
Counting Homomorphisms to K4-minor-free Graphs, modulo 2∗

Jacob Focke† Leslie Ann Goldberg† Marc Roth‡ Stanislav Živný†

Abstract
We study the problem of computing the parity of the number
of homomorphisms from an input graph G to a fixed graph
H. Faben and Jerrum [ToC’15] introduced an explicit
criterion on the graph H and conjectured that, if satisfied,
the problem is solvable in polynomial time and, otherwise,
the problem is complete for the complexity class ⊕P of parity
problems.

We verify their conjecture for all graphs H that exclude
the complete graph on 4 vertices as a minor. Further, we rule
out the existence of a subexponential-time algorithm for the
⊕P-complete cases, assuming the randomised Exponential
Time Hypothesis.

Our proofs introduce a novel method of deriving hard-
ness from globally defined substructures of the fixed graph
H. Using this, we subsume all prior progress towards re-
solving the conjecture (Faben and Jerrum [ToC’15]; Göbel,
Goldberg and Richerby [ToCT’14,’16]). As special cases, our
machinery also yields a proof of the conjecture for graphs
with maximum degree at most 3, as well as a full classi-
fication for the problem of counting list homomorphisms,
modulo 2.

A full version of our paper, containing all proofs, is
available at https://arxiv.org/abs/2006.16632v2. Here
we number key lemmas to match the numbering in the full
version.

1 Introduction

A homomorphism from a graph G to a graph H is
a map h from V (G) to V (H) that preserves edges in
the sense that, for every edge {u, v} of G, the im-
age {h(u), h(v)} is an edge of H. Many combinato-
rial structures can be modelled using graph homomor-
phisms. For this reason, graph homomorphisms are
ubiquitous in both classical and modern-day complexity
theory with applications in areas such as constraint sat-
isfaction problems [24], evaluations of spin systems in
statistical physics [1, 2], database theory [25, 31], and
parameterised algorithms [4, 34]. The computational
problems of finding and counting homomorphisms are

∗The research leading to these results has received funding

from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant

agreement No 714532). Jacob Focke has received funding from

the Engineering and Physical Sciences Research Council (grant
ref: EP/M508111/1). Stanislav Živný was supported by a Royal

Society University Research Fellowship. The paper reflects only

the authors’ views and not the views of the ERC or the European
Commission. The European Union is not liable for any use that

may be made of the information contained therein.
†Department of Computer Science, University of Oxford
‡Merton College, University of Oxford

therefore amongst the most well-studied computational
problems; the analysis of their complexity dates back
to the intractability result for computing the chromatic
number, one of Karp’s original 21 NP-complete prob-
lems [28]. More recent work builds on Hell and Nešetřil’s
celebrated dichotomy theorem [26], which shows that
determining whether an input graph G has a homomor-
phism to a fixed graph H is polynomial-time solvable if
H is bipartite, or if H has a self-loop. For any other
graph H, they show that the problem is NP-complete.

This paper focusses on the problem of counting
homomorphisms. Applications of this problem are
discussed in [1]. The complexity of the problem has
been the focus of much research (see, for example,
[3, 9, 16,17,30]).1

The complexity of counting homomorphisms was
initiated by Dyer and Greenhill [9], who gave a complete
dichotomy theorem. The complexity of counting the
homomorphisms from an input graph G to a fixed
graph H is polynomial-time solvable if every component
of H is either a complete bipartite graph with no self-
loops or a complete graph in which every vertex has a
self-loop. For any other graph H, they show that the
problem is #P-complete.

Given that (exactly) counting the homomorphisms
to H is #P-complete for almost every graph H, re-
search has focussed on restrictions of the problem. In-
stead of determining the exact number of homomor-
phisms from G to H, compute an approximation to
this number [16, 17, 30], or determine whether it is odd
or even [11, 12, 18, 19], or determine its value modulo
any prime p [20, 29]. Alternatively, consider the pa-
rameterised complexity [14]. For example, the prob-
lem can be studied when the input G is assumed to
have bounded treewidth [6] or when H has a bounded
treewidth, for example when H is a tree [12,20,21,29].

Restricting the input G to have bounded treewidth
makes counting homomorphisms tractable — given this

1There is also a huge literature on generalisations of this

problem such as counting weighted homomorphisms (computing

partition functions of spin systems or holant problems), counting
homomorphisms to directed graphs, counting partition functions

of constraint satisfaction problems, and counting homomorphisms

with restrictions such as surjectivity. These generalisations and
restrictions are beyond the scope of this paper.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2006.16632v2

restriction, the problem is solvable in polynomial time
for any fixed H [6, Corollary 5.1]. Restricting the
fixed target graph H to have bounded treewidth leads
to a more nuanced complexity classification, even for
treewidth 1 (when H is a tree). For example, the com-
plexity of approximately counting homomorphisms to a
tree H has still not been fully resolved, and it is known
that different trees lead to vastly different complexities.
For example, approximately counting homomorphisms
to the very simple tree that is a path of length 3 is
equivalent to #BIS, which is the canonical open prob-
lem in approximate counting [10]. Moreover, [21] shows
that for every integer q ≥ 3 there is a tree Jq such
that approximately counting homomorphisms to Jq is
equivalent to classic problem of approximating the par-
tition function of the q-state Potts model from statisti-
cal physics. Also, it shows that there are trees H such
that approximately counting homomorphisms to H is
NP-hard.

1.1 Counting modulo 2 and Past Work Faben
and Jerrum [12] combined the restriction thatH is a tree
with the restriction that counting is modulo 2. Their
result will be important for our work, so we next give
the definitions that we need to state their result.

The complexity class ⊕P [22, 33] contains all prob-
lems of the form “compute f(x) mod 2” such that com-
puting f(x) is a problem in #P. Toda [35] showed
that there is a randomised polynomial-time reduction
from every problem in the polynomial hierarchy to some
problem in ⊕P. Thus, ⊕P-hardness is viewed as a
stronger kind of intractability than NP-hardness. We
use ⊕Hom(H) to denote the computational problem of
computing the number of homomorphisms from G to H,
modulo 2, given an input graph G. It is immediate from
the definition that ⊕Hom(H) is in ⊕P.

