with one extra
technicality: The homomorphism certifying acceptance of the relaxation thus obtained
should be compatible with the tensorised structures, in the sense of Definition 4.10.

Definition 4.10. Let M be a linear minion, let k ∈ N, and let X,A be two
digraphs. We say that a homomorphism ξ : X

k○ → FM (A
k○
) is k-tensorial if ξ(xi) =

Πn·1k

i

k∗ ξ(x) for any x ∈ V (X)k, i ∈ [k]k.

In other words, a k-tensorial homomorphism translates the operation of tuple
projection into the operation of tensor projection—where the latter is expressed as
contraction by the projection tensor Πn·1k

i introduced in Section 3.5.
Given a linear minion M and an integer k ∈ N, the k-th level of the relaxation

induced by M is defined as follows: For any pair of digraphs X (the instance) and

10Here and throughout the rest of the paper, we shall often assume that the vertex set of the
digraph A is [n].
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A (the template), it outputs Yes if there exists a k-tensorial homomorphism X
k○ →

FM (A
k○
) and No otherwise. It was shown in [40] that both the BLP and the AIP

hierarchies fit into this framework, in the sense that, for any two digraphs X,A and
any integer k ∈ N, BLPk(X,A) = Yes (AIPk(X,A) = Yes) if and only if there

exists a k-tensorial homomorphism X
k○ → FQconv

(A
k○
) (X

k○ → FZaff
(A

k○
)). A

similar characterisation was also established for the BA hierarchy we consider in this
work (see [40, Theorem 15]). Moreover, using that the minion MBA capturing the
BA hierarchy is the semi-direct product of the two minions Qconv and Zaff , it was
shown in [40, Proposition 44] that any k-tensorial homomorphism X

k○ → FMBA
(A

k○
)

can be split into homomorphisms to the free structures of Qconv and Zaff , separately.
These results are summarised in the next theorem.

Theorem 4.11 ([40]). Let X and A be digraphs and let 2 ≤ k ∈ N. The following
are equivalent:

• BAk(X,A) = Yes;

• there exists a k-tensorial homomorphism from X
k○

to FMBA
(A

k○
);

• there exist k-tensorial homomorphisms ξ : X
k○ → FQconv

(A
k○
) and ζ :

X
k○ → FZaff

(A
k○
) such that supp(ζ(x)) ⊆ supp(ξ(x)) for any x ∈ V (X)k.

Remark 4.12. It was shown in [40, Proposition 36] that the existence of a k-

tensorial homomorphism from X
k○

to FM (A
k○
) is equivalent to the existence of a

homomorphism from X̃
k○
to FM (Ã

k○
), where X̃ and Ã are obtained fromX andA by

k-enhancing them, i.e., by adding to their signatures an extra relation that includes
all tuples of length k. We prefer to adopt the description in terms of k-tensorial
homomorphisms, as k-enhancing a digraph results in a structure having two different
relations, while in this work we only consider structures with one relation (digraphs
or hypergraphs). We also remark that the term “k-tensorial” does not appear in [40].

4.3. BAk acceptance for AGC. The goal of this work is to show that no level
of the BA hierarchy solves the approximate graph colouring problem PCSP(Kc,Kd).
To that end, we need to find instances X that are able to fool the hierarchy, i.e.,
such that BAk(X,Kc) = Yes but X is not d-colourable. It turns out that, for the
particular case that the BA hierarchy is applied to the colouring problem (i.e., when
A is a clique), the acceptance criterion of Theorem 4.11 can be simplified: As stated
in Theorem 2.2, it is enough to check for the existence of a k-tensorial homomor-
phism ζ from X

k○
to FZaff

(A
k○
) that satisfies a simple combinatorial condition. The

reason why one does not have to explicitly verify the existence of a homomorphism
ξ to FQconv

(A
k○
), too, is that, when the size of the clique A is at least k, there

exists a standard k-tensorial homomorphism ξ0 from X
k○

to FQconv(A
k○
) that gives

equal weight to all admitted assignments—equivalently, the tensors that are images
of elements of X

k○
under ξ0 are uniform within their admitted support. This homo-

morphism is “as good as possible” for our purposes, in the sense that it makes the
support of ξ0(x) as large as it can be, thus leaving more room for the existence of
some ζ satisfying the refinement condition supp(ζ(x)) ⊆ supp(ξ(x)). In other words,
whenever a pair of k-tensorial homomorphisms (ξ, ζ) certifying BAk acceptance exists,
the pair (ξ0, ζ) also works. As it will later become more clear, thanks to the criterion
given in Theorem 2.2, we can view BAk acceptance in terms of the existence of a
family of integer tensors satisfying a system of symmetries (dictated by the fact that
ζ needs to be a k-tensorial homomorphism) together with a “hollowness requirement”
expressed through the extra combinatorial condition. The hollow-shadowed crystals
we shall seek in the next section will generate a family of such tensors.
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The proof of Theorem 2.2 makes use of two technical lemmas that we present next.
The first is a special case of [40, Lemma 32]. Recall the definition of the symbols “≺”
and “∼” given in Section 3.2.

Lemma 4.13 ([40]). Let M be a linear minion of depth d, let k ∈ N, let X,A

be two digraphs, and let ξ : X
k○ → FM (A

k○
) be a k-tensorial homomorphism. Then

Ea ∗ ξ(x) = 0d for any x ∈ V (X)k and a ∈ V (A)k for which x ̸≺ a.

Crucially, Lemma 4.13 does not require that the linear minion be conic. In the proof
of Theorem 2.2, we shall apply this lemma to the (non-conic) minion Zaff .

Lemma 4.14. Let k ≤ n ∈ N, let X be a set, and consider the tuples x ∈ Xk,
i ∈ [k]k, and a ∈ [n]k. Then

|{b ∈ [n]k : bi = a and b ∼ x}| =

{
(n−|xi|)!
(n−|x|)! if a ∼ xi

0 otherwise.

Proof. Assume first that a ∼ xi. Note that there exists a bijection ϑ between
the set {b ∈ [n]k : b ∼ x} and the set of injective functions from set(x) to [n].
(Indeed, b ∼ x means that bp = bq if and only if xp = xq for every p, q ∈ [k].) Now,
if bi = a ∼ xi, the restriction of ϑ(b) to set(xi) is entirely determined by a. The
remaining values of ϑ(b) can be chosen in

(n− |xi|) · (n− |xi| − 1) · · · (n− |x|+ 1) =
(n− |xi|)!
(n− |x|)!

distinct ways, thus proving the first case in the statement of the lemma.
Assume now that a ̸∼ xi. By definition, if b ∼ x, then bi ∼ xi. Thus, if bi = a

and b ∼ x, then a ∼ xi, a contradiction. This proves the second case in the statement
of the lemma.

Theorem 4.15 (Theorem 2.2 restated). Let 2 ≤ k ≤ n ∈ N, let X be a loopless

digraph, and let ζ : X
k○ → FZaff

(K
k○
n ) be a k-tensorial homomorphism such that

Ea ∗ ζ(x) = 0 for any x ∈ V (X)k and a ∈ [n]k for which a ̸≺ x. Then BAk(X,Kn) =
Yes.

Proof. For x ∈ V (X)k, consider the tensor Tx ∈ T n·1k(Q) defined by

Ea ∗ Tx =

{
1 if a ∼ x
0 otherwise

∀a ∈ [n]k.

We shall prove that the function

ξ : V (X)k → T n·1k(Q)

x 7→ 1

Πn·1k
ϵ ∗ Tx

Tx

yields a k-tensorial homomorphism from X
k○

to FQconv(K
k○
n ). First, observe that ξ

is well defined as, using that k ≤ n,

Πn·1k
ϵ ∗ Tx

L .3.7
=

∑
a∈[n]k

Ea ∗ Tx = |{a ∈ [n]k : a ∼ x}| =
n!

(n− |x|)!
(4.2)
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which is not zero. Moreover, we have that ξ(x) ∈ Qconv
(nk) since

Πn·1k
ϵ ∗ ξ(x) =

Πn·1k
ϵ ∗ Tx

Πn·1k
ϵ ∗ Tx

= 1.

We now prove that ξ sends hyperedges of X
k○

to hyperedges of FQconv
(K

k○
n ). Take

(x, y) ∈ E(X), so (x, y)
k○ ∈ E(X

k○
); since X is loopless, x ̸= y. Observe that

|E(Kn)| = n2 − n. Take Q = 1
n2−n · 1n2−n ∈ Qconv

(n2−n); we claim that ξ((x, y)i) =

Q/πi
for each i ∈ [2]k, which then implies that ξ((x, y)

k○
) ∈ E(FQconv(K

k○
n )), as

needed. For i ∈ [2]k and a ∈ [n]k, we have

Ea ∗Q/πi
= Ea ∗ Pπi

∗Q =
1

n2 − n
Ea ∗ Pπi

∗ 1n2−n

=
1

n2 − n

∑
(a′,b′)∈E(Kn)

Ea ∗ Pπi
∗ E(a′,b′)

=
1

n2 − n
|{(a′, b′) ∈ E(Kn) : (a

′, b′)i = a}|.(4.3)

Suppose that i = 1k. In this case, (4.3) yields

Ea ∗Q/πi
=

1

n2 − n
|{(a′, b′) ∈ E(Kn) : (a

′, . . . , a′) = a}|

=

{
1
n if a is constant
0 otherwise.

On the other hand,

Ea ∗ ξ((x, y)i) = Ea ∗ ξ((x, . . . , x)) =
1

Πn·1k
ϵ ∗ T(x,...,x)

Ea ∗ T(x,...,x)

(4.2)
=

(n− 1)!

n!
Ea ∗ T(x,...,x) =

{
1
n if a is constant
0 otherwise.

Hence, the claim holds in this case. The case i = 2 · 1k follows analogously. Suppose
now that |i| = 2. In this case, (4.3) yields

Ea ∗Q/πi
=

{
1

n2−n if a ∼ i

0 otherwise.

On the other hand,

Ea ∗ ξ((x, y)i) =
1

Πn·1k
ϵ ∗ T(x,y)i

Ea ∗ T(x,y)i

(4.2)
=

(n− 2)!

n!
Ea ∗ T(x,y)i

=

{
1

n2−n if a ∼ (x, y)i
0 otherwise.

Using that (x, y)i ∼ i and that “∼” is transitive, we conclude that the claim holds

in this case, too. It follows that ξ is a homomorphism from X
k○

to FQconv
(K

k○
n ). To

show that ξ is k-tensorial, consider three tuples x ∈ V (X)k, i ∈ [k]k, and a ∈ [n]k,
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and observe that

Ea ∗Πn·1k

i ∗ ξ(x) L .3.8
=

∑
b∈[n]k

bi=a

Eb ∗ ξ(x) =
1

Πn·1k
ϵ ∗ Tx

∑
b∈[n]k

bi=a

Eb ∗ Tx

(4.2)
=

(n− |x|)!
n!

∑
b∈[n]k

bi=a

Eb ∗ Tx

=
(n− |x|)!

n!
|{b ∈ [n]k : bi = a and b ∼ x}|

L .4.14
=

{
(n−|x|)!

n! · (n−|xi|)!
(n−|x|)! if a ∼ xi

0 otherwise.

=

{
(n−|xi|)!

n! if a ∼ xi

0 otherwise.

On the other hand,

Ea ∗ ξ(xi) =
1

Πn·1k
ϵ ∗ Txi

Ea ∗ Txi

(4.2)
=

(n− |xi|)!
n!

Ea ∗ Txi

=

{
(n−|xi|)!

n! if a ∼ xi

0 otherwise.

It follows that ξ(xi) = Πn·1k

i ∗ ξ(x), which means that ξ is k-tensorial.
Take x ∈ V (X)k and a ∈ [n]k, and suppose that Ea ∗ ξ(x) = 0. This implies

Ea ∗ Tx = 0, which means that a ̸∼ x; i.e., either a ̸≺ x or x ̸≺ a. Using the
hypothesis of the theorem (in the former case) or Lemma 4.13 applied to ζ (in the
latter case), we find that Ea ∗ ζ(x) = 0. It follows that supp(ζ(x)) ⊆ supp(ξ(x)) for
any x ∈ V (X)k. By virtue of Theorem 4.11, this implies that BAk(X,Kn) = Yes.

5. Crystals. In Section 4, we obtained a multilinear criterion for the accep-
tance of the BA hierarchy applied to AGC: According to Theorem 2.2, to have
BAk(X,Kn) = Yes it suffices to find a k-tensorial homomorphism ζ from X

k○
to

FZaff
(K

k○
n ) satisfying the extra condition

a ̸≺ x ⇒ Ea ∗ ζ(x) = 0.(5.1)

(Note that, by virtue of Lemma 4.13, the condition “a ̸≺ x” might be replaced

with “a ̸∼ x”.) It follows from Remark 4.9 that FZaff
(K

k○
n ) is a 2k-uniform infinite

hypergraph whose vertices are elements of T n·1k(Z), i.e., k-dimensional integer cubical
tensors of width n, whose entries sum up to 1. As for the hyperedges, a family
{T (i)}i∈[2]k of 2k such tensors forms a hyperedge if and only if there exists an integer
vector q of length n2 − n = |E(Kn)| (i.e., an integer distribution over the edges of
Kn) whose entries sum up to 1 and such that all tensors in the family can be obtained
from q by specific contractions; more precisely, we require that T (i) = q/πi

= Pπi
∗ q

for each i ∈ [2]k.

Definition 5.1. Let q ∈ N0, let n ∈ Nq, and let T ∈ T n(Z). We say that T is
affine if Πn

ϵ ∗ T = 1.

