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Abstract. We introduce a relaxation for homomorphism problems that combines semidefinite
programming with linear Diophantine equations, and propose a framework for the analysis of its
power based on the spectral theory of association schemes. We use this framework to establish
an unconditional lower bound against the semidefinite programming + linear equations model, by
showing that the relaxation does not solve the approximate graph homomorphism problem and thus,
in particular, the approximate graph colouring problem.
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1. Introduction. Semidefinite programming plays a central role in the design
of efficient algorithms and in dealing with NP-hardness. For many fundamental prob-
lems, the best known (and sometimes provably best possible) approximation algo-
rithms are achieved via relaxations based on semidefinite programs [53, 68, 88, 3, 71,
72]. In this work, we focus on computational problems of the following general form:
Given two structures (say, two digraphs) X and A, is there a homomorphism from X
to A? A plethora of different computational problems—in particular, those involving
satisfiability of constraints—can be cast in this form. The semidefinite programming
paradigm is naturally applicable to this type of problems, and it yields relaxations
that are robust to noise: They are able to find a near-satisfying assignment even
when the instance is almost—but not perfectly—satisfiable [9] (see also [21]). On
the other hand, certain homomorphism problems can be solved exactly in polynomial
time but are inherently fragile to noise—the primary example being systems of linear
equations, which are tractable via Gaussian elimination but whose noisy version is NP-
hard [59]. Problems that behave like linear equations are hopelessly stubborn against
the semidefinite programming model [90, 96, 27]. It is then natural, in the context of
homomorphism problems, to consider stronger versions of semidefinite programming
relaxations that are equipped with a built-in linear-equation solver.

Consider a homomorphism1 f : X → A. Letting |V (X)| = p and |V (A)| = n, we
can encode f in a pn×pn matrix Mf containing blocks of size n×n, where the blocks
are indexed by pairs of vertices of X, and the entries in a block by pairs of vertices
of A. For x, y ∈ V (X) and a, b ∈ V (A), the (a, b)-th entry of the (x, y)-th block is 1
if a = f(x) and b = f(y), and 0 otherwise. Let us explore the structure of Mf . Each
block has nonnegative entries summing up to 1, and diagonal blocks are diagonal
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matrices. Since f is a homomorphism, the (a, b)-th entry of the (x, y)-th block is 0
when (x, y) ∈ E(X) and (a, b) ̸∈ E(A). Finally, Mf is positive semidefinite since it
is symmetric and, for a pn-vector v, it satisfies vTMfv = (

∑
x vx,f(x))

2 ≥ 0. The
standard semidefinite programming relaxation (SDP) of the homomorphism problem
“X → A?” consists in looking for a real matrix M with the properties described
above. We write SDP(X,A) = Yes if such a matrix M exists.

Any Constraint Satisfaction Problem (CSP) may be expressed as the homomor-
phism problem of checking whether an instance structure X homomorphically maps
to a template structure A. Up to polynomial-time equivalence, X and A can be
assumed to be digraphs without loss of generality [43]. (As was shown in [19], a sim-
ilar fact holds for the promise version of CSP, which we shall encounter in a while.)
The power of semidefinite programming in the realm of CSPs is well understood:
The CSPs solved by SDP are exactly those having bounded width [43, 9]. Crucially,
for CSPs, boosting SDP via the so-called lift-and-project technique [81] does not in-
crease its power: Any semidefinite programming relaxation of polynomial size—in
particular, any constant number of rounds of the Lasserre “Sum-of-Squares” hierar-
chy [80]—solves precisely the same CSPs as SDP [9, 95]. The positive resolution of
Feder–Vardi CSP Dichotomy Conjecture [43] by Bulatov [26] and Zhuk [98] implies
that any tractable CSP is a (nontrivial) combination of (i) bounded-width CSPs and
(ii) CSPs that can simulate linear equations (which have unbounded width). The
aim to find a universal solver for all tractable CSPs has then driven a new genera-
tion of algorithms that combine (i) techniques suitable for exploiting bounded width
with (ii) variants of Gaussian elimination (which solves linear equations). This line
of work was pioneered by [18, 22], with the description of the algorithm BA mixing
a linear-programming-based relaxation with Gaussian elimination. Variants of this
algorithm were later considered in [31, 34, 36].

The algorithm we propose in this work (which we call SDA) can be described
as follows. First, notice that the matrix Mf encoding a homomorphism f : X → A
has entries in {0, 1}, and all of the properties of Mf highlighted above are in fact
linear equations, with the exception of the nonnegativity of its entries and the positive
semidefiniteness. Hence, a different relaxation can be obtained by looking for a matrix
M ′ that respects the linear conditions, and whose entries are integers. We end up with
a linear Diophantine system, that can be solved efficiently through integer variants of
Gaussian elimination, see [91]. We write SDA(X,A) = Yes if both M and M ′ exist,
and a technical refinement condition constraining the supports of M and M ′ holds
(see Section 2 for the formal definition of the algorithm).2

The first main goal of our work is to introduce a technique based on the spectral
theory of association schemes for the analysis of this relaxation model. Our approach
aims to describe how the algorithm exploits the symmetry of the problem under
relaxation. To that end, we gradually refine and abstract the way symmetry is ex-
pressed. Starting from automorphisms, which capture symmetry of X and A, we
lift the analysis to the orbitals of X and A under the action of the automorphism
groups and, finally, we endow the orbitals with the algebraic structure of association
schemes. The progressively more abstract language for expressing the symmetry of
the problem yields a progressively cleaner description of the impact of symmetry on
the relaxation. For the SDP part of SDA, the abstraction process “automorphisms
→ orbitals → association schemes” may be viewed in purely linear-algebraic terms,

2The “A” in SDA stands for “affine” integer programming, the name by which the CSP relaxation
based on linear Diophantine equations is sometimes referred to in the literature [8].



SDP AND LINEAR EQUATIONS VS. HOMOMORPHISM PROBLEMS 3

as the quest for a convenient (i.e., low-dimensional) vector space where the output of
the algorithm lives, and a suitable basis for this space. The last stage of this meta-
morphosis of symmetry discloses a new algebraic perspective on the relaxation. In
particular, for certain classes of digraphs, association schemes allow turning SDP into
a linear program. On a high level, this is an instance of a general invariant-theoretic
phenomenon: The presence of a rich group of symmetries makes it possible to reduce
the size of semidefinite programs [37, 47, 67] and, in certain cases, to describe their
feasible regions in terms of linear inequalities [39, 52], see also [93, 40]. The non-
convex nature of Diophantine equations makes the linear part of SDA process the
symmetry of the inputs in a quite different way. We exploit the dihedral structure
of the automorphism group of cycles to show that each associate in their scheme can
be assigned an integral matrix with a small support; this, in turn, can be used to
produce a solution M ′ to the linear system.

This approach allows for a direct transfer of the results available in algebraic
combinatorics on association schemes to the study of relaxations of homomorphism
problems. For example, the explicit expression for the character table of a specific
scheme known as the Johnson scheme shall be crucial for establishing a lower bound
against the SDA model. One peculiarity of this framework is that it is not forgetful
of the structure of the instance X. This contrasts with the techniques for describing
relaxations of CSPs [77, 9, 94, 35] based on the polymorphic approach [66, 65, 25],
whose gist is that the complexity of a CSP depends on the identities satisfied by the
polymorphisms of the CSP template A [10]. The polymorphic approach yields elegant
characterisations of the power of some relaxations, in the sense that a CSP is solved
by a certain algorithm if and only if its polymorphisms satisfy identities typical of
the algorithm. (As established in [8], a similar approach also works for the promise
version of CSP that we shall discuss shortly.) These “instance-free” characterisations
rely on having access to both the identities typical of the algorithm—not available in
the case of SDP and, thus, SDA—and a succinct description of the polymorphisms
of the template—which is missing in the case of the approximate homomorphism
problems we shall see next. In contrast, the description based on association schemes
does take the structure of the instance into account, which results in a higher control
over the behaviour of the algorithm on certain highly symmetric instances.

The second main goal of our work is to apply the framework of association schemes
to obtain an unconditional lower bound against SDA (and, a fortiori, against SDP). We
consider the Approximate Graph Homomorphism problem (AGH): Given two (undi-
rected) graphs A and B such that A → B and an instance X, distinguish between the
cases (i) X → A and (ii) X ̸→ B.3 This problem is commonly studied in the context
of Promise CSPs [5, 19, 8, 79], and we shall thus denote it by PCSP(A,B). Observe
that PCSP(A,B) is well defined for any pair of digraphs (and, in fact, relational
structures) A → B. If we let A = Kn (the n-clique) and B = Kn′ where n ≤ n′,
AGH specialises to the Approximate Graph Colouring problem (AGC): Distinguish
whether a given graph is n-colourable or not even n′-colourable. The computational
complexity of these problems is a long-standing open question. In contrast, the com-
plexity of the non-approximate versions of AGC and AGH (i.e., the cases n = n′

and A = B, respectively) was already classified by Karp [70] and Hell–Nešetřil [60],
respectively. In 1976, Garey and Johnson conjectured that AGC is always NP-hard

3This is the decision version of the problem. In the search version, the goal is to find an explicit
homomorphism X → B assuming that X → A. The former version reduces to the latter, so our
non-solvability result applies to both.
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if 3 ≤ n (the case n = 2 reduces to 2-colouring and is thus tractable).

Conjecture 1.1 ([45]). Let 3 ≤ n ≤ n′ be integers. Then PCSP(Kn,Kn′) is
NP-hard.

More recently, Brakensiek and Guruswami proposed the stronger conjecture that even
AGH may always be NP-hard except in trivial cases (if either A or B has a loop or
is bipartite, the problem is trivial or reduces to 2-colouring).

Conjecture 1.2 ([19]). Let A,B be non-bipartite loopless undirected graphs such
that A → B. Then PCSP(A,B) is NP-hard.

Among the several papers making progress on the two conjectures above, we men-
tion [79, 73, 57, 17, 8, 64, 74, 42, 23, 20]. However, they both remain wide open in
their full generality. Given the apparent “hardness of proving hardness” surrounding
these problems, significant efforts have been directed towards showing inapplicability
of specific algorithmic models, following an established line of work on lower bounds
against relaxations, e.g., [2, 27, 48, 78, 82, 28, 96, 11]. Non-solvability of AGC via
sublinear levels of local consistency and via linear Diophantine equations was proved
in [4] and [29], respectively. It was shown in [68] that the technique of vector colouring,
based on a semidefinite program akin to Lovász’s orthonormal representation [84], is
inapplicable to solving AGC. It follows from [58, 76] that polynomial levels of the Sum-
of-Squares hierarchy (and, in particular, SDP) are also not powerful enough to solve
AGC. Very recently, [30] improved on the result in [29] by proving non-solvability of
AGC via constant levels of the BA hierarchy, obtained by applying the lift-and-project
technique to the BA relaxation of [22]. By leveraging the framework of association
schemes, we establish that AGH is not solved by SDA.

Theorem 1.3. Let A,B be non-bipartite loopless undirected graphs such that
A → B. Then SDA does not solve PCSP(A,B).

The improvement on the state of the art is twofold: Theorem 1.3 yields (i) the first
non-solvability result for the whole class of problems AGH, as opposed to the subclass
AGC, and (ii) the first lower bound against the combined “SDP + linear equations”
model (which is strictly stronger than both models individually). Via Raghavendra’s
framework [88], the (SDP part of the) integrality gap in Theorem 1.3 directly yields
a conditional hardness-of-approximation result for AGH: Assuming Khot’s Unique
Games Conjecture [75] and P ̸= NP, AGH is not solved by any polynomial-time
robust algorithm.

Related work on association schemes. The Johnson scheme and other association
schemes such as the Hamming scheme have appeared in the analysis of the perfor-
mance ratio of Goemans–Williamson Max-Cut algorithm [53] based on semidefinite
programming, see [52, 69, 1]. In [85], certain spectral properties of the Johnson scheme
were used to obtain lower bounds against the Positivestellensatz proof system (and,
thus, against the Sum-of-Squares hierarchy) applied to the planted clique problem,
see also [41].

Structure of the paper. In Section 2, we formally define the algorithms used in
this work and list some useful preliminary observations about them. The analysis of
how the algorithms process the symmetry of the input structures begins in Section 3,
which provides a basis for the space of symmetry-invariant matrices output by the
algorithms in terms of the orbitals of the input structures. Leveraging the theory
of association schemes, Section 4 describes an alternative basis, which gives easier
access to the spectral properties of the matrices involved in the relaxations. Sections 5
and 6 investigate two specific association schemes—the Johnson scheme and the cycle
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scheme, respectively—whose properties are then used in Section 7 to conclude the
proof of Theorem 1.3. Finally, in Section 8, we compare the SDA algorithm with
the BA hierarchy from [18, 30], and we show that our lower bound is incomparable
with the one in [30], as SDA—and, in fact, even a weaker version of SDP described
in Subsection 8.1—is not less powerful than the BA hierarchy in a technical sense
(Subsection 8.2).

Notation. We let N be the set of positive integers, while N0 = N∪{0}. For t ∈ N,
we let [t] = {1, . . . , t}. We view vectors in Rt as column vectors, but sometimes write
them as tuples for typographical convenience. We denote by It and Jt the t×t identity
and all-one matrices, by Ot,t′ the t× t′ all-zero matrix, and by 1t and 0t the all-one
and all-zero vectors of length t. Indices shall sometimes be omitted when clear from
the context. We denote by ei the i-th standard unit vector of length t (which shall
be clear from the context); i.e., the vector in Rt all of whose entries are 0 except the
i-th entry that is 1. Given a field F and a set V of vectors in Ft, spanF(V ) is the set
of linear combinations over F of the vectors in V . We write span(V ) for spanR(V ).

A matrix is Boolean if its entries are in {0, 1}. Given a real matrix M , we write
M ≥ 0 if M is entrywise nonnegative, and we write M ≽ 0 if M is positive semidefinite
(i.e., ifM is symmetric and has a nonnegative spectrum). For two matricesM = (mij)
and M ′ of size m × n and m′ × n′, respectively, we let their Kronecker product be
the mm′ × nn′ block-matrix M ⊗ M ′ whose (i, j)-th block, for i ∈ [m] and j ∈ [n],
is the matrix mijM

′. If M and M ′ have equal size, we let M ◦ M ′ denote their
Schur product (i.e., their entrywise product, also known as Hadamard product). We
shall often use the fact that (M ⊗M ′)(N ⊗ N ′) = MN ⊗M ′N ′, provided that the
products are well defined (see [62]). The support of M , denoted by supp(M), is the
set of indices of nonzero entries of M ; for two matrices M,M ′ of equal size, we write
M ◁M ′ to denote that supp(M) ⊆ supp(M ′). Given a digraph X, we let A (X) and
Aut(X) denote the adjacency matrix and the automorphism group of X, respectively.
We view undirected graphs as digraphs, by turning each undirected edge {x, y} into
a pair of directed edges (x, y) and (y, x).

