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Abstract
A homomorphism from a graph G to a graph H is a
function from the vertices of G to the vertices of H that
preserves edges. A homomorphism is surjective if it uses
all of the vertices of H and it is a compaction if it uses all
of the vertices of H and all of the non-loop edges of H.
Hell and Nešetřil gave a complete characterisation of the
complexity of deciding whether there is a homomorphism
from an input graph G to a fixed graph H. A complete
characterisation is not known for surjective homomorphisms
or for compactions, though there are many interesting
results. Dyer and Greenhill gave a complete characterisation
of the complexity of counting homomorphisms from an input
graph G to a fixed graph H. In this paper, we give
a complete characterisation of the complexity of counting
surjective homomorphisms from an input graph G to a fixed
graph H and we also give a complete characterisation of the
complexity of counting compactions from an input graph G
to a fixed graph H.

The full version containing detailed proofs is available

at http://arxiv.org/abs/1706.08786.

1 Introduction

A homomorphism from a graph G to a graph H is
a function from V (G) to V (H) that preserves edges.
That is, the function maps every edge of G to an
edge of H. Many structures in graphs, such as proper
colourings, independent sets, and generalisations of
these, can be represented as homomorphisms, so the
study of graph homomorphisms has a long history in
combinatorics [2, 4, 18, 19, 22, 24].

Much of the work on this problem is algorithmic
in nature. A very important early work is Hell and
Nešetřil’s paper [20], which gives a complete charac-
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terisation of the complexity of the following decision
problem, parameterised by a fixed graph H: “Given
an input graph G, determine whether there is a ho-
momorphism from G to H.” Hell and Nešetřil showed
that this problem can be solved in polynomial time if H
has a loop or is bipartite and that it is NP-complete
otherwise. An important generalisation of the homo-
morphism decision problem is the list-homomorphism
decision problem. Here, in addition to the graph G,
the input specifies, for each vertex v of G, a list Sv of
permissible vertices of H. The problem is to determine
whether there is a homomorphism from G to H that
maps each vertex v of G to a vertex in Sv. Feder, Hell
and Huang [11] gave a complete characterisation of the
complexity of this problem. This problem can be solved
in polynomial time if H is a so-called bi-arc graph, and
it is NP-complete otherwise.

More recent work has restricted attention to homo-
morphisms with certain properties. A function from
V (G) to V (H) is surjective if every element of V (H)
is the image of at least one element of V (G). So a ho-
momorphism from G to H is surjective if every vertex
of H is “used” by the homomorphism. There is still
no complete characterisation of the complexity of de-
termining whether there is a surjective homomorphism
from an input graph G to a graph H, despite an im-
pressive collection of results [1, 15, 16, 17, 25]. A homo-
morphism from V (G) to V (H) is a compaction if it uses
every vertex of H and also every non-loop edge of H
(so it is surjective both on V (H) and on the non-loop
edges in E(H)). Compactions have been studied under
the name “homomorphic image” [18, 22] and even un-
der the name “surjective homomorphism” [6, 24]. Once
again, despite much work [1, 27, 28, 29, 30, 31], there
is still no characterisation of the complexity of deter-
mining whether there is a compaction from an input
graph G to a graph H.

Dyer and Greenhill [9] initiated the algorithmic
study of counting homomorphisms. They gave a
complete characterisation of the graph homomorphism
counting problem, parameterised by a fixed graph H:
“Given an input graph G, determine how many homo-
morphisms there are from G to H.” Dyer and Greenhill
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showed that this problem can be solved in polynomial
time if every component of H is a clique with all loops
present or a biclique (complete bipartite graph) with
no loops present. Otherwise, the counting problem is
#P-complete. Dı́az, Serna and Thilikos [8] and Hell
and Nešetřil [21] have shown that the same dichotomy
characterisation holds for the problem of counting list
homomorphisms.

The main contribution of this paper is to give com-
plete dichotomy characterisations for the problems of
counting compactions and surjective homomorphisms.
Our main theorem, Theorem 1.2, shows that the char-
acterisation for compactions is different from the charac-
terisation for counting homomorphisms. If every com-
ponent of H is (i) a star with no loops present, (ii)
a single vertex with a loop, or (iii) a single edge with
two loops then counting compactions to H is solvable in
polynomial time. Otherwise, it is #P-complete. We also
obtain the same dichotomy for the problem of counting
list compactions. Thus, even though the decision prob-
lem is still open for compactions, our theorem gives a
complete classification of the complexity of the corre-
sponding counting problem.