Hence, finding a homomorphism ζ from X
k○

to FZaff
(K

k○
n ) means selecting some k-

dimensional integer affine cubical tensors of width n (one for each tuple x ∈ V (X)k)
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in such a way that the hyperedge relation is preserved. In order for ζ to be k-tensorial,
this family of tensors needs to behave well with respect to projections: The tensor
associated with the (combinatorial) projection of a tuple x of vertices onto a tuple
i ∈ [k]k should be the (geometric) projection of the tensor associated with x onto
the hyperplane generated by i; in symbols, ζ(xi) = Πn·1k

i ∗ ζ(x). One way to build
a family of tensors having this property is to consider the k-dimensional projections
of a single higher-dimensional affine cubical tensor C of width n, whose dimension q
is the number of vertices of X. Specifically, we build a map ζC associated with the
tensor C as follows: The image of a tuple x ∈ V (X)k under ζC is the projection of

C onto the hyperplane generated by x; i.e., the tensor Π
n·1q
x ∗ C. In this way, ζC is

automatically k-tensorial. Indeed, Lemma 3.9 and Lemma 3.5 imply that

ζC(xi) = Π
n·1q
xi ∗ C = Πn·1k

i ∗Πn·1q
x ∗ C = Πn·1k

i ∗ ζC(x),

as needed.
For the map ζC to yield a homomorphism from X

k○
to FZaff

(K
k○
n ), it is enough

to require that the 2-dimensional projections of C be equal up to taking the transpose
and have zero diagonal (cf. the proof of Theorem 2.6 in Section 6). Since a cubical
tensor C of width n and dimension q with this property exists for all choices of n ≥ 3
and q, any loopless digraph X is accepted by any level of the AIP hierarchy applied
to the template Kn for any n ≥ 3—whence it follows that to fool any level of the AIP
hierarchy applied to PCSP(Kc,Kd) one can simply take the clique Kd+1 (cf. [37]).

This clearly cannot be true for the stronger BA hierarchy that, unlike AIP, is
sound in the limit. The obstruction is the condition (5.1). The goal is then to identify
a class of more refined tensors C such that the associated homomorphism ζC satisfies
the above condition. To this end, we start by enforcing a stronger requirement on the
projections on C: The k-dimensional (as opposed to 2-dimensional) projections of C
should coincide. Note that we cannot require that all such projections be equal. In-
deed, already for k = 2, if a matrix M is the projection of C onto some 2-dimensional
plane xy, then the projection of C onto the reflected plane yx is MT . If these two
projections need to be equal, it follows that M must be symmetric. In addition, M
is required to be affine and have zero diagonal, which clearly leads to a contradiction.
We then relax the hypothesis, by requiring that only the oriented k-dimensional pro-
jections be equal. We say that a tensor having this property is a crystal, as we next
define.

Given q, k ∈ N, we let [q]k→ denote the set of increasing tuples in [q]k; i.e., [q]k→ =
{(i1, . . . , ik) ∈ [q]k s.t. i1 < i2 < · · · < ik}. We also set [q]0→ = {ϵ}. Observe that
[q]k→ ̸= ∅ if and only if k ≤ q.

Definition 5.2 (Formal version of Definition 2.3). Let q, n ∈ N be such that

k ∈ {0, . . . , q}. A cubical tensor C ∈ T n·1q (Z) is a k-crystal if Π
n·1q

i ∗C = Π
n·1q

j ∗C
for each i, j ∈ [q]k→. In this case, the k-shadow of C is the tensor Π

n·1q

i ∗C (for some
i ∈ [q]k→).

Remark 5.3. Given a not necessarily increasing tuple j ∈ [q]k, we can always find
two tuples i ∈ [q]k→ and ℓ ∈ [k]k for which j = iℓ. Then, if S is the k-shadow of a
k-crystal C, we obtain

Π
n·1q

j ∗ C = Π
n·1q

iℓ
∗ C L .3.9

=

(
Πn·1k

ℓ

k∗Πn·1q

i

)
∗ C

L .3.5
= Πn·1k

ℓ ∗
(
Π

n·1q

i ∗ C
)

= Πn·1k

ℓ ∗ S.
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Figure 5.1: The tensor S from Example 5.5.

If |ℓ| = k (equivalently, |j| = k), the tensor Πn·1k

ℓ ∗ S is a reflection of S; i.e., it is
obtained from S by simply permuting its modes (cf. Section 3.5). As a consequence,
the definition above may be rephrased by asking that the projections of a k-crystal
onto hyperplanes generated by k distinct modes should be equal up to the reflection
associated with the orderings of the modes.

Let now C be a k-crystal, and let S be its k-shadow. The condition (5.1) for the map
ζC associated with C becomes now a condition on the shadow S: The only entries of
S that are allowed to be nonzero are the ones whose coordinates are all distinct. We
say that a tensor satisfying this requirement is hollow.

Definition 5.4. Let k ∈ N, let n ∈ Nk, and let T ∈ T n(Z). A tuple a ∈ [n] is a
tie for T if |a| < k and a ∈ supp(T ). We say that T is hollow if T does not have any
ties.

In summary, we have (informally) shown that an affine q-dimensional k-crystal
C of width n whose k-shadow is hollow yields a k-tensorial homomorphism ζC sat-
isfying (5.1) and thus, through Theorem 2.2, certifies that BAk(X,Kn) = Yes if X
has q vertices. (How to explicitly construct ζC from a hollow-shadowed crystal C is
discussed in more detail in the proof of Theorem 2.6 in Section 6.) The problem is
now to verify if such crystals actually exist. The next example shows that it is not
possible to build a hollow-shadowed crystal whose width is too small.

Example 5.5. We now show by contradiction that, for any q ≥ 4, it is not possible
to build an affine q-dimensional 3-crystal C of width 3 whose 3-shadow S is hollow.

Suppose that such C exists. First, observe that S belongs to T 3·13(Z); i.e., it is
a 3 × 3 × 3 integer tensor. Figure 5.1 shows S together with its three 2-dimensional
oriented projections; in grey are the cells that need to be zero to satisfy the hollowness
requirement, while each of the other six cells is assigned a different colour.11 We shall
see in Proposition 5.10 that, if C is a 3-crystal, it also needs to be a 2 crystal; let S̃

11The colours in Figure 5.1 are not related to the colours used in Section 2.2 and in Example 5.19.
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be the 2-shadow of C. Then, for any i ∈ [3]2→, we have

Π3·13

i ∗ S = Π3·13

i ∗
(
Π

3·1q

⟨3⟩ ∗ C
)

L .3.5
= Π3·13

i

3∗Π3·1q

⟨3⟩ ∗ C
L .3.9
= Π

3·1q

⟨3⟩i
∗ C = Π

3·1q

i ∗ C = S̃.

In other words, S is a 2-crystal itself. It follows that the three oriented 2-dimensional
projections of S depicted in Figure 5.1 need to coincide:

= = .

This forces all six non-grey entries of S to be equal. On the other hand, C is affine,
and we will see in Lemma 5.22 that S is affine, too. Since the entries of S are integers,
this yields a contradiction.

As a consequence, taking an arbitrary digraph with high chromatic number is not
enough for fooling the BA hierarchy applied to AGC; in particular, unlike for the
AIP hierarchy, one cannot simply use cliques as fooling instances. This motivates the
strategy, discussed in Section 2.3 (see also Section 6), of using shift digraphs instead
of cliques as fooling instances. To guarantee BAk acceptance for this more refined
class of digraphs, it shall be enough to have hollow-shadowed crystals whose width is
sub-exponential in k. The result stated next is the main technical contribution of this
work, and it shows the existence of hollow-shadowed crystals whose width is quadratic
in k.

Theorem 5.6 (Theorem 2.4 restated). For any k ≤ q ∈ N there exists an affine

k-crystal C ∈ T k2+k
2 ·1q (Z) with hollow k-shadow.

The core of this section is dedicated to the proof of the next result, from which
Theorem 2.4 will follow via a simple crystalisation argument described in Section 5.3.

Theorem 5.7 (Theorem 2.5 restated). For any k ∈ N there exists a hollow affine

(k − 1)-crystal C ∈ T k2+k
2 ·1k(Z).

Our strategy to prove Theorem 2.5 shall be the following:
(♠ 1) We start with a hollow affine (k − 1)-dimensional (k − 2)-crystal U of width

k2−k
2 , whose existence we assume by induction.

(♠ 2) We build a (not necessarily hollow) k-dimensional (k − 1)-crystal V whose
shadow is U . This is done by using a general construction—described in
Section 5.2—that, given a “realistic system of shadows” S, produces a “re-
alisation” of S, i.e., a tensor whose projections are precisely the members
of S. In particular, the construction yields the crystalisation procedure of
Section 5.3.

(♠ 3) We pad V with k layers of zeros in each dimension, thus obtaining a wider
tensor W that is still a k-dimensional (k − 1)-crystal.

(♠ 4) We modify W by adding to it certain transparent crystals, which we call
quartzes, discussed in Section 5.4. These crystals have the property of pro-
jecting an all-zero shadow, which implies in particular that the tensor C
obtained after this process is still a crystal.

(♠ 5) By carefully choosing the quartzes, we end up with C being hollow (as shown
in Section 5.5).
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Remark 5.8. The step (♠ 3) has the consequence that the hollow crystals resulting
from this process are progressively wider as k increases. In fact, we are not able to
build an affine hollow (k− 1)-crystal C ∈ T n·1k(Z) for all choices of k and n. This is
not a deficit of our methods: For instance, it follows from Example 5.5 that an affine
hollow 2-crystal in T 3·13(Z) cannot exist.

Remark 5.9. All of the steps (♠ 1)–(♠ 5) in the proof of Theorem 2.5 are construc-
tive, in that they directly translate into an algorithm to find the required crystal. As
a consequence, the proof of Theorem 2.4 on the existence of hollow-shadowed crystals
of quadratic width is constructive, too.

5.1. Monotonicity of crystals. As a warm-up, we start by proving the next
monotonicity property of crystals.

Proposition 5.10. Let q, n ∈ N, let h, k ∈ N0, and suppose that h ≤ k < q.
Then any k-crystal in T n·1q (Z) is also an h-crystal.

Before proving the proposition, we illustrate it with an example.

Example 5.11. Suppose for concreteness that h = 2, k = 3, and q = 6, and let
C be a 6-dimensional 3-crystal. To simplify the notation in this example, let Cij...

denote the projection of C onto the modes (i, j, . . . ). To see why Proposition 5.10
is true, observe first that some of the oriented 2-dimensional projections of C must
be equal as an immediate consequence of the definition of a 3-crystal. For example,
the fact that, say, C12 = C23 immediately follows from the fact that C123 = C234—
which, in turn, is implied by C being a 3-crystal. However, in order to show that,
say, C12 = C56, one step is not sufficient: Two of the equalities enforced by C being a
3-crystal need to be considered. For example, we may derive from C123 = C456 that
C12 = C45, and from C345 = C456 that C45 = C56.

Thus, in some sense, Proposition 5.10 relies on the connectedness of the graph encod-
ing the projections of the given k-crystal onto lower dimensional spaces. The proof
below formalises this idea in arbitrary dimensions via a simple minimality argument.
We point out that the assumption k < q is crucial for this argument to work—and
for the result to hold. Indeed, it is easily verified from Definition 2.3 that any tensor
C ∈ T n·1q (Z) is a k-crystal for k = q.

Proof of Proposition 5.10. We can assume that h = k − 1 without loss of gen-
erality. Given a tuple i ∈ [q]h→ and p ∈ [q] \ set(i), we define i ⊞ p as the tuple in
[q]k→ obtained by inserting p into i in the unique position that makes the resulting
tuple monotonically increasing; in other words, i ⊞ p = (i⟨α⟩, p, i(α+1,...,h)), where

α = |{β ∈ [h] : iβ < p}|. Similarly, given j ∈ [q]k→ and r ∈ set(j), we define j ⊟ r as
the tuple in [q]h→ obtained by removing r from j.

Let C be a k-crystal in T n·1q (Z), and consider the tensor S = Π
n·1q

⟨h⟩ ∗C. We now

show that Π
n·1q

i ∗ C = S for each i ∈ [q]h→, which implies the result. For the sake

of contradiction, let i ∈ [q]h→ be a tuple such that Π
n·1q

i ∗ C ̸= S and such that the

quantity iT1h is minimum among the set of tuples i′ ∈ [q]h→ for which Π
n·1q

i′ ∗C ̸= S.
Notice that the set [q]\set(i) has at least two elements as h = k−1 ≤ q−2. Therefore,
the numbers µ = min([q] \ set(i)) and ν = min([q] \ (set(i) ∪ {µ})) are well defined.
Consider the tuples a = i ⊞ ν and b = a ⊟ ak ⊞ µ (where the operations are meant
to be executed from the left to the right). By construction, we have 2 ≤ ν ≤ k + 1,
so ν − 1 ∈ [k] = set(⟨k⟩). Hence, we can define the tuple c = ⟨k⟩ ⊟ (ν − 1). By the
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definition of µ and ν, we have that aν−1 = ν. This implies that ac = i, so

S ̸= Π
n·1q

i ∗ C = Π
n·1q
ac ∗ C L .3.9

=

(
Πn·1k

c

k∗Πn·1q
a

)
∗ C L .3.5

= Πn·1k
c ∗

(
Π

n·1q
a ∗ C

)

= Πn·1k
c ∗

(
Π

n·1q

b ∗ C
)

L .3.5
=

(
Πn·1k

c

k∗Πn·1q

b

)
∗ C L .3.9

= Π
n·1q

bc
∗ C,

(5.2)

where the fourth equality uses that C is a k-crystal and that a,b ∈ [q]k→. Observe
that ak ≥ ν > µ, so b ≤ a entrywise. It follows that bc ≤ ac = i entrywise.