The involution-free reduction of a graph H, from
[12], is defined as follows. An involution σ of H is an
automorphism of H whose order is at most 2 (that is,
σ◦σ is the identity permutation). An involution is non-
trivial if it is not the identity permutation. A graph H
is involution-free if it has no non-trivial involutions. Hσ

denotes the subgraph of H induced by the fixed points
of σ (the vertices v with σ(v) = v). We write H → K
if there is a non-trivial involution σ of H such that
K = Hσ. The relation →∗ is the reflexive-transitive
closure of the relation →. Thus, H →∗ K means that
either K = H, or there is a positive integer j and
a sequence H1, . . . ,Hj of graphs such that H = H1,
K = Hj and, for all i ∈ [j], Hi → Hi+1. Faben
and Jerrum [12, Theorem 3.7] showed that every graph
H has, up to isomorphism, exactly one involution-free
graph H∗ such that H →∗ H∗. This graph H∗ (labelled

in a canonical way) is the involution-free reduction of H.
The relevance of the involution-free reduction is given
by the following theorem.

Theorem 1.1 ([12, Theorem 3.4]). For all graphs G
and H, the number of homomorphisms from G to H
has the same parity as the number of homomorphisms
from G to H∗.

Thus, the computational problem ⊕Hom(H) re-
duces to ⊕Hom(H∗). Faben and Jerrum made the fol-
lowing conjecture [12].

Conjecture 1.1 (Faben-Jerrum Conjecture). Let H be
a graph. If its involution-free reduction H∗ has at most
one vertex, then ⊕Hom(H) can be solved in polynomial
time. Otherwise, ⊕Hom(H) is ⊕P-complete.

The following progress has been made on the Faben-
Jerrum conjecture.

• Faben and Jerrum [12, Theorem 3.8, Theorem 6.1]
proved the conjecture for the case where every
connected component of H is a tree.

• Göbel, Goldberg and Richerby [18, Theorem 3.8]
proved the conjecture for the case where every
connected component of H is a cactus graph, which
is a connected, simple graph in which every edge
belongs to at most one cycle.

• Göbel, Goldberg and Richerby [19, Theorem 1.2]
proved the conjecture for the case where H is a
simple graph whose involution-free reduction H∗ is
square-free (meaning that it has no 4-cycle).

The cactus-graph result generalises the tree result, and
is incomparable with the square-free result.

1.2 Contributions and Techniques Our first (and
main) contribution is to prove the Faben-Jerrum con-
jecture for every simple graph H that does not have a
K4-minor.

Here, K4 denotes the complete graph with four
vertices. The concept of graph minors is well known
(see, for example, [7]). In short, a graph H is K4-minor-
free if K4 cannot be obtained from H by a sequence of
vertex deletions, edge deletions, and edge contractions
(removing any self-loops and multiple-edges that are
formed by the contraction). Graph classes based on
excluded minors form the basis of the graph structure
theory of Robertson and Seymour (see [32]).

The class of K4-minor-free graphs is a rich and well-
studied class. It is equivalent to the class of graphs with
treewidth at most 2 and it includes all outerplanar and
series-parallel graphs [8].

Both trees and cactus graphs are K4-minor free, so
our result subsumes the tree result of Faben and Jerrum

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

[12] and also the cactus-graph result of Göbel et al. [18].
K4-minor-free graphs can contain a 4-cycle and, going
the other way, square-free graphs can have a K4-minor.
Thus, our result is incomparable with the result of [19].
(As a more minor contribution, our techniques also give
a shorter proof of the result of [19] — see Remark 19 of
the full version.)

Our second contribution is to extend ⊕P-hardness,
using the randomised version of the Exponential Time
Hypothesis of Impagliazzo and Paturi (rETH) to rule
out subexponential algorithms. In order to state our
result, we first state the hypothesis.

Conjecture 1.2 (rETH, [27]). There is a positive
constant c such that no algorithm, deterministic or
randomised, can decide the satisfiability of an n-variable
3-SAT instance in time exp(c · n).

Using the rETH, we can now state our main result.
Here (and in the rest of the paper) we denote the size
of the input graph G as |G| = |V (G)|+ |E(G)|.

Theorem 1.2. Let H be a simple graph whose
involution-free reduction H∗ is K4-minor free. If H∗

contains at most one vertex, then ⊕Hom(H) can be
solved in polynomial time. Otherwise, ⊕Hom(H) is
⊕P-complete and, assuming the randomised Exponen-
tial Time Hypothesis, it cannot be solved in time
exp(o(|G|)).

As an example of an application of Theorem 1.2,
consider the following K4-minor-free graphs H1 and H2.

H2H1

The graph H1 has a non-trivial involution whose only
fixed-point is the solid vertex, so H∗1 has one vertex.
By Theorem 1.2, ⊕Hom(H1) can be solved in poly-
nomial time. The graph H2 does not have any non-
trivial involutions, so H∗2 = H2. By Theorem 1.2,
⊕Hom(H2) is ⊕P-complete and it cannot be solved in
time exp(o(|G|)), unless the rETH fails.

Before describing our techniques, we mention that
they lead easily to a couple of other results — a
proof of the Faben-Jerrum conjecture for graphs whose
involution-free reduction have degree at most 3 (Theo-
rem 87 of the full version) and a complete complexity
classification for counting list homomorphisms modulo 2
(Theorem 90 of the full version).

Brief Technical Overview Given Theorem 1.1,
we focus on the case where H is involution-free. In
general, our proof proceeds in two steps. Given an
involution-free K4-minor-free graph H, in step 1 we try
to find a biconnected component of H, let us call it
B, that allows us to derive ⊕P-hardness of ⊕Hom(H)
by exploiting the local structure of B to construct a
reduction from counting independent sets, modulo 2.
The latter problem, denoted by⊕IS, is known to be⊕P-
complete [36] and cannot be solved in subexponential
time, unless the rETH fails [5].

A careful analysis of biconnected and K4-minor-free
graphs, which crucially relies on the absence of non-
trivial involutions, shows that the first step is always
possible, unless all biconnected components of H have a
very restricted form; examples are depicted in Figure 1.

The second step of the proof exploits the global
structure of H and deals with the case where step 1 fails.
Note that all of the depicted biconnected components
have non-trivial involutions; consider for example the
involution given by swapping the vertices x and y in
Figure 1. Since the overall graph H is promised to
be free of such involutions, we infer that at least one
of x and y has a neighbour in a further biconnected
component of H, which will allow us to successively
construct a global “walk-like” structure in H that
eventually yields a reduction from ⊕IS.