There is evidence that computational problems in-
volving surjective homomorphisms are more difficult
than those involving (unrestricted) homomorphisms.
For example, suppose that H consists of a 3-vertex
clique with no loops together with a single looped ver-
tex. As [1] noted, the problem of deciding whether there
is a homomorphism from an input graph G to H is
trivial (the answer is yes, since all vertices of G may
be mapped to the loop) but the problem of determin-
ing whether there is a surjective homomorphism from
an input graph G to H is NP-complete. (To see this,
recall the NP-hard problem of determining whether a
connected graph G′ that is not bipartite is 3-colourable.
Given such a graph G′, we may determine whether it is
3-colourable by letting G consist of the disjoint union
of G′ and a loop-free clique of size 4, and then check-
ing whether there is a surjective homomorphism from
G to H.) There is also evidence that counting problems
involving surjective homomorphisms are more difficult
than those involving unrestricted homomorphisms. In
the full version we consider a uniform homomorphism-
counting problem where all connected components of
G are cliques without loops and all connected compo-
nents of H are cliques with loops, but both G and H
are part of the input. It turns out (Theorem 31 in the
full version) that in this uniform case, counting homo-
morphisms is in FP but counting surjective homomor-
phisms is #P-complete. Despite this evidence, we show
(Theorem 1.3) that the problem of counting surjective
homomorphisms to a fixed graph H has the same com-

plexity characterisation as the problem of counting all
homomorphisms to H: The problem is solvable in poly-
nomial time if every component of H is a clique with
loops or a biclique without loops. Otherwise, it is #P-
complete. Once again, our dichotomy characterisation
extends to the problem of counting surjective list homo-
morphisms. Even though the decision problem is still
open for surjective homomorphisms, our theorem gives a
complete complexity classification of the corresponding
counting problem.

In Section 1.2 we will introduce one more related
counting problem — the problem of counting retrac-
tions. Informally, if G is a graph containing an induced
copy of H then a retraction from G to H is a homomor-
phism from G to H that maps the induced copy to itself.
Retractions are well-studied in combinatorics, often
from an algorithmic perspective [1, 10, 11, 12, 28, 30].
A complexity classification is not known for the decision
problem (determining whether there is a retraction from
an input to H). Nevertheless, it is easy to give a com-
plexity characterisation for the corresponding counting
problem (Corollary 1.1). This characterisation, together
with our main results, implies that a long-standing con-
jecture of Winkler about the complexity of the decision
problems for compactions and retractions is false in the
counting setting. See Section 1.2 for details.

1.1 Notation and Theorem Statements In this
paper graphs are undirected and may contain loops.
A homomorphism from a graph G to a graph H is a
function h : V (G) → V (H) such that, for all {u, v} ∈
E(G), the image {h(u), h(v)} is in E(H). We use
N
(
G→ H

)
to denote the number of homomorphisms

from G to H. A homomorphism h is said to “use” a
vertex v ∈ V (H) if there is a vertex u ∈ V (G) such that
h(u) = v. It is surjective if it uses every vertex of H. We
use N sur

(
G→ H

)
to denote the number of surjective

homomorphisms from G to H. A homomorphism h is
said to use an edge {v1, v2} ∈ E(H) if there is is an edge
{u1, u2} ∈ E(G) such that h(u1) = v1 and h(u2) = v2.
It is a compaction if it uses every vertex of H and
every non-loop edge of H. We use N comp

(
G→ H

)
to

denote the number of compactions from G to H. H
is said to be reflexive if every vertex has a loop. It
is said to be irreflexive if no vertex has a loop. We
study the following computational problems1, which are

1The reason that the input graph G is restricted to be
irreflexive in these problems, but that H is not restricted, is that
this is the convention in the literature. Since our results will

be complexity classifications, parameterised by H, we strengthen
the results by avoiding restrictions on H. Different conventions

are possible regarding G, but hardness results are typically the
most difficult part of the complexity classifications in this area,

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited



parameterised by a graph H.

Name: #Hom(H).
Input: Irreflexive graph G.
Output: N

(
G→ H

)
.

Name: #Comp(H).
Input: Irreflexive graph G
Output: N comp

(
G→ H

)
.

Name: #SHom(H).
Input: Irreflexive graph G
Output: N sur

(
G→ H

)
.

A list homomorphism generalises a homomorphism
in the same way that a list colouring of a graph gen-
eralises a (proper) colouring. Suppose that G is an
irreflexive graph and that H is a graph. Consider a
collection of sets S = {Sv ⊆ V (H) : v ∈ V (G)}
A list homomorphism from (G,S) to H is a homo-
morphism h from G to H such that, for every ver-
tex v of G, h(v) ∈ Sv. The set Sv is referred to as
a “list”, specifying the allowable targets of vertex v.
We use N

(
(G,S)→ H

)
to denote the number of list

homomorphisms from (G,S) to H, N sur
(
(G,S)→ H

)
to denote the number of surjective list homomorphisms
from (G,S) to H and N comp

(
(G,S)→ H

)
to denote

the number of list homomorphisms from (G,S) to H
that are compactions. We study the following addi-
tional computational problems, again parameterised by
a graph H.

Name: #LHom(H).
Input: Irreflexive graph G and a collection of lists
S = {Sv ⊆ V (H) : v ∈ V (G)}.
Output: N

(
(G,S)→ H

)
.