2. The algorithms. In the literature on CSPs, it is customary to define SDP
in terms of systems of vectors satisfying certain orthogonality requirements [9, 95,
88, 21, 32]. We now present this standard vector formulation of SDP and define
the augmented algorithm SDA along the same lines. Then, we describe an alternative
formulation of both relaxations, which is more suitable for our purposes, and establish
the equivalence between the two. To enhance the paper’s readability and help the
reader reach the technical core more quickly, we defer the proofs of the results in this
section to Appendix A.

Let X and A be two digraphs, and label their vertex sets as V (X) = [p] and
V (A) = [n] for some p, n ∈ N. We introduce a vector variable λx,a taking values in
Rpn for all vertices x ∈ V (X), a ∈ V (A), and we set λx,A =

∑
a∈V (A) λx,a. Consider

the system

(SDP1) λx,a · λy,b ≥ 0 ∀x, y ∈ V (X), a, b ∈ V (A)
(SDP2) λx,a · λx,b = 0 ∀x ∈ V (X), a ̸= b ∈ V (A)
(SDP3) λx,a · λy,b = 0 ∀(x, y) ∈ E(X), (a, b) ∈ V (A)2 \ E(A)
(SDP4) λx,A · λy,A = 1 ∀x, y ∈ V (X).

(SDP)

Note that (SDP4) forces all vectors λx,A to be equal. We say that SDP applied to
X,A accepts, and we write SDP(X,A) = Yes, if the system (SDP) has a solution.
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In order to augment SDP with the linear Diophantine part, we introduce addi-
tional variables µx,a taking values in Z for all vertices x ∈ V (X), a ∈ V (A), and
variables µx,a taking values in Z for all directed edges x ∈ E(X),a ∈ E(A), and we
consider the equations

(AIP1)
∑

a∈V (A)

µx,a = 1 ∀x ∈ V (X)

(AIP2)
∑

a∈E(A), ai=a

µx,a = µxi,a ∀x ∈ E(X), i ∈ {1, 2}, a ∈ V (A).

(AIP)

The SDA relaxation consists in (i) searching a solution to (SDP), (ii) discarding
assignments having zero probability, and then (iii) searching a solution to (AIP).4

Formally, we say that SDA applied to X and A accepts, and we write SDA(X,A) =
Yes, if the system (SDP) admits a solution λ and the system (AIP) admits a solution
µ such that the following refinement condition holds:

∥λx,a∥ = 0 ⇒ µx,a = 0 ∀x ∈ V (X), a ∈ V (A)
λx1,a1 · λx2,a2 = 0 ⇒ µx,a = 0 ∀x ∈ E(X), a ∈ E(A)

(ref)

(where ∥ · ∥ is the Euclidean vector norm).
Given two digraphs A,B such that A → B, we say that SDP (resp., SDA) solves

PCSP(A,B) if, for any digraph X, SDP(X,A) = Yes (resp., SDA(X,A) = Yes)
implies X → B. It follows from the definitions of the algorithms that X → A always
implies SDP(X,A) = SDA(X,A) = Yes.

It shall be convenient for our purposes to use a slightly modified, matrix for-
mulation of the relaxations, which allows for a more intuitive linear-algebraic view
of the algorithms’ behaviour. The equivalence of the two formulations is given in
Proposition 2.3 below.

Definition 2.1. A real pn× pn matrix M is a relaxation matrix for X,A if M
satisfies the following requirements:

(r1) (ex ⊗ In)
TM(ex ⊗ In) is a diagonal matrix for each x ∈ V (X);

(r2) (ex⊗ea)
TM(ey⊗eb) = 0 whenever (x, y) ∈ E(X) and (a, b) ∈ V (A)2\E(A);

(r3) M(ex ⊗ 1n) = M(ey ⊗ 1n) for each (x, y) ∈ V (X)2;
(r4) MT (ex ⊗ 1n) = MT (ey ⊗ 1n) for each (x, y) ∈ V (X)2;
(r5) 1T

pnM1pn = p2.
Given a relaxation matrix M , we say that M is an SDP-matrix for X,A if M ≽ 0
and M ≥ 0, and we say that M is an AIP-matrix for X,A if all of its entries are
integral.

Notice that the definition of an SDP-matrix captures the description of the matrix
Mf considered at the beginning of the Introduction to illustrate SDP. Indeed, viewing
M as a block matrix whose n × n blocks are indexed by pairs in V (X)2, (r1) states
that diagonal blocks are diagonal matrices, (r2) states that the supports of blocks
corresponding to edges of X are included in E(A), (r3) and (r4) state that the row-
sum (resp. column-sum) vectors of blocks aligned horizontally (resp. vertically) are
equal, and (r5) is a normalisation condition. Interestingly, the very similar definition
of an AIP-matrix is able to capture the linear Diophantine part of SDA.

4The name “AIP” stands for “affine integer programming”, see [8].
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For a square matrix A, the set of vectors v for which the Rayleigh quotient vTAv
is zero clearly includes the null space of A. The inclusion is in general strict, even
assuming A to be symmetric. However, the two sets coincide when A is positive
semidefinite (see [63, Obs. 7.1.6]). The next result is essentially a specialisation of
this fact to the conditions (r1)–(r5) defining relaxation matrices. Given a real pn×pn
matrix M , consider the condition

(r6) (ex ⊗ 1n)
TM(ey ⊗ 1n) = 1 for each (x, y) ∈ V (X)2.

Proposition 2.2. Let M be a real pn× pn matrix. Then
(i) the conditions (r3), (r4), and (r5) imply the condition (r6);
(ii) if M ≽ 0, the conditions (r3), (r4), and (r5) are equivalent to the condition

(r6).

By using Proposition 2.2, we can convert the vector formulation of the algorithms
SDP and SDA into an equivalent formulation in terms of relaxation matrices.

Proposition 2.3. Let X,A be digraphs. Then
(i) SDP(X,A) = Yes if and only if there exists an SDP-matrix for X,A;
(ii) if X is loopless, SDA(X,A) = Yes if and only if there exist an SDP-matrix

M and an AIP-matrix N for X,A such that N ◦ ((Ip +A (X))⊗ Jn) ◁ M .

In particular, if M is an SDP-matrix for X,A, the corresponding vector formulation
involves the vectors λx,a consisting of the columns of a pn × pn matrix L such that
M = LTL is a Cholesky decomposition of M . Since M ≽ 0, such a decomposition
always exists. Moreover, the requirement N ◦ ((Ip + A (X))⊗ Jn) ◁M in part (ii) of
Proposition 2.3 captures the refinement condition (ref) of the SDA algorithm.

In the remaining part of this section, we give a useful result on the behaviour of
the relaxations defined above with respect to digraph homomorphisms, which can be
easily derived by looking at the corresponding relaxation matrices. Given two finite
sets R and S and a function f : R → S, we let Qf be the |R| × |S| matrix whose
(r, s)-th entry is 1 if f(r) = s, 0 otherwise. The next lemma, whose trivial proof is
omitted, lists some useful properties of Qf .

Lemma 2.4. Let R, S, T be finite sets, and let f : R → S, g : S → T be functions.
Then

• QT
f er = ef(r) for each r ∈ R;

• Qfes =
∑

r∈f−1(s) er for each s ∈ S;
• Qf1|S| = 1|R|;
• QfQg = Qg◦f ;
• if f is bijective, Qf is invertible and Q−1

f = QT
f = Qf−1 .

We now look at what happens when a relaxation is applied to two different pairs
of inputs (X,A) and (X′,A′) such that X′ → X and A → A′. Expressing the two
outputs in the form of relaxation matrices, the next proposition shows that one output
can be obtained from the other through Kronecker products of the matrices Qf .

Proposition 2.5. Let X,X′,A,A′ be digraphs, let f : X′ → X and g : A → A′

be homomorphisms, and let M be a relaxation matrix for X,A. Then

M (f,g) = (Qf ⊗QT
g )M(QT

f ⊗Qg)(2.1)

is a relaxation matrix for X′,A′. Furthermore, if M is an SDP-matrix (resp. AIP-
matrix) for X,A, then M (f,g) is an SDP-matrix (resp. AIP-matrix) for X′,A′.

The last part of Lemma 2.4 states that the matrix Qf corresponding to a bijective
function f is orthogonal, in that Q−1

f = QT
f . Note that the Kronecker product of
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orthogonal matrices is an orthogonal matrix. Therefore, if the homomorphisms f and
g in Proposition 2.5 are both bijective (for example, if they are isomorphisms), the
linear operator (·)(f,g) : M 7→ M (f,g) is an orthogonal transformation with respect to
the Frobenius inner product ⟨M,N⟩F = Tr(MTN). Indeed, letting P = Qf ⊗QT

g , we
have

⟨M (f,g), N (f,g)⟩F = Tr(PMTPTPNPT )

= Tr(PTPMTPTPN) = Tr(MTN) = ⟨M,N⟩F.

A straightforward consequence of Proposition 2.5 is that the algorithms are mono-
tone with respect to the homomorphism preorder.

Proposition 2.6. Let X,X′,A,A′ be digraphs such that X′ → X and A → A′.
Then

(i) SDP(X,A) = Yes implies SDP(X′,A′) = Yes;
(ii) if X is loopless, SDA(X,A) = Yes implies SDA(X′,A′) = Yes.

3. Automorphisms and orbitals. The leitmotif of this work is the use of linear
algebra to manipulate relaxation algorithms. In this section, we begin to explore how
the symmetries of the input digraphs—expressed via their automorphism groups—
affect the outputs—expressed via relaxation matrices.

As usual, we let X and A be two digraphs whose vertex sets have size p and n,
respectively. If ξ and α are automorphisms of X and A, respectively, we may permute
the rows and columns of a relaxation matrix M according to ξ and α and the result
would still be a relaxation matrix. By averaging over all pairs of automorphisms
(ξ, α), we end up with a relaxation matrix that is invariant under automorphisms
of X and A. Since the set of positive semidefinite, entrywise-nonnegative matrices
is closed under simultaneous permutations of rows and columns and under convex
combinations, the same can be done for SDP-matrices.

We now formalise this observation. The next definition captures the invariance
property mentioned above. Recall the description of the matrices Qf and M (f,g) given
in Section 2.

Definition 3.1. A real pn× pn matrix M is balanced for X,A if

(Qξ ⊗Qα)M(QT
ξ ⊗QT

α) = M for each ξ ∈ Aut(X), α ∈ Aut(A).

Proposition 3.2. Let X,A be digraphs, let s = |Aut(X)| and t = |Aut(A)|, and
let M be a relaxation matrix for X,A. Then the matrix

M =
1

st

∑
ξ∈Aut(X)
α∈Aut(A)

M (ξ,α)(3.1)

is a balanced relaxation matrix for X,A. Furthermore, if M is an SDP-matrix for
X,A, then so is M .

Proof. For any ξ ∈ Aut(X) and α ∈ Aut(A), since automorphisms are, in par-
ticular, homomorphisms, we deduce from Proposition 2.5 that M (ξ,α) is a relaxation
matrix for X,A. Since the conditions (r1)–(r5) are clearly preserved by taking convex
combinations, it follows that M is a relaxation matrix for X,A, too. We are left to
show that M is balanced. For ξ0 ∈ Aut(X) and α0 ∈ Aut(A), using Lemma 2.4, we
find

(Qξ0 ⊗Qα0
)M(QT

ξ0 ⊗QT
α0
)
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=
1

st

∑
ξ∈Aut(X)
α∈Aut(A)

(Qξ0 ⊗Qα0)(Qξ ⊗QT
α)M(QT

ξ ⊗Qα)(Q
T
ξ0 ⊗QT

α0
)

=
1

st

∑
ξ∈Aut(X)
α∈Aut(A)

(Qξ◦ξ0 ⊗Qα−1◦α0
)M(Qξ−1

0 ◦ξ−1 ⊗Qα−1
0 ◦α)

=
1

st

∑
ξ∈Aut(X)
α∈Aut(A)

(Qξ◦ξ0 ⊗QT
α−1

0 ◦α)M(QT
ξ◦ξ0 ⊗Qα−1

0 ◦α)

=
1

st

∑
ξ′∈Aut(X)
α′∈Aut(A)

(Qξ′ ⊗QT
α′)M(QT

ξ′ ⊗Qα′) = M,

as required (where the penultimate equality holds since Aut(X) and Aut(A) are
groups). If M is an SDP-matrix for X,A, the same holds for M (ξ,α) for any ξ, α (by
virtue of Proposition 2.5) and for M (since positive semidefiniteness and entrywise
nonnegativity are preserved under convex combinations).

The next result, obtained as a consequence of Proposition 3.2, is a symmetric version
of Proposition 2.3.

Proposition 3.3. Let X,A be digraphs. Then
(i) SDP(X,A) = Yes if and only if there exists a balanced SDP-matrix for X,A;
(ii) if X is loopless, SDA(X,A) = Yes if and only if there exist a balanced SDP-

matrix M and an AIP-matrix N for X,A such that N ◦((Ip+A (X))⊗Jn) ◁
M .

Proof. The result immediately follows by combining Proposition 2.3 with Propo-
sition 3.2 and observing that, if M is an SDP-matrix, the matrix M defined in (3.1)
satisfies M ◁M .

As a result of Proposition 3.3, the output of SDP (and of the SDP-part of SDA)
may be assumed to be balanced without loss of generality.5 In linear-algebraic terms,
it follows that, instead of studying the outputs of SDP in Rpn×pn with the basis of
standard unit matrices eie

T
j (as we have implicitly done so far), we may work without

loss of generality in the real vector space L of balanced matrices for X,A. (The fact
that L is a real vector space easily follows from Definition 3.1.) As we see next, the
concept of orbitals provides a natural basis for the space L .

Take a digraph X, and consider the action of the group Aut(X) onto the set
V (X)2 given by (x, y)ξ = (ξ(x), ξ(y)) for ξ ∈ Aut(X), x, y ∈ V (X). An orbital of X
is an orbit of V (X)2 with respect to this action; i.e., it is a minimal subset of V (X)2

that is invariant under the action. We let O(X) be the set of orbitals of X. Given
an orbital ω ∈ O(X), we let Rω be the p × p matrix whose (x, y)-th entry is 1 if
(x, y) ∈ ω and 0 otherwise. Orbitals provide an alternative description of balanced
matrices: A block matrix M is balanced for X,A if and only if the block structure
of M is constant over the orbitals of X, and each block is constant over the orbitals
of A. As stated next, it follows that we can find a basis for L by taking Kronecker
products of the matrices Rω. We shall see later that a different basis for the same
space may be found under certain conditions using the theory of association schemes.

5Clearly, the same is not true for AIP, as integral matrices are not closed under convex combi-
nations.
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Proposition 3.4. Let X,A be digraphs, and let L be the real vector space of
balanced matrices for X,A. Then the set R = {Rω ⊗ Rω̃ : ω ∈ O(X), ω̃ ∈ O(A)}
forms a basis for L .