We consider the construction of those global sub-
structures as our main technical contribution. While
the formal specifications are beyond the scope of the
introduction, we give an illustrated example which we
hope gives some flavour of the graph theory that we will
encounter in this work:

The above illustration depicts a K4-minor-free graph
H ′ without non-trivial involutions, together with a sub-
graph, highlighted in red, that allows for a reduction

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

s

t

y

x

Figure 1: Examples of three types of biconnected and K4-minor-free graphs that, if viewed as biconnected
components, do not yield a reduction from ⊕IS. We will re-encounter those graphs as “impasses” (left),
“diamonds” (centre), and “obstructions” (right).

from ⊕IS. Solid vertices depict articulation points, i.e.,
vertices that lie in the intersection of at least 2 bicon-
nected components. Note that each biconnected com-
ponent of H ′ that is not an edge is of one of the three
types given in Figure 1. Also, each biconnected compo-
nent of H ′ has an involution. These non-trivial involu-
tions prevent us from exploiting the local structure of
the biconnected components to derive ⊕P-hardness. In-
stead, we will see that the highlighted subgraph is what
makes ⊕Hom(H ′) hard.

In the next section we provide an overview of the
general framework that allows us to reduce ⊕IS to
⊕Hom(H). The structures used in such reductions are
captured by the so-called hardness gadgets introduced
by Göbel, Goldberg and Richerby [18, 19]. Prior ap-
plications of hardness gadgets could only be used to
construct a reduction from ⊕IS to ⊕Hom(H) if H has
certain local substructures, based around a path or a cy-
cle. In contrast, our analysis will establish global walks
such as the one highlighted in H ′. As far as we can tell,
none of the prior machinery [12,18, 19, 29] is capable of
proving the ⊕P-hardness of ⊕Hom(H ′), however, this
will follow as a result of our abstract consideration of
global substructures of K4-minor-free graphs.

2 Warm-up: useful Ideas from Previous Papers
— Retractions and Hardness Gadgets

Instead of directly reducing ⊕IS to ⊕Hom(H), it is
useful to consider the intermediate problem ⊕Ret(H),
the problem of counting retractions to H, modulo 2.
Given a graphH, a partially H-labelled graph J = (G, τ)
consists of an underlying graph G and a corresponding
pinning function τ , which is a partial function from
V (G) to V (H). A homomorphism from J to H is a
homomorphism h from G to H such that, for all vertices
v in the domain of τ , h(v) = τ(v).

A homomorphism from a partially H-labelled

graph J to H is also called a retraction2 to H because
we can think of the pinning function τ as a way of iden-
tifying an induced subgraph H of G which must “re-
tract” to H under the action of the homomorphism —
see [13] for details. We use ⊕Ret(H) to denote the
computational problem of computing the number of ho-
momorphisms from J to H, modulo 2, given as input a
partially H-labelled graph J .

It is known [19] that ⊕Ret(H) reduces to
⊕Hom(H) whenever H is involution-free. Since τ al-
lows us to pin vertices of G to vertices of H arbitrarily,
it is much easier to construct a reduction from ⊕IS to
⊕Ret(H) than to construct a direct reduction from⊕IS
to ⊕Hom(H).

Consider the following example. Suppose that H
is the 4-vertex path (o, s, i, x) and that our goal is to
reduce ⊕IS to ⊕Ret(H). Let G be an input to ⊕IS.
That is, G is a graph whose independent sets we wish
to count, modulo 2. For ease of presentation, suppose
that G is bipartite,3 that is, the vertices of G can be
partitioned into two independent sets U and V . Let Ĝ
be the graph obtained from G by adding two additional
vertices u and v, and by connecting u to all vertices in
U , and v to all vertices in V , respectively. Let τ be the
pinning function defined by τ(u) = s and τ(v) = i. We
provide an illustration of the construction in Figure 2.

Observe that any homomorphism ϕ from (Ĝ, τ)
to H must map every vertex in U to either o or i, and
every vertex in V to either s or x. Since H has no edge
from o to x, the definition of homomorphism ensures
that ϕ−1(o) ∪ ϕ−1(x) is an independent set of G. It is
easy to verify that the function ϕ 7→ ϕ−1(o)∪ϕ−1(x) is a

bijection between the homomorphisms from (Ĝ, τ) to H

2In some definition versions a retraction is surjective. However,

for algorithmic problems this surjectivity requirement is not

important [13,15].
3The case of general graphs will be discussed later in the paper.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

o s i x

U V

G

τ τ

u v

o
s

i xy

z

U V

G

τ ττ τ

u1 v1

u2 v2

Figure 2: Illustration of the reduction from (bipartite) ⊕IS to ⊕Ret(H) where H is the 4-vertex path (left),
and H is the graph H2 from page 3 (right).

and the independent sets of G, which gives a reduction
from (bipartite) ⊕IS to ⊕Ret(H).

The observant reader might notice that the 4-vertex
path has a non-trivial involution, and thus, we cannot
further reduce ⊕Ret(H) to ⊕Hom(H) in this case.4

However, the construction works for any graph H with
an induced path (o, s, i, x) such that s and i each only
have two neighbours.

The notion of a hardness gadget, which we formally
introduce in Section 3, is essentially a generalisation
of the previous construction. For example, we could
substitute each of o, s, i and x with an odd number
of copies, since we are only interested in the parity of
the number of independent sets. Furthermore, we could
identify o and x, since we only need the edge {o, x} to be
absent in H. A more sophisticated generalisation is ob-
tained by observing that we can, to some extent, substi-
tute the edges {o, s}, {s, i} and {i, x} with more compli-
cated graphs, e.g. with length-2 paths, if we substitute
the edges in Ĝ accordingly. Finally, observe that the
construction (Ĝ, τ) uses the partial function τ in a very
simple manner: By adding a common neighbour u for
all vertices in U and setting τ(u) = s, the construction
enforces the constraint that any homomorphism from
(Ĝ, τ) to H must map every vertex in U to a neighbour
of s. More sophisticated constructions will allow us to
enforce much stronger constraints on homomorphisms.
We will need this flexibility to construct reductions from

4In fact, the problem ⊕Hom(H) is trivial when H is the 4-
vertex path since the number of homomorphisms will always be
even.