Name: #LComp(H).
Input: Irreflexive graph G and a collection of lists
S = {Sv ⊆ V (H) : v ∈ V (G)}.
Output: N comp

(
(G,S)→ H

)
.

Name: #LSHom(H).
Input: Irreflexive graph G and a collection of lists
S = {Sv ⊆ V (H) : v ∈ V (G)}.
Output: N sur

(
(G,S)→ H

)
.

In order to state our theorems, we define some
classes of graphs. A graph H is a clique if, for every
pair (u, v) of distinct vertices, E(H) contains the edge
{u, v}. (Like other graphs, cliques may contain loops
but not all loops need to be present.) H is a biclique if
it is bipartite and there is a partition of V (H) into two

so restricting G leads to technically-stronger results.

disjoint sets U and V such that, for every u ∈ U and
v ∈ V , E(H) contains the edge {u, v}. We sometimes
use the notation Ka,b to denote a biclique whose vertices
can be partitioned into U and V with |U | = a and
|V | = b. A biclique is a star if |U | = 1 or |V | = 1
(or both). Note that a star may have only one vertex
since, for example, we could have |U | = 1 and |V | = 0.
The size of a graph is the number of vertices that it has.
We can now state the theorem of Dyer and Greenhill [9],
as extended to list homomorphisms by Dı́az, Serna and
Thilikoas [8] and Hell and Nešetřil [21].

Theorem 1.1. (Dyer, Greenhill) Let H be a
graph. If every connected component of H is a reflexive
clique or an irreflexive biclique, then #Hom(H) and
#LHom(H) are in FP. Otherwise, #Hom(H) and
#LHom(H) are #P-complete.

We can also state the main results of this paper.

Theorem 1.2. Let H be a graph. If every connected
component of H is an irreflexive star or a reflex-
ive clique of size at most 2 then #Comp(H) and
#LComp(H) are in FP. Otherwise, #Comp(H) and
#LComp(H) are #P-complete.

Theorem 1.3. Let H be a graph. If every connected
component of H is a reflexive clique or an irreflexive
biclique, then #SHom(H) and #LSHom(H) are in
FP. Otherwise, #SHom(H) and #LSHom(H) are #P-
complete.

The proofs of Theorems 1.2 and 1.3 are in the full
version. The proof of Theorem 1.3 is not difficult. It is
based on two reductions established via polynomial in-
terpolation: #LSHom(H) ≤ #LHom(H) (Theorem 28
in the full version) and #Hom(H) ≤ #SHom(H) (The-
orem 30 in the full version). The proof of Theorem 1.2
is significantly more complicated. We give the key tech-
nical and conceptual ideas of the proof in Section 3 and
refer the reader to the full version for the omitted de-
tails. In the next subsection, we will discuss complexity
consequences of Theorems 1.1, 1.2 and 1.3 to the prob-
lem of counting retractions.

1.2 Reductions and Retractions In the context of
two computational problems P1 and P2, we write P1 ≤
P2 if there exists a polynomial-time Turing reduction
from P1 to P2. If there exist such reductions in both
directions, we write P1 ≡ P2. Theorems 1.1, 1.2 and 1.3
imply the following observation.
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Observation 1.1. Let H be a graph. Then

#Hom(H) ≡ #LHom(H)

≡ #SHom(H) ≡ #LSHom(H)

≤ #Comp(H) ≡ #LComp(H).

In order to see how Observation 1.1 contrasts with
the situation concerning decision problems, it is useful
to define decision versions of the computational prob-
lems that we study. Thus, Hom(H) is the problem
of determining whether N

(
G→ H

)
= 0, given an in-

put G of #Hom(H). The decision problems Comp(H),
SHom(H) and LHom(H) are defined similarly.

It is also useful to define the notion of a retraction.
Suppose that H is a graph with V (H) = {v1, . . . , vc}
and that G is an irreflexive graph. We say that a tuple
(u1, . . . , uc) of c distinct vertices of G induces a copy
of H if, for every 1 ≤ a < b ≤ c, {ua, ub} ∈ E(G) ⇐⇒
{va, vb} ∈ E(H). A retraction from (G;u1, . . . , uc) to
H is a homomorphism h from G to H such that, for all
i ∈ [c], h(ui) = vi. We use N ret

(
(G;u1, . . . , uc)→ H

)
to denote the number of retractions from (G;u1, . . . , uc)
to H. We briefly consider the retraction counting
and decision problems, which are parameterised by a
graph H with V (H) = {v1, . . . , vc}.2

Name: #Ret(H).
Input: Irreflexive graph G and a tuple (u1, . . . , uc)
of distinct vertices of G that induces a copy of H.
Output: N ret

(
(G;u1, . . . , uc)→ H

)
.