Assume first that ν ≤ k. In this case, we have ch = k. We claim that ih > ν;
otherwise, we would have ih ≤ ν ≤ k, which would yield set(i) ∪ {µ} = [k] since i
is monotonically increasing. This would force ν = k + 1, a contradiction. In turn,
ih > ν implies that ak = ih. In particular, this means that ak > µ, so bk < ak. We
conclude that bch = bk < ak = ih. Since, as noted above, bc ≤ i entrywise, it follows

that bT
c 1h < iT1h. Putting all together, we have derived that Π

n·1q

bc
∗ C ̸= S and

bT
c 1h < iT1h, thus contradicting our minimality assumption.

On the other hand, if ν = k+1, we deduce that i = ⟨k⟩⊟µ, so a = ⟨k⟩⊟µ⊞(k+1),
thus yielding ak = k + 1. Therefore,

b = ⟨k⟩⊟ µ⊞ (k + 1)⊟ ak ⊞ µ = ⟨k⟩⊟ µ⊞ (k + 1)⊟ (k + 1)⊞ µ

= ⟨k⟩⊟ µ⊞ µ = ⟨k⟩,

while c = ⟨k⟩ ⊟ (ν − 1) = ⟨k⟩ ⊟ k = ⟨h⟩ and, thus, bc = ⟨k⟩⟨h⟩ = ⟨h⟩. Then, (5.2)

yields Π
n·1q

⟨h⟩ ∗ C ̸= S, which again contradicts our assumptions.

Hence, we have shown that Π
n·1q

i ∗ C = S for each i ∈ [q]h→, and the proof is
concluded.

5.2. Systems of shadows. A crystal tensor has the property of projecting the
same shadow onto each oriented hyperplane of appropriate dimension, cf. Defini-
tion 2.3. The step (♠ 2) of the strategy to prove Theorem 2.5 requires reconstructing
a crystal from its shadow. We now show how to accomplish this task. In fact,
our approach shall be more general: In Theorem 5.13, we characterise those sets of
(lower-dimensional) tensors that can be realised as the oriented projections of a single
(higher-dimensional) tensor. Then, we shall see in Section 5.3 (Corollary 5.18) that
this characterisation easily implies the existence of the crystal required in (♠ 2).

Definition 5.12. For p, q ∈ N and n ∈ Nq, a (p,n)-system of shadows is a set
S = {Si}i∈[q]p→ such that Si ∈ T ni(Z) for each i ∈ [q]p→.

• S is a realistic system of shadows if

Πni
r ∗ Si = Π

nj
s ∗ Sj for any i, j ∈ [q]p→, r, s ∈ [p]p−1

→ such that ir = js.

(5.3)

• S is a realisable system of shadows if there exists a tensor C ∈ T n(Z) such
that Πn

i ∗ C = Si for each i ∈ [q]p→.

In other words, a system of p-dimensional “shadow” tensors is realistic if the shadows
are locally compatible with each other in the sense of the requirement (5.3), while it is
realisable if it can actually be realised as the set of p-dimensional oriented projections
of a single q-dimensional tensor. Notice that, for the set S to be nonempty, we must
have p ≤ q. Observe also that the tensors Si and C are not required to be cubical.
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Using Lemma 3.9, it is not hard to check that a realisable system of shadows is
always realistic. As stated in the next theorem, it turns out that the two conditions
are in fact equivalent.

Theorem 5.13. Let p, q ∈ N and n ∈ Nq. A (p,n)-system of shadows is realistic
if and only if it is realisable.

Theorem 5.13 is proved through a nested induction—first on the dimension of the
shadows Si (i.e., p), and second on the sum of the sizes of the modes of the tensor
C that realises the shadows (i.e., nT1q). Lemmas 5.15 and 5.16 contain the base
cases for the second and the first inductions, respectively. We note that the proof of
Theorem 5.13—as well as the proofs of Lemmas 5.15 and 5.16—is constructive, as it
directly provides a procedure to recover the tensor C realising a given realistic system
of shadows S. See also Example 5.19, which illustrates this procedure applied to the
problem of building a 4-dimensional 2-crystal having a given shadow.

In order to establish that a realistic system of shadows is always realisable—
the non-trivial direction in Theorem 5.13—we start by showing that the problem is
invariant under reflections of the tensors involved.

Lemma 5.14. Let p, q ∈ N, let ℓ ∈ [q]q be such that |ℓ| = q, and let n ∈ Nq. If
every realistic (p,nℓ)-system of shadows is realisable then every realistic (p,n)-system
of shadows is realisable.

Proof. For purely typographical reasons, in this proof we will adopt an in-line
notation for the operation of tuple projection: Given tuples a,b, c, . . . of suitable
lengths, we will denote the iterated projection abc...

by abc · · · .
Since every permutation can be expressed as the composition of transpositions,

it is enough to consider the case that ℓ is a transposition; in particular, ℓℓ = ⟨q⟩. Let
S = {Si}i∈[q]p→ be a realistic (p,n)-system of shadows. For any i ∈ [q]p→, let i+ be the
(unique) tuple in [p]p such that ℓii+ ∈ [q]p→. Let also i− be the (unique) tuple in [p]p

such that i+i− = i−i+ = ⟨p⟩. For each i ∈ [q]p→, define the tensor

S̃i = Πnℓii+

i− ∗ Sℓii+ .(5.4)

Observe that S̃i ∈ T nℓi(Z), so S̃ = {S̃i}i∈[q]p→ is a (p,nℓ)-system of shadows. We

claim that S̃ is a realistic system. To prove the claim, take i, j ∈ [q]p→ and r, s ∈ [p]p−1
→

such that ir = js. We need to show that

Πnℓi
r ∗ S̃i = Πnℓj

s ∗ S̃j.(5.5)

Let α,β ∈ [p−1]p−1 be the (unique) tuples such that i−rα ∈ [p]p−1
→ and αβ = βα =

⟨p− 1⟩. We claim that j−sα ∈ [p]p−1
→ . Indeed, for any x, y ∈ [p− 1] such that x < y

we have

i−rαx < i−rαy ⇒ ℓii+i−rαx < ℓii+i−rαy

⇒ ℓirαx < ℓirαy ⇒ ℓjsαx < ℓjsαy

⇒ ℓjj+j−sαx < ℓjj+j−sαy ⇒ j−sαx < j−sαy,

thus proving the claim. Therefore,

Πnℓi
r ∗ S̃i

(5.4)
= Πnℓi

r ∗
(
Πnℓii+

i− ∗ Sℓii+

)
L .3.5
= Πnℓi

r

p
∗Πnℓii+

i− ∗ Sℓii+
L .3.9
= Πnℓii+

i−r ∗ Sℓii+

= Πnℓii+

i−rαβ ∗ Sℓii+
L .3.9
= Πnℓirα

β

p−1
∗ Πnℓii+

i−rα ∗ Sℓii+(5.6)

L .3.5
= Πnℓirα

β ∗
(
Πnℓii+

i−rα ∗ Sℓii+

)
(5.7)



APPROXIMATE GRAPH COLOURING 33

and, similarly,

Πnℓj
s ∗ S̃j = Πnℓjsα

β ∗
(
Πnℓjj+

j−sα ∗ Sℓjj+

)
.

(5.8)

Let us now focus on the tuples ℓii+, ℓjj+ ∈ [q]p→ and i−rα, j−sα ∈ [p]p−1
→ . Observe

that

ℓii+i−rα = ℓirα = ℓjsα = ℓjj+j−sα.

Using that S is a realistic system, we deduce

Πnℓii+

i−rα ∗ Sℓii+ = Πnℓjj+
j−sα ∗ Sℓjj+.(5.9)

Combining (5.6), (5.8), and (5.9), and recalling that ir = js, yields (5.5), thus proving
that S̃ is a realistic (p,nℓ)-system of shadows, as claimed. From the hypothesis of the
lemma, we deduce that S̃ is realisable, so there exists a tensor C̃ ∈ T nℓ(Z) such that
Πnℓ

i ∗ C̃ = S̃i for each i ∈ [q]p→. Define C = Πnℓ
ℓ ∗ C̃ ∈ T n(Z) (where we are using

that ℓℓ = ⟨q⟩). Given i ∈ [q]p→, we find

Πn
i ∗ C = Πn

i ∗ (Πnℓ
ℓ ∗ C̃) = Πn

ii+i− ∗ (Πnℓ
ℓ ∗ C̃)

L .3.5
= Πn

ii+i−
q
∗Πnℓ

ℓ ∗ C̃
L .3.9
= Πnii+

i−
p
∗Πni

i+
p
∗Πn

i

q
∗Πnℓ

ℓ ∗ C̃ L .3.9
= Πnii+

i−
p
∗Πnℓ

ℓii+ ∗ C̃
L .3.5
= Πnii+

i− ∗ (Πnℓ
ℓii+ ∗ C̃)

= Πnii+

i− ∗ S̃ℓii+ .(5.10)

Notice that ℓℓii+i− = i, which is an increasing tuple. Hence, (ℓii+)
+

= i− and,

consequently, (ℓii+)
−
= i+. It follows from (5.4) that

S̃ℓii+ = Πnℓℓii+i−

i+ ∗ Sℓℓii+i− = Πni
i+ ∗ Si.(5.11)

Combining (5.10) and (5.11) yields

Πn
i ∗ C = Πnii+

i− ∗ (Πni
i+ ∗ Si)

L .3.5
= Πnii+

i−
p
∗Πni

i+ ∗ Si
L .3.9
= Πni

⟨p⟩ ∗ Si
L .3.10
= Si,

which concludes the proof that S is a realisable system of shadows.

The next result establishes the base case for the second induction in the proof of
Theorem 5.13. Its proof is a simple connectivity argument for the shadows’ modes,
analogous to the one used to prove Proposition 5.10.

Lemma 5.15. A realistic (p,1q)-system of shadows is realisable for any p, q ∈ N.
Proof. Let S = {Si}i∈[q]p→ be a realistic (p,1q)-system of shadows. For any i ∈

[q]p→, Si ∈ T (1q)i(Z) = T 1p(Z). We claim that Si = Sj for any i, j ∈ [q]p→. Define,
for each pair i, j ∈ [q]p→, their distance d(i, j) as the cardinality of the set {t ∈ [p] :
it ̸= jt}. Suppose, for the sake of contradiction, that the claim is false, and let
i, j ∈ [q]p→ attain the minimum distance among all pairs i′, j′ for which Si′ ̸= Sj′ . Let
α = max{t ∈ [p] : it ̸= jt}. Assume, without loss of generality, that iα < jα, and
define a new tuple ℓ ∈ [q]p obtained from i by replacing iα with jα. Observe that
i1 < i2 < · · · < iα−1 < iα < jα < jα+1 = iα+1 < iα+2 < · · · < ip, so ℓ ∈ [q]p→. Letting
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r ∈ [p]p−1
→ be obtained from ⟨p⟩ by deleting its α-th entry, observe that ir = ℓr. Using

that S is a realistic system, we obtain Π
1p
r ∗ Si = Π

1p
r ∗ Sℓ. Therefore,

E1p ∗ Si
L .3.8
= E1p−1 ∗Π

1p
r ∗ Si = E1p−1 ∗Π

1p
r ∗ Sℓ

L .3.8
= E1p ∗ Sℓ,

so Sℓ = Si ̸= Sj. But this contradicts the choice of the pair (i, j), as d(ℓ, j) = d(i, j)−1.
Hence, the claim is true. We can then define a tensor C ∈ T 1q (Z) by setting E1q

∗C =
E1p ∗ Si for any i ∈ [q]p→. In this way, we get

E1p ∗Π1q

i ∗ C L .3.8
= E1q ∗ C = E1p ∗ Si.

We conclude that Π
1q

i ∗ C = Si for any i ∈ [q]p→, which means that S is a realisable
system.

The next result establishes the base case for the first induction in the proof of
Theorem 5.13.

Lemma 5.16. A realistic (1,n)-system of shadows is realisable for any q ∈ N and
n ∈ Nq.

Example 5.17. For q = 2, the statement above expresses the fact that, given two
integer vectors S1 of length n1 and S2 of length n2 such that the sums of the entries
of S1 and S2 coincide, there exists an n1 × n2 integer matrix C whose row-sum and
column-sum vectors are S1 and S2, respectively.

Proof of Lemma 5.16. If q = 1, the result is trivially true; indeed, in this case,
the vector C = S1 witnesses that the given system of shadows S = {S1} is realisable.
Hence, assume q ≥ 2. Notice that [q]1→ = [q], so each element of [q]1→ is a single
number. We prove the statement by induction on nT1q. If n

T1q = q, then n = 1q, and
the result follows from Lemma 5.15. Suppose that nT1q ≥ q+1. Using Lemma 5.14,
we can assume nq ≥ 2 without loss of generality. Let S = {Si}i∈[q] be a realistic
(1,n)-system of shadows; observe that Si is a vector in T ni(Z) for each i ∈ [q]. Set
ℓ = Enq

∗ Sq (i.e., ℓ is the last entry of Sq), and consider a new family of tensors

S̃ = {S̃i}i∈[q] defined by

S̃i =

{
Si − ℓEni

if i ∈ [q − 1]
(E1 ∗ Sq, . . . , Enq−1 ∗ Sq) if i = q.

Let ñ = n− Eq and notice that ñ ∈ Nq since nq ≥ 2. We have that Si ∈ T ñi(Z) for
each i ∈ [q], so S̃ is a (1, ñ)-system of shadows.