Proof. For ω ∈ O(X), ξ ∈ Aut(X), and x, y ∈ V (X), we have

eTxQξRωQ
T
ξ ey = eTξ(x)Rωeξ(y) =

{
1 if (x, y)ξ ∈ ω
0 otherwise

=

{
1 if (x, y) ∈ ω
0 otherwise

= eTxRωey,

which means that QξRωQ
T
ξ = Rω. Similarly, QαRω̃Q

T
α = Rω̃ for each ω̃ ∈ O(A) and

α ∈ Aut(A). As a consequence, we find

(Qξ ⊗Qα)(Rω ⊗Rω̃)(Q
T
ξ ⊗QT

α) = (QξRωQ
T
ξ )⊗ (QαRω̃Q

T
α) = Rω ⊗Rω̃,

thus showing that the matrix Rω ⊗Rω̃ is balanced for X,A. It follows that R ⊆ L .
Since the orbits of a group action partition the underlying set, we can write V (X)2

as the disjoint union of the orbitals:

V (X)2 =
⊔

ω∈O(X)

ω.

Hence,
∑

ω∈O(X) Rω = Jp. Similarly,
∑

ω̃∈O(A) Rω̃ = Jn, and∑
ω∈O(X)
ω̃∈O(A)

Rω ⊗Rω̃ = Jp ⊗ Jn = Jpn.

Therefore, R consists of Boolean matrices summing up to the all-one matrix, and it
is thus a linearly independent set. Given M ∈ L , ω ∈ O(X), and ω̃ ∈ O(A), let
vωω̃ = (ex ⊗ ea)

TM(ey ⊗ eb) for some (x, y) ∈ ω, (a, b) ∈ ω̃. This definition is well
posed by virtue of Definition 3.1, and it guarantees that

M =
∑

ω∈O(X)
ω̃∈O(A)

vωω̃ Rω ⊗Rω̃.(3.2)

It follows that span(R) = L , which concludes the proof.

It follows from Proposition 3.4 that, given a balanced matrix M , there exists a unique
list of coefficients vωω̃ satisfying the equation (3.2). We shall refer to the |O(X)| ×
|O(A)| matrix V = (vωω̃) as the orbital matrix of M . Expressing a balanced matrix
M in the new basis R rather than in the standard basis for Rpn×pn is especially
convenient when X and A are highly symmetric. Indeed, if Aut(X) and Aut(A)
are large, O(X) and O(A) are small. Working with R allows then compressing the
information of the pn × pn matrix M in the smaller |O(X)| × |O(A)| orbital matrix
V . However, if we want to make use of V to certify acceptance of SDP, we need
to be able to check if M is an SDP-matrix by only looking at V . While lifting the
requirements defining an SDP-matrix to the orbital matrix, it should come with little
surprise that the crucial one is positive semidefiniteness: How to translate the fact
that M ≽ 0 into a condition on V ? We shall see in the next section that the key for
recovering the spectral properties of M from the orbital matrix is to endow the set of
orbitals with a certain algebraic structure.
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4. Association schemes. Our strategy for gaining access to the spectral prop-
erties of a balanced matrix (in particular, its positive semidefiniteness) from the cor-
responding orbital matrix consists in studying the orbitals of a given digraph algebra-
ically, via the concept of association schemes.

Definition 4.1. An association scheme is a set S = {S0, S1, . . . , Sd} of p × p
Boolean matrices satisfying

(s1) S0 = Ip (s2)
∑d

i=0 Si = Jp (s3) ST
i ∈ S ∀i

(s4) SiSj ∈ spanC(S ) ∀i, j (s5) SiSj = SjSi ∀i, j.

Association schemes were introduced by Bose and Nair [15] and Bose and Shi-
mamoto [16] in the context of statistical design of experiments, but the root of the
theory can be traced back to the work of Frobenius, Schur, and Burnside on represen-
tation theory of finite groups, see [7]. Indeed, if all Si in Definition 4.1 are permutation
matrices, S is a finite group; association schemes allow developing a theory of sym-
metry that generalises character theory for group representations. Later, Delsarte’s
work in algebraic coding theory [39] initiated the study of association schemes as a
separate area in the domain of algebraic combinatorics.

The Bose–Mesner algebra B of S is the vector space spanC(S ), which consists
of all complex linear combinations of the matrices in S (see [14]). Since the matrices
in S are Boolean and satisfy (s2), they form a basis for B. Notice also that the set
S ∪{Op,p} is closed under the Schur product, and so is B. Moreover, the matrices in
S are Schur-orthogonal and Schur-idempotent, in that Si ◦ Sj equals Si when i = j,
and equals Op,p otherwise. Hence, we have the following.6

Fact 4.2. Let S be an association scheme. Then S forms a Schur-orthogonal
basis of Schur-idempotents for its Bose–Mesner algebra B.

Now, by (s4), B is also closed under the standard matrix product; in other words, it
is a matrix algebra, thus justifying the name. It turns out that a different basis exists
for B, whose members enjoy similar properties to those for the basis S , but with a
different product being involved.

Fact 4.3. Let S be an association scheme. Then there exists an orthogonal basis
E = {E0, E1, . . . , Ed} of Hermitian idempotents7 for its Bose–Mesner algebra B.

The interaction between the two bases S and E allows deriving several interesting
features of association schemes. The change-of-basis matrix shall be particularly im-
portant for our purposes. More precisely, we can (uniquely) express the elements of
S as

Sj =

d∑
i=0

pijEi(4.1)

for some coefficients pij . The (d + 1) × (d + 1) matrix P = (pij) is known as the
character table of the association scheme [6].

For our purposes, association schemes will provide a natural language for de-
scribing how the SDA algorithm—in particular, its semidefinite programming part—
processes the symmetries of the input digraphs. We say that a digraph X is gener-
ously transitive if for any x, y ∈ V (X) there exists ξ ∈ Aut(X) such that ξ(x) = y and

6Facts 4.2 and 4.3 can be found in any of the references [6, 50, 24, 49].
7I.e., the matrices in E are Hermitian, and EiEj equals Ei when i = j, and equals Op,p otherwise.
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ξ(y) = x. It turns out that the set of orbitals for a generously transitive digraph forms
an association scheme. Indeed, in this case, the condition (s1) is trivially satisfied,
since each generously transitive digraph is in particular vertex-transitive, while (s2)
follows from the fact that the orbitals partition V (X)2. The conditions (s3)—in fact,
the stronger condition that RT

ω = Rω for each ω ∈ O(X)—and (s5) directly come from
the definition of generous transitivity. As for the condition (s4), it can be proved by
considering the Hecke ring of the permutation representation of Aut(X); we refer the
reader to [6] or [50] for further details.

Theorem 4.4 ([6, 50]). Let X be a generously transitive digraph. Then the set
{Rω : ω ∈ O(X)} is a symmetric8 association scheme.

We shall refer to the character table of the association scheme {Rω : ω ∈ O(X)} as
the character table of X. Note that this is a |O(X)| × |O(X)| matrix. Recall that
our current objective is to decipher the spectral properties of a balanced matrix M
from the corresponding orbital matrix V . The idea is then to consider a new basis for
the space of balanced matrices, alternative to the one of Proposition 3.4, given by the
Kronecker product of the orthogonal bases from Fact 4.3 for the two schemes of the
input digraphs X and A. As the next result shows, working in this new basis allows
recovering the spectrum of a balanced matrix from the corresponding orbital matrix.
Moreover, the character table serves as the dictionary required for the translation.

Theorem 4.5. Let X and A be generously transitive digraphs, let M be a balanced
matrix for X,A, let V be the orbital matrix of M , and let P and P̃ be the character
tables of X and A, respectively. Then the spectrum of M consists of the entries of
the matrix PV P̃T .

Proof. Let E = {Eω : ω ∈ O(X)} be an orthogonal basis of Hermitian idempo-
tents for the Bose–Mesner algebra of the association scheme corresponding to O(X),
as per Fact 4.3. Also, let Ẽ = {Eω̃ : ω̃ ∈ O(A)} be an orthogonal basis of Hermitian
idempotents for the Bose–Mesner algebra for O(A). Note that E consists of p × p
matrices, while Ẽ consists of n × n matrices (where p = |V (X)| and n = |V (A)|, as
usual). Denote the entries of P and P̃ by pij and p̃ij , respectively. Using Propo-
sition 3.4, we can express the balanced matrix M in the basis R as in (3.2). For
σ ∈ O(X) and σ̃ ∈ O(A), we find

M(Eσ ⊗ Eσ̃) =
∑

ω∈O(X)
ω̃∈O(A)

vωω̃(Rω ⊗Rω̃)(Eσ ⊗ Eσ̃) =
∑

ω∈O(X)
ω̃∈O(A)

vωω̃(RωEσ)⊗ (Rω̃Eσ̃).

Using (4.1)—and recalling that, by Theorem 4.4, the matrices Rω and Rω̃ take the
roles of the Schur-idempotents for the respective association schemes—we obtain

M(Eσ ⊗ Eσ̃) =
∑

ω∈O(X)
ω̃∈O(A)

vωω̃

 ∑
π∈O(X)

pπωEπEσ

⊗

 ∑
π̃∈O(A)

p̃π̃ω̃Eπ̃Eσ̃


=

∑
ω∈O(X)
ω̃∈O(A)

vωω̃(pσωEσ)⊗ (p̃σ̃ω̃Eσ̃) =
∑

ω∈O(X)
ω̃∈O(A)

vωω̃ pσωp̃σ̃ω̃(Eσ ⊗ Eσ̃)

= (eTσPV P̃Teσ̃)(Eσ ⊗ Eσ̃),(4.2)

8An association scheme S is symmetric if S consists of symmetric matrices.



SDP AND LINEAR EQUATIONS VS. HOMOMORPHISM PROBLEMS 13

where the second equality follows from the fact that the members of the bases E and
Ẽ are orthogonal and idempotent. Consider now, for σ ∈ O(X) and σ̃ ∈ O(A), the
complex vector space

C(σ,σ̃) = (Eσ ⊗ Eσ̃)Cpn = {(Eσ ⊗ Eσ̃)v : v ∈ Cpn} ⊆ Cpn.

We claim that

Cpn =
∑

σ∈O(X)
σ̃∈O(A)

C(σ,σ̃),(4.3)

where “
∑

” denotes the sum of vector subspaces of Cpn. Using (s1), let τ ∈ O(X)
and τ̃ ∈ O(A) be such that Rτ = Ip and Rτ̃ = In. By (4.1), we have that

Ip =
∑

σ∈O(X)

pστEσ and In =
∑

σ̃∈O(A)

p̃σ̃τ̃Eσ̃.

As a consequence, we find that

Ipn = Ip ⊗ In =
∑

σ∈O(X)
σ̃∈O(A)

pστ p̃σ̃τ̃Eσ ⊗ Eσ̃.

Given a vector v ∈ Cpn, we obtain

v = Ipnv =
∑

σ∈O(X)
σ̃∈O(A)

pστ p̃σ̃τ̃ (Eσ ⊗ Eσ̃)v ∈
∑

σ∈O(X)
σ̃∈O(A)

C(σ,σ̃),

thus proving the nontrivial inclusion in the claimed identity. It follows from the or-
thogonality of the idempotents that the sum in (4.3) is in fact an orthogonal direct
sum. Furthermore, by (4.2), each C(σ,σ̃) is an eigenspace for M relative to the ei-
genvalue eTσPV P̃Teσ̃. As a consequence, (4.3) yields a decomposition of Cpn into
eigenspaces9 for M , and it follows that the eigenvalues of M are precisely the num-
bers eTσPV P̃Teσ̃ (i.e., the entries of the matrix PV P̃T ), with geometric and algebraic
multiplicity given by the dimension of C(σ,σ̃).

One consequence of Theorem 4.5 is that, in the new basis for the space of balanced
matrices, the semidefinite-programming condition M ≽ 0 is transformed into the
linear-programming condition PV P̃T ≥ 0. All other conditions making M an SDP-
matrix (namely, the conditions (r1)–(r5) and the entrywise nonnegativity) are trivially
translated into equivalent (linear-programming) conditions on V . Hence, Theorem 4.5
turns the semidefinite program (SDP) applied to two generously transitive digraphs
X and A into an equivalent linear program, whose constraints are now in terms of
the character tables of X and A. This is made explicit in the next result.

For a digraph X, we let µX be the vector, indexed by the elements of O(X),
whose ω-th entry is |ω|. We say that an orbital ω is the diagonal orbital if Rω is the
identity matrix, and we say that ω is an edge orbital if ω ⊆ E(X); non-diagonal and
non-edge orbitals are defined in the obvious way. Notice that the edge orbitals of X
partition E(X).

9Since the schemes corresponding to O(X) and O(A) are symmetric (see Theorem 4.4), the

members of the bases E and Ẽ could in fact be chosen to be real, and there would have been no loss
of information if we had worked with the real vector spaces (Eσ ⊗Eσ̃)Rpn instead of (Eσ ⊗Eσ̃)Cpn.
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Corollary 4.6. Let X and A be generously transitive digraphs and let P and P̃
be the character tables of X and A, respectively. Then SDP(X,A) = Yes if and only
if there exists a real entrywise-nonnegative |O(X)| × |O(A)| matrix V such that

(c1) PV P̃T ≥ 0; (c2) V µA = 1;
(c3) vωω̃ = 0 if ω is the diagonal orbital of X and ω̃ is a non-diagonal orbital of

A;
(c4) vωω̃ = 0 if ω is an edge orbital of X and ω̃ is a non-edge orbital of A.

Proof. Combining Proposition 3.3 with Proposition 3.4, we find SDP(X,A) =
Yes if and only if there exists a real |O(X)| × |O(A)| matrix V such that, letting

M =
∑

σ∈O(X)
σ̃∈O(A)

vσσ̃ Rσ ⊗Rσ̃,(4.4)

M is an SDP-matrix. Hence, we need to show that M is an SDP-matrix precisely
when V is entrywise nonnegative and satisfies (c1)–(c4).

One readily sees from (4.4) that M ≥ 0 exactly when V ≥ 0. Since the association
schemes corresponding to O(X) and O(A) are symmetric by Theorem 4.4, all matrices
Rσ and Rσ̃ are symmetric, and so are their Kronecker products. Hence, by (4.4), M is
symmetric as well.10 It follows that M ≽ 0 if and only if its spectrum is nonnegative.
By Theorem 4.5, this is equivalent to (c1). Consider two orbitals ω ∈ O(X) and
ω̃ ∈ O(A), and let (x, y) ∈ ω, (a, b) ∈ ω̃. We find

(ex ⊗ ea)
TM(ey ⊗ eb) =

∑
σ∈O(X)
σ̃∈O(A)

vσσ̃(ex ⊗ ea)
T (Rσ ⊗Rσ̃)(ey ⊗ eb)

=
∑

σ∈O(X)
σ̃∈O(A)

vσσ̃(e
T
xRσey)(e

T
aRσ̃eb) = vωω̃.

It follows that (c3) and (c4) are equivalent to (r1) and (r2), respectively. Furthermore,
given (x, y) ∈ ω ∈ O(X), we have

(ex ⊗ 1n)
TM(ey ⊗ 1n) =

∑
(a,b)∈V (A)2

(ex ⊗ ea)
TM(ey ⊗ eb)

=
∑

ω̃∈O(A)

∑
(a,b)∈ω̃

(ex ⊗ ea)
TM(ey ⊗ eb) =

∑
ω̃∈O(A)

∑
(a,b)∈ω̃

vωω̃

=
∑

ω̃∈O(A)

vωω̃|ω̃| = eTωV µA.