Name: Ret(H).
Input: Irreflexive graph G and a tuple (u1, . . . , uc)
of distinct vertices of G that induces a copy of H.
Output: Does N ret

(
(G;u1, . . . , uc)→ H

)
= 0?

The following observation appears as Proposition 1
of [1]. The proposition is stated for more general
structures than graphs, but it applies equally to our
setting.

Proposition 1.1. (Bodirsky et al.) Let H be a graph.
Then

Hom(H)≤SHom(H)≤Comp(H)≤Ret(H)≤LHom(H).

We have already mentioned the fact (pointed out by
Bodirsky et al.) that if H is an irreflexive 3-vertex clique
together with a single looped vertex, then Hom(H) is in
P, but SHom(H) is NP-complete. There are no known

2Once again, some works would allow G to have loops, and

would insist that loops are preserved in the induced copy of H.
We prefer to stick with the convention that G is irreflexive, but

this does not make a difference to the complexity classifications
that we describe.

graphs H separating SHom(H), Comp(H) and Ret(H).
Moreover, Bodirsky et al. mention a conjecture [1,
Conjecture 2], attributed to Peter Winkler, that, for
all graphs H, Comp(H) and Ret(H) are polynomially
Turing equivalent.

The following observation, together with our theo-
rems, implies Corollary 1.2 (below), which shows that
the generalisation of Winkler’s conjecture to the count-
ing setting is false unless FP = #P, since #Comp(H)
and #Ret(H) are not polynomially Turing equivalent
for all H.

Observation 1.2. Let H be a graph. Then
#Ret(H) ≤ #LHom(H) and #Hom(H) ≤ #Ret(H)

Observation 1.2 immediately implies the following
dichotomy characterisation for the problem of counting
retractions.

Corollary 1.1. Let H be a graph. If every connected
component of H is a reflexive clique or an irreflexive
biclique, then #Ret(H) is in FP. Otherwise, #Ret(H)
is #P-complete.

Corollary 1.2. Let H be a graph. Then

#Hom(H)≡#LHom(H)≡#SHom(H)≡#LSHom(H)

≡#Ret(H)≤#Comp(H)≡#LComp(H).

Furthermore, there is a graph H for which #Comp(H)
and #LComp(H) are #P-complete, but #Hom(H),
#LHom(H), #SHom(H), #LSHom(H) and #Ret(H)
are in FP.

1.3 Related Work This section was added after the
paper was written, in order to draw attention to some
interesting subsequent work [7, 5].

Both our tractability results and our hardness re-
sults rely on the fact (see Theorem 3.1) that the num-
ber of compactions from G to H can be expressed as
a linear combination of the number of homomorphisms
from G to certain subgraphs J of H. A similar state-
ment applies to surjective homomorphisms.

As we note in the paper, these kinds of linear
combinations have been noticed in related contexts
before, for example in [3, Lemma 4.2] and in [24]. We
use the linear combination of Theorem 3.1, together
with interpolation, to prove hardness. Although it is
standard to restrict the input graph G to be irreflexive
(and this restriction makes the results stronger) the
fact that G is required to be irreflexive causes severe
difficulties.

In fact, Dell’s note about our paper [7] shows that,
if you weaken the theorem statements by allowing the

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited



input G to have loops, then a simpler interpolation
based on a very recent paper by Curticapean, Dell and
Marx [6] can be used to make the proofs very elegant!
The exact same idea, written more generally, was also
discovered by Chen [5].

2 Preliminaries

It will often be technically convenient to restrict the
problems that we study by requiring the input graph G
to be connected. In each case, we do this by adding
a superscript “C” to the name of the problem. For
example, the problem #HomC(H) is defined as follows.

Name: #HomC(H).
Input: A connected irreflexive graph G.
Output: N

(
G→ H

)
.

It is well known and easy to see (See, e.g., [24,
(5.28)]) that ifG is an irreflexive graph with components
G1, . . . , Gt then N

(
G→ H

)
=

∏
i∈[t]N

(
Gi → H

)
.

Thus, Dyer and Greenhill’s theorem (Theorem 1.1) can
be re-stated in the following convenient form.

Theorem 2.1. (Dyer, Greenhill) Let H be a
graph. If every connected component of H is a reflexive
clique or an irreflexive biclique, then #HomC(H),
#Hom(H), #LHomC(H) and #LHom(H) are all in
FP. Otherwise, #HomC(H), #Hom(H), #LHomC(H)
and #LHom(H) are all #P-complete.

Finally, we introduce some frequently used nota-
tion. For every positive integer n, we define [n] =
{1, . . . , n}. A subgraph H ′ of H is said to be loop-
hereditary with respect to H if for every v ∈ V (H ′)
that is contained in a loop in E(H), v is also contained
in a loop in E(H ′). We indicate that two graphs G1

and G2 are isomorphic by writing G1
∼= G2. Given sets

S1 and S2, we write S1⊕S2 for the disjoint union of S1

and S2. Given graphs G1 and G2, we write G1⊕G2 for
the graph (V (G1)⊕ V (G2), E(G1)⊕ E(G2)).