We now show that S̃ is realistic. By definition, [1]0→ = {ϵ}, so we only need to
show that

Πñi
ϵ ∗ S̃i = Π

ñj
ϵ ∗ S̃j ∀ i, j ∈ [q].(5.12)

We claim that

Πñi
ϵ ∗ S̃i = Πni

ϵ ∗ Si − ℓ ∀ i ∈ [q].(5.13)

Then, (5.12) will follow from the fact that S is a realistic system. If i ∈ [q − 1],

Πñi
ϵ ∗ S̃i = Πni

ϵ ∗ (Si − ℓEni)
L .3.7
= Πni

ϵ ∗ Si − ℓ,
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so (5.13) holds in this case. Moreover,

Π
ñq
ϵ ∗ S̃q = Π

nq−1
ϵ ∗ (E1 ∗ Sq, . . . , Enq−1 ∗ Sq)

L .3.7
=

∑
b∈[nq−1]

Eb ∗ Sq = 1nq ∗ Sq − ℓ

L .3.7
= Π

nq
ϵ ∗ Sq − ℓ,

so (5.13) holds in this case as well. We conclude that S̃ is indeed a realistic system.
Since ñT1q = nT1q−1, we have from the inductive hypothesis that S̃ is realisable,

so there exists a tensor C̃ ∈ T ñ(Z) such that Πñ
i ∗ C̃ = S̃i for each i ∈ [q]. Define a

tensor C ∈ T n(Z) by setting, for each b ∈ [n],

Eb ∗ C =


ℓ if b = n
0 if b ̸= n and bq = nq

Eb ∗ C̃ if bq ̸= nq.
(5.14)

(Notice that the last line of the right-hand side of the above expression is well defined
as, if bq ̸= nq, then b ∈ [ñ].) Take i ∈ [q]; we claim that Πn

i ∗ C = Si. For a ∈ [ni],
we find

Ea ∗Πn
i ∗ C L .3.8

=
∑
b∈[n]
bi=a

Eb ∗ C.

For i ̸= q, this yields

Ea ∗Πn
i ∗ C =

∑
b∈[n]
bi=a
bq=nq

Eb ∗ C +
∑
b∈[n]
bi=a
bq ̸=nq

Eb ∗ C (5.14)
= ℓ · δa,ni

+
∑
b∈[ñ]
bi=a

Eb ∗ C̃

(where δa,ni
is 1 if a = ni, 0 otherwise)

L .3.8
= ℓ · δa,ni

+ Ea ∗Πñ
i ∗ C̃

= ℓ · δa,ni
+ Ea ∗ S̃i = ℓ · δa,ni

+ Ea ∗ (Si − ℓEni
)

= Ea ∗ Si.

For i = q, if a = nq we get

Ea ∗Πn
q ∗ C =

∑
b∈[n]
bq=nq

Eb ∗ C (5.14)
= ℓ = Ea ∗ Sq,

while if a ̸= nq we get

Ea ∗Πn
q ∗ C =

∑
b∈[n]
bq=a

Eb ∗ C (5.14)
=

∑
b∈[ñ]
bq=a

Eb ∗ C̃ L .3.8
= Ea ∗Πñ

q ∗ C̃ = Ea ∗ S̃q

= Ea ∗ (E1 ∗ Sq, . . . , Enq−1 ∗ Sq) = Ea ∗ Sq.

It follows that Πn
i ∗ C = Si, as claimed. Therefore, S is a realisable system.



36 L. CIARDO, S. ŽIVNÝ

Proof of Theorem 5.13. Let S = {Si}i∈[q]p→ be a realisable system of shadows; i.e.,
there exists C ∈ T n(Z) such that Πn

i ∗ C = Si for each i ∈ [q]p→. For any i, j ∈ [q]p→
and r, s ∈ [p]p−1

→ such that ir = js, we find

Πni
r ∗ Si = Πni

r ∗ (Πn
i ∗ C)

L .3.5
= Πni

r

p
∗Πn

i ∗ C
L .3.9
= Πn

ir ∗ C = Πn
js ∗ C

L .3.9
= Π

nj
s

p
∗Πn

j ∗ C
= Π

nj
s ∗ Sj,

which shows that S is a realistic system. Hence, the “if” part of the statement is true.
Next, we focus on the “only if” part.

We prove the result by nested induction, first on p and second on nT1q. For
p = 1, the result follows from Lemma 5.16. Suppose that p ≥ 2. For nT1q = q (which
implies n = 1q), the result follows from Lemma 5.15. Suppose that nT1q ≥ q + 1.
Using Lemma 5.14, we can safely assume nq ≥ 2. If q = 1, then [q]p→ = ∅ and the
statement is trivially true, so we can assume q ≥ 2. Let S = {Si}i∈[q]p→ be a realistic
(p,n)-system of shadows; we need to show that S is realisable.

Set n̂ = (n1, . . . , nq−1) ∈ Nq−1. For any i ∈ [q − 1]p−1
→ , we define Ŝi ∈ T n̂i(Z)

by Ea ∗ Ŝi = E(a,nq) ∗ S(i,q) for each a ∈ [n̂i]. Observe that the last expression is
well defined, as i ∈ [q − 1]p−1

→ implies that (i, q) ∈ [q]p→. We claim that the family
Ŝ = {Ŝi}i∈[q−1]p−1

→
is a realistic (p − 1, n̂)-system of shadows. Take i, j ∈ [q − 1]p−1

→
and r, s ∈ [p− 1]p−2

→ such that ir = js. For any a ∈ [n̂ir ], we find

Ea ∗Πn̂i
r ∗ Ŝi

L .3.8
=

∑
b∈[n̂i]
br=a

Eb ∗ Ŝi =
∑

b∈[n̂i]
br=a

E(b,nq) ∗ S(i,q) =
∑

c∈[n(i,q)]

c(r,p)=(a,nq)

Ec ∗ S(i,q)

L .3.8
= E(a,nq) ∗Π

n(i,q)

(r,p) ∗ S(i,q)(5.15)

and, similarly,

Ea ∗Πn̂j
s ∗ Ŝj = E(a,nq) ∗Π

n(j,q)

(s,p) ∗ S(j,q).

(5.16)

We now use the fact that S is a realistic system. In particular, we apply the re-
quirement (5.3) to the tuples (i, q), (j, q) ∈ [q]p→ and (r, p), (s, p) ∈ [p]p−1

→ (note that
(i, q)(r,p) = (ir, q) = (js, q) = (j, q)(s,p)). Since (a, nq) ∈ [n(i,q)(r,p) ], we obtain

E(a,nq) ∗Π
n(i,q)

(r,p) ∗ S(i,q) = E(a,nq) ∗Π
n(j,q)

(s,p) ∗ S(j,q).

Combining this with (5.15) and (5.16) yields

Ea ∗Πn̂i
r ∗ Ŝi = Ea ∗Πn̂j

s ∗ Ŝj.

We conclude that Ŝ is a realistic system, as claimed. It follows from the inductive
hypothesis that Ŝ is realisable, so we can find a tensor Ĉ ∈ T n̂(Z) such that Πn̂

i ∗Ĉ = Ŝi

for each i ∈ [q − 1]p−1
→ . Let now ñ = n − Eq ∈ Nq. For any i ∈ [q]p→, define a tensor

S̃i ∈ T ñi(Z) as follows: If ip ̸= q (in which case i ∈ [q− 1]p→) we set S̃i = Si −Πn̂
i ∗ Ĉ;

if ip = q, for b ∈ [ñi], we set Eb ∗ S̃i = Eb ∗ Si (where the last expression is well

defined as [ñ] ⊆ [n], so [ñi] ⊆ [ni]). We claim that the family S̃ = {S̃i}i∈[q]p→ is a
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realistic (p, ñ)-system of shadows. To show that the claim is true, we shall first prove
that the equation

Ea ∗Πñi
r ∗ S̃i =

{
Ea ∗Πni

r ∗ Si if irp−1
= q

Ea ∗ (Πni
r ∗ Si − Ŝir) otherwise

(5.17)

is satisfied for any i ∈ [q]p→, any r ∈ [p]p−1
→ , and any a ∈ [ñir ]. First, notice that, if

ip = q,

[ñi] = [ñi1 ]× · · · × [ñip−1
]× [ñip ] = [ni1 ]× · · · × [nip−1

]× [nq − 1]

= {b ∈ [ni] : bp ̸= nq}

while, if ip ̸= q, ñi = n̂i = ni, so [ñi] = [n̂i] = [ni]. Suppose that irp−1
= q. In this

case, we have rp−1 = p and ip = q. Hence,

Ea ∗Πñi
r ∗ S̃i

L .3.8
=

∑
b∈[ñi]
br=a

Eb ∗ S̃i =
∑

b∈[ni]
br=a
bp ̸=nq

Eb ∗ Si

=
∑

b∈[ni]
br=a

Eb ∗ Si
L .3.8
= Ea ∗Πni

r ∗ Si,

so (5.17) holds in this case. Suppose now that irp−1
̸= q. This can happen either if

ip ̸= q (case a), or if ip = q and rp−1 ̸= p (case b), and it implies that ir ∈ [q − 1]p−1
→ .

In case a,

Πñi
r ∗ S̃i = Πni

r ∗ (Si −Πn̂
i ∗ Ĉ)

L .3.5
= Πni

r ∗ Si −Πni
r

p
∗Πn̂

i ∗ Ĉ
L .3.9
= Πni

r ∗ Si −Πn̂
ir ∗ Ĉ = Πni

r ∗ Si − Ŝir ,

where the last equality follows from the property of Ĉ. So, (5.17) holds in this case.
In case b, we must have r = ⟨p− 1⟩. Hence,

Ea ∗Πñi
r ∗ S̃i

L .3.8
=

∑
b∈[ñi]

b⟨p−1⟩=a

Eb ∗ S̃i =
∑

b∈[ni]
b⟨p−1⟩=a
bp ̸=nq

Eb ∗ Si

=
∑

b∈[ni]
b⟨p−1⟩=a

Eb ∗ Si − E(a,nq) ∗ Si

L .3.8
= Ea ∗Πni

⟨p−1⟩ ∗ Si − E(a,nq) ∗ Si

= Ea ∗Πni

⟨p−1⟩ ∗ Si − E(a,nq) ∗ S(i⟨p−1⟩,q)

= Ea ∗Πni

⟨p−1⟩ ∗ Si − Ea ∗ Ŝi⟨p−1⟩
L .3.5
= Ea ∗ (Πni

r ∗ Si − Ŝir),

where the penultimate equality comes from the definition of Ŝ and from the fact that,
in this case, ñir = n̂ir , so a ∈ [n̂ir ]. We conclude that (5.17) also holds in case b.
Using (5.17) and the fact that S is a realistic system, we easily conclude that S̃ is a
realistic system, too. Indeed, take i, j ∈ [q]p→ and r, s ∈ [p]p−1

→ such that ir = js, and
choose a ∈ [ñir ]. Observe that irp−1

= jsp−1
. If irp−1

= q, we find

Ea ∗Πñi
r ∗ S̃i = Ea ∗Πni

r ∗ Si = Ea ∗Πnj
s ∗ Sj = Ea ∗Πñj

s ∗ S̃j;
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otherwise,

Ea ∗Πñi
r ∗ S̃i = Ea ∗ (Πni

r ∗ Si − Ŝir) = Ea ∗ (Πnj
s ∗ Sj − Ŝjs) = Ea ∗Πñj

s ∗ S̃j.

It follows that S̃ is indeed a realistic system, as claimed. Since ñT1q = nT1q − 1, we

can then apply the inductive hypothesis to deduce that S̃ is realisable, so there exists
a tensor C̃ ∈ T ñ(Z) such that Πñ

i ∗ C̃ = S̃i for each i ∈ [q]p→.
We now define a tensor C ∈ T n(Z) by setting, for each b ∈ [n],

Eb ∗ C =

{
Eb⟨q−1⟩ ∗ Ĉ if bq = nq

Eb ∗ C̃ if bq ̸= nq.
(5.18)

Take i ∈ [q]p→ and a ∈ [ni]. To conclude the proof, we need to show that

Ea ∗Πn
i ∗ C = Ea ∗ Si.(5.19)

Observe that

Ea ∗Πn
i ∗ C L .3.8

=
∑
b∈[n]
bi=a

Eb ∗ C =
∑
b∈[n]
bi=a
bq=nq

Eb ∗ C +
∑
b∈[n]
bi=a
bq ̸=nq

Eb ∗ C(5.20)

(5.18)
=

∑
b∈[n]
bi=a
bq=nq

Eb⟨q−1⟩ ∗ Ĉ +
∑
b∈[ñ]
bi=a

Eb ∗ C̃.(5.21)

Let us denote the first and the second summand of the rightmost expression in (5.20)
by α and β, respectively. Suppose first that ip = q. If ap ̸= nq, we see that α = 0, so

Ea ∗Πn
i ∗ C (5.20)

=
∑
b∈[ñ]
bi=a

Eb ∗ C̃ L .3.8
= Ea ∗Πñ

i ∗ C̃ = Ea ∗ S̃i = Ea ∗ Si;

if ap = nq, we get β = 0, so

Ea ∗Πn
i ∗ C (5.20)

=
∑
b∈[n]
bi=a
bq=nq

Eb⟨q−1⟩ ∗ Ĉ =
∑
b∈[n]
bi=a

Eb⟨q−1⟩ ∗ Ĉ =
∑
c∈[n̂]

ci⟨p−1⟩=a⟨p−1⟩

Ec ∗ Ĉ

L .3.8
= Ea⟨p−1⟩ ∗Π

n̂
i⟨p−1⟩

∗ Ĉ = Ea⟨p−1⟩ ∗ Ŝi⟨p−1⟩

= E(a⟨p−1⟩,nq) ∗ S(i⟨p−1⟩,q) = Ea ∗ Si.