⊕IS to ⊕Ret(H) for more general graphs H.
We conclude by making a generalisation explicit for

one further example — the graph H2 from page 3. We
provide a more convenient drawing of H2, including
a labelling of its vertices and an illustration of the
reduction in Figure 2. Again, we will assume for ease of
presentation that the input G to ⊕IS is bipartite. To
construct Ĝ, we add two additional vertices u1 and u2
and make them adjacent to every vertex in U . Similarly,
we add two additional vertices v1 and v2 and make them
adjacent to every vertex in V . Let τ be the pinning
function defined by τ(u1) = y, τ(u2) = s, τ(v1) = z,
and τ(v2) = i.

Consider any homomorphism ϕ from (Ĝ, τ) to H2.
Since ϕ is edge-preserving, it must map every vertex
in U to a common neighbour of s and y in H2.
Consequently, ϕ(U) ⊆ {o, i}. Similarly, we obtain
ϕ(V) ⊆ {s, x}. Again, it is easy to see that the
mapping ϕ 7→ ϕ−1(o)∪ϕ−1(x) is a bijection between the

homomorphisms from (Ĝ, τ) to H and the independent
sets of G, which gives a reduction from (bipartite) ⊕IS
to ⊕Ret(H).

Note that the second example, while being less
straightforward than the first, is still a very simple
reduction. The proof of Theorem 1.2 requires us to
consider much more intricate “hardness gadgets”.

3 Detailed Proof Outline

Following the discussion of the previous section, we
start by providing the formal definition of a hardness
gadget; slightly generalising the original definition of

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Göbel, Goldberg and Richerby [19]:

Definition. [19, Definition 4.1] A hardness gadget
(I, S, (J1, y), (J2, z), (J3, y, z)) for a graph H consists
of odd-cardinality sets I, S ⊆ V (H) together with
three connected partially H-labelled graphs with distin-
guished vertices (J1, y), (J2, z), and (J3, y, z). The
following properties are satisfied. Let Ωy = {a ∈
V (H) | |hom((J1, y)→ (H, a))| is odd}, Ωz = {b ∈
V (H) | |hom((J2, z)→ (H, b))| is odd}, and Σa,b =
hom((J3, y, z)→ (H, a, b)). Then |Ωy| is even, I ⊂ Ωy,
|Ωz| is even, S ⊂ Ωz, and for each i ∈ I, o ∈ Ωy \ I,
s ∈ S and x ∈ Ωz \ S, |Σo,x| is even whereas |Σi,s|,
|Σo,s|, and |Σi,x| are odd.

Combining [Theorem 4.2][19] with the rETH-based
lower bound for counting independent sets modulo 2
due to Dell et al. [5], we find (Theorem 11 of the full
version) that for every involution-free graph H with a
hardness gadget, ⊕Ret(H) is ⊕P-hard and cannot be
solved in time exp(o(|J |)), unless rETH fails. Given
the previously-mentioned reduction from ⊕Ret(H) to
⊕Hom(H) for involution-free graphs H, the key step in
proving Theorem 1.2 is showing that every involution-
free K4-minor-free connected graph with at least 2 ver-
tices has a hardness gadget. Section 3.1 discusses the
case where we can find such a hardness gadget “locally”
(within a biconnected component of H). Section 3.2
discusses the more challenging case where instead we
rely on the global structure of H.

3.1 Local Hardness: Biconnected K4-minor-
free graphs A supergraph H of a graph B is called
a (1, 2)-supergraph of B if every edge of H between
vertices of B is also an edge of B and every length-2
path of H between vertices of B is also a path of B.
A graph B is called a strong hardness gadget if every
K4-minor-free supergraph of B has a hardness gadget.
B is called a pre-hardness gadget if every K4-minor-
free (1,2)-supergraph of B has a hardness gadget. The
important fact for us is that, if a K4-minor-free graph H
has a biconnected component B that is a strong or pre-
hardness gadget, then H has a hardness gadget.

Unsurprisingly, not every biconnected K4-minor-
free graph B is a strong or a pre-hardness gadget; the
most immediate counterexamples are the cases where
B is an edge or a square. One might think, for a
moment, that those counterexamples are unproblem-
atic since we eventually only consider involution-free
graphs. However, involution-free graphs can obviously
have biconnected components with involutions, so to
complete the proof we have to understand the structure
of all biconnected K4-minor-free graphs that are not
pre-hardness gadgets. This is achieved in Lemma 3.1.

Lemma 3.1 (K4-minor-free Component Lemma). Let
B be a biconnected K4-minor-free graph that is not an
edge, a diamond, an obstruction or an impasse. Then
for every K4-minor-free graph H containing B as a
biconnected component, H has a hardness gadget.

In order to explain the lemma, we need to identify
the relevant biconnected components. A diamond is a
biconnected graph consisting of two vertices s and t and
an independent set of size at least two, all of whose
vertices are connected to s and t — see the middle
picture in Figure 1. An impasse is any biconnected
K4-minor free (1,2)-supergraph of the graph Sk,` from
Figure 3 such that k and ` are odd, and all of the vertices
that have degree 2 in Sk,` have degree 2 in B. Finally,
an obstruction is defined as follows —- this is depicted
in Figure 1.

Definition (obstruction). Let B be a K4-minor-free bi-
connected graph and let C = (c0, . . . , cq−1, c0) be an in-
duced cycle of B with q 6= 4. We say that B is an
obstruction with cycle C if the following is true for
each i ∈ [q], taking indices modulo q, whenever the
set NC,H(ci) of common neighbours of ci−1 and ci+1

in B has even cardinality, each of these common neigh-
bours has degree 2 in B. We use Cy(B) to denote
{C | B is an obstruction with cycle C}.

An important part of the proof of Lemma 3.1
is understanding the induced cycles in biconnected
components. Lemma 60 of the full version uses novel
“cycle gadgets” to show that every biconnected K4-
minor free graph H with an induced cycle of length
at least 5 is either an obstruction or a pre-hardness
gadget. A similar result for graphs with induced cycles
of length 3 appears as Lemma 59.

So to prove Lemma 3.1, it remains to consider bi-
connected K4-minor-free graphs in which every induced
cycle is a square — these graphs are called chordal bi-
partite graphs. Towards the proof of Lemma 3.1, Lem-
mas 31 and 32 of the full version show that the following
two graphs are strong hardness gadgets.