As a consequence, (c2) is equivalent to (r6)—which, by Proposition 2.2, is equivalent
to (r3), (r4), and (r5).

In order to prove that SDA does not solve PCSP(A,B) for any pair of non-bipartite
loopless undirected graphs such that A → B, thus establishing Theorem 1.3, we seek
a fooling instance: a digraph X such that SDA(X,A) = Yes but X ̸→ B. If we
wish to apply Corollary 4.6 and take advantage of the machinery developed so far
for describing the output of SDP, we need both X and A to be generously transitive

10Note that V is not required to be symmetric; in fact, V is not square in general.
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Figure 5.1: From the left, the generalised Johnson graphs J7,3,1, J7,3,2, and J7,3,3.

digraphs. Regarding A, this requirement does not create problems. Indeed, it is not
hard to check that it is enough to establish the result in the case that A is an odd
undirected cycle and B is a clique. Since cycles happen to be generously transitive,
Theorem 4.4 does apply; as we shall see, the structure of the scheme for odd cycles
also allows dealing with the linear part of SDA. The more challenging part is to come
up with a digraph X that (i) is generously transitive, (ii) is not homomorphic to B
(i.e., is highly chromatic), and (iii) is accepted by SDA. A promising candidate is the
class of Kneser graphs, as they (i) are generously transitive and (ii) have unbounded
chromatic number (that is easily derived from the parameters of the graphs through
a classic result by Lovász [83]). In the next two sections, we look at the association
schemes for Kneser graphs and odd cycles. The task is to collect enough information
on their character tables to design an orbital matrix witnessing the fact that (iii)
SDA(X,A) = Yes.

5. The Johnson scheme. Given s, t ∈ N such that s > 2t, the Kneser graph
Gs,t is the undirected graph whose vertices are all subsets of [s] of size t, and
whose edges are all disjoint pairs of such subsets. As a consequence of the Erdős–
Ko–Rado theorem [13, 50], the automorphism group of Gs,t is isomorphic to the
symmetric group Syms consisting of the permutations of [s]. More precisely, given
f ∈ Syms, the corresponding automorphism ξf of Gs,t is given by ξf : {a1, . . . , at} 7→
{f(a1), . . . , f(at)} for any set {a1, . . . , at} of t elements of [s]. Let U, V be vertices of
Gs,t, let Z = U ∩ V , and label the elements of U \ Z, V \ Z, and Z by {u1, . . . , uq},
{v1, . . . , vq}, and {z1, . . . , zt−q} for some 0 ≤ q ≤ t. Letting f ∈ Syms be the permu-
tation that switches each ui with vi and is constant over [s] \ (U ∪V \Z), we see that
ξf (U) = V and ξf (V ) = U . This means that Gs,t is generously transitive and, thus,
O(Gs,t) generates an association scheme, which is known as the Johnson scheme.

Observe that, for two vertices U and V as above, the orbital of (U, V ) contains
precisely all pairs of vertices (U ′, V ′) such that |U ′ ∩ V ′| = |U ∩ V | = t − q. Hence,
the association scheme corresponding to O(Gs,t) consists of the adjacency matrices
of the generalised Johnson graphs Js,t,q for q = 0, . . . , t, where Js,t,q is the graph
having the same vertex set as Gs,t, with two vertices being adjacent if and only if
their intersection has size t − q (cf. Figure 5.1). For q = t, Js,t,q is Gs,t; for q = 1,
it is known as the Johnson graph, see [51, § 1.6]; for q = 0, it is the disjoint union
of

(
s
t

)
loops (whose adjacency matrix is the identity). Hence, the diagonal orbital

corresponds to q = 0, while the (unique) edge orbital corresponds to q = t.
In order to design an orbital matrix witnessing that Gs,t is accepted by SDP (and,

as we will see, SDA), it shall be useful to gain some insight into the behaviour of the
character table of Gs,t when it is multiplied by column vectors (which, ultimately,
will be the columns of the orbital matrix, cf. Corollary 4.6). We shall see that, if a
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column vector is interpolated by a polynomial of low degree, multiplying it by the
character table yields a vector living in a fixed, low-dimensional subspace of Rt+1.
This observation leads us to choose an orbital matrix whose nonzero columns are
polynomials of degree one (cf. the proof of Theorem 1.3 in Section 7).

Let h be the vector (0, 1, . . . , t) and, given a univariate polynomial f ∈ R[x], let
hf be the vector (f(0), f(1), . . . , f(t)). Henceforth, we shall label the members of the
Johnson scheme by 0, 1, . . . , t, where the q-th member is A (Js,t,q). Hence, we label the
entries of the character table of Gs,t and the standard unit vectors ei in Theorem 5.1
accordingly, with indices ranging over {0, . . . , t} rather than {1, . . . , t+ 1}. A similar
labelling shall also be used for the cycle scheme, cf. Propositions 6.2 and 6.4.

Theorem 5.1. Let s, t ∈ N with s > 2t, and let P be the character table of Gs,t.
Then

(i) Phf ∈ span(e0, . . . , ed) for any univariate polynomial f of degree d ≤ t;

(ii) P1 =
(
s
t

)
e0; (iii) Ph =

(
s
t

)
( st−t2

s e0 − st−t2

s2−s e1).

To prove Theorem 5.1, we take advantage of the explicit expression for the character
table of the Johnson scheme obtained by Delsarte [39] (see also [50, § 6.5]) in terms
of the Eberlein polynomials defined, for s, t, q, j ∈ N0, by

11

β(s, t, q, j) =

∞∑
i=0

(−1)i−q+j

(
i

q

)(
t− j

i− j

)(
s− i− j

t− j

)
.

Here, we are using the conventions that
(
x
y

)
= 0 unless 0 ≤ y ≤ x, and that

(
0
0

)
= 1.

In particular, this implies that β(s, t, q, j) = 0 unless q, j ≤ t ≤ s.

Theorem 5.2 ([39]). Let s, t ∈ N be such that s > 2t. Then the character table
of the Kneser graph Gs,t is the (t + 1) × (t + 1) matrix whose (j, q)-th entry, for
j, q ∈ {0, . . . , t}, is β(s, t, q, j).

Our strategy consists in associating with the entries of the character table a family of
bivariate generating functions (parameterised by t and j) defined by

γt,j(x, y) =
∑

s,q∈N0

β(s, t, q, j)xsyq.(5.1)

We now find a closed formula for these generating functions. Henceforth, the range
in a summation shall always be meant to be N0 unless otherwise specified.

Proposition 5.3. The identity

γt,j(x, y) = xt+j(1− x)j−t−1(1− y)j(1− x+ xy)t−j

holds for each t, j ∈ N0 and x, y ∈ R such that j ≤ t and −1 < x < 1.

Proof. We use the well-known identity

∑
n

(
n

a

)
xn =

xa

(1− x)a+1
,

11This expression for β(s, t, q, j) is obtained from the one given in [50, § 6.5] via straightforward
manipulations.
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valid for a ∈ N0 in the disk −1 < x < 1 (see [54, § 5.4]). In particular, this implies,
for b ∈ N0, ∑

n

(
n− b

a

)
xn =

∑
n

(
n

a

)
xn+b = xb

∑
n

(
n

a

)
xn =

xa+b

(1− x)a+1
.(5.2)

We find

γt,j(x, y) =
∑
s,q,i

(−1)i−q+j

(
i

q

)(
t− j

i− j

)(
s− i− j

t− j

)
xsyq

=
∑
q,i

(−1)i−q+j

(
i

q

)(
t− j

i− j

)
yq

∑
s

(
s− i− j

t− j

)
xs

(5.2)
=

∑
q,i

(−1)i−q+j

(
i

q

)(
t− j

i− j

)
yqxt+i(1− x)j−t−1

= (1− x)j−t−1
∑
i

(
t− j

i− j

)
xt+i

∑
q

(−1)i−q+j

(
i

q

)
yq

= (1− x)j−t−1
∑
i

(
t− j

i− j

)
xt+i(−1)j(y − 1)i

= (1− x)j−t−1
∑
i

(
t− j

i− j

)
xt+i(−1)i−j(1− y)i

= xt+j(1− x)j−t−1(1− y)j
∑
i

(
t− j

i− j

)
xi−j(−1)i−j(1− y)i−j

= xt+j(1− x)j−t−1(1− y)j
∑
i

(
t− j

i− j

)
(xy − x)i−j

= xt+j(1− x)j−t−1(1− y)j
∑
i

(
t− j

i

)
(xy − x)i

= xt+j(1− x)j−t−1(1− y)j(1− x+ xy)t−j ,

as required.

Theorem 5.1 is then proved by expressing the entries of the vector Phf in terms of
partial derivatives of the generating functions γt,j , and by finding analytic expressions
for these partial derivatives through Proposition 5.3. In particular, the quantity

ϑs,t,j(k) =
∑
q

qkβ(s, t, q, j)

shall be crucial in the following. Observe that we can view it as the j-th entry of
the vector obtained by multiplying the character table of Gs,t by a vector whose q-th
entry is qk. It is possible to isolate ϑs,t,j(k) by differentiating the generating functions
γt,j . Using the closed formula for γt,j we just obtained, one can then deduce some
useful identities.

Proposition 5.4. Let s, t, q, j, k ∈ N0. Then
(i) ϑs,t,j(k) = 0 if k < j;
(ii) ϑs,t,j(j) = (−1)jj!

(
s−2j
t−j

)
;
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(iii) ϑs,t,j(j + 1) = (−1)j(j + 1)!
(
s−2j
t−j

) (
t− j

2 − (t−j)2

s−2j

)
.

Proof. Notice that the result is trivially true if j > t, as in this case β(s, t, q, j) = 0.
Differentiating the polynomial γt,j as defined in (5.1) k times with respect to the
variable y yields

∂kγt,j
∂yk

=
∑
s,q

β(s, t, q, j)xsk!

(
q

k

)
yq−k.(5.3)

Observe that k!
(
q
k

)
is a polynomial in q of degree k. Hence, we can find coefficients

a
(k)
0 , . . . , a

(k)
k for which k!

(
q
k

)
=

∑k
i=0 a

(k)
i qi; in particular, we have a

(k)
k = 1. Evaluat-

ing (5.3) at y = 1 yields

∂kγt,j
∂yk

∣∣∣∣
y=1

=
∑
s,q

β(s, t, q, j)xsk!

(
q

k

)
=

∑
s,q

β(s, t, q, j)xs
k∑

i=0

a
(k)
i qi

=
∑
s

xs
k∑

i=0

a
(k)
i

∑
q

qiβ(s, t, q, j) =
∑
s

xs
k∑

i=0

a
(k)
i ϑs,t,j(i).(5.4)

We now make use of Proposition 5.3 to get an alternative expression for the object
above. If −1 < x < 1, applying the Leibniz rule for differentiation, we obtain

∂kγt,j
∂yk

= xt+j(1− x)j−t−1
k∑

ℓ=0

(
k

ℓ

)
∂ℓ((1− y)j)

∂yℓ
∂k−ℓ((1− x+ xy)t−j)

∂yk−ℓ
.

Notice that, for 0 ≤ ℓ ≤ k,

∂ℓ((1− y)j)

∂yℓ

∣∣∣∣
y=1

=

{
(−1)jj! if ℓ = j
0 otherwise

and

∂k−ℓ((1− x+ xy)t−j)

∂yk−ℓ

∣∣∣∣
y=1

= (k − ℓ)!

(
t− j

k − ℓ

)
xk−ℓ.

If k ≥ j, it follows that, over the disk −1 < x < 1,

∂kγt,j
∂yk

∣∣∣∣
y=1

= xt+j(1− x)j−t−1

(
k

j

)
(−1)jj!(k − j)!

(
t− j

k − j

)
xk−j

= xt+k(1− x)j−t−1k!(−1)j
(
t− j

k − j

)
=

∑
ℓ

(−1)jk!

(
t− j

k − j

)(
t− j + ℓ

ℓ

)
xℓ+t+k

=
∑
s

xs(−1)jk!

(
t− j

k − j

)(
s− j − k

t− j

)
.(5.5)

In fact, (5.5) also holds if k < j, as both terms in the equality are zero in that case.
Using that γt,j is an analytic function, we can then compare (5.4) and (5.5) equating
the coefficients. This yields the identity

k∑
i=0

a
(k)
i ϑs,t,j(i) = (−1)jk!

(
t− j

k − j

)(
s− j − k

t− j

)
.(5.6)
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If k < j, the right-hand side of (5.6) is zero. Recalling that a
(k)
k = 1, it is then

immediate to conclude by induction over k that ϑs,t,j(k) = 0, thus establishing (i).
If k = j, using (i) we find that the left-hand side of (5.6) is ϑs,t,j(j), while the

right-hand side is (−1)jj!
(
s−2j
t−j

)
, thus establishing (ii).

If k = j + 1, using (i), (ii), and the fact that a
(j+1)
j = − j2+j

2 , we find that the
left-hand side of (5.6) is

a
(j+1)
j ϑs,t,j(j) + a

(j+1)
j+1 ϑs,t,j(j + 1) = −j2 + j

2
(−1)jj!

(
s− 2j

t− j

)
+ ϑs,t,j(j + 1),

while the right-hand side is

(−1)j(j + 1)!(t− j)

(
s− 2j − 1

t− j

)
= (−1)j(j + 1)!

(
s− 2j

t− j

)(
t− j − (t− j)2

s− 2j

)
.

Equating the two sides gives the expression in (iii) for ϑs,t,j(j + 1).

Remark 5.5. We observe that the equation (5.6) yields the following recursive
identity satisfied by the quantities ϑs,t,j(k):

ϑs,t,j(k) = −
k−1∑
i=j

a
(k)
i ϑs,t,j(i) + (−1)jk!

(
t− j

k − j

)(
s− j − k

t− j

)
.

The numbers a
(k)
i are the Stirling numbers of the first kind, see [92].

We can now prove Theorem 5.1. Recall that h = (0, 1, . . . , t) and also hf =
(f(0), f(1), . . . , f(t)) for a univariate polynomial f ∈ R[x] (where, as usual, we inter-
pret tuples as column vectors); if f is the monomial given by f(x) = xk, we denote hf

by hk. We now establish that multiplying the character table of the Johnson scheme
by hf yields a vector with the property that the entries with index bigger than the
degree of f are zero.12 This fact is particularly useful when f has a low degree, as
in this case all but the first few entries in the resulting vector are zero. Using parts
(ii) and (iii) of Proposition 5.4, we are able to find the expressions for the nonzero
coefficients in the case that the degree is zero or one.

Proof of Theorem 5.1. Let f be a polynomial of degree d ≤ t, and write it as
f(x) =

∑d
k=0 akx

k for some coefficients ak. We obtain hf =
∑d

k=0 akh
k. Hence, for

each j ∈ {0, . . . , t}, we have

eTj Phf =

d∑
k=0

ak e
T
j Phk =

d∑
k=0

ak

t∑
q=0

qkeTj Peq =

d∑
k=0

ak

t∑
q=0

qkβ(s, t, q, j)

=

d∑
k=0

ak ϑs,t,j(k).(5.7)

If j > d, it follows from Proposition 5.4(i) that the quantity in (5.7) is zero, which
means that Phf ∈ span(e0, . . . , ed), thus proving (i).