Suppose now that ip ̸= q, in which case i ∈ [q − 1]p→. We obtain

α =
∑
b∈[n]
bi=a
bq=nq

Eb⟨q−1⟩ ∗ Ĉ =
∑
c∈[n̂]
ci=a

Ec ∗ Ĉ
L .3.8
= Ea ∗Πn̂

i ∗ Ĉ,

β =
∑
b∈[ñ]
bi=a

Eb ∗ C̃ L .3.8
= Ea ∗Πñ

i ∗ C̃ = Ea ∗ S̃i = Ea ∗ (Si −Πn̂
i ∗ Ĉ)

= Ea ∗ Si − Ea ∗Πn̂
i ∗ Ĉ,
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and it follows that

Ea ∗Πn
i ∗ C (5.20)

= α+ β = Ea ∗ Si.

Therefore, (5.19) holds, S is realisable, and the proof is concluded.

5.3. Crystalisation. One easily derives from Theorem 5.13 a crystalisation pro-
cedure, which turns a given crystal S into a new crystal whose shadow is S. This is
precisely what is needed to complete the step (♠ 2) of the proof of Theorem 2.5.

Corollary 5.18. Let n, q ∈ N, let k ∈ [q], and let S ∈ T n·1k(Z) be a (k − 1)-
crystal. Then there exists a k-crystal C ∈ T n·1q (Z) whose k-shadow is S.

Proof. Consider the (k, n · 1q)-system of shadows S = {Si}i∈[q]k→
obtained by

setting Si = S for each i ∈ [q]k→. The fact that S is a (k − 1)-crystal immediately
implies that S is a realistic system of shadows. Using Theorem 5.13, we deduce that
S is realisable—i.e., there exists a tensor C ∈ T n·1q (Z) such that Π

n·1q

i ∗ C = S for
each i ∈ [q]k→. It follows that C is a k-crystal, whose k-shadow is S.

Before proceeding to the next steps towards the proof of Theorem 2.5, we illustrate
the crystalisation procedure on a concrete example, by showing how to produce a
4-dimensional 2-crystal having a given shadow through the construction described in
Section 5.2.

Example 5.19. Throughout this example, we shall indicate the numbers −2, −1,
0, 1, 2, and 3 by the colours blue, green, light grey, yellow, orange, and red, respec-
tively.

Take n = 3, q = 4, and k = 2 in the statement of Corollary 5.18. The goal

is to build a 2-crystal C ∈ T 3·14(Z) whose 2-shadow is the matrix (which is

easily shown to be a 1-crystal, as the row- and column-sum vectors coincide). To
this end, we consider the (2, 3 · 14)-system of shadows S whose members are all equal

to . S is trivially realistic. The goal is to show that it is realisable; indeed, the

tensor C ∈ T 3·14(Z) witnessing this fact would be the crystal we seek. Following the
proof of Theorem 5.13, we create two auxiliary systems of shadows Ŝ and S̃. Ŝ is
a (1, 3 · 13)-system—i.e., both the shadows and the tensor that is claimed to realise
them have one fewer dimension than those for the original system S. In particular,

we see from the proof that all members of Ŝ are the same vector . Again, it is not

hard to verify that Ŝ is a realistic system. To check that it is realisable, we only need
to find a 3-dimensional tensor of width 3 such that summing its entries along all three

modes yields . Either by inspection or using the proof of Lemma 5.16, we find that

Ĉ = ∈ T 3·13(Z)(5.22)

satisfies these conditions. The second auxiliary system of shadows is the (2, (3, 3, 3, 2))-

system S̃ defined as follows: S̃(1,4) = S̃(2,4) = S̃(3,4) = (i.e., the matrix obtained

by slicing off the rightmost column of ); each of the other members of the system
is obtained by taking the corresponding matrix in S and subtracting from it the
projection of Ĉ onto the corresponding modes (i.e., S̃i = Si − Π3·13

i ∗ Ĉ). We see

from (5.22) that all three projections Π3·13

(1,2) ∗ Ĉ, Π3·13

(1,3) ∗ Ĉ, and Π3·13

(2,3) ∗ Ĉ are equal
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Figure 5.2: A 4-dimensional 2-crystal having shadow .

to . Hence, we obtain

S̃(1,2) = S̃(1,3) = S̃(2,3) = − = .

This system is also realistic, and it is such that the sum of the sizes of the modes of the
tensor C̃ that is claimed to realise it is strictly smaller than the corresponding quantity
for the system S. At this point, we simply iterate the process, by repeatedly “slicing”
S̃ into a system of 1-dimensional shadows (which we handle through Lemma 5.16)
and a smaller system of 2-dimensional shadows, until we end up with a system such
that the sizes of all modes are shrunk to 1, so that the tensor realising it is a single
number (see Lemma 5.15). Throughout this process, Lemma 5.14 guarantees that the
tensors can be rotated in a way that we slice along the rightmost mode, thus avoiding
complications with the orientations of the shadows. In this way, we find that the
system S̃ is realised by the tensor C̃ whose two blocks are

and the all-zero 3×3×3 tensor, respectively. Finally, to obtain a tensor C realising the

initial system S (i.e., a 4-dimensional 2-crystal having shadow ), we glue together

C̃ and Ĉ. The result is shown in Figure 5.2.

5.4. Quartzes. The crystalisation procedure destroys hollowness: Even when
the crystal S in the statement of Corollary 5.18 is hollow, the new crystal C resulting
from the crystalisation is not hollow in general—as it is clear from Example 5.19.
There does not appear to be a natural way of modifying the inductive construction
in Section 5.2 to require that hollowness be preserved along the process. Hence,
to achieve hollowness, we employ a second, separate procedure—step (♠ 4)—which
consists in applying multiple local modifications to the crystal resulting from step
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(♠ 2) (after expanding it with layers of zeros in step (♠ 3)). These modifications are
associated with certain transparent crystals defined next.

Definition 5.20. Let k, n ∈ N, and let a,b ∈ [n]k be such that ai ̸= bi for
each i ∈ [k]. Given z ∈ {0, 1}k, let h(z;a,b) be the tuple in [n]k whose i-th entry
is ai if zi = 0, bi otherwise. The quartz Qa,b is the tensor in T n·1k(Z) defined by

Qa,b =
∑

z∈{0,1}k(−1)z
T 1kEh(z;a,b). Equivalently, Eh(z;a,b) ∗ Qa,b = (−1)z

T 1k for

each z ∈ {0, 1}k, and all other entries are zero.

Let the symbol “⊙” indicate the entrywise multiplication of tuples having the same
length.

Remark 5.21. It is straightforward to check that, for any two tuples z, ẑ ∈ {0, 1}k,
z = ẑ if and only if h(z;a,b) = h(ẑ;a,b). We can write

h(z;a,b) = (1k − z)⊙ a+ z⊙ b.(5.23)

Notice that the operation of tuple projection distributes over “⊙”, in the sense that
(u⊙ v)i = ui ⊙ vi. Hence, for any ℓ ∈ N and any j ∈ [k]ℓ,

[h(z;a,b)]j
(5.23)
= [(1k − z)⊙ a+ z⊙ b]j = (1ℓ − zj)⊙ aj + zj ⊙ bj(5.24)

(5.23)
= h(zj;aj,bj).

We will need the following simple lemma on crystals.

Lemma 5.22. Let q, n ∈ N and k ∈ {0, . . . , q}, let C ∈ T n·1q (Z) be a k-crystal,

and let S be its k-shadow. Then Π
n·1q
ϵ ∗ C = Πn·1k

ϵ ∗ S. In particular, C is affine if
and only if S is affine.

Proof. Observe that ⟨k⟩ ∈ [q]k→ and ⟨k⟩ϵ = ϵ. We obtain

Π
n·1q
ϵ ∗ C = Π

n·1q

⟨k⟩ϵ
∗ C L .3.9

=

(
Πn·1k

ϵ

k∗Πn·1q

⟨k⟩

)
∗ C

L .3.5
= Πn·1k

ϵ ∗
(
Π

n·1q

⟨k⟩ ∗ C
)

= Πn·1k
ϵ ∗ S,

as required. Then, the last part of the statement directly follows from the definition
of an affine tensor (Definition 5.1).

The next proposition collects certain properties of quartzes that shall be useful later.

Proposition 5.23. Let k, n ∈ N, and let a,b ∈ [n]k be such that ai ̸= bi for each
i ∈ [k]. Then
(i) supp(Qa,b) = {a1, b1} × {a2, b2} × · · · × {ak, bk}.
(ii) Ea ∗Qa,b = 1.
(iii) Πn·1k

ℓ ∗Qa,b = Qaℓ,bℓ
for any ℓ ∈ [k]k such that |ℓ| = k.

(iv) Qa,b is a (k − 1)-crystal, and, furthermore, its (k − 1)-shadow is the all-zero
tensor in T n·1k−1(Z).

(v) Πn·1k
ϵ ∗Qa,b = 0.

Proof. To prove (i), take S = {a1, b1} × · · · × {ak, bk} ⊆ [n]k. The map z 7→
h(z;a,b) yields a bijection between {0, 1}k and S. Hence,

supp(Qa,b) =
⋃

z∈{0,1}k

supp(Eh(z;a,b)) =
⋃

z∈{0,1}k

{h(z;a,b)} =
⋃
s∈S

{s} = S.
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To prove (ii), observe that a = h(0k;a,b), whence we find

Ea ∗Qa,b =
∑

z∈{0,1}k

(−1)z
T 1kEa ∗ Eh(z;a,b) = (−1)0

T
k 1k = 1.

To prove (iii), observe that

Qaℓ,bℓ
=

∑
z∈{0,1}k

(−1)z
T 1kEh(z;aℓ,bℓ) =

∑
z∈{0,1}k

(−1)z
T
ℓ 1kEh(zℓ;aℓ,bℓ)

=
∑

z∈{0,1}k

(−1)z
T 1kEh(zℓ;aℓ,bℓ),(5.25)

where the second equality is obtained by noting that summing over z is equivalent to
summing over zℓ, since |ℓ| = k. On the other hand, letting j ∈ [k]k be the tuple for
which ℓj = jℓ = ⟨k⟩,

Πn·1k

ℓ ∗Qa,b =
∑

c∈[n]k

(Ec ∗Πn·1k

ℓ ∗Qa,b)Ec
L .3.8
=

∑
c∈[n]k

( ∑
d∈[n]k

dℓ=c

Ed ∗Qa,b

)
Ec

=
∑

c∈[n]k

(Ecj
∗Qa,b)Ec =

∑
c∈[n]k

(Ec ∗Qa,b)Ecℓ

=
∑

c∈[n]k

∑
z∈{0,1}k

(−1)z
T 1k(Ec ∗ Eh(z;a,b))Ecℓ

=
∑

z∈{0,1}k

(−1)z
T 1k

∑
c∈[n]k

(Ec ∗ Eh(z;a,b))Ecℓ

=
∑

z∈{0,1}k

(−1)z
T 1kE[h(z;a,b)]ℓ

(5.24)
=

∑
z∈{0,1}k

(−1)z
T 1kEh(zℓ;aℓ,bℓ).(5.26)

Combining (5.25) and (5.26), we obtain Πn·1k

ℓ ∗Qa,b = Qaℓ,bℓ
.

To prove (iv), observe that, for any c ∈ [n]k−1,

Ec ∗Πn·1k

⟨k−1⟩ ∗Qa,b
L .3.8
=

∑
d∈[n]k

d⟨k−1⟩=c

Ed ∗Qa,b =
∑
d∈[n]

E(c,d) ∗Qa,b

=
∑

z∈{0,1}k

(−1)z
T 1k

∑
d∈[n]

E(c,d) ∗ Eh(z;a,b).(5.27)

In order for a tuple z ∈ {0, 1}k to give a nonzero contribution to the sum in the
right-hand side of (5.27), we must have that (c, d) = h(z;a,b) for some d ∈ [n], which
implies that

c = (c, d)⟨k−1⟩ = [h(z;a,b)]⟨k−1⟩
(5.24)
= h(z⟨k−1⟩;a⟨k−1⟩,b⟨k−1⟩).

In particular, z⟨k−1⟩ = z̃ for some z̃ ∈ {0, 1}k−1 such that c = h(z̃;a⟨k−1⟩,b⟨k−1⟩).
Then, it follows from Remark 5.21 that such tuple z̃ is unique.
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Notice that h((z̃, 0);a,b) = (c, ak) and h((z̃, 1);a,b) = (c, bk). As a consequence,
we can simplify (5.27) to yield

Ec ∗Πn·1k

⟨k−1⟩ ∗Qa,b =
∑

z∈{0,1}

(−1)(z̃,z)
T 1k

∑
d∈[n]

E(c,d) ∗ Eh((z̃,z);a,b)

= (−1)(z̃,0)
T 1k

∑
d∈[n]

E(c,d) ∗ Eh((z̃,0);a,b)

+ (−1)(z̃,1)
T 1k

∑
d∈[n]

E(c,d) ∗ Eh((z̃,1);a,b)

= (−1)(z̃,0)
T 1k

∑
d∈[n]

E(c,d) ∗ E(c,ak)

+ (−1)(z̃,1)
T 1k

∑
d∈[n]

E(c,d) ∗ E(c,bk)

= (−1)(z̃,0)
T 1k + (−1)(z̃,1)

T 1k

= (−1)z̃
T 1k−1 − (−1)z̃

T 1k−1 = 0.

It follows that Πn·1k

⟨k−1⟩ ∗Qa,b is the all-zero tensor. Take now i ∈ [k]k−1
→ , and let p be

the unique element of [k] \ set(i). Consider the tuple ℓ = (i, p) ∈ [k]k, and notice that
|ℓ| = k and i = ℓ⟨k−1⟩. Hence,

Πn·1k

i ∗Qa,b = Πn·1k

ℓ⟨k−1⟩
∗Qa,b

L .3.9
=

(
Πn·1k

⟨k−1⟩
k∗Πn·1k

ℓ

)
∗Qa,b

L .3.5
= Πn·1k

⟨k−1⟩ ∗
(
Πn·1k

ℓ ∗Qa,b

) P .5.23(iii)
= Πn·1k

⟨k−1⟩ ∗Qaℓ,bℓ
,

which is the all-zero tensor as proved above. This shows that Qa,b is a (k− 1)-crystal
having the all-zero tensor as its (k − 1)-shadow.