3 Counting Compactions

The tractability result in Theorem 1.2 follows from the
fact (see Theorem 3.1) that the number of compactions
from G to H can be expressed as a linear combination
of the number of homomorphisms from G to certain
subgraphs J of H. A shorter explicit tractability result
is also given in the full version. Here we concentrate on
the intractability results. We consider a graph H that
has a connected component that is not an irreflexive star
or a reflexive clique of size at most 2. The objective is to
show that #Comp(H) and #LComp(H) are #P-hard
(this is the hardness content of Theorem 1.2).

We start with a brief proof sketch. The easy case is
when H contains a component that is not a reflexive
clique or an irreflexive biclique. In this case, Dyer
and Greenhill’s Theorem 1.1 shows that #Hom(H) is
#P-hard. We obtain the desired hardness by giving
(in Theorem 13 in the full version) a polynomial-
time Turing reduction from #Hom(H) to #Comp(H).
The result is finished off with a trivial reduction from
#Comp(H) to #LComp(H). The proof of Theorem 13
is not difficult — given an input G to #Hom(H), we add
isolated vertices and edges to G and recover the desired
quantity N

(
G→ H

)
using an oracle for #Comp(H)

and polynomial interpolation. There are small technical
issues related to size-1 components in H, and these are
dealt with in Lemma 11 in the full version.

The more interesting case is when every component
of H is a reflexive clique or an irreflexive biclique, but
some component is either a reflexive clique of size at
least 3 or an irreflexive biclique that is not a star. The
first milestone is Lemma 3.4, which shows #P-hardness
in the special case where H is connected. We prove
Lemma 3.4 in a slightly stronger setting where the input
graph G is connected. This allows us, in the remainder
of the section, to generalise the connected case to the
case in which H is not connected.

The main difficulty, then, is Lemma 3.4. The goal is
to show that #Comp(H) is #P-hard when H is a reflex-
ive clique of size at least 3 or an irreflexive biclique that
is not a star. Our main method for solving this prob-
lem is a technique (Theorem 3.1) that lets us compute
the number of compactions from a connected graph G
to a connected graph H using a weighted sum of ho-
momorphism counts, say N

(
G→ J1

)
, . . . , N

(
G→ Jk

)
.

An important feature is that some of the weights might
be negative.

Our basic approach will be to find a constituent
Ji such that #HomC(Ji) is #P-hard and to reduce
#HomC(Ji) to the problem of computing the weighted
sum. Of course, if computing N

(
G→ J1

)
is #P-hard

and computing N
(
G→ J2

)
is #P-hard, it does not

follow that computing a weighted sum of these is #P-
hard.

In order to solve this problem, in Lemmas 3.1
and 3.2 we use an argument similar to that of Lovász [23,
Theorem 3.6] to prove the existence of input instances
that help us to distinguish between the problems
#HomC(J1), . . . ,#HomC(Jk). Theorem 3.2 then pro-
vides the desired reduction from a chosen #HomC(Ji)
to the problem of computing the weighted sum. The-
orem 3.2 is proved by a more complicated interpola-
tion construction, in which we use the instances from
Lemma 3.2 to modify the input.

Having sketched the proof at a high level, we now
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give some more details of the difficult case. Towards
this end, we introduce some definitions which we will
use repeatedly in the remainder of this section.

Definition 3.1. A weighted graph set is a tuple
(H, λ), where H is a set of non-empty, pairwise non-
isomorphic, connected graphs and λ is a function
λ : H → Z.

Definition 3.2. Let H be a connected graph. By
Sub(H) we denote the set of non-empty, loop-hereditary,
connected subgraphs of H. Let SH be a set which
contains exactly one representative of each isomorphism
class of the graphs in Sub(H). Finally, for H ′ ∈ SH ,
we define µH(H ′) to be the number of graphs in Sub(H)
that are isomorphic to H ′.

Note that for a connected graph H, we have
µH(H) = 1.

Definition 3.3. For each non-empty connected graph
H, we define a weight function λH which assigns an
integer weight to each non-empty connected graph J .

• If J is not isomorphic to any graph in SH , then
λH(J) = 0.

• If J ∼= H, then λH(J) = 1.

• Finally, if J is isomorphic to some graph in SH but
J � H, we define λH(J) inductively as follows.

λH(J) = −
∑

H′∈SH
s.t. H′�H

µH(H ′)λH′(J).

Note that λH is well-defined as all graphs H ′ ∈ SH with
H ′ � H are smaller than H either in the sense of having
fewer vertices or in the sense of having the same number
of vertices but fewer edges.

The following theorem is the key to our approach for
computing the number of compactions from a connected
graph G to a connected graph H using a weighted sum
of homomorphism counts.

Theorem 3.1. Let H be a non-empty connected
graph. Then for every non-empty, irreflexive and
connected graph G we have Ncomp

(
G→ H

)
=∑

J∈SH λH(J)N
(
G→ J

)
.