The next step is to investigate their common sub-
graph F from Figure 3. It turns out that F is not a
strong hardness gadget. In fact, counting retractions
to the graph Sk,` (from the same figure) can be done
in polynomial time whenever k and ` are odd. Never-
theless, it turns out that the only problematic super-

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

v2

v5

v1

v4

v3

v6

y1

yk z1

z`

Figure 3: The graphs F (left) and Sk,` (right).

graphs of F are the impasses that we have already de-
fined. Lemma 36 of the full version shows that every
K4-minor-free graph H containing a chordal bipartite
biconnected component B that is not an edge, diamond,
or impasse has a hardness gadget, enabling us to prove
Lemma 3.1.

3.2 Global Hardness: Block-Cut-Trees of
involution-free K4-minor-free graphs Let H be a
K4-minor-free graph. By Lemma 3.1, if H has no hard-
ness gadget, then every biconnected component of H
is an edge, a diamond, an impasse, or an obstruction
(see Figure 1). Counting retractions to an edge can
be done in polynomial time, and similarly, there are
diamonds, impasses and obstructions to which count-
ing retractions, modulo 2, is polynomial-time solvable.
This shows that we cannot always establish hardness lo-
cally by using a single biconnected component. As noted
earlier, all of these biconnected components have non-
trivial involutions. Thus, if H is involution-free, there
are articulation points in these biconnected components.
We will use these articulation points as “connectors” to
identify global structure in H.

Definition (suitable connector). Let H be a graph, let
B be a biconnected component of H, and let A ⊆ V (B)
be a set of articulation points of H. We say that (B,A)
is a suitable connector in H if one of the following cases
holds:

• B is an edge {a, b} and A = {a, b}, or
• B is a diamond that contains an edge {a, b} such

that A = {a, b}, or
• B is an impasse and A = {v1, v3} (as depicted in

Figure 3), or
• B is an obstruction. In this case (B,A) is

a suitable connector in H if there is a cy-
cle C ∈ Cy(B) such that A = {c ∈ C |
the cardinality of NC,H(c) is even}. If (B,A) is a
suitable connector in H then we fix a particular cy-
cle C(B,A) ∈ Cy(B) such that A = {c ∈ C(B,A) |
the cardinality of NC(B,A),H(c) is even}.

The global structure of H is represented by its
block-cut tree BC(H). The block-cut-tree BC(H) has
a vertex for each biconnected component of H (such
vertices are called blocks) and a vertex for each articu-
lation point of H (such vertices are called cut vertices).
There is an edge between each block B and each cut
vertex a in B. We use the definition of “suitable con-
nector” to identify a subtree T of BC(H), which we call
a closed suitable subtree. Two important properties of
such a subtree T are (1) that any pair consisting of a
block of T together with its adjacent cut vertices is a
suitable connector, and (2) every cut vertex of T has
degree at most 2 in T . Here we will skip the full tech-
nical details — they are given in Section 9.2 of the full
version. In Section 9.2 we also give an algorithm (Al-
gorithm 1) that finds such a closed suitable subtree in
BC(H), given that H is connected, involution-free and
every biconnected component is an edge, diamond, im-
passe, or obstruction5. From this point on we operate
on a closed suitable subtree T of BC(H), and this is the
structure that we will use to build hardness gadgets.
We distinguish two main cases, depending on whether
or not T contains an obstruction.

If T does not contain an obstruction, then all blocks
in T have degree at most 2 (since every block in T
is part of a suitable connector). So, T is a path as
every cut vertex in T also has degree at most 2. The
corresponding subgraph of H is a sequence of edges,
diamonds and impasses that are connected as specified
by the definition of suitable connectors. To deal with
these sequences we establish Lemma 3.2, which uses the
definition of good starts and good stops that we state
as follows. We write ΓH(v) for the neighbourhood of a
vertex v in H.

Definition (good start, good stop). Let H be a graph
and let B be a subgraph of H. Let y be a vertex in B

5Since the graph H is fixed, the running time of Algorithm 1
is not important for us. What is important is that the algorithm

gives us a (constructive) proof that such a closed suitable subtree
exists.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

and let LB ⊆ ΓH(y) ∩ V (B) and RB = ΓH(y) \ V (B).

• We say that (LB , y) is a good start in B if |LB |
is odd and there is a gadget (J, z) such that the set
{v ∈ V (H) | |hom((J, z)→ (H, v))| is odd} equals
LB ∪RB.

• We say that (LB , y) is a good stop in B if it is a
good start in B and |RB | is odd.

Lemma 3.2 (Chordal Bipartite Sequence Lemma).
For an integer q ≥ 1, let B1, . . . , Bq be biconnected
components of a graph H and let b0, . . . , bq be vertices
such that, for all i ∈ [q], bi−1 and bi are distinct vertices
of Bi, and Bi satisfies one of the following:

• Bi is an edge from bi−1 to bi,
• Bi is a diamond in which {bi−1, bi} is an edge, or
• Bi is an impasse, where (bi−1, bi) is a pair of

connectors of Bi. In this case, let di be the unique
common neighbour of bi−1 and bi in H.

If |ΓH(b0) \ V (B1)| is odd, then at least one of the
following holds:

• Bq is an edge or a diamond and ({bq−1}, bq) is a
good start in Bq but not a good stop in Bq,

• Bq is an impasse and ({dq}, bq) is a good start in
Bq but not a good stop in Bq, or

• H has a hardness gadget.

The high-level intuition behind Lemma 3.2 is that
whenever a biconnected component Bi in the sequence
B1, . . . , Bq has a good start, then Bi+1 also has a good
start. If such a good start is a good stop, then we find
a hardness gadget. These facts heavily rely on the form
of each Bi and the corresponding results are given in
Sections 7.1 and 7.2 of the full version. Then, starting
from the fact that B1 has a good start, the lemma
states that either there is a hardness gadget or the last
component Bq has a good start which is not a good stop.
Both of these possible outcomes will prove helpful, and
our use of Lemma 3.2 will be two-fold. First, if T does
not contain an obstruction, then it will turn out that
Bq has a good stop, so the lemma yields a hardness
gadget. Second, even if T contains an obstruction, the
lemma gives insight about the sequences of biconnected
components that connect obstructions in T .

The most involved part of our proof arises when
the closed suitable subtree T contains a block B that
is an obstruction. By the definition of an obstruction,
B contains an induced cycle of length not equal to 4.
These induced cycles play an important role, and we
have already seen that, outside of obstructions, they
lead to local hardness gadgets. Sometimes we can
use the previously-mentioned cycle gadgets to obtain
hardness even when these cycles occur in obstructions.