Finally, (v) directly follows from (iv) by applying Lemma 5.22.

5.5. Crystals with hollow shadows. We now have all the ingredients for im-
plementing the steps (♠ 1)–(♠ 5), thus completing the proof of Theorem 2.5. Once
that is established, the existence of hollow-shadowed crystals of quadratic width (The-
orem 2.4) can be easily derived.

Proof of Theorem 2.5. We use induction over k. For k = 1, the tensor C =

1 works. For the inductive step, suppose that k ≥ 2. Let n̂ = k2−k
2 and n =

n̂ + k = k2+k
2 . By the inductive hypothesis, we find a hollow affine (k − 2)-crystal

U ∈ T n̂·1k−1(Z) (♠ 1). Using Corollary 5.18, we deduce that there exists a (not
necessarily hollow) (k − 1)-crystal V ∈ T n̂·1k(Z) whose (k − 1)-shadow is U (♠ 2).
By Lemma 5.22, V is affine, too. Consider now the tensor W ∈ T n·1k(Z) defined by
setting, for each a ∈ [n]k, Ea ∗W = Ea ∗V if set(a) ⊆ [n̂], Ea ∗W = 0 otherwise; i.e.,
W is obtained by padding V with k layers of zeros on each mode (♠ 3). Similarly,
define Z ∈ T n·1k−1(Z) by setting, for each a ∈ [n]k−1, Ea ∗Z = Ea ∗U if set(a) ⊆ [n̂],
Ea ∗ Z = 0 otherwise. Observe that supp(U) = supp(Z), so U being hollow implies
Z being hollow as well. We claim that W is a (k − 1)-crystal whose (k − 1)-shadow
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is Z. Indeed, for any i ∈ [k]k−1
→ and a ∈ [n]k−1,

Ea ∗Πn·1k

i ∗W L .3.8
=

∑
b∈[n]k

bi=a

Eb ∗W =
∑

b∈[n̂]k

bi=a

Eb ∗ V

L .3.8
=

{
Ea ∗Πn̂·1k

i ∗ V if set(a) ⊆ [n̂]
0 otherwise

=

{
Ea ∗ U if set(a) ⊆ [n̂]

0 otherwise
= Ea ∗ Z,

so Πn·1k

i ∗W = Z, as wanted. Clearly, the padding operation does not change the sum
of the entries in the tensor, soW is affine. Consider the tuple y = (n̂+1, n̂+2, . . . , n) ∈
[n]k, and define (♠ 4) the tensor

C = W −
∑

d∈[n̂]k

(Ed ∗W )Qd,y.(5.28)

Note that C ∈ T n·1k(Z). We shall prove that C is a hollow affine (k−1)-crystal. Recall
thatW is an affine (k−1)-crystal. Since tensor projection is a linear operation, crystals
are preserved under linear combinations. Hence, it follows from Proposition 5.23(iv)
that C is a (k − 1)-crystal, too, having the same (k − 1)-shadow as W—namely, Z.
Similarly, C is affine by virtue of Proposition 5.23(v). Hence, we are left to show
that C is hollow. To this end, we show that no tuple b ∈ [n]k is a tie for C. This
is proved by induction over the quantity ℓ(b) = |{i ∈ [k] : bi > n̂}|. For the basis of
the induction, suppose that ℓ(b) = 0 (which means that b ∈ [n̂]k). Observe that the
choice of y guarantees that set(y) is disjoint from set(d) for each d ∈ [n̂]k. We find

Eb ∗ C (5.28)
= Eb ∗W −

∑
d∈[n̂]k

(Ed ∗W )(Eb ∗Qd,y)

P .5.23(i)
= Eb ∗W − (Eb ∗W )(Eb ∗Qb,y)

P .5.23(ii)
= Eb ∗W − Eb ∗W = 0,

which means, in particular, that b is not a tie for C. Before dealing with the inductive
step, we establish the following fact:

If c ∈ supp(C) and ci > n̂ for some i ∈ [k], then ci = n̂+ i.(5.29)

To prove (5.29), observe that set(c) ̸⊆ [n̂], so c ̸∈ supp(W ). Therefore, it follows
from (5.28) that c ∈ supp(Qd,y) for some d ∈ [n̂]k. Using Proposition 5.23(i), we
conclude that ci = yi = n̂+ i, as claimed.

Take now b ∈ [n]k with ℓ(b) ≥ 1, and let j ∈ [k] be such that bj > n̂. Suppose,
for the sake of contradiction, that b is a tie for C; i.e., |b| < k and b ∈ supp(C). Let
α < β ∈ [k] be such that bα = bβ . Notice that bα = bβ ∈ [n̂] as, otherwise, (5.29)
would yield bα = n̂ + α ̸= n̂ + β = bβ , a contradiction. In particular, this means
that j ̸∈ {α, β}. Define α̃ = α if α < j, and α̃ = α − 1 if α > j. Similarly, define
β̃ = β if β < j, and β̃ = β − 1 if β > j. Consider also the tuple i ∈ [k]k−1

→ obtained
by removing the j-th element from ⟨k⟩, and observe that biα̃ = bα and biβ̃ = bβ , so

biα̃ = biβ̃ . We note that α̃ ̸= β̃. Indeed, α̃ = β̃ would imply that α̃ = α and β̃ = β−1,
from which it would follow that α < j < β and that α = β − 1, a contradiction. As
a consequence, |bi| < k − 1. Since Z is hollow, it follows that bi ̸∈ supp(Z). For any
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a ∈ [n], let b(a) be the tuple in [n]k obtained by replacing the j-th element of b with
a. We find

0 = Ebi
∗ Z = Ebi

∗Πn·1k

i ∗ C L .3.8
=

∑
a∈[n]k

ai=bi

Ea ∗ C =
∑
a∈[n]

Eb(a) ∗ C

=
∑
a∈[n̂]

Eb(a) ∗ C +
∑

a∈[n]\[n̂]

Eb(a) ∗ C(5.30)

where the second equality follows from the fact that Z is the (k − 1)-shadow of C. If

a ∈ [n̂], ℓ(b(a)) = ℓ(b)−1. Moreover, using that j ̸∈ {α, β}, we have b(a)α = bα = bβ =

b
(a)
β , which means that |b(a)| < k. Using the inductive hypothesis, we deduce that

b(a) ̸∈ supp(C), so Eb(a) ∗C = 0. If a ∈ [n] \ [n̂] and b(a) ∈ supp(C), applying (5.29)
twice yields a = n̂ + j = bj , which implies that b(a) = b. Therefore, it follows
from (5.30) that Eb ∗ C = 0, thus contradicting our assumptions. This establishes
that C is hollow (♠ 5) and concludes the proof of the theorem.

Proof of Theorem 2.4. Using Theorem 2.5, we find a hollow affine (k− 1)-crystal

Ĉ ∈ T k2+k
2 ·1k(Z). Applying Corollary 5.18, we find a k-crystal C ∈ T k2+k

2 ·1q (Z)
whose k-shadow is Ĉ. The fact that C is affine directly follows from Lemma 5.22.

6. Fooling the hierarchy. In this section, we translate the hollow-shadowed
crystals built in Section 5 back to the algorithmic framework. This results in a proof
of Theorem 2.6, which establishes that any loopless digraph is accepted by any level
of the BA hierarchy applied to AGC, provided that the number of colours is large
enough. Then, we prove two results on the BA hierarchy (Propositions 2.10 and 2.11,
both consequences of more general results on linear minions) that are able to “boost”
Theorem 2.6 by relaxing the requirement on the number of colours. These are the
last ingredients needed to establish that the family of shift digraphs introduced in
Section 2.3 provides fooling instances for all levels of the BA hierarchy applied to
AGC for all numbers of colours, and to finally validate the proof of Theorem 2.1
presented in Section 2.3.

Theorem 6.1 (Theorem 2.6 restated). Let 2 ≤ k ∈ N and let X be a loopless
digraph. Then BAk(X,K(k2+k)/2) = Yes.

Proof. We can assume that V (X) = [q] for some q ∈ N. Moreover, by possibly

adding isolated vertices to X, we can assume that q > k. Set n = k2+k
2 . Applying

Theorem 2.4, we construct an affine k-crystal C ∈ T n·1q (Z) whose k-shadow S ∈
T n·1k(Z) is hollow. We claim that the map

ζ : V (X)k → T n·1k(Z)

x 7→ Π
n·1q
x ∗ C

yields a k-tensorial homomorphism from X
k○

to FZaff
(K

k○
n ).

First of all, we need to check that ζ(x) ∈ V (FZaff
(K

k○
n )) = Zaff

(nk) for each
x ∈ V (X)k. This easily follows from the facts that C has integer entries and

Πn·1k
ϵ ∗ ζ(x) = Πn·1k

ϵ ∗
(
Π

n·1q
x ∗ C

)
L .3.5
=

(
Πn·1k

ϵ ∗Πn·1q
x

)
∗ C L .3.9

= Π
n·1q
xϵ ∗ C

= Π
n·1q
ϵ ∗ C = 1,
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where the last equality holds since C is affine.
We now check that ζ sends hyperedges of X

k○
to hyperedges of FZaff

(K
k○
n ). Take

x = (x1, x2) ∈ E(X), so that x
k○ ∈ E(X

k○
). To prove that ζ(x

k○
) ∈ E(FZaff

(K
k○
n )),

we need to find some q ∈ Zaff
(|E(Kn)|) = Zaff

(n2−n) for which ζ(xi) = q/πi
for each

i ∈ [2]k. By Proposition 5.10 we have that C is a 2-crystal; let S̃ be its 2-shadow.
Consider the tuple α defined by α = (1, 2) if x1 < x2, α = (2, 1) if x1 > x2 (notice
that x1 ̸= x2 as X is loopless). Observe that xα ∈ [q]2→ and αα = (1, 2). We consider

the vector q ∈ T n2−n(Z) whose a-th entry is Ea ∗ Πn·12
α ∗ S̃ for any a ∈ E(Kn).

Observe that

S̃ = Π
n·1q

⟨2⟩ ∗ C = Π
n·1q

⟨k⟩⟨2⟩
∗ C L .3.9

=

(
Πn·1k

⟨2⟩
k∗Πn·1q

⟨k⟩

)
∗ C L .3.5

= Πn·1k

⟨2⟩ ∗
(
Π

n·1q

⟨k⟩ ∗ C
)

= Πn·1k

⟨2⟩ ∗ S,
(6.1)

where the first and fifth equalities come from the fact that S̃ and S are the 2-shadow
and the k-shadow of C, respectively, while the second equality holds since ⟨k⟩⟨2⟩ = ⟨2⟩.
Therefore, for any a ∈ [n],

E(a,a) ∗Πn·12
α ∗ S̃ (6.1)

= E(a,a) ∗Πn·12
α ∗

(
Πn·1k

⟨2⟩ ∗ S
)

L .3.5
= E(a,a) ∗

(
Πn·12

α

2∗Πn·1k

⟨2⟩

)
∗ S

L .3.9
= E(a,a) ∗Πn·1k

⟨2⟩α
∗ S = E(a,a) ∗Πn·1k

α ∗ S
L .3.8
=

∑
b∈[n]k

bα=(a,a)

Eb ∗ S = 0,(6.2)

where the fourth equality holds since ⟨2⟩α = α, and the sixth follows from the fact
that S is hollow. Hence, we find

∑
a∈E(Kn)

Ea ∗ q =
∑

a∈E(Kn)

Ea ∗Πn·12
α ∗ S̃

(6.2)
=

∑
a∈[n]2

Ea ∗Πn·12
α ∗ S̃ L .3.7

= Πn·12
ϵ ∗Πn·12

α ∗ S̃

L .3.9
= Πn·12

αϵ
∗ S̃ = Πn·12

ϵ ∗ S̃ L .5.22
= 1,

whence it follows that q ∈ Zaff
(n2−n). Given i ∈ [2]k, we have

ζ(xi) = Π
n·1q
xi ∗ C = Π

n·1q
xααi

∗ C L .3.9
= Πn·12

i

2∗
(
Πn·12

α

2∗Πn·1q
xα

)
∗ C

L .3.5
= Πn·12

i ∗
(
Πn·12

α ∗
(
Π

n·1q
xα ∗ C

))
= Πn·12

i ∗
(
Πn·12

α ∗ S̃
)
.
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It follows that, for any a ∈ [n]k,

Ea ∗ ζ(xi) = Ea ∗
(
Πn·12

i ∗
(
Πn·12

α ∗ S̃
))

L .3.5
= Ea ∗Πn·12

i ∗Πn·12
α ∗ S̃ L .3.8

=
∑

b∈[n]2

bi=a

Eb ∗Πn·12
α ∗ S̃

(6.2)
=

∑
b∈E(Kn)

bi=a

Eb ∗Πn·12
α ∗ S̃

=
∑

b∈E(Kn)
bi=a

Eb ∗ q L .4.7
= Ea ∗ Pπi

∗ q = Ea ∗ q/πi
,

which concludes the proof that ζ(xi) = q/πi
. Hence, ζ is a homomorphism.

To check that ζ is k-tensorial, simply notice that, for any x ∈ V (X)k and i ∈ [k]k,

ζ(xi) = Π
n·1q
xi ∗ C L .3.9

=

(
Πn·1k

i

k∗Πn·1q
x

)
∗ C(6.3)

L .3.5
= Πn·1k

i ∗
(
Π

n·1q
x ∗ C

)
= Πn·1k

i ∗ ζ(x).