Note that 1 = h0, so by (i) P1 is a scalar multiple of e0. From (5.7), we find that

eT0 P1 = ϑs,t,0(0)
P .5.4(ii)

=

(
s

t

)
,

12In accordance with the labelling of the orbitals of Gs,t and of the entries of the character table,
the entries of vectors of length t+ 1 shall have indices ranging in {0, . . . , t}.
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thus proving (ii).
Similarly, since h = h1, by (i) we have that Ph ∈ span(e0, e1); the coefficients

are given by

eT0 Ph
(5.7)
= ϑs,t,0(1)

P .5.4(iii)
=

(
s

t

)(
t− t2

s

)
and

eT1 Ph
(5.7)
= ϑs,t,1(1)

P .5.4(ii)
= −

(
s− 2

t− 1

)
= −st− t2

s2 − s

(
s

t

)
,

which proves (iii).

6. The cycle scheme. Consider the undirected cycle Cn with n vertices, where
n ≥ 3. It is well known that Aut(Cn) is the dihedral group of order 2n, consisting of
all rotations and reflections of the cycle. Any pair of distinct vertices is switched by
a suitable reflection, so Cn is generously transitive. Hence, the orbitals of Cn form
an association scheme. The automorphism group of any graph X acts isometrically
on V (X)2, in the sense that dist(ξ(x), ξ(y)) = dist(x, y) for any x, y ∈ V (X) and
any ξ ∈ Aut(X). In addition, the structure of the dihedral group implies that two
pairs (x, y) and (x′, y′) of vertices of Cn lie in the same orbital whenever dist(x, y) =
dist(x′, y′). Hence, if n = 2m+1 is an odd integer, there are exactly m+1 orbitals—
one for each possible distance between two vertices in the cycle. We can thus write
O(Cn) = {ω0, . . . , ωm}, with ωj = {(x, y) ∈ V (Cn)

2 : dist(x, y) = j}. Note that
Rω0

= In and Rω1
= A (Cn). In other words, ω0 and ω1 are the diagonal orbital and

the (unique) edge orbital, respectively. Each orbital has size 2n except ω0, which has
size n. Instead of providing a complete description of the character table of Cn, it
shall be enough for our purposes to derive one property using the Perron–Frobenius
theorem. We say that a real entrywise-nonnegative square matrix M is primitive if
M c is entrywise positive for some power c ∈ N.

Theorem 6.1 (Perron–Frobenius theorem [87, 44]). Let M be a primitive ma-
trix. Then M has a unique eigenvalue ρ associated with an entrywise-nonnegative
eigenvector. Moreover, ρ is a simple eigenvalue13, it is real and positive, and |λ| < ρ
for each other eigenvalue λ of M .

Like in the case of the Johnson scheme, it shall be convenient to let the indices of the
entries in the character table of Cn range over {0, . . . ,m} rather than {1, . . . ,m+1}.

Proposition 6.2. Let n ≥ 3 be an odd integer, and let P be the character table
of Cn. Then Pe0 = 1, while Pe1 contains exactly one entry equal to 2, and all other
entries are strictly smaller than 2 in absolute value.

Proof. Let E = {E0, . . . , Em} be an orthogonal basis of idempotents for the
association scheme of O(Cn) as per Fact 4.3, where m = n−1

2 . Since E is a basis, all
of its members are different from the zero matrix, so for each ℓ ∈ {0, . . . ,m} there
exists v(ℓ) ∈ Cn such that Eℓv

(ℓ) ̸= 0. Using the idempotency of the basis, we find,
for each j ∈ {0, . . . ,m},

RωjEℓv
(ℓ) =

m∑
i=0

pijEiEℓv
(ℓ) = pℓjEℓv

(ℓ).(6.1)

This means that pℓj is an eigenvalue of Rωj
for each ℓ, j. Choosing j = 0 and recalling

that Rω0
= In, it follows that Pe0 = 1. Reasoning as in the proof of Theorem 4.5, we

13I.e., it has algebraic multiplicity one.
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find that Cn =
∑m

ℓ=0 EℓCn, which, by (6.1), yields a simultaneous decomposition of
Cn into eigenspaces14 of Rωj

for each ωj ∈ O(Cn). As a consequence, all eigenvalues
of Rωj

appear as entries of the vector Pej . Since n is odd, given two vertices x and
y of Cn, we can always find a path connecting x to y whose length is even; clearly,
any such path can be extended to a walk of length exactly n − 1 connecting x to
y. This means that the matrix (A (Cn))

n−1 is entrywise positive, thus showing that
Rω1

= A (Cn) is a primitive matrix. Note that Rω1
1 = 2 · 1. By Theorem 6.1, ρ = 2

is the spectral radius of Rω1
, it is a simple eigenvalue, and all other eigenvalues of

Rω1 have strictly smaller absolute value. This yields the desired description for Pe1.

Remark 6.3. The orbitals of Cn form an association scheme also in the case that
n is even. However, the description of Pe1 in Proposition 6.2 fails to be true in that
case, the reason being that the adjacency matrix of an even cycle is not primitive. In
fact, it is well known that the spectrum of the adjacency matrix of a bipartite graph
is symmetric around 0 (see [12, Prop. 8.2]). As a consequence, there are two entries
of Pe1 whose values are 2 and −2. Ultimately, this slight difference is able to break
the whole argument in the proof of Theorem 1.3 if one tries to replace odd cycles with
even cycles. This is a good sanity check, as we know that SDP does solve CSP(K2)
and, thus, CSP(A) for any undirected bipartite graph A [9] (where we denote by
CSP(A) the CSP parameterised by A; i.e., CSP(A) = PCSP(A,A)).

Theorem 5.1 and Proposition 6.2 contain the instructions needed to design an or-
bital matrix corresponding to a balanced SDP-matrix—which shall be concretely done
in the proof of Theorem 1.3. In order to show that Kneser graphs are fooling instances
for SDA applied to the approximate graph homomorphism problem, this SDP-matrix
should be augmented with a suitable AIP-matrix, as prescribed by Proposition 3.3.
The key to make the augmentation possible is to assign to each member of the cycle
scheme an integral matrix whose support is included in the corresponding orbital, in
a way that the row- and column-sum vectors are equal and constant over the whole
scheme. The next result shows that such an assignment does exist.

Proposition 6.4. For any odd integer n ≥ 3 there exists a function f : O(Cn) →
Zn×n such that supp(f(ω)) ⊆ ω and f(ω)1 = f(ω)T1 = e0 for each ω ∈ O(Cn).

Proof. Let {0, . . . , n − 1} be the vertex set of Cn, and take ω ∈ O(Cn). If ω is
the diagonal orbital, we let f(ω) = e0e

T
0 , which clearly satisfies the requirements. If

ω is not the diagonal orbital, the description of O(Cn) given at the beginning of this
section implies that there exists j ∈ [m] such that ω = {(x, y) ∈ {0, . . . , n − 1}2 :
dist(x, y) = j}. For each vertex x ∈ {0, . . . , n − 1}, there exist exactly two vertices
y ̸= y′ ∈ {0, . . . , n− 1} such that dist(x, y) = dist(x, y′) = j. In other words, ω is the
edge set of an undirected graph Hω all of whose vertices have degree two. It follows
that Hω is the disjoint union of nω undirected cycles, for some nω ∈ N. Let C be one
of these cycles and let x be a vertex belonging to C. The length of C is the minimum
ℓ ∈ N such that x + ℓj = x mod n. Since this quantity does not depend on x, we
deduce that all cycles in Hω have the same length ℓω ≥ 3. As nωℓω = n, it follows in
particular that ℓω is odd. Choose as C the ℓω-cycle in Hω containing the vertex 0,
and relabel the vertices of C as 0 = 0′, 1′, . . . , (ℓω−1)′, in the natural order. Consider
the oriented graph C̃ obtained by setting an alternating orientation for each edge of

14Using that the scheme O(Cn) is symmetric, we could as well have considered a real eigenspace
decomposition, cf. Footnote 9.
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C, starting from (0′, 1′); i.e.,

E(C̃) = {(0′, 1′), (2′, 1′), (2′, 3′), (4′, 3′), (4′, 5′), . . .
((ℓω − 1)′, (ℓω − 2)′), ((ℓω − 1)′, 0′)}.

Let S+ = {(0′, 1′), (2′, 3′), . . . , ((ℓω − 1)′, 0′)} and S− = E(C̃) \ S+. We define f(ω)
as the n× n matrix whose (x, y)-th entry is 1 if (x, y) ∈ S+, −1 if (x, y) ∈ S−, and 0
otherwise. Notice that

supp(f(ω)) = S+ ∪ S− = E(C̃) ⊆ E(C) ⊆ E(Hω) = ω.

With the exception of 0, each vertex of Cn either is the tail of exactly two directed
edges in C̃, whose contributions in f(ω) have opposite signs, or it is not the tail of
any directed edge in C̃. As for 0 = 0′, it is the tail of exactly one directed edge, whose
contribution is +1. The same statement is true if we replace “tail” with “head”. As
a consequence, we find that f(ω)1 = f(ω)T1 = e0, thus concluding the proof.

7. A lower bound against SDA. We now have all the ingredients for proving
the main result of the paper.

Theorem 7.1 (Theorem 1.3 restated). Let A,B be non-bipartite loopless undi-
rected graphs such that A → B. Then SDA does not solve PCSP(A,B).

Proof. Observe that, for A and B as in the statement of the theorem, there exist
n, n′ ≥ 3 with n odd such that Cn → A and B → Kn′ . (For example, we may choose
n and n′ as the odd girth of A and the chromatic number of B, respectively.) Let
m = n−1

2 , and let P̃ be the character table of the association scheme corresponding
to O(Cn). By Proposition 6.2, there exists 0 < δ < 2 such that, up to a permutation

of the rows, P̃e0 = 1 and P̃e1 =

[
2
z

]
for some vector z ∈ Rm all of whose entries have

absolute value strictly smaller than δ. Without loss of generality, we can assume that
δ is rational. Let t ∈ N be such that t ≥ 2n′

2−δ and t
δ ∈ N, and let s = 2t

δ + t. Observe
that s > 2t. We claim that SDA(Gs,t,Cn) = Yes. Since, as shown in Proposition 2.6,
SDA is monotone with respect to the homomorphism preorder of the arguments, this
would imply that SDA(Gs,t,A) = Yes. However, using Lovász’s formula for the
chromatic number of Kneser graphs [83], we find

χ(Gs,t) = s− 2t+ 2 =
2t

δ
+ t− 2t+ 2 =

t(2− δ)

δ
+ 2 ≥ 2n′

δ
+ 2 > n′ + 2.

This means that Gs,t ̸→ Kn′ and, hence, Gs,t ̸→ B. As a consequence, the truth of
the claim would establish that SDA does not solve PCSP(A,B), thus concluding the
proof of the theorem.

Let P be the character table of Gs,t, and recall that h denotes the vector
(0, 1, . . . , t) (which, as usual, we view as a column vector). Consider the matrices

W =
[
1− 1

th
1
th Ot+1,m−1

]
∈ R(t+1)×(m+1),

and

K =
1

2n
diag(2, 1, . . . , 1) ∈ R(m+1)×(m+1),

and V = WK. We now show that V meets the conditions in Corollary 4.6 and, thus,
it is the orbital matrix for a balanced SDP-matrix. Recall that the diagonal orbitals of
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Gs,t and Cn are those having index 0, while the (unique) edge orbitals of Gs,t and Cn

are those having index t and 1, respectively. Since vi,j = 0 whenever i = 0, j ̸= 0 or
i = t, j ̸= 1, the conditions (c3) and (c4) are satisfied. Observe that µCn is the vector
2n1− ne0. Therefore, V µCn = WKµCn = W1 = 1, so (c2) holds, too. Theorem 5.1
yields

PW =
[
P1− 1

tPh 1
tPh Ot+1,m−1

]
=

(
s

t

)[
e0 − (1− t

s )e0 +
s−t
s2−se1 (1− t

s )e0 −
s−t
s2−se1 Ot+1,m−1

]

=

(
s

t

)


t
s 1− t

s 0 . . . 0
s−t
s2−s

t−s
s2−s 0 . . . 0

0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0

 .

It follows that

PV P̃T = PWKP̃T =

(
s
t

)
2n


2t
s 1− t

s
2(s−t)
s2−s

t−s
s2−s

0 0
...

...
0 0


[
1 1T

m

2 zT

]
=

(
s
t

)
2n

[
2 2t

s 1
T
m + (1− t

s )z
T

0 s−t
s2−s (2 · 1m − z)T

]
.

We have 2 · 1m − z > 0. Using that t
s = δ

2+δ and zi > −δ for each i ∈ [m], we find
that

2t

s
+

(
1− t

s

)
zi =

2δ

2 + δ
+

(
1− δ

2 + δ

)
zi >

2δ

2 + δ
+

(
1− δ

2 + δ

)
(−δ) = 0,

thus showing that 2t
s 1m+(1− t

s )z > 0. It follows that PV P̃T ≥ 0, which means that
(c1) is met. Applying Corollary 4.6, we deduce that SDP(Gs,t,Cn) = Yes and that
the matrix

M =
∑

ω∈O(Gs,t)
ω̃∈O(Cn)

vωω̃ Rω ⊗Rω̃

is a balanced SDP-matrix for Gs,t, Cn, cf. Proposition 3.4.
The next step is to add AIP. For each x ∈ V (Gs,t)

2, let ω(x) be the orbital of
Gs,t containing x, and choose an orbital ω̃(x) of Cn satisfying vω(x)ω̃(x) ̸= 0. Letting
f : O(Cn) → Zn×n be the function from Proposition 6.4, we consider the

(
s
t

)
n×

(
s
t

)
n

matrix N defined by Nx = f(ω̃(x)) for each x (where Nx = (ex1
⊗ In)

TN(ex2
⊗ In)

is the x-th block of N). We claim that N is an AIP-matrix for Gs,t,Cn. Note that,
if x = (x, x) ∈ V (Gs,t)

2, we have ω(x) = ω0 and, thus, ω̃(x) = ω̃0, which gives
supp(Nx) = supp(f(ω̃0)) ⊆ ω̃0. Similarly, if x ∈ E(Gs,t), then ω(x) = ωt and, thus,
ω̃(x) = ω̃1, which gives supp(Nx) = supp(f(ω̃1)) ⊆ ω̃1 = E(Cn). This yields the
conditions (r1) and (r2). Moreover, for x = (x1, x2) ∈ V (Gs,t)

2, we find

(ex1 ⊗ In)
TN(ex2 ⊗ 1n) = (ex1 ⊗ In)

TN(ex2 ⊗ In)(1⊗ 1n) = Nx1n = f(ω̃(x))1n
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which, by the properties of f , is constant over the orbitals of Cn; this gives (r3).
Similarly, using that f(ω̃(x))T1n is constant over the orbitals, we obtain (r4). Finally,
(r5) follows by observing that 1T

nNx1n = 1T
nf(ω̃

(x))1n = 1T
ne0 = 1 for any x. As

a consequence, N is a relaxation matrix; since its entries are integral, it is an AIP-
matrix. For any x ∈ V (Gs,t)

2, the x-th block of M satisfies

Mx = (ex1 ⊗ In)
TM(ex2 ⊗ In) =

∑
ω∈O(Gs,t)
ω̃∈O(Cn)

vωω̃ (ex1 ⊗ In)
T (Rω ⊗Rω̃)(ex2 ⊗ In)

=
∑

ω∈O(Gs,t)
ω̃∈O(Cn)

vωω̃ (eTx1
Rωex2

)Rω̃ =
∑

ω̃∈O(Cn)

vω(x)ω̃Rω̃.