Proof. Let H1, H2, . . . be the set of non-empty con-
nected graphs sorted by some fixed ordering that en-
sures that if Hi is isomorphic to a subgraph of Hj , then
i ≤ j. We verify the statement of the theorem by induc-
tion over the graph index with respect to this ordering.
Let G be non-empty, irreflexive and connected.

For the base case, H1 is K1, which is the graph with
one vertex and no edges. In this case, SH1

= {K1} and
λK1(K1) = 1. Also, N comp

(
G→ K1

)
= N

(
G→ K1

)
.

So the theorem holds in this case.
Now assume that the statement holds for all graphs

up to index i and consider the graph Hi+1. For ease of
notation we set H = Hi+1. We use the fact that every
homomorphism from a connected graph G to Hi+1 is a
compaction onto some non-empty, loop-hereditary and
connected subgraph of Hi+1 and vice versa. Thus, it
holds that

N
(
G→ H

)
=

∑
H′∈SH

µH(H ′) ·N comp
(
G→ H ′

)
= N comp

(
G→ H

)
+

∑
H′∈SH

s.t. H′�H

µH(H ′) ·N comp
(
G→ H ′

)
.

Thus, we can rearrange and use the induction hypothe-
sis to obtain

N comp
(
G→ H

)
= N

(
G→ H

)
−

∑
H′∈SH

s.t. H′�H

µH(H ′) ·N comp
(
G→ H ′

)
= N

(
G→ H

)
−

∑
H′∈SH

s.t. H′�H

µH(H ′) ·
∑
J∈SH′

λH′(J)N
(
G→ J

)
.

Then we change the order of summation and use that
λH′(J) = 0 if J is not isomorphic to any graph in SH′ to
collect all coefficients that belong to a particular term
N
(
G→ J

)
. We obtain

N comp
(
G→ H

)
= N

(
G→ H

)
−

∑
J∈SH

s.t. J�H

( ∑
H′∈SH

s.t. H′�H

µH(H ′)λH′(J)
)
N
(
G→ J

)

=
∑
J∈SH

λH(J)N
(
G→ J

)
.

We remark that Theorem 3.1 can be generalised to
graphs H and G with multiple connected components
by looking at all subgraphs of H, rather than just at the
connected ones. However, within this work, the version
for connected graphs suffices.

Let (H, λ) be a weighted graph set.
The following parameterised problem is not
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natural in its own right, but it helps us
to analyse the complexity of #CompC(H):

Name: #GraphSetHomC((H, λ)).
Input: An irreflexive, connected graph G.
Output: ZH,λ(G), which is defined to be 0 if G is
empty and otherwise equals

∑
J∈H λ(J)N

(
G→ J

)
.

Corollary 3.1. Let H be a non-empty connected
graph. Then

#CompC(H) ≡ #GraphSetHomC((SH , λH)).

Corollary 3.1 gives us the desired connection be-
tween weighted graph sets and compactions. We will
use this in the proof of Lemma 3.4 to establish the #P-
hardness of #CompC(H) when H is either a reflexive
clique of size at least 3 or an irreflexive biclique that is
not a star.

Our next goal is to prove Theorem 3.2, which states
that, for certain weighted graph sets (H, λ), determining
ZH,λ(G) is at least as hard as computing N

(
G→ J

)
for some graph J from the set H with λ(J) 6= 0.
To this end, we first introduce two lemmas that help
us to distinguish between different graphs J in the
interpolation that we use in the full version to prove
Theorem 3.2.

For the following lemmas, we introduce some new
notation. For a graph G with distinguished vertex
v ∈ V (G) and a graph H with distinguished vertex
w ∈ V (H), the quantity N

(
(G, v)→ (H,w)

)
denotes

the number of homomorphisms h from G to H with
h(v) = w. If there exists an isomorphism from G to H
that maps v onto w, we write (G, v) ∼= (H,w), otherwise
we write (G, v) � (H,w). In the following lemma,
we show that for two such target entities (H1, w1) and
(H2, w2) that are non-isomorphic, there exists an input
which separates them. To this end, we use an argument
very similar to that presented in [14, Lemma 3.6] and in
the textbook by Hell and Nešetřil [22, Theorem 2.11],
which goes back to the works of Lovász [23, Theorem
3.6].

Lemma 3.1. Let H1 and H2 be connected graphs with
distinguished vertices w1 ∈ V (H1) and w2 ∈ V (H2)
such that (H1, w1) � (H2, w2). Suppose that one of the
following cases holds:

Case 1. H1 and H2 are reflexive graphs.

Case 2. H1 and H2 are irreflexive bipartite graphs,
each of which contains at least one edge.

Then

i) There exists a connected irreflexive graph G with
distinguished vertex v ∈ V (G) for which
N
(
(G, v)→ (H1, w1)

)
6= N

(
(G, v)→ (H2, w2)

)
.

ii) In Case 2 we can assume that G contains at least
one edge and is bipartite.