In principle, the cycle gadget obtains hardness from a
path (i, s, o, x) that is part of a cycle, similarly to our
example from Figure 2 — it is just more complicated to
restrict the homomorphic image to the sets {o, i} and
{s, x}. However, one of the crucial requirements for this
construction to work is that for any vertex c of the cycle,
the two neighbours of c on the cycle have an odd number
of common neighbours in H. For example, consider the
obstruction O3 depicted in blue at the top of Figure 4
with the cycle C = (c0, . . . , c9, c0). In C there are two
problematic sets: The two common neighbours of c1
and c9 are {a7, a′7}, and {a8, a′8} are the two common
neighbours of c2 and c4.

In order to deal with these problematic sets, we use
the fact that O3 is a block of T , and by the definition
of a closed proper subtree it follows that each of the
problematic sets contains an articulation point that is a
cut vertex in T . From these articulation points we can
further explore the structure of H (following the closed
proper subtree T in BC(H)). It turns out that in general
there are two possible options, which we state informally
using the example O3 (where both possibilities occur).
Formal definitions follow.

(1) Starting at the articulation point a7 = c0, we
encounter a sequence of chordal bipartite components
that leads to another obstruction (O1). Here the crucial
insight is that we can extend the hardness criteria that
work for cycles to the more general setting of closed
walks. We say that c0 is an exit of O3 and we can extend
the cycle in O3 to a closed walk that traverses cycles in
both encountered obstructions (as well as the sequence
of chordal bipartite components in between). This will
resolve the problematic set {a7, a′7} but might lead to
other problematic sets, which are resolved recursively.

(2) Starting at a8 = c3, we encounter a sequence
of chordal bipartite components that does not lead to
an obstruction. Then we say that c3 is an attachment
point and the structure attached to c3 is a sequence of
edges, diamonds and impasses and will allow us to use
Lemma 3.2 to resolve the problematic set {a8, a′8} (so
that we can obtain a hardness gadget).

We now state the formal definitions necessary to
formulate an algorithm (Algorithm 3) which finds the
sought-for closed walk in a closed suitable subtree T ,
starting from an obstruction in T . The analysis of this
algorithm (and establishing that the returned closed
walk has the right properties to yield a hardness gadget)
is the central (and most technical) part of this work and
is presented in Section 9.4 of the full version.

Definition (attachment point, exit, destination). Let
H be a connected graph and let T be a closed suitable
subtree of BC(H). Let a be a cut vertex that has an
obstruction B as a neighbour in T . Then, since every

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

cut vertex of T has degree at most 2, there is a unique
maximal-length proper obstruction-free path P ∗ in T
starting at a. Let b be the other endpoint of P ∗ (possibly
P ∗ = (a) in which case b = a). The vertex a is an
attachment point of (T,B) if b is a leaf in T . Otherwise,
a is an exit of (T,B). In this case, b is adjacent to a
block B′ 6= B which is an obstruction. We say that
(b, B′) is the destination of a in T .

Definition (D(C), WC(a), WC(a, b)). For an integer
q ≥ 3, let C = (c0, . . . , cq−1, c0) be a cycle in a graph H.
Then D(C) is the cyclic order induced by the order in
which the walk C traverses the vertices {c0, . . . , cq−1}.
For a ∈ C, WC(a) is the walk from a to itself following
all of the vertices of C in the order given by D(C). For
a, b ∈ C, WC(a, b) is the walk from a to b along C in
the order given by D(C).

In the following algorithms, distT (u, v) is the length
of a shortest path in T between u and v. C(B,ΓT (B))
is a particular cycle in Cy(B) of an obstruction B — see
the definition of “suitable connector”. The expression
PH(a, b) returns a shortest path from a to b in H (which
is uniquely defined whenever it is used here).

Algorithm 2 ExitWalk(T, a∗, B, `, a0)

Input: A closed suitable subtree T of BC(H) of a con-
nected graph H, a cut vertex a∗ in T , an obstruction
B that is a block in T such that distT (a∗, B) = `, and
an exit a0 of (T,B)
C ← C(B,ΓT (B))
{a0, . . . , ak} ← The exits of (T,B) in the order of
D(C), starting from a0
if k = 0

W ←WC(a0).
else
{(b1, B1), . . . , (bk, Bk)} ← The destinations of

a1, . . . , ak, respectively
W ←WC(a0, a1)
for i = 1, . . . , k

ri ← distT (B, bi)
W ←W + PH(ai, bi)+

ExitWalk(T, a∗, Bi, `+ ri + 1, bi)+
PH(bi, ai) + WC(ai, ai+1 mod k+1)

Output: W

Algorithm 3 Walk(T,B′)

Input: A closed suitable subtree T of BC(H) of a
connected graph H, an obstruction B′ that is a block
in T
if there is an exit a∗ of (T,B′)

(b∗, B∗)← The destination of a∗

r∗ ← distT (a∗, b∗)
W ← ExitWalk(T, a∗, B′, 1, a∗) + PH(a∗, b∗)+

ExitWalk(T, a∗, B∗, r∗+1, b∗)+PH(b∗, a∗)
else

W ← C(B′,ΓT (B′))

Output: W

In Figure 4 we provide illustrations of a graph H,
a closed suitable subtree T ∈ BC(H), and (in red) the
walk W = (w0, . . . , w33, w0) returned by Walk(T,O1)
(Algorithm 3). (An example explaining how the algo-
rithm produces this output is given in Section 9.4 of the
full version.)

Recall that the goal is to use a cycle gadget with this
(red) closed walk W to obtain a hardness gadget in H.
The only sets that are problematic for this construction
are even-cardinality sets of the form ΓH(wi)∩ΓH(wi+2)
for any i ∈ [34], taking indices modulo 34. Note
that {a7, a′7} is no longer problematic as a′7 is neither
a common neighbour of w7 and w9, nor a common
neighbour of w17 and w19. The only problematic sets
are {w26, w

′
26} and (still) {a8, a′8}. However, both w26

and w11 = a8 are attachment points and each have a
sequence of edges, diamonds and impasses attached to
them such that we can use Lemma 3.2 to resolve the
corresponding problematic sets. This outline is very
simplified and merely gives a flavour of the construction.
The full details, showing how to do this for every such H
are presented in Lemma 85 of the full version, which is
the main step of the proof of Theorem 1.2.

Acknowledgements

We would like to thank Dave Richerby for valuable
discussions. Furthermore we thank Holger Dell for
pointing out the tight conditional lower bound for
counting independent sets modulo 2 in [5].