Since vω(x)ω̃(x) ̸= 0, using that the orbitals of a graph are disjoint, we deduce that
Rω̃(x) ◁ Mx. On the other hand, we have supp(Nx) = supp(f(ω̃(x))) ⊆ ω̃(x) =
supp(Rω̃(x)), which means that Nx ◁ Rω̃(x) . It follows that N ◦ ((I(st) + A (Gs,t))⊗
Jn) ◁ N ◁ M . Applying Proposition 3.3, we conclude that SDA(Gs,t,Cn) = Yes,
as required.

We note that the SDP part of the integrality gap in Theorem 1.3 may be directly
converted into Unique-Games approximation hardness of AGH through Raghaven-
dra’s framework [88]. Given two digraphs X,X′ and a real number 0 ≤ ϵ ≤ 1, an
ϵ-homomorphism from X to X′ is a map f : V (X) → V (X′) that preserves at least
(1−ϵ)-fraction of the edges of X. A robust algorithm for PCSP(A,B) is an algorithm
that finds a g(ϵ)-homomorphism from X to B whenever the instance X is such that
there exists an ϵ-homomorphism from X to A, where g is some monotone, nonnega-
tive function satisfying g(ϵ) → 0 as ϵ → 0. As observed in [21], it follows from [88]
that any PCSP admitting a polynomial-time robust algorithm is solved by SDP, as-
suming the Unique Games Conjecture (UGC) of [75]. Thus, Theorem 1.3 implies the
following conditional hardness result for AGH.

Corollary 7.2. Let A,B be non-bipartite loopless undirected graphs such that
A → B. Then, assuming the UGC and P ̸= NP, PCSP(A,B) does not admit a
polynomial-time robust algorithm.

8. Incomparability to the BA hierarchy. The BLP+AIP algorithm—whose
name we abbreviate to BA in this paper—was introduced in [22] as a combination
of two standard algorithmic techniques for CSPs: the basic linear programming re-
laxation BLP and the affine integer programming relaxation AIP (the same we use
in the current work as the linear Diophantine part of SDA). Unlike SDA, this re-
laxation does not solve all bounded-width CSPs, as noted in [22]. Consequently, BA
is strictly less powerful than SDA. It is possible to progressively strengthen the BA
algorithm through the lift-and-project technique [81], which results in the so-called
BA hierarchy [32]. The k-th level of the hierarchy, denoted by BAk, corresponds
to applying BA to a modified instance whose variables are sets of variables of the
original instance of size up to k.15 Recently, [30] established a lower bound against
this model, by showing that no constant level of the BA hierarchy solves the approxi-
mate graph colouring problem. Since constant levels of the BA hierarchy do solve all
bounded-width CSPs, it is natural to investigate how the hierarchy compares to SDA.

15For the explicit definitions of BLP, BA, and BAk, we refer the reader to [8], [22], and [32],
respectively.
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In particular, if some level of the hierarchy dominated SDA (in a sense that we will
now make formal), the lower bound in [30] would immediately imply the same lower
bound against SDA (though only for the approximate graph colouring problem). In
this section, we establish that this is not the case: SDA (and, in fact, already SDP
and a weaker version of the latter) is not dominated by any level of the BA hierarchy.
As a consequence, the specialisation of Theorem 1.3 to approximate graph colouring
does not follow as a corollary of [30].

Definition 8.1. Let D be the family of all (finite) digraphs. We define a test
to be a function T : D2 → {Yes,No}. We say that a test T is a polynomial-time
test if, for each A ∈ D, there exists an algorithm AlgA taking digraphs as inputs and
returning values in {Yes,No}, such that

(i) T (X,A) = AlgA(X) for each X ∈ D, and
(ii) AlgA can be implemented in polynomial time in the size of the input.

Also, we say that a test T is complete if T (X,A) = Yes for any X,A ∈ D such
that X → A; i.e., a complete test has no false negatives. We define a partial order
“⪯” on the set of tests: Given two tests T1, T2, we write T1 ⪯ T2 (and we say that T2

dominates T1) if, for any X,A ∈ D, T2(X,A) = Yes implies T1(X,A) = Yes.

All relaxations mentioned in this work are complete tests. For such tests, the fact
that T1 ⪯ T2 means that T2 is at least as powerful as T1, in that it has fewer false
positives. For example, it directly follows from the definitions that SDA dominates
both SDP and AIP. Moreover, since any solution to SDP can be turned into a
solution to BLP (by taking the norms of the vector variables λx,a), it follows that

BLP ⪯ SDP and BA = BA1 ⪯ SDA. If, for some k ∈ N, we had SDA ⪯ BAk, the
results in [30] would directly imply that approximate graph colouring is not solved by
SDA and, moreover, that the same fooling instances produced in [30] could be used
for fooling SDA. In Subsection 8.2, we show that this is not the case, as not even a
weaker, polynomial-time version of SDP—the test SDPϵ described in Subsection 8.1
below—is dominated by BAk.

8.1. A tale of two polytopes. A few years ago, Ryan O’Donnell noted that
polynomial-time solvability of certain semidefinite programming relaxations, assumed
in several papers in the context of the Sum-of-Squares proof system, is not known in
general [86]. In fact, it is a well-known open question in optimisation theory whether
all semidefinite programs can be solved to near-optimality in polynomial time [89, 46].
To the best of the authors’ knowledge, details of how the semidefinite program SDP
can be efficiently solved to near-optimality (if at all) have not been made explicit
in the literature. This motivates us to give a formal argument showing that this is
indeed possible. As we shall see, the issue requires some unexpected matrix-theoretic
considerations.

It is well known that a polynomial-time algorithm (in the Turing model of compu-
tation) for semidefinite programming based on the ellipsoid method exists [55, 56, 97]
under the assumption that the feasible region contains a “large enough” inner ball and
is contained in a “small enough” outer ball—a requirement known as Slater condi-
tion.16 In this subsection, we show that the semidefinite program SDP can be solved
to near-optimality in polynomial time, by reformulating it as an optimisation problem
meeting Slater condition.

Recall that ⟨M,N⟩F = Tr(MTN) denotes the Frobenius inner product of matri-

ces, and let ∥M∥F =
√
⟨M,M⟩F denote the corresponding norm. Given a set M of

16Another polynomial-time algorithm is based on the interior-point methods [38].
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square matrices of equal size, a matrix M ∈ M , and a real number r > 0, we consider
the ball BM (M ; r) = {N ∈ M : ∥N − M∥F < r}. Throughout this and the next
subsections, we shall denote the cone of positive semidefinite matrices by P. For
ℓ,m ∈ N, let C,A1, . . . , Am be rational ℓ × ℓ matrices, and let b1, . . . , bm be rational
numbers. We denote by V the polytope containing all real symmetric ℓ× ℓ matrices
M satisfying ⟨Ai,M⟩F ≤ bi for each i ∈ [m]. Consider the semidefinite program in
standard form

inf ⟨C,M⟩F
subject to M ∈ V ∩ P

(8.1)

and let ν be the optimal value of the program. Let also V a denote the affine hull
of V , i.e., the intersection of all affine spaces containing V (where a set S of ℓ × ℓ
real matrices is an affine space if λM + (1 − λ)N ∈ S whenever M,N ∈ S and
λ ∈ R). For rationals r,R > 0, we say that a matrix M0 ∈ V ∩ P is an (r,R)-Slater
point for (8.1) if BV a(M0; r) ⊆ V ∩ P ⊆ BV a(M0;R). The next result from [55]
(see also the formulation in [38]) establishes that the ellipsoid method can be used
to solve a semidefinite program up to arbitrary precision in polynomial time provided
that there exists a Slater point.

Theorem 8.2 ([55]). Let M0 be an (r,R)-Slater point for the semidefinite pro-
gram (8.1). Then for any rational ϵ > 0 one can find a rational matrix M∗ ∈ V ∩P
such that ⟨C,M∗⟩F − ν ≤ ϵ in time polynomial in ℓ, m, log(R/r), log(1/ϵ), and the
bit-complexity of the input data C, Ai, bi, and M0.

Our goal is then to reformulate the system (SDP) as a program in the form (8.1),
and to find for it a suitable Slater point. First of all, observe that we cannot simply
introduce a dummy objective function to be minimised over the feasible set of (SDP)
(i.e., the set of solutions to (SDP1)–(SDP4)), as this set can be empty, in which case it
clearly contains no Slater points.17 The natural choice is then to relax the condition
(SDP3)—which requires that the solution should be compatible with the edge sets of
X and A—by turning it into an objective function to be minimised: Given a pn× pn
matrix M , we let

f(M) =
∑

(x,y)∈E(X)

∑
(a,b)∈V (A)2\E(A)

(ex ⊗ ea)
TM(ey ⊗ eb).(8.2)

(Notice that we are working with the matrix formulation of (SDP), which is compati-
ble with the standard form (8.1).) This is sufficient to make the feasible set nonempty,
as is witnessed, for example, by the positive semidefinite matrix 1

nJp ⊗ In. We now
need to declare which polytope takes the role of V in the standard form (8.1). This
is an important choice: The definition of Slater points takes into account not only
the feasible set V ∩P of a program, but also the polytope V involved in its formula-
tion. Hence, it might happen that Slater condition can be enforced by modifying the
formulation of a program in a way that the dimension of the polytope V is reduced,
while still preserving the feasible set V ∩P. In the current setting, one natural can-
didate is the polytope described by taking the constraints of (SDP) and discarding
(SDP3) and positive semidefiniteness—i.e., in the matrix formulation, the polytope
W containing all pn × pn symmetric entrywise-nonnegative matrices satisfying the
conditions (r1) (“diagonal blocks are diagonal”) and (r6) (“the entries in each block

17In fact, the set is nonempty precisely when SDP(X,A) = Yes.
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sum up to 1”). Another natural choice consists in looking at the conditions defining
an SDP-matrix, and discarding the condition (r2) and positive semidefiniteness: We
let U denote the polytope of pn× pn symmetric entrywise-nonnegative matrices sat-
isfying the conditions (r1), (r3), (r4), and (r5). The two choices result in two different
programs:

inf f(M)
subject to M ∈ W ∩ P

(SDP′)

inf f(M)
subject to M ∈ U ∩ P.

(SDP′′)

It follows from Proposition 2.2 that U ⊆ W and U ∩P = W ∩P. In particular, this
means that (SDP′) and (SDP′′) are two different formulations of the same minimi-
sation problem. Nevertheless, the two propositions below show that only the second
formulation of the program meets Slater condition, which guarantees the existence
of a polynomial-time algorithm solving it to near-optimality in the Turing model of
computation.

Proposition 8.3. There exists M0 ∈ U ∩ P such that BU a(M0;
1
n2 ) ⊆ U ∩

P ⊆ BU a(M0; 2p
2 + 1).

Proposition 8.4. If p, n ≥ 2, BW a(M0; r) ̸⊆ P for any M0 ∈ W ∩ P and
r > 0.

For this reason, we define the test SDPϵ using the formulation (SDP′′). More precisely,
for ϵ > 0, SDPϵ is described as follows:

• Take two digraphs X,A as input;
• run the ellipsoid method [55] on the program (SDP′′) with precision ϵ, ob-

taining an output M∗ ∈ U ∩ P;
• if f(M∗) ≤ ϵ, set SDPϵ(X,A) = Yes; otherwise, set SDPϵ(X,A) = No.

We thus obtain the following result.

Theorem 8.5. For each ϵ > 0, SDPϵ is a complete, polynomial-time test. More-
over, SDPϵ ⪯ SDP.

Proof. It follows from Proposition 8.3 that the program (SDP′′) has a ( 1
n2 , 2p

2+1)-
Slater point. Using Theorem 8.2, we deduce that we can find a near-optimal solution
to (SDP′′) up to any given precision ϵ > 0 in time polynomial in the sizes of X and
A. In particular, if we fix A, SDPϵ can be implemented in polynomial time in the
size of X and it is thus a polynomial-time test, as per Definition 8.1. Moreover, if
SDP(X,A) = Yes, the optimal value of (SDP′′) is 0. As a consequence, the solution
M∗ found by the ellipsoid method satisfies f(M∗) ≤ ϵ (cf. Theorem 8.2), which means
that SDPϵ(X,A) = Yes. It follows that SDPϵ ⪯ SDP. In particular, since SDP is
complete, this implies that SDPϵ is also complete.

In Subsection 8.2, this weaker, polynomial-time version of SDP will prove to be
strong enough to correctly classify cliques and, therefore, not to be dominated by the
BA hierarchy. We now give a proof of Proposition 8.3, that finds a Slater point for
the program (SDP′′). The following, simple description of the association schemes
corresponding to cliques shall be useful.

Remark 8.6. It is straightforward to check that, for any n ≥ 2, the clique Kn is
generously transitive, and the association scheme corresponding to O(Kn) consists
of the two matrices In and Jn − In. Either by a direct computation or noting that

Kn = Gn,1, we find that the character table of Kn is the matrix

[
1 n− 1
1 −1

]
.

Proof of Proposition 8.3. Let M0 = 1
nIp ⊗ In + 1

n2 (Jp − Ip)⊗ Jn, and notice that
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M0 ∈ U . Letting ω0, ω1 denote the diagonal and edge orbitals of Kp and ω̃0, ω̃1

denote the diagonal and edge orbitals of Kn, we see that M0 may be written in the
form (3.2) with vω0ω̃0

= 1
n , vω0ω̃1

= 0, and vω1ω̃0
= vω1ω̃1

= 1
n2 . It follows from

Proposition 3.4 that M0 is balanced for Kp, Kn, with orbital matrix V =

[
1
n 0
1
n2

1
n2

]
.