Take now x ∈ V (X)k and a ∈ [n]k, and suppose that a ̸≺ x. If we manage to show
that Ea∗ζ(x) = 0, we may apply Theorem 2.2 and conclude that BAk(X,Kn) = Yes,
as desired. Choose u, v ∈ [k] for which au = av and xu ̸= xv. Using that q > k, we
find y ∈ [q]k→ and i ∈ [k]k for which x = yi. We obtain

Ea ∗ ζ(x) = Ea ∗ ζ(yi)
(6.3)
= Ea ∗Πn·1k

i ∗ ζ(y) = Ea ∗Πn·1k

i ∗
(
Π

n·1q
y ∗ C

)
= Ea ∗Πn·1k

i ∗ S L .3.8
=

∑
b∈[n]k

bi=a

Eb ∗ S.(6.4)

Suppose that b ∈ [n]k satisfies bi = a. Then, biu = au = av = biv . On the other
hand, yiu = xu ̸= xv = yiv , which implies that iu ̸= iv. As a consequence, |b| < k.
Since S is hollow, we deduce that b ̸∈ supp(S). Hence, it follows from (6.4) that
Ea ∗ ζ(x) = 0, as wanted.

Our next goal is to prove Proposition 2.10, which states that BAk acceptance is
preserved under the line digraph operator introduced in Section 2.3, at the cost of
halving the level. In fact, we shall prove that result in the more general setting of
arbitrary conic minions, as stated in Proposition 6.3. We need a property of conic
minions from [40, Proposition 38], formally stated below in Proposition 6.2: Each
relaxation hierarchy built on this type of minions only gives a nonzero weight to those
assignments that yield partial homomorphisms. In other words, each such hierarchy
enforces consistency.

Proposition 6.2 ([40]). Let M be a conic minion of depth d, let 2 ≤ k ∈ N,
let X,A be digraphs, and let ξ : X

k○ → FM (A
k○
) be a k-tensorial homomorphism.

Take x ∈ V (X)k, a ∈ V (A)k, and i ∈ [k]2. If xi ∈ E(X) and ai ̸∈ E(A), then
Ea ∗ ξ(x) = 0d.
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Proposition 6.3. Let M be a conic minion, let 2 ≤ k ∈ N, let X,A be digraphs,
and suppose that there exists a (2k)-tensorial homomorphism from X

2k○
to FM (A

2k○
).

Then there exists a k-tensorial homomorphism from (δX)
k○

to FM ((δA)
k○
).

Proof. As usual, we let n = |V (A)|; moreover, we let m = |E(A)|. Take a (2k)-

tensorial homomorphism ξ : X
2k○ → FM (A

2k○
), whose existence is guaranteed by the

hypothesis.
Suppose first that E(δA) = ∅. We claim that, in this case, E(δX) = ∅. Otherwise,

take some element ((x, y), (y, z)) ∈ E(δX), and consider a tuple w ∈ V (X)2k satisfy-
ing w⟨3⟩ = (x, y, z) (where we have used that k ≥ 2). Since the minion M is conic,

ξ(w) is not all zero. Hence, there exists some a ∈ V (A)2k such that Ea ∗ ξ(w) ̸= 0d,
where d is the depth of M . Applying Proposition 6.2 to the cases i = (1, 2) and
i = (2, 3), we deduce that a(1,2) ∈ E(A) and a(2,3) ∈ E(A). But this means that
((a1, a2), (a2, a3)) ∈ E(δA), a contradiction. Hence, as claimed, E(δX) = ∅. As
a consequence, any map from E(X) to E(A) yields a homomorphism δX → δA.
Thus, it follows from the completeness of minion tests (see [40, Proposition 13]) that

a k-tensorial homomorphism from (δX)
k○

to FM ((δA)
k○
) exists for any k ∈ N.

Suppose now that E(δA) ̸= ∅. Fix t = (e, f) ∈ E(δA), where e, f ∈ E(A), and
consider the maps

α : V (A)2 → E(A)

(a, b) 7→
{

(a, b) if (a, b) ∈ E(A)
e otherwise

and

β : V (A)2k → E(A)k

a 7→ (α(a(1,2)), α(a(3,4)), . . . , α(a(2k−1,2k))).

Consider also the map γ : E(X)k → V (X)2k sending a tuple (x(1),x(2), . . . ,x(k))

of edges of X to the tuple (x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 , . . . , x

(k)
1 , x

(k)
2 ) of vertices of X, where

x(i) = (x
(i)
1 , x

(i)
2 ) for each i ∈ [k]. We define the map ϑ : E(X)k → M (mk) by setting

x 7→ ξ(γ(x))/β for each x ∈ E(X)k. (Observe that the definition of ϑ is independent
of the choice of e ∈ E(A), because of Proposition 6.2.) The result would follow if

we prove that ϑ yields a k-tensorial homomorphism from (δX)
k○

to FM ((δA)
k○
).

Observe first that
V ((δX)

k○
) = V (δX)k = E(X)k

and

V (FM ((δA)
k○
)) = M (|V ((δA)

k○
)|) = M (|V (δA)k|) = M (|E(A)k|) = M (mk),

so the domain and codomain of ϑ are correct. Take v = ((x, y), (y, z)) ∈ E(δX) (so

both (x, y) and (y, z) belong to E(X)) and consider the tensor v
k○ ∈ E((δX)

k○
). To

conclude that ϑ is a homomorphism, we need to show that ϑ(v
k○
) ∈ E(FM ((δA)

k○
));

i.e., we need to find some Q ∈ M (|E(δA)|) such that ϑ(vi) = Q/πi
for each i ∈ [2]k,

where πi : E(δA) → V (δA)k = E(A)k is the map sending d ∈ E(δA) to di. Using
that k ≥ 2, we can consider a tuple w ∈ V (X)2k satisfying w⟨3⟩ = (x, y, z). Consider

the set S = {a ∈ V (A)2k : a(ℓ,ℓ+1) ∈ E(A) for ℓ ∈ [2]}. It follows directly from
Proposition 6.2 that

{a ∈ V (A)2k : Ea ∗ ξ(w) ̸= 0d} ⊆ S.(6.5)
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Take the function

τ : V (A)2k → E(δA)

a 7→
{

(a(1,2),a(2,3)) if a ∈ S
t otherwise.

We define Q = ξ(w)/τ . (Note that Q does not depend on the choice of t, because

of Proposition 6.2.) Let i ∈ [2]k; we need to show that ϑ(vi) = Q/πi
. Consider the

tuple j ∈ [3]2k defined by j2ℓ−1 = iℓ, j2ℓ = iℓ + 1 for each ℓ ∈ [k], and notice that
γ(vi) = wj. It follows that

ϑ(vi) = ξ(γ(vi))/β = ξ(wj)/β = Pβ
2k∗ ξ(wj) = Pβ

2k∗
(
Πn·12k

j

2k∗ ξ(w)

)
L .3.5
= Pβ

2k∗ Πn·12k

j

2k∗ ξ(w),(6.6)

where the fourth equality follows from the fact that ξ is (2k)-tensorial, while

Q/πi
= (ξ(w)/τ )/πi

(4.1)
= ξ(w)/πi◦τ = Pπi◦τ

2k∗ ξ(w).

(6.7)

Consider the function ρ : V (A)2k → V (A)2k defined by c 7→ cj for each c ∈ V (A)2k.
Observe that the functions β ◦ ρ and πi ◦ τ coincide on the set S ⊆ V (A)2k. Indeed,
for any c ∈ S,

β ◦ ρ(c) = β(cj) = β((ci1 , ci1+1, ci2 , ci2+1, . . . , cik , cik+1))

= ((ci1 , ci1+1), (ci2 , ci2+1), . . . , (cik , cik+1))

= (c(1,2), c(2,3))i = (τ(c))i = πi ◦ τ(c).(6.8)

For a ∈ E(A)k, we find

Ea ∗ ϑ(vi)
(6.6)
= Ea ∗

(
Pβ

2k∗ Πn·12k

j

2k∗ ξ(w)

)
L .3.5
= Ea ∗ Pβ ∗Πn·12k

j ∗ ξ(w)

L .4.7
=

∑
b∈β−1(a)

Eb ∗Πn·12k

j ∗ ξ(w)

L .3.8
=

∑
b∈β−1(a)

∑
c∈V (A)2k

cj=b

Ec ∗ ξ(w) =
∑

c∈V (A)2k

β(cj)=a

Ec ∗ ξ(w)

(6.5)
=

∑
c∈S

β(cj)=a

Ec ∗ ξ(w) =
∑
c∈S

β◦ρ(c)=a

Ec ∗ ξ(w)
(6.8)
=

∑
c∈S

πi◦τ(c)=a

Ec ∗ ξ(w)

(6.5)
=

∑
c∈V (A)2k

πi◦τ(c)=a

Ec ∗ ξ(w)
L .4.7
= Ea ∗ Pπi◦τ ∗ ξ(w)

L .3.5
= Ea ∗

(
Pπi◦τ

2k∗ ξ(w)

)
(6.7)
= Ea ∗Q/πi

,
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which concludes the proof that ϑ(vi) = Q/πi
, thus establishing that ϑ is a homomor-

phism.
We are left to prove that ϑ is k-tensorial. To that end, consider some tuples

x ∈ E(X)k and i ∈ [k]k. We need to show that ϑ(xi) = Πm·1k

i

k∗ ϑ(x). Consider the
tuple j ∈ [2k]2k defined by j2ℓ−1 = 2iℓ− 1, j2ℓ = 2iℓ for each ℓ ∈ [k], and observe that
γ(xi) = (γ(x))j. Therefore,

ϑ(xi) = ξ(γ(xi))/β = ξ((γ(x))j)/β = Pβ
2k∗ ξ((γ(x))j)

= Pβ
2k∗

(
Πn·12k

j

2k∗ ξ(γ(x))

)
L .3.5
= Pβ

2k∗ Πn·12k

j

2k∗ ξ(γ(x)),

where the fourth equality follows from the fact that ξ is (2k)-tensorial. Moreover,

Πm·1k

i

k∗ ϑ(x) = Πm·1k

i

k∗ ξ(γ(x))/β

= Πm·1k

i

k∗
(
Pβ

2k∗ ξ(γ(x))

)
L .3.5
= Πm·1k

i

k∗ Pβ
2k∗ ξ(γ(x)).

The claim would then follow if we show that the two tensors Pβ
2k∗Πn·12k

j and Πm·1k

i

k∗Pβ

coincide. To that end, observe first that the identity β(cj) = (β(c))i holds for any
c ∈ V (A)2k. Hence, for each a ∈ E(A)k, we have

Ea ∗
(
Pβ

2k∗ Πn·12k

j

)
L .3.5
= Ea ∗ Pβ ∗Πn·12k

j
L .4.7
=

∑
b∈β−1(a)

Eb ∗Πn·12k

j

L .3.8
=

∑
b∈β−1(a)

∑
c∈V (A)2k

cj=b

Ec =
∑

c∈V (A)2k

β(cj)=a

Ec

=
∑

c∈V (A)2k

(β(c))i=a

Ec =
∑

b∈E(A)k

bi=a

∑
c∈β−1(b)

Ec

L .4.7
=

∑
b∈E(A)k

bi=a

Eb ∗ Pβ
L .3.8
= Ea ∗Πm·1k

i ∗ Pβ

L .3.5
= Ea ∗

(
Πm·1k

i

k∗ Pβ

)
.

It follows that Pβ
2k∗ Πn·12k

j = Πm·1k

i

k∗ Pβ , as desired.

Proposition 6.4 (Proposition 2.10 restated). Let 2 ≤ k ∈ N, let X,A be di-
graphs, and suppose that BA2k(X,A) = Yes. Then BAk(δX, δA) = Yes.

Proof. The result immediately follows from Proposition 6.3 and Theorem 4.11
and from the fact that MBA is a conic minion (cf. Example 4.6).

We next show that acceptance of hierarchies of relaxations built on linear min-
ions is preserved under homomorphisms of the template. Proposition 2.11—the last
missing piece in the proof of Theorem 2.1—will then follow as a corollary.

Proposition 6.5. Let M be a linear minion, let k ∈ N, let X,A,B be digraphs
such that A → B, and suppose that there exists a k-tensorial homomorphism X

k○ →
FM (A

k○
). Then there exists a k-tensorial homomorphism X

k○ → FM (B
k○
).
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Proof. Let f : A → B be a homomorphism, and consider the functions g :
V (A)k → V (B)k defined by (a1, . . . , ak) 7→ (f(a1), . . . , f(ak)) and h : E(A) →
E(B) defined by (a1, a2) 7→ (f(a1), f(a2)). (Notice that h is well defined as f is a
homomorphism.) Suppose, without loss of generality, that V (A) = [n] and V (B) = [p]

for some n, p ∈ N. Let ξ be a k-tensorial homomorphism from X
k○

to FM (A
k○
), and

consider the function

ϑ : V (X)k → M (pk).

x 7→ ξ(x)/g

We claim that ϑ is a k-tensorial homomorphism from X
k○

to FM (B
k○
).

To show that ϑ is a homomorphism, take x ∈ E(X), so x
k○ ∈ E(X

k○
). Since ξ

is a homomorphism, ξ(x
k○
) ∈ E(FM (A

k○
)), so there exists Q ∈ M (|E(A)|) such that

ξ(xi) = Q/πA
i
for each i ∈ [2]k—where the superscript “A” indicates that πi is defined

for the digraph A; i.e., πA
i : E(A) → V (A)k is the function given by a 7→ ai. Define

W = Q/h ∈ M (|E(B)|). Given i ∈ [2]k, let πB
i : E(B) → V (B)k be the function given

by b 7→ bi. Note that g ◦ πA
i = πB

i ◦ h. Indeed, for any a ∈ E(A), we have

g(πA
i (a)) = g(ai) = (f(ai1), . . . , f(aik)) = (f(a1), f(a2))i

= (h(a))i = πB
i (h(a)).