In the following lemma, we generalise the pairwise
property from Lemma 3.1. The result and the proof are
adapted versions of [13, Lemma 6]. For ease of notation

let
(
[k]
2

)
denote the set of all pairs {i, j} with i, j ∈ [k]

and i 6= j. The proof is in the full version.

Lemma 3.2. Let H1, . . . ,Hk be connected graphs with
distinguished vertices w1, . . . , wk where wi ∈ V (Hi) for

all i ∈ [k] and, for every pair {i, j} ∈
(
[k]
2

)
, we have

(Hi, wi) � (Hj , wj). Suppose that one of the following
cases holds:

Case 1. ∀i ∈ [k], Hi is a reflexive graph.

Case 2. ∀i ∈ [k], Hi is an irreflexive bipartite graph
that contains at least one edge.

Then

i) There exists a connected irreflexive graph G with a
distinguished vertex v ∈ V (G) such that, for every

{i, j} ∈
(
[k]
2

)
, it holds that N

(
(G, v)→ (Hi, wi)

)
6=

N
(
(G, v)→ (Hj , wj)

)
.

ii) In Case 2 we can assume that G contains at least
one edge and is bipartite.

In the following theorem, we use the
separating instances that we obtain from
Lemma 3.2 for interpolation-based reductions to
#GraphSetHomC((H, λ)). The proof is in the full
version.

Theorem 3.2. Let (H, λ) be a weighted graph set for
which one of two cases holds:

Case 1. All graphs in H are reflexive.

Case 2. All graphs in H are irreflexive and bipartite.

Then, for all H ∈ H with λ(H) 6= 0, it holds that
#HomC(H) ≤ #GraphSetHomC((H, λ)).

Next, we give a short technical lemma which fol-
lows from Definition 3.3 and is used in Lemma 3.4
to show that Theorem 3.2 gives hardness results for
#CompC(H). The proof is in the full version.

Lemma 3.3. Let H be a connected graph with at least
one non-loop edge. Let H− be the graph obtained
from H by deleting exactly one non-loop edge (but keep-
ing all vertices). If H− is connected, then λH(H−) 6= 0.
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We now have most of the tools at hand to classify
the complexity of #Comp(H). Tractability results
come from Lemma 10 in the full version. If H has a
component that is not a reflexive clique or an irreflexive
biclique then hardness will be lifted from Dyer and
Greenhill’s Theorem 1.1 via Theorem 13 from the full
version. The most difficult case is when all components
of H are reflexive cliques or irreflexive bicliques, but
some component is not a star or a reflexive biclique of
size at most 2. If H is connected then hardness will
come from the following key lemma.

Lemma 3.4. If H is a reflexive clique of size at least 3
then #CompC(H) is #P-hard. If H is an irreflexive
biclique that is not a star then #CompC(H) is #P-hard.

Proof. Suppose that H is a reflexive clique of size at
least 3 or an irreflexive biclique that is not a star. Note
that (SH , λH) is a weighted graph set. Let H− be a
graph obtained from H by deleting a non-loop edge.
Note that H− is connected and it is not a reflexive clique
or an irreflexive biclique. Thus we can apply Lemma 3.3
to show that λ(H−) > 0 and Theorem 2.1 to show
that #HomC(H−) is #P-complete. We will complete
the proof of the Lemma by showing #HomC(H−) ≤
#CompC(H).

If H is a reflexive graph then the definition of
SH ensures that all graphs in SH are reflexive. If
H is an irreflexive bipartite graph, then the def-
inition ensures that all graphs in SH are irreflex-
ive and bipartite. We can apply Theorem 3.2 to
the weighted graph set (SH , λH) with H− ∈ SH to
obtain #HomC(H−) ≤ #GraphSetHomC((SH , λH)).
By Corollary 3.1, #GraphSetHomC((SH , λH)) ≡
#CompC(H). The lemma follows.

The remainder of the section generalises the con-
nected case to the case in which H is not connected. We
use the following two definitions in Lemmas 3.5 and 3.6
and in the proof of Theorem 1.2.

Definition 3.4. Let H be a graph. Suppose that every
non-star connected component of H has at most j
vertices and that some non-star component of H has
j vertices. Let A(H) be the set of reflexive components
of H with j vertices and let B(H) be the set of irreflexive
non-star components of H with j vertices.

Definition 3.5. Let L(H) denote the set of loops of a
graph H. We define the graph H0 = (V (H), E(H) \
L(H)).

Lemma 3.5. Let H be a graph in which every compo-
nent is a reflexive clique or an irreflexive biclique. If
J ∈ A(H) then #CompC(J) ≤ #Comp(H).

Proof. Let H be a graph in which every component
is a reflexive clique or an irreflexive biclique. Let
A(H) = {A1, . . . , Ak}. It follows from the definition
of A(H) that all elements of A(H) are reflexive cliques
of some size j (the same j for all graphs in A(H)).