Let P and P̃ be the character tables of Kp and Kn, respectively, and recall their
expressions from Remark 8.6. Using Theorem 4.5, we deduce that the spectrum of
M0 consists of the entries of the matrix

PV P̃T =

[
1 p− 1
1 −1

] [
1
n 0
1
n2

1
n2

] [
1 1

n− 1 −1

]
=

[
p
n

1
n

0 1
n

]
.(8.3)

In particular, M0 ∈ P.
In order to show that U ∩P ⊆ BU a(M0; 2p

2+1), notice that any matrix M ∈ U
satisfies ∥M∥2F = Tr(M2) ≤ (1TM1)2 = p4. Therefore,

∥M −M0∥F ≤ ∥M∥F + ∥M0∥F ≤ 2p2 < 2p2 + 1,

as needed.
We now need to prove that BU a(M0;

1
n2 ) ⊆ U ∩ P. Let Z = span({(ex −

ey) ⊗ 1n : x, y ∈ V (Kp)}), and consider two matrices Q1 and Q2 whose columns
form orthonormal bases for Z and Z⊥, respectively, where Z⊥ denotes the orthogonal
complement of Z in Rpn. Let H be the vector space of pn× pn symmetric matrices
satisfying (r3). Since H is in particular an affine space and U ⊆ H , we have

U a ⊆ H . Given any A ∈ H , let Â = QT
2 AQ2. The condition (r3) implies that

Z ⊆ ker(A), which means that AQ1 = O. Letting Q =
[
Q1 Q2

]
∈ Rpn×pn, we

deduce that

QTAQ =

[
QT

1 AQ1 QT
1 AQ2

QT
2 AQ1 QT

2 AQ2

]
=

[
O O
O QT

2 AQ2

]
=

[
O O

O Â

]
.(8.4)

We claim that Z = ker(M0). The inclusion Z ⊆ ker(M0) is clear from the fact that
M0 ∈ H . Take w ∈ Z⊥, and notice that this implies that there exists a constant c
for which (ex ⊗ 1n)

Tw = c for every x ∈ V (Kp). If w ∈ ker(M0), we have

0 = M0w =
1

n
w +

c(p− 1)

n2
1pn.

It follows that w = c(1−p)
n 1pn, which gives, for any x ∈ V (Kp),

c = (ex ⊗ 1n)
Tw =

c(1− p)

n
(ex ⊗ 1n)

T1pn = c− pc,

whence we find c = 0 and, thus, w = 0. It follows that ker(M0) ∩ Z⊥ = {0}, which
yields the claimed identity Z = ker(M0).

TakeN ∈ BU a(M0;
1
n2 ); we need to show thatN ∈ U ∩P. Observe thatN ∈ H ,

so N̂ is well defined. We claim that N̂ is a positive definite matrix. By (8.4), this
would imply that QTNQ ∈ P and, thus, that N ∈ P. Since H is a vector space, we

have N −M0 ∈ H ; moreover, N̂ −M0 = N̂ − M̂0. Let q = dim(Z) = dim(ker(M0)),
and take a vector v ∈ Rpn−q having unitary norm. Order the eigenvalues of M0 as
λ1(M0) ≤ · · · ≤ λpn(M0). From (8.3), we see that 0 = λq(M0) < λq+1(M0) = 1

n .
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Using the Courant–Fischer variational characterisation of the spectrum of symmetric
matrices (see [61, § 8.2]), we deduce that

vT M̂0v = (Q2v)
TM0(Q2v) ≥ min

y∈Z⊥

yTy=1

yTM0y = λq+1(M0) =
1

n
.

Moreover, letting ∥ · ∥2 denote the spectral matrix norm, we have

|vT N̂ −M0v| ≤ ∥N̂ −M0∥2 ≤ ∥N −M0∥2 ∥Q2∥22 = ∥N −M0∥2

≤ ∥N −M0∥F <
1

n2
.

In the expression above, the first inequality comes from the definition of the spec-
tral norm and the Cauchy–Schwarz inequality, the second inequality is due to the
submultiplicativity of the spectral norm, the first equality follows from the fact that
∥Q2∥2 = 1 since the columns of Q2 are orthonormal, the third inequality is a standard
property of matrix norms (see [63, Thm. 5.6.34]), and the fourth inequality holds since
N ∈ BU a(M0;

1
n2 ). It follows that

vT N̂v = vT M̂0v + vT N̂ −M0v ≥ vT M̂0v − |vT N̂ −M0v| >
1

n
− 1

n2
≥ 0,

thus proving the claim.
We are left to show that N ∈ U . It suffices to prove that N is entrywise non-

negative, as all other conditions describing U are implied by the fact that N ∈ U a.
Take x, y ∈ V (X) and a, b ∈ V (A). If x = y and a ̸= b, (ex ⊗ ea)

TN(ey ⊗ eb) = 0 by
(r1). Otherwise, noticing that ∥M0 −N∥2F is the sum of the squares of the entries of
M0 −N , we find

|(ex ⊗ ea)
T (M0 −N)(ey ⊗ eb)| ≤ ∥M0 −N∥F <

1

n2
.

Noting that (ex ⊗ ea)
TM0(ey ⊗ eb) ≥ 1

n2 , it follows that (ex ⊗ ea)
TN(ey ⊗ eb) > 0,

which establishes that N ≥ 0 and concludes the proof of the proposition.

Finally, we prove Proposition 8.4, implying that there exist no Slater points for the
program (SDP′).

Proof of Proposition 8.4. Given M0 ∈ W ∩ P and r > 0, choose two distinct
vertices x, y ∈ V (X) and a vertex a ∈ V (A). Consider the matrix H = 1

n (Jp −
exe

T
y − eye

T
x ) ⊗ In + (exe

T
y + eye

T
x ) ⊗ eae

T
a and the number s = min( r

2p2+1 , 1), and

define N = (1 − s)M0 + sH. It is straightforward to check that H ∈ W ; since W
is a convex set, it follows that N ∈ W ⊆ W a. Observe that each matrix M ∈ W
satisfies ∥M∥F ≤ p2 (because of (r6) and the entrywise nonnegativity of the entries).
Therefore,

∥N −M0∥F = ∥s(H −M0)∥F = s∥H −M0∥F ≤ s(∥H∥F + ∥M0∥F) ≤ 2p2s < r,

thus showing that N ∈ BW a(M0; r). We now prove that N ̸∈ P. Let the space Z and
the matrices Q1, Q2, Q be defined in the same way as in the proof of Proposition 8.3.

Since U ∩P = W ∩P, we have that M0 ∈ U and, thus, QTM0Q =

[
O O
O QT

2 M0Q2

]
.

Noting that H ∈ W and, hence, it satisfies (r6), we see that [(ex′−ey′)⊗1n]
TH[(ex′′−
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ey′′)⊗1n] = 0 for each x′, x′′, y′, y′′ ∈ V (X). Hence, wTHw′ = 0 for each w,w′ ∈ Z,
which implies that QT

1 HQ1 = O. We deduce that

QTNQ = (1− s)QTM0Q+ sQTHQ =

[
O sQT

1 HQ2

sQT
2 HQ1 QT

2 NQ2

]
.(8.5)

Letting z = (ex − ey)⊗ 1n, observe that

Hz =
1

n
(Jp − exe

T
y − eye

T
x )(ex − ey)⊗ (In1n)

= +(exe
T
y + eye

T
x )(ex − ey)⊗ (eae

T
a 1n)

=
1

n
(ex − ey)⊗ 1n + (ey − ex)⊗ ea,

which does not belong to Z (as we are assuming x ̸= y and n ≥ 2). It follows that
QT

2 Hz ̸= 0; indeed, otherwise, we would have Hz ∈ (Z⊥)⊥ = Z. Since z ∈ Z, we
have z = Q1v for some vector v. We deduce that QT

2 HQ1v ̸= 0, which means that
QT

2 HQ1 ̸= O. It is well known that, if a diagonal entry of a positive semidefinite
matrix is zero, the corresponding row and column are zero (see [63, Obs. 7.1.10]).
Looking at (8.5), we deduce that QTNQ ̸∈ P, thus yielding N ̸∈ P, as needed.

8.2. SDPϵ vs. BAk. The goal of this subsection is to establish the following
result, which states that the test SDPϵ is not dominated by the BA hierarchy for ϵ
sufficiently small.

Theorem 8.7. For each k ∈ N there exists ϵ > 0 such that SDPϵ ̸⪯ BAk.

Since SDPϵ ⪯ SDP ⪯ SDA, it will follow that SDP ̸⪯ BAk and SDA ̸⪯ BAk.18 In
order to prove Theorem 8.7, we need to exhibit a class of digraphs that are correctly
classified by SDPϵ and not by BAk. It turns out that cliques can serve as separating
instances. Indeed, a result from [30] implies that the BA hierarchy is not sound on
cliques. In contrast, SDPϵ is able to correctly classify cliques provided that ϵ is small
enough—as we shall prove next by leveraging the framework of association schemes.

We start by adapting the machinery developed in the previous sections to SDPϵ,
thus obtaining the following result (akin to Corollary 4.6).

Proposition 8.8. Let X and A be generously transitive digraphs, let P and
P̃ be the character tables of X and A, respectively, let ϵ > 0, and suppose that
SDPϵ(X,A) = Yes. Then there exists a real entrywise-nonnegative |O(X)| × |O(A)|
matrix V such that

(c1) PV P̃T ≥ 0; (c2) V µA = 1;
(c3) vωω̃ = 0 if ω is the diagonal orbital of X and ω̃ is a non-diagonal orbital of

A;
(c′4) vωω̃ ≤ ϵ if ω is an edge orbital of X and ω̃ is a non-edge orbital of A.

Proof. Let M ∈ U ∩ P be a matrix witnessing that SDPϵ(X,A) = Yes, and
observe that f(M) ≤ ϵ by the definition of SDPϵ (where f(M) is defined in (8.2)).
Given two automorphisms ξ ∈ Aut(X) and α ∈ Aut(A), consider the matrix

M (ξ,α) = (Qξ ⊗QT
α)M(QT

ξ ⊗Qα).

18It is, however, an open question how the algorithms compare in terms of solvability of PCSPs,
see Remark 8.11.
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The same argument as in the proof of Proposition 2.5 (see Appendix A) shows that
M (ξ,α) ∈ U ∩ P and f(M (ξ,α)) = f(M). Hence, a minor modification of the proof
of Proposition 3.2 implies that the matrix

M =
1

|Aut(X)| · |Aut(A)|
∑

ξ∈Aut(X)
α∈Aut(A)

M (ξ,α)

is a balanced matrix for X,A and satisfies M ∈ U ∩ P and f(M) = f(M). In
particular, this means that (ex ⊗ ea)

TM(ey ⊗ eb) ≤ ϵ for each (x, y) ∈ E(X), (a, b) ∈
V (A)2 \ E(A). We can then express M in the basis R as per Proposition 3.4, and
conclude the proof by making use of Theorem 4.5 in the same way as in the proof of
Corollary 4.6.

We point out that the necessary condition for SDPϵ acceptance expressed in
Proposition 8.8 is not sufficient, unlike the similar condition for SDP in Corollary 4.6.
The reason is that the existence of a feasible solution to (SDP′′) with objective-
function value at most ϵ does not guarantee that SDPϵ(X,A) = Yes. Indeed, the
only piece of information we would be able to derive in this case is that the optimal
value ν of the program (SDP′′) satisfies ν ≤ ϵ. Theorem 8.2 would then guarantee
that the ellipsoid method finds a feasible solution M∗ with f(M∗) ≤ ϵ+ν ≤ 2ϵ, while
to ensure that SDPϵ(X,A) = Yes we need that f(M∗) ≤ ϵ.

We now show that SDPϵ is sound on cliques for ϵ small enough, by using the
description of the corresponding association schemes. Of course, it follows that the
same holds for SDP and SDA, since SDPϵ ⪯ SDP ⪯ SDA.

Proposition 8.9. Let p, n ≥ 2 and 0 < ϵ < 1
n3 . Then SDPϵ(Kp,Kn) = Yes if

and only if p ≤ n.

Proof. If p ≤ n, Kp → Kn; since SDPϵ is a complete test by Theorem 8.5, it
follows that SDPϵ(Kp,Kn) = Yes. Conversely, suppose that SDPϵ(Kp,Kn) = Yes.
Recall the description of the association schemes for cliques in Remark 8.6, and observe

that it implies µKn =

[
n

n2 − n

]
. Let V =

[
a b
c d

]
be the 2×2 matrix whose existence

is guaranteed by Proposition 8.8, and notice that the requirements (c3) and (c′4) yield
b = 0 and c ≤ ϵ, respectively. As for (c2), it gives[

1
1

]
=

[
a 0
c d

] [
n

n2 − n

]
=

[
an

cn+ d(n2 − n)

]
,

whence it follows that a = c + d(n − 1) = 1
n and c − d = n2c−1

n2−n . Letting P and P̃
denote the character tables of Kp and Kn, respectively, we obtain

V P̃T =

[
a 0
c d

] [
1 1

n− 1 −1

]
=

[
a a

c+ d(n− 1) c− d

]
=

[ 1
n

1
n

1
n

n2c−1
n2−n

]
.

Therefore,

PV P̃T =

[
1 p− 1
1 −1

] [ 1
n

1
n

1
n

n2c−1
n2−n

]
=

[
p
n

n−p+n2c(p−1)
n2−n

0 1−nc
n−1

]
.

The condition (c1) implies in particular that the (1, 2)-th entry of the matrix above is
nonnegative. Combining this with the fact that c ≤ ϵ and the assumption that ϵ < 1

n3



32 L. CIARDO, S. ŽIVNÝ

yields

0 ≤ n− p+ n2c(p− 1) < n− p+
p− 1

n
=

n− 1

n
(n+ 1− p),

which implies that p ≤ n, as needed.

On the other hand, the next result from [30]—used to rule out solvability of ap-
proximate graph colouring through the BA hierarchy—shows that BAk(X,A) always
accepts if A is a large-enough clique.

Theorem 8.10 ([30]). Let 2 ≤ k ∈ N and let X be a loopless digraph. Then
BAk(X,Kk2) = Yes.

It follows, in particular, that the BA hierarchy is not sound on cliques. We can then
finalise the proof of Theorem 8.7.

Proof of Theorem 8.7. It is enough to prove the result for k large enough since
BAk ⪯ BAk+1 for any k ∈ N (as follows from the definition of the BA hierarchy and
as was shown in a more general setting of lift-and-project hierarchies of relaxations
in [32]). For k ≥ 2, choose a positive ϵ < 1

k6 . We have from Theorem 8.10 that

BAk(Kk2+1,Kk2) = Yes, while Proposition 8.9 implies that SDPϵ(Kk2+1,Kk2) =
No. We conclude that SDPϵ ̸⪯ BAk, as required.

Remark 8.11. The partial order “⪯” described in Definition 8.1 concerns accep-
tance of tests. A different way of comparing two tests is by considering solvability.
More precisely, let E = {(A,B) ∈ D2 : A → B}. We say that a test T solves
(A,B) ∈ E if, for each X ∈ D, X → A implies T (X,A) = Yes and X ̸→ B implies
T (X,A) = No. We can then define a preorder “≤” on the set of tests by setting
T1 ≤ T2 when, for any (A,B) ∈ E, if T1 solves (A,B) then T2 also solves it. It is not
difficult to check that “≤” is finer than “⪯” on complete tests; i.e., for two complete
tests T1 and T2, if T1 ⪯ T2 then T1 ≤ T2. Observe that “≤” is not antisymmetric
and, thus, it is not a partial order.

The results proved in the current subsection imply that SDA ̸⪯ BAk for any
k ∈ N. On the other hand, the question of whether SDA ≤ BAk for some k is, to the
best of the authors’ knowledge, open, and Theorem 8.7 does not provide any evidence
supporting a negative answer. In fact, it is not even clear how SDP compares to the
Sherali–Adams LP hierarchy—i.e., the lift-and-project hierarchy built on top of the
BLP algorithm, see [94, 32]—in terms of the preorder “≤”. Finally, we point out that,
in the definition of “≤”, we may replace E with the smaller set of pairs (A,A) with
A ∈ D. The resulting preorder “≤CSP” would correspond to comparing solvability for
CSPs rather than PCSPs. It is known that SDP and any level of the Sherali–Adams
LP hierarchy higher than 2 are ≤CSP-equivalent, as they all solve precisely those CSPs
having bounded width [9, 94, 95].