Therefore, we find

ϑ(xi) = ξ(xi)/g = (Q/πA
i
)/g

(4.1)
= Q/g◦πA

i
= Q/πB

i ◦h
(4.1)
= (Q/h)/πB

i
= W/πB

i
.

It follows that ϑ(x
k○
) ∈ E(FM (B

k○
)), so ϑ is a homomorphism.

To show that ϑ is k-tensorial, take x ∈ V (X)k and i ∈ [k]k. Using that ξ is
k-tensorial, we find

ϑ(xi) = ξ(xi)/g =

(
Πn·1k

i

k∗ ξ(x)
)

/g

= Pg
k∗
(
Πn·1k

i

k∗ ξ(x)
)

L .3.5
= Pg

k∗Πn·1k

i

k∗ ξ(x),

while

Πp·1k

i

k∗ ϑ(x) = Πp·1k

i

k∗ ξ(x)/g = Πp·1k

i

k∗
(
Pg

k∗ ξ(x)
)

L .3.5
= Πp·1k

i

k∗ Pg
k∗ ξ(x).

Therefore, to obtain ϑ(xi) = Πp·1k

i

k∗ ϑ(x) and thus conclude that ϑ is k-tensorial,

it suffices to prove that Pg
k∗ Πn·1k

i = Πp·1k

i

k∗ Pg. To that end, we apply a similar
argument to the one used at the end of the proof of Proposition 6.3. Notice that both
these tensors belong to T (p·1k,n·1k)(Q). Given a ∈ V (A)k and b ∈ V (B)k, we find

Eb ∗
(
Pg

k∗Πn·1k

i

)
∗ Ea

L .3.5
= Eb ∗ Pg ∗Πn·1k

i ∗ Ea
L .4.7
=

∑
c∈g−1(b)

Ec ∗Πn·1k

i ∗ Ea

=

{
1 if ai ∈ g−1(b)
0 otherwise

=

{
1 if g(ai) = b
0 otherwise,
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while

Eb ∗
(
Πp·1k

i

k∗ Pg

)
∗ Ea

L .3.5
= Eb ∗Πp·1k

i ∗ Pg ∗ Ea
L .3.8
=

∑
d∈V (B)k

di=b

Ed ∗ Pg ∗ Ea

=

{
1 if (g(a))i = b
0 otherwise.

Since g(ai) = (g(a))i, the two expressions above coincide, thus implying that Pg
k∗

Πn·1k

i = Πp·1k

i

k∗ Pg, as required.

Proposition 6.6 (Proposition 2.11 restated). Let 2 ≤ k ∈ N, let X,A,B be
digraphs such that A → B, and suppose that BAk(X,A) = Yes. Then BAk(X,B) =
Yes.

Proof. By Theorem 4.11, BAk(X,A) = Yes implies the existence of a k-tensorial

homomorphism from X
k○

to FMBA
(A

k○
). By Proposition 6.5, it follows that there

exists a k-tensorial homomorphism from X
k○
to FMBA(B

k○
). Again by Theorem 4.11,

we conclude that BAk(X,B) = Yes.
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satisfaction, J. ACM, 68 (2021), pp. 28:1–28:66, https://doi.org/10.1145/3457606, https:
//arxiv.org/abs/1811.00970.

[9] L. Barto and M. Kozik, Constraint satisfaction problems solvable by local consistency meth-
ods, J. ACM, 61 (2014), https://doi.org/10.1145/2556646. Article No. 3.

https://doi.org/10.4153/CJM-1982-029-3
https://doi.org/10.4086/toc.2006.v002a002
https://doi.org/10.4086/toc.2006.v002a002
https://doi.org/10.4230/LIPIcs.MFCS.2021.11
https://arxiv.org/abs/2010.04618
https://arxiv.org/abs/2010.04618
https://doi.org/10.1137/1.9781611977073.48
https://doi.org/10.1137/1.9781611977073.48
https://arxiv.org/abs/2107.05886
https://doi.org/10.1137/15M1006507
https://doi.org/10.1093/logcom/exu070
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://arxiv.org/abs/2010.04623
https://doi.org/10.1145/3457606
https://arxiv.org/abs/1811.00970
https://arxiv.org/abs/1811.00970
https://doi.org/10.1145/2556646


APPROXIMATE GRAPH COLOURING 53

[10] L. Barto and M. Kozik, Combinatorial Gap Theorem and Reductions between Promise CSPs,
in Proc. 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA’22), 2022, pp. 1204–
1220, https://doi.org/10.1137/1.9781611977073.50, https://arxiv.org/abs/2107.09423.

[11] A. Barvinok, Matrices with prescribed row and column sums, Linear Algebra Appl., 436 (2012),
pp. 820–844, https://doi.org/10.1016/j.laa.2010.11.019.

[12] C. Berkholz and M. Grohe, Linear Diophantine equations, group CSPs, and graph isomor-
phism, in Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17),
2017, pp. 327–339, https://doi.org/10.1137/1.9781611974782.21, https://arxiv.org/abs/
1607.04287.

[13] A. Bhangale and S. Khot, Optimal Inapproximability of Satisfiable k-LIN over Non-Abelian
Groups, in Proc. 53rd Annual ACM Symposium on Theory of Computing (STOC’21),
ACM, 2021, pp. 1615–1628, https://doi.org/10.1145/3406325.3451003, https://arxiv.org/
abs/2009.02815.

[14] A. Bhangale, S. Khot, and D. Minzer, On Approximability of Satisfiable k-CSPs: I., in
Proc. 54th Annual ACM Symposium on Theory of Computing (STOC’22), ACM, 2022,
pp. 976–988, https://doi.org/10.1145/3519935.3520028.

[15] A. Bhangale, S. Khot, and D. Minzer, On approximability of satisfiable k-CSPs: V,
Electron. Colloquium Comput. Complex., TR24-129 (2024), https://eccc.weizmann.ac.il/
report/2024/129.

[16] J. Brakensiek and V. Guruswami, New hardness results for graph and hypergraph colorings,
in Proc. 31st Conference on Computational Complexity (CCC’16), vol. 50, 2016, pp. 14:1–
14:27, https://doi.org/10.4230/LIPIcs.CCC.2016.14.

[17] J. Brakensiek and V. Guruswami, An algorithmic blend of LPs and ring equations for
promise CSPs, in Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’19), 2019, pp. 436–455, https://doi.org/10.1137/1.9781611975482.28, https://
arxiv.org/abs/1807.05194.

[18] J. Brakensiek and V. Guruswami, Promise constraint satisfaction: Algebraic structure and
a symmetric Boolean dichotomy, SIAM J. Comput., 50 (2021), pp. 1663–1700, https://
doi.org/10.1137/19M128212X, https://arxiv.org/abs/1704.01937.

[19] J. Brakensiek, V. Guruswami, and S. Sandeep, Conditional dichotomy of Boolean ordered
promise CSPs, TheoretiCS, 2 (2023), https://doi.org/10.46298/theoretics.23.2, https://
arxiv.org/abs/2102.11854.

[20] J. Brakensiek, V. Guruswami, M. Wrochna, and S. Živný, The power of the combined basic
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[21] A. Brandts, M. Wrochna, and S. Živný, The complexity of promise SAT on non-Boolean
domains, ACM Trans. Comput. Theory, 13 (2021), pp. 26:1–26:20, https://doi.org/10.
1145/3470867, https://arxiv.org/abs/1911.09065.

[22] G. Braun, S. Pokutta, and D. Zink, Inapproximability of Combinatorial Problems via Small
LPs and SDPs, in Proc. 47th Annual ACM on Symposium on Theory of Computing
(STOC’15), ACM, 2015, pp. 107–116, https://doi.org/10.1145/2746539.2746550.

[23] M. Braverman, S. Khot, N. Lifshitz, and D. Minzer, An invariance principle for the
multi-slice, with applications, in Proc. 62nd IEEE Annual Symposium on Foundations
of Computer Science (FOCS’21), 2021, pp. 228–236, https://doi.org/10.1109/FOCS52979.
2021.00030, https://arxiv.org/abs/2110.10725.

[24] M. Braverman, S. Khot, and D. Minzer, On rich 2-to-1 games, in Proc. 12th Innovations in
Theoretical Computer Science Conference (ITCS’21), vol. 185 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021, pp. 27:1–27:20, https://doi.org/10.4230/LIPIcs.
ITCS.2021.27.

[25] R. A. Brualdi and G. Dahl, Matrices of zeros and ones with given line sums and a zero block,
Linear Algebra Appl., 371 (2003), pp. 191–207, https://doi.org/10.1016/S0024-3795(03)
00429-4, https://doi.org/10.1016/S0024-3795(03)00429-4.

[26] R. A. Brualdi and G. Dahl, Constructing (0, 1)-matrices with given line sums and certain
fixed zeros, in Advances in discrete tomography and its applications, Appl. Numer. Har-
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[75] T.-V. Nakajima and S. Živný, Linearly ordered colourings of hypergraphs, ACM Trans.
Comput. Theory, 13 (2022), https://doi.org/10.1145/3570909, https://arxiv.org/abs/2204.
05628.

[76] P. A. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization, California Institute of Technology, 2000, http://www.cds.
caltech.edu/∼doyle/hot/thesis.pdf.

[77] S. Poljak, Coloring digraphs by iterated antichains, Comment. Math. Univ. Carol., 32 (1991),
pp. 209–212, http://hdl.handle.net/10338.dmlcz/116957.

[78] H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Can. J. Math., 9 (1957),
pp. 371–377, https://doi.org/10.4153/CJM-1957-044-3.

[79] T. Schaefer, The complexity of satisfiability problems, in Proc. 10th Annual ACM Symposium
on the Theory of Computing (STOC’78), 1978, pp. 216–226, https://doi.org/10.1145/
800133.804350.

[80] G. Schoenebeck, Linear level Lasserre lower bounds for certain k-CSPs, in Proc. 49th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’08), 2008, pp. 593–602,
https://doi.org/10.1109/FOCS.2008.74.

[81] A. Schrijver, Theory of linear and integer programming, Wiley-Interscience Series in Discrete
Mathematics, John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publica-
tion.

[82] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, 1998.
[83] H. D. Sherali and W. P. Adams, A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems, SIAM J. Discret. Math.,
3 (1990), pp. 411–430, https://doi.org/10.1137/0403036.

[84] N. Z. Shor, Class of global minimum bounds of polynomial functions, Cybernetics, 23 (1987),
pp. 731–734, https://doi.org/10.1007/BF01070233.

[85] M. Tulsiani, CSP gaps and reductions in the Lasserre hierarchy, in Proc. 41st Annual ACM
Symposium on Theory of Computing (STOC’09), 2009, pp. 303–312, https://doi.org/10.
1145/1536414.1536457.

[86] A. Wigderson, Improving the performance guarantee for approximate graph coloring, J. ACM,
30 (1983), pp. 729–735, https://doi.org/10.1145/2157.2158.

[87] D. Zeilberger, Proof of the alternating sign matrix conjecture, Electron. J. Combin., 3 (1996),
https://doi.org/10.37236/1271.

[88] X. Zhu, A survey on Hedetniemi’s conjecture, Taiwan. J. Math., 2 (1998), pp. 1–24.
[89] D. Zhuk, A proof of CSP dichotomy conjecture, in Proc. 58th IEEE Annual Symposium on

Foundations of Computer Science (FOCS’17), 2017, pp. 331–342, https://doi.org/10.1109/
FOCS.2017.38, https://doi.org/10.1109/FOCS.2017.38.

[90] D. Zhuk, A proof of the CSP dichotomy conjecture, J. ACM, 67 (2020), pp. 30:1–30:78, https:
//doi.org/10.1145/3402029, https://arxiv.org/abs/1704.01914.

https://doi.org/10.1137/S1052623400380079
https://doi.org/10.1137/S1052623400380079
https://doi.org/10.1287/moor.28.3.470.16391
https://doi.org/10.1287/moor.28.3.470.16391
https://doi.org/10.1145/2746539.2746599
https://arxiv.org/abs/1411.6317
https://arxiv.org/abs/1411.6317
https://arxiv.org/abs/2407.09097
https://doi.org/10.1145/3570909
https://arxiv.org/abs/2204.05628
https://arxiv.org/abs/2204.05628
http://www.cds.caltech.edu/~doyle/hot/thesis.pdf
http://www.cds.caltech.edu/~doyle/hot/thesis.pdf
http://hdl.handle.net/10338.dmlcz/116957
https://doi.org/10.4153/CJM-1957-044-3
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://doi.org/10.1109/FOCS.2008.74
https://doi.org/10.1137/0403036
https://doi.org/10.1007/BF01070233
https://doi.org/10.1145/1536414.1536457
https://doi.org/10.1145/1536414.1536457
https://doi.org/10.1145/2157.2158
https://doi.org/10.37236/1271
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1145/3402029
https://doi.org/10.1145/3402029
https://arxiv.org/abs/1704.01914

	Introduction
	Overview of results and techniques
	The BA hierarchy through tensors
	Crystals
	Fooling the hierarchy

	Preliminaries
	Hypergraphs
	Tuples
	Hierarchies of relaxations
	Tensors
	The projection tensor

	The BA hierarchy through tensors
	Relaxations and linear minions
	Hierarchies and tensors
	BAk acceptance for AGC

	Crystals
	Monotonicity of crystals
	Systems of shadows
	Crystalisation
	Quartzes
	Crystals with hollow shadows

	Fooling the hierarchy
	References