References

[1] Christian Borgs, Jennifer Chayes, László Lovász,
Vera T. Sós, and Katalin Vesztergombi. Counting
graph homomorphisms. In Martin Klazar, Jan Kra-
tochv́ıl, Martin Loebl, Jǐŕı Matoušek, Pavel Valtr, and
Robin Thomas, editors, Topics in Discrete Mathemat-
ics, pages 315–371, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[2] Graham R. Brightwell and Peter Winkler. Graph
homomorphisms and phase transitions. J. Comb.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

a1

a2

a3

a4 a5 a6 c0
a7

c9

c8 c7

c6

c5

c4

a′8

c3

a8
c2c1

a′7

a9

a10

a11

O1

E1

O2

D1 I1

E2 E3

O3

D2

E4

D3

E5

O1

a1

a2
D1

a3
O2

a4
E2

a5
I1

a6
E3

a7
O3

a8
D2

a9
E4

a10
D3

a11

w28

w27

w26

w′26

w25

w24

w3

w23

w2

w1
w0

w31
w30

w29

w4

w22

w5

w21

w6
w20

w7

w19

w8

a7

w18

w17

w16 w15

w14

w13

w12

a′8

w11

a8w10w9

a′7

w33
w32

O1

O2

O3

Figure 4: A graph H, a closed suitable subtree T of BC(H) with a block O1 that is an obstruction, and
Walk(T,O1).
(Top) An involution-free and K4-minor-free graph H such that every biconnected component is an edge, a
diamond, an impasse or an obstruction. Articulation points are depicted as filled vertices.
(Center) A closed and suitable subtree T of the block-cut tree of H, rooted at O1.
(Bottom) Solid lines are contained in the subgraph of H induced by V (T), while dashed lines are not. The
red closed walk (w0, . . . , w33, w0) is the output of Walk(T,O1). Observe that w0 and w3 are exits of (T,O1)
with destinations (w8, O3) and (w0, O2), respectively, and that w26 and w11 are attachment points of (T,O1) and
(T,O3), respectively.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Theory, Ser. B, 77(2):221–262, 1999. doi:10.1006/

jctb.1999.1899.
[3] Hubie Chen, Radu Curticapean, and Holger Dell.

The exponential-time complexity of counting (quan-
tum) graph homomorphisms. In Ignasi Sau and Dim-
itrios M. Thilikos, editors, Graph-Theoretic Concepts
in Computer Science - 45th International Workshop,
WG 2019, Vall de Núria, Spain, June 19-21, 2019, Re-
vised Papers, volume 11789 of Lecture Notes in Com-
puter Science, pages 364–378. Springer, 2019. doi:

10.1007/978-3-030-30786-8_28.
[4] Radu Curticapean, Holger Dell, and Dániel Marx.

Homomorphisms are a good basis for counting small
subgraphs. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 210–223. ACM, 2017. doi:10.1145/3055399.

3055502.
[5] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Tasla-

man, and Martin Wahlen. Exponential time com-
plexity of the permanent and the Tutte polynomial.
ACM Trans. Algorithms, 10(4):21:1–21:32, 2014. doi:

10.1145/2635812.
[6] Josep Dı́az, Maria J. Serna, and Dimitrios M. Thi-

likos. Counting H-colorings of partial k-trees. Theor.
Comput. Sci., 281(1-2):291–309, 2002. doi:10.1016/

S0304-3975(02)00017-8.
[7] Reinhard Diestel. Graph Theory, 5th Edition, volume

173 of Graduate texts in mathematics. Springer, 2016.
[8] Richard J Duffin. Topology of series-parallel networks.

Journal of Mathematical Analysis and Applications,
10(2):303–318, 1965.

[9] Martin Dyer and Catherine Greenhill. The complex-
ity of counting graph homomorphisms. Random Struc-
tures & Algorithms, 17(3-4):260–289, 2000.

[10] Martin E. Dyer, Leslie Ann Goldberg, Cather-
ine S. Greenhill, and Mark Jerrum. The rela-
tive complexity of approximate counting problems.
Algorithmica, 38(3):471–500, 2004. doi:10.1007/

s00453-003-1073-y.
[11] John Faben. The complexity of counting solutions to

generalised satisfiability problems modulo k. arXiv
preprint arXiv:0809.1836, 2008.

[12] John Faben and Mark Jerrum. The Complexity of
Parity Graph Homomorphism: An Initial Investiga-
tion. Theory of Computing, 11(2):35–57, 2015. doi:

10.4086/toc.2015.v011a002.
[13] Tomas Feder and Pavol Hell. List homomorphisms

to reflexive graphs. J. Combin. Theory Ser. B,
72(2):236–250, 1998. URL: https://ezproxy-prd.

bodleian.ox.ac.uk:4563/10.1006/jctb.1997.1812,
doi:10.1006/jctb.1997.1812.

[14] Jörg Flum and Martin Grohe. The parame-
terized complexity of counting problems. SIAM
J. Comput., 33(4):892–922, 2004. doi:10.1137/

S0097539703427203.
[15] Jacob Focke, Leslie Ann Goldberg, and Stanislav

Živnỳ. The complexity of approximately counting
retractions to square-free graphs. arXiv preprint
arXiv:1907.02319, 2019.

[16] Andreas Galanis, Leslie Ann Goldberg, and Mark
Jerrum. Approximately counting H-colorings is #BIS-
hard. SIAM J. Comput., 45(3):680–711, 2016. doi:

10.1137/15M1020551.
[17] Andreas Galanis, Leslie Ann Goldberg, and Mark

Jerrum. A complexity trichotomy for approximately
counting list H -colorings. ACM Trans. Comput. The-
ory, 9(2):9:1–9:22, 2017. doi:10.1145/3037381.

[18] Andreas Göbel, Leslie Ann Goldberg, and David
Richerby. The complexity of counting homomorphisms
to cactus graphs modulo 2. ACM Trans. Comput. The-
ory, 6(4):17:1–17:29, 2014. doi:10.1145/2635825.

[19] Andreas Göbel, Leslie Ann Goldberg, and David
Richerby. Counting homomorphisms to square-free
graphs, modulo 2. ACM Transactions on Computation
Theory (TOCT), 8(3):12, 2016.