Appendix A. Proofs from Section 2. This section contains the proofs of
the results stated in Section 2.

Proposition A.1 (Proposition 2.2 restated). Let M be a real pn × pn matrix.
Then

(i) the conditions (r3), (r4), and (r5) imply the condition (r6);
(ii) if M ≽ 0, the conditions (r3), (r4), and (r5) are equivalent to the condition

(r6).
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Proof. If M satisfies (r3) and (r4), the expression on the left-hand side of (r6)
has the same value for each choice of x, y ∈ V (X). Therefore, (r5) yields

p2 = 1T
pnM1pn = (1p ⊗ 1n)

TM(1p ⊗ 1n) =
∑

x′,y′∈V (X)

(ex′ ⊗ 1n)
TM(ey′ ⊗ 1n)

= p2(ex ⊗ 1n)
TM(ey ⊗ 1n),

which implies (r6).
Suppose now that M is positive semidefinite and satisfies (r6), and consider a

Cholesky decomposition M = LTL. For each x, y ∈ V (X), we find

0 = ((ex − ey)⊗ 1n)
TM((ex − ey)⊗ 1n) = ∥L((ex − ey)⊗ 1n)∥2.

We deduce that L((ex − ey)⊗ 1n) = 0, so

0 = LTL((ex − ey)⊗ 1n) = M((ex − ey)⊗ 1n) = M(ex ⊗ 1n)−M(ey ⊗ 1n),

as needed to prove (r3) (as well as (r4), since M is symmetric). Furthermore,

1T
pnM1pn =

∑
(x,y)∈V (X)2

(ex ⊗ 1n)
TM(ey ⊗ 1n) =

∑
(x,y)∈V (X)2

1 = p2,

which shows that (r5) holds, as well.

Proposition A.2 (Proposition 2.3 restated). Let X,A be digraphs. Then
(i) SDP(X,A) = Yes if and only if there exists an SDP-matrix for X,A;
(ii) if X is loopless, SDA(X,A) = Yes if and only if there exist an SDP-matrix

M and an AIP-matrix N for X,A such that N ◦ ((Ip +A (X))⊗ Jn) ◁ M .

Proof. To prove the first statement of the proposition, let the vectors {λx,a : x ∈
V (X), a ∈ V (A)} witness that SDP(X,A) = Yes, where each λx,a belongs to Rpn.
Consider the pn×pn matrix L whose columns are the vectors λx,a, and let M = LTL.
We claim thatM is an SDP-matrix forX,A. SinceM ≽ 0 by construction andM ≥ 0
by (SDP1), it is enough to show that M is a relaxation matrix. Observe that

(ex ⊗ ea)
TM(ey ⊗ eb) = (ex ⊗ ea)

TLTL(ey ⊗ eb) = (L(ex ⊗ ea))
T (L(ey ⊗ eb))

= λx,a · λy,b(A.1)

for each x, y ∈ V (X), a, b ∈ V (A). We obtain

eTa (ex ⊗ In)
TM(ex ⊗ In)eb = (1⊗ ea)

T (ex ⊗ In)
TM(ex ⊗ In)(1⊗ eb)

= (ex ⊗ ea)
TM(ex ⊗ eb) = λx,a · λx,b,

so the condition (r1) is guaranteed by (SDP2). Also, (r2) directly follows from (SDP3)
using (A.1). From (SDP4), we see that

(ex ⊗ 1n)
TM(ey ⊗ 1n) =

(
ex ⊗

∑
a∈V (A)

ea

)T

M
(
ey ⊗

∑
b∈V (A)

eb

)
=

∑
a,b∈V (A)

(ex ⊗ ea)
TM(ey ⊗ eb) =

∑
a,b∈V (A)

λx,a · λy,b

= λx,A · λy,A = 1(A.2)
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for each x, y ∈ V (X). It follows from Proposition 2.2 that the conditions (r3), (r4),
and (r5) are satisfied.

Conversely, let M be an SDP-matrix for X,A. Since M ≽ 0, we can find a
Cholesky decomposition M = LTL for some pn × pn matrix L. Letting λx,a =
L(ex⊗ea) for each x ∈ V (X), a ∈ V (A), we see that the equation (A.1) holds. Thus,
the conditions (SDP1), (SDP2), and (SDP3) follow from the entrywise nonnegativity
of M , (r1), and (r2), respectively. Moreover, since M satisfies (r6) by Proposition 2.2,
we can reverse (A.2) to see that λx,A · λy,A = (ex ⊗ 1n)

TM(ey ⊗ 1n) = 1 for each
x, y ∈ V (X), which gives (SDP4).

Next, we establish the second statement of the proposition. Let λ and µ witness
that SDA(X,A) = Yes, and let M be the SDP-matrix corresponding to λ as defined
in part (i) of this proposition. Consider the pn× pn matrix N defined by

(ex ⊗ ea)
TN(ey ⊗ eb) =


µx,a if x = y, a = b
µx,aµy,b if x ̸= y, (x, y) ̸∈ E(X)
µ(x,y),(a,b) if (x, y) ∈ E(X), (a, b) ∈ E(A)
0 otherwise.

(A.3)

We claim that N is a relaxation matrix for X,A. Since all entries of N are integral,
this would mean that N is an AIP-matrix. The conditions (r1) and (r2) are immediate
from (A.3), using the assumption that X is loopless. From (AIP1) and (AIP2), we
straightforwardly check that the equations

(ex ⊗ ea)
TN(ey ⊗ 1n) = (ex ⊗ ea)

TNT (ey ⊗ 1n) = µx,a(A.4)

hold for each x, y ∈ V (X) and a ∈ V (A). In particular, this means that the vectors
N(ey ⊗1n) and NT (ey ⊗1n) do not depend on y, which yields (r3) and (r4). Finally,
using (A.4) and (AIP1), we find

1T
pnN1pn =

∑
(x,y)∈V (X)2

a∈V (A)

(ex ⊗ ea)
TN(ey ⊗ 1n) =

∑
(x,y)∈V (X)2

a∈V (A)

µx,a =
∑

(x,y)∈V (X)2

1 = p2,

which yields (r5) and proves the claim. Since N ◦ ((Ip + A (X)) ⊗ Jn) = N ◦ (Ip ⊗
Jn) +N ◦ (A (X)⊗ Jn),

supp(N ◦ ((Ip + A (X))⊗ Jn)) ⊆ supp(N ◦ (Ip ⊗ Jn)) ∪ supp(N ◦ (A (X)⊗ Jn))

= {((x, a), (x, a)) : µx,a ̸= 0}
∪ {((x, a), (y, b)) : (x, y) ∈ E(X), (a, b) ∈ E(A), µ(x,y),(a,b) ̸= 0}.

By (ref), µx,a ̸= 0 implies ∥λx,a∥ ≠ 0, which means that (ex ⊗ ea)
TM(ex ⊗ ea) ̸=

0. Similarly, µ(x,y),(a,b) ̸= 0 implies that λx,a · λy,b ̸= 0, which means that (ex ⊗
ea)

TM(ey ⊗ eb) ̸= 0. It follows that N ◦ ((Ip + A (X))⊗ Jn) ◁ M , as required.
Conversely, let M and N be an SDP-matrix and an AIP-matrix for X,A, re-

spectively. As was shown above, the vectors λx,a obtained through a Cholesky de-
composition of M give a solution to SDP(X,A). Moreover, we define µx,a = (ex ⊗
ea)

TN(ex ⊗ ea) for x ∈ V (X) and a ∈ V (A), and µ(x,y),(a,b) = (ex ⊗ ea)
TN(ey ⊗ eb)

for (x, y) ∈ E(X) and (a, b) ∈ E(A). Reversing the argument above, it easily follows
from the conditions defining an AIP-matrix that µ satisfies (AIP1) and (AIP2), while
the requirement (ref) follows from the fact that N ◦ ((Ip + A (X))⊗ Jn) ◁ M .

Recall that, given two finite sets R and S and a function f : R → S, Qf denotes the
|R| × |S| matrix whose (r, s)-th entry is 1 if f(r) = s, 0 otherwise.
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Proposition A.3 (Proposition 2.5 restated). Let X,X′,A,A′ be digraphs, let
f : X′ → X and g : A → A′ be homomorphisms, and let M be a relaxation matrix
for X,A. Then

M (f,g) = (Qf ⊗QT
g )M(QT

f ⊗Qg)

is a relaxation matrix for X′,A′. Furthermore, if M is an SDP-matrix (resp. AIP-
matrix) for X,A, then M (f,g) is an SDP-matrix (resp. AIP-matrix) for X′,A′.

Proof. For x′, y′ ∈ V (X′) and a′, b′ ∈ V (A′), we find

(ex′ ⊗ ea′)TM (f,g)(ey′ ⊗ eb′) = (ex′ ⊗ ea′)T (Qf ⊗QT
g )M(QT

f ⊗Qg)(ey′ ⊗ eb′)

= (eTx′Qf ⊗ eTa′QT
g )M(QT

f ey′ ⊗Qgeb′)

=
∑

a∈g−1(a′)

b∈g−1(b′)

(ef(x′) ⊗ ea)
TM(ef(y′) ⊗ eb).(A.5)

Note that, if x′ = y′ and a′ ̸= b′, we have f(x′) = f(y′) and g−1(a′) ∩ g−1(b′) = ∅.
Similarly, if (x′, y′) ∈ E(X′) and (a′, b′) ̸∈ E(A′), we have (f(x′), f(y′)) ∈ E(X)
and (g−1(a′)× g−1(b′)) ∩ E(A) = ∅, since f and g are homomorphisms. Hence, the
conditions (r1) and (r2) for M

(f,g) follow from the same conditions applied to M . Let
p′ = |V (X′)| and n′ = |V (A′)|. Observe that

M (f,g)(ex′ ⊗ 1n′) = (Qf ⊗QT
g )M(QT

f ⊗Qg)(ex′ ⊗ 1n′) = (Qf ⊗QT
g )M(ef(x′) ⊗ 1n).

Therefore, (r3) follows from the same condition applied to M , and (r4) follows anal-
ogously. Fix x̃, ỹ ∈ V (X′). From (r3) and (r4), we find

1T
pnM1pn = (1p ⊗ 1n)

TM(1p ⊗ 1n) =
∑

x,y∈V (X)

(ex ⊗ 1n)
TM(ey ⊗ 1n)

= p2(ef(x̃) ⊗ 1n)
TM(ef(ỹ) ⊗ 1n)

and, similarly,

1T
p′n′M (f,g)1p′n′ = (p′)2(ex̃ ⊗ 1n′)TM (f,g)(eỹ ⊗ 1n′).

Using (A.5), we obtain

(ex̃ ⊗ 1n′)TM (f,g)(eỹ ⊗ 1n′) =
∑

a′,b′∈V (A′)

(ex̃ ⊗ ea′)TM (f,g)(eỹ ⊗ eb′)

=
∑

a′,b′∈V (A′)

∑
a∈g−1(a′)

b∈g−1(b′)

(ef(x̃) ⊗ ea)
TM(ef(ỹ) ⊗ eb)

=
∑

a,b∈V (A)

(ef(x̃) ⊗ ea)
TM(ef(ỹ) ⊗ eb)

= (ef(x̃) ⊗ 1n)
TM(ef(ỹ) ⊗ 1n).

From (r5) applied to M , we get

1T
p′n′M (f,g)1p′n′ = (p′)2(ef(x̃) ⊗ 1n)

TM(ef(ỹ) ⊗ 1n) = (p′)2
1T
pnM1pn

p2
= (p′)2,
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which shows that M (f,g) satisfies (r5) and, thus, it is a relaxation matrix.
To prove the last part of the statement, we simply observe that Qf and Qg

are Boolean matrices, so the product in the right-hand side of (2.1) preserves the
nonnegativity and the integrality ofM . Moreover, since we can writeM (f,g) = PMPT

for P = Qf ⊗QT
g , it easily follows that M (f,g) ≽ 0 when M ≽ 0.

To prove Proposition 2.6 we will need the following lemma, whose trivial proof is
omitted.

Lemma A.4. Let A,B be q×r matrices and let C,D be r×s matrices, and suppose
that A ◁ B and C ◁ D and that B,D ≥ 0. Then, AC ◁ BD.

Proposition A.5 (Proposition 2.6 restated). Let X,X′,A,A′ be digraphs such
that X′ → X and A → A′. Then

(i) SDP(X,A) = Yes implies SDP(X′,A′) = Yes;
(ii) if X is loopless, SDA(X,A) = Yes implies SDA(X′,A′) = Yes.

Proof. Part (i) directly follows from Proposition 2.3 and Proposition 2.5. To
prove part (ii), let M and N be the SDP-matrix and the AIP-matrix for X,A whose
existence is guaranteed by Proposition 2.3. Choose two homomorphisms f : X′ → X
and g : A → A′. Proposition 2.5 gives that M (f,g) and N (f,g) are an SDP-matrix and
an AIP-matrix for X′,A′, respectively. Let Nd = N ◦(Ip⊗Jn), Ne = N ◦(A (X)⊗Jn),

N
(f,g)
d = N (f,g)◦(Ip′⊗Jn′), and N

(f,g)
e = N (f,g)◦(A (X′)⊗Jn′). Note that, if X′ → X

and X is loopless, then X′ is also loopless. Hence, if we establish that

N
(f,g)
d +N (f,g)

e ◁ M (f,g),(A.6)

we can conclude that SDA(X′,A′) = Yes using Proposition 2.3. Call P = Qf ⊗QT
g ,

so that N (f,g) = PNPT and M (f,g) = PMPT . A straightforward computation shows

that (PNdP
T )◦(Ip′⊗Jn′) = N

(f,g)
d and, similarly, (PNeP

T )◦(A (X′)⊗Jn′) = N
(f,g)
e .

In particular, this means that N
(f,g)
d ◁ PNdP

T and N
(f,g)
e ◁ PNeP

T . Since X′ is
loopless, the support of PNdP

T and the support of PNeP
T are disjoint, which means

that the support of their sum equals the union of their supports. Hence,

supp(N
(f,g)
d +N (f,g)

e ) ⊆ supp(N
(f,g)
d ) ∪ supp(N (f,g)

e )

⊆ supp(PNdP
T ) ∪ supp(PNeP

T )

= supp(PNdP
T + PNeP

T ).

Recall that, by Proposition 2.3, Nd + Ne ◁ M . Since M and P are entrywise
nonnegative, we can apply Lemma A.4 to obtain

N
(f,g)
d +N (f,g)

e ◁ PNdP
T + PNeP

T = P (Nd +Ne)P
T ◁ PMPT = M (f,g),

thus establishing (A.6).
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[31] L. Ciardo and S. Živný, CLAP: A new algorithm for promise CSPs, SIAM J. Comput., 52
(2023), pp. 1–37, https://doi.org/10.1137/22M1476435, https://arxiv.org/abs/2107.05018.
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