If j ≤ 2, the statement of the lemma is triv-
ially true, since Lemma 10 in the full version shows
that #Comp(Ai) is in FP, so the restricted problem
#CompC(Ai) is also in FP.

Now assume j ≥ 3. Suppose without loss of
generality that J = A1. Let G be a (connected) input
to #CompC(J). For all i ∈ [k], let H \ Ai be the
graph constructed from H by deleting the connected
component Ai. Using Definition 3.5 we define the
(irreflexive) graph G′ = (H \ J ⊕ G)0 as an input to
#Comp(H). Intuitively, to form G′ from H we replace
the connected component J with the graph G, then we
delete all loops. We will prove the following claim.

Claim: Let h : V (G′) → V (H) be a compaction
from G′ to H. Then the restriction h|V (G) is a
compaction from G onto an element of A(H).

Proof of the claim: As h is a homomorphism, it
maps each connected component of G′ to a connected
component of H. As, furthermore, h is a compaction
and G′ and H have the same number of connected com-
ponents, it follows that there exist connected compo-
nents C1, . . . , Ck of G′ such that for i ∈ [k], h|V (Ci) is
a compaction from Ci onto Ai. To prove the claim, we
show that G is an element of C = {C1, . . . , Ck}. In or-
der to use all vertices of a graph in A(H), i.e. a reflexive
size-j clique, a graph in C has to have at least j vertices
itself. Therefore and by the construction of G′, an el-
ement of C can only be one of the following: a clique
with j vertices, a biclique with j vertices, a star with
at least j vertices or the copy of G. Since j ≥ 3, it
is easy to see that there is no compaction from a star
onto a clique with j vertices. In order to compact onto
a reflexive clique of size j, an element of C also has to
have at least j(j−1)/2 edges. Thus, C does not contain
any bicliques. Finally, there are only k − 1 connected
components in G′ that are j-vertex cliques other than
(possibly) G. Therefore, G has to be an element of C,
which proves the claim.

Using the notation from Definition 3.5, the claim
implies

N comp
(
G′ → H

)(3.1)

=

k∑
i=1

N comp
(
G→ Ai

)
·N comp

(
(H \Ai)0 → H \Ai

)
.
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We can simplify the expression (3.1) using the fact that
all elements of A(H) are reflexive size-j cliques:

N comp
(
G′ → H

)
= k ·N comp

(
G→ J

)
·N comp

(
(H \ J)0 → H \ J

)
.

As N comp
(
(H \ J)0 → H \ J

)
does not depend on G, it

can be computed in constant time. Thus, using a single
#Comp(H) oracle call we can compute N comp

(
G→ J

)
in polynomial time as required.

The proof of the following lemma is similar to that
of Lemma 3.5 and can be found in the full version.

Lemma 3.6. Let H be a graph in which every compo-
nent is a reflexive clique or an irreflexive biclique. If
A(H) is empty but B(H) is non-empty, then there ex-
ists a component J ∈ B(H) such that #CompC(J) ≤
#Comp(H).

Finally, we prove the main theorem of this paper,
which we restate at this point.

Theorem 1.2. Let H be a graph. If every connected
component of H is an irreflexive star or a reflex-
ive clique of size at most 2 then #Comp(H) and
#LComp(H) are in FP. Otherwise, #Comp(H) and
#LComp(H) are #P-complete.

Proof. The membership of #Comp(H) in #P is
straightforward. We distinguish between a number of
cases depending on the graph H.

Case 1: Suppose that every connected component
of H is an irreflexive star or a reflexive clique of size at
most 2. Then #LComp(H) is in FP by Lemma 10 in
the full version.

Case 2: Suppose that H contains a component that
is not a reflexive clique or an irreflexive biclique. Then
the hardness of #Hom(H) (from Theorem 1.1) together
with the reduction #Hom(H) ≤ #Comp(H) (from
Theorem 13 in the full version) implies that #Comp(H)
is #P-hard. The hardness of #LComp(H) follows from
the trivial reduction from #Comp(H) to #LComp(H).

Case 3: Suppose that the components of H are
reflexive cliques or irreflexive bicliques and that H
contains at least one component that is not a star
or a reflexive clique of size at most 2. Every graph
J ∈ A(H) ∪ B(H) is a reflexive clique of size at
least 3 or an irreflexive biclique that is not a star. By
Lemma 3.4, #CompC(J) is #P-complete. Finally, as
A(H)∪B(H) is non-empty, we can use either Lemma 3.5
or Lemma 3.6 to obtain the existence of J ∈ A(H) ∪
B(H) with #CompC(J) ≤ #Comp(H). This implies
that #Comp(H) is #P-hard. As in Case 2, the hardness
of #LComp(H) follows from the trivial reduction from
#Comp(H) to #LComp(H).
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