[20] Andreas Göbel, J. A. Gregor Lagodzinski, and Karen
Seidel. Counting homomorphisms to trees modulo
a prime. In Igor Potapov, Paul G. Spirakis, and
James Worrell, editors, 43rd International Symposium
on Mathematical Foundations of Computer Science,
MFCS 2018, August 27-31, 2018, Liverpool, UK, vol-
ume 117 of LIPIcs, pages 49:1–49:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.MFCS.2018.49.

[21] Leslie Ann Goldberg and Mark Jerrum. The complex-
ity of approximately counting tree homomorphisms.
ACM Trans. Comput. Theory, 6(2):8:1–8:31, 2014.
doi:10.1145/2600917.

[22] L. M. Goldschlager and I. Parberry. On the con-
struction of parallel computers from various bases of
Boolean functions. Theor. Comput. Sci., 43:43–58,
1986.

[23] Martin Charles Golumbic and Clinton F. Goss. Perfect
Elimination and Chordal Bipartite Graphs. Journal of
Graph Theory, 2(2):155–163, 1978. doi:10.1002/jgt.

3190020209.
[24] Martin Grohe. The complexity of homomorphism and

constraint satisfaction problems seen from the other
side. J. ACM, 54(1):1:1–1:24, 2007. doi:10.1145/

1206035.1206036.
[25] Martin Grohe, Thomas Schwentick, and Luc Segoufin.

When is the evaluation of conjunctive queries
tractable? In Jeffrey Scott Vitter, Paul G. Spirakis,
and Mihalis Yannakakis, editors, Proceedings on 33rd
Annual ACM Symposium on Theory of Computing,
July 6-8, 2001, Heraklion, Crete, Greece, pages 657–
666. ACM, 2001. doi:10.1145/380752.380867.

[26] Pavol Hell and Jaroslav Nesetril. On the complexity
of H -coloring. J. Comb. Theory, Ser. B, 48(1):92–110,
1990. doi:10.1016/0095-8956(90)90132-J.

[27] Russell Impagliazzo and Ramamohan Paturi. On
the Complexity of k-SAT. J. Comput. Syst. Sci.,
62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

[28] Richard M. Karp. Reducibility among combinato-

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://doi.org/10.1006/jctb.1999.1899
https://doi.org/10.1006/jctb.1999.1899
https://doi.org/10.1007/978-3-030-30786-8_28
https://doi.org/10.1007/978-3-030-30786-8_28
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1145/2635812
https://doi.org/10.1145/2635812
https://doi.org/10.1016/S0304-3975(02)00017-8
https://doi.org/10.1016/S0304-3975(02)00017-8
https://doi.org/10.1007/s00453-003-1073-y
https://doi.org/10.1007/s00453-003-1073-y
https://doi.org/10.4086/toc.2015.v011a002
https://doi.org/10.4086/toc.2015.v011a002
https://ezproxy-prd.bodleian.ox.ac.uk:4563/10.1006/jctb.1997.1812
https://ezproxy-prd.bodleian.ox.ac.uk:4563/10.1006/jctb.1997.1812
https://doi.org/10.1006/jctb.1997.1812
https://doi.org/10.1137/S0097539703427203
https://doi.org/10.1137/S0097539703427203
https://doi.org/10.1137/15M1020551
https://doi.org/10.1137/15M1020551
https://doi.org/10.1145/3037381
https://doi.org/10.1145/2635825
https://doi.org/10.4230/LIPIcs.MFCS.2018.49
https://doi.org/10.4230/LIPIcs.MFCS.2018.49
https://doi.org/10.1145/2600917
https://doi.org/10.1002/jgt.3190020209
https://doi.org/10.1002/jgt.3190020209
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/380752.380867
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1006/jcss.2000.1727

rial problems. In Raymond E. Miller and James W.
Thatcher, editors, Proceedings of a symposium on the
Complexity of Computer Computations, held March
20-22, 1972, at the IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York, USA,
The IBM Research Symposia Series, pages 85–103.
Plenum Press, New York, 1972. doi:10.1007/

978-1-4684-2001-2_9.
[29] Amirhossein Kazeminia and Andrei A. Bulatov.

Counting homomorphisms modulo a prime number.
In Peter Rossmanith, Pinar Heggernes, and Joost-
Pieter Katoen, editors, 44th International Sympo-
sium on Mathematical Foundations of Computer Sci-
ence, MFCS 2019, August 26-30, 2019, Aachen, Ger-
many, volume 138 of LIPIcs, pages 59:1–59:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.MFCS.2019.59.

[30] Steven Kelk. On the relative complexity of approxi-
mately counting H-colourings. PhD thesis, Warwick
University, 2003.

[31] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-
query containment and constraint satisfaction. J.
Comput. Syst. Sci., 61(2):302–332, 2000. doi:10.

1006/jcss.2000.1713.
[32] László Lovász. Graph minor theory. Bull. Amer.

Math. Soc. (N.S.), 43(1):75–86, 2006. doi:10.1090/

S0273-0979-05-01088-8.
[33] C. H. Papadimitriou and S. Zachos. Two remarks on

the power of counting. In Proc. 6th GI-Conference
on Theoretical Computer Science, pages 269–275.
Springer-Verlag, 1982.

[34] Marc Roth and Philip Wellnitz. Counting and finding
homomorphisms is universal for parameterized com-
plexity theory. In Shuchi Chawla, editor, Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2020, Salt Lake City, UT, USA, Jan-
uary 5-8, 2020, pages 2161–2180. SIAM, 2020. doi:

10.1137/1.9781611975994.133.
[35] S. Toda. PP is as hard as the polynomial-time

hierarchy. SIAM J. Comput., 20(5):865–877, 1991.
[36] Leslie G Valiant. Accidental algorthims. In 2006 47th

Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 509–517. IEEE, 2006.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.4230/LIPIcs.MFCS.2019.59
https://doi.org/10.4230/LIPIcs.MFCS.2019.59
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1090/S0273-0979-05-01088-8
https://doi.org/10.1090/S0273-0979-05-01088-8
https://doi.org/10.1137/1.9781611975994.133
https://doi.org/10.1137/1.9781611975994.133

	Introduction
	Counting modulo 2 and Past Work
	Contributions and Techniques

	Warm-up: useful Ideas from Previous Papers — Retractions and Hardness Gadgets
	Detailed Proof Outline
	Local Hardness: Biconnected K4-minor-free graphs
	Global Hardness: Block-Cut-Trees of involution-free K4-minor-free graphs

