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Abstract
Let G be a graph that contains an induced subgraph H.
A retraction from G to H is a homomorphism from G to H
that is the identity function on H. Retractions are very well-
studied: Given H, the complexity of deciding whether there
is a retraction from an input graph G to H is completely clas-
sified, in the sense that it is known for which H this problem
is tractable (assuming P 6= NP). Similarly, the complexity of
(exactly) counting retractions from G to H is classified (as-
suming FP 6= #P). However, almost nothing is known about
approximately counting retractions. Our first contribution
is to give a complete trichotomy for approximately counting
retractions to trees. The result is as follows: (1) Approxi-
mately counting retractions to a tree H is in FP if H is a star,
a single looped vertex, or an edge with two loops. (2) Oth-
erwise, if H is an irreflexive caterpillar or a partially bristled
reflexive path, then approximately counting retractions to H
is equivalent to approximately counting the independent sets
of a bipartite graph — a problem which is complete in the
approximate counting complexity class RHΠ1. (3) Finally,
if none of these hold, then approximately counting retrac-
tions to H is #P-complete under approximation-preserving
reductions. Our second contribution is to locate the retrac-
tion counting problem in the complexity landscape of related
approximate counting problems. Interestingly, our results
are in contrast to the situation in the exact counting con-
text. We show that the problem of approximately counting
retractions is separated both from the problem of approxi-
mately counting homomorphisms and from the problem of
approximately counting list homomorphisms — whereas for
exact counting all three of these problems are interreducible.
We also show that the number of retractions is at least as
hard to approximate as both the number of surjective ho-
momorphisms and the number of compactions. In contrast,
exactly counting compactions is the hardest of these prob-
lems.

The full version containing detailed proofs is available
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1 Introduction

A homomorphism from a graph G to a graph H is a
function h : V (G) → V (H) such that, for all {u, v} ∈
E(G), we have {h(u), h(v)} ∈ E(H). For example,
suppose that H is a path a, b, c. Then a homomorphism
from G to H is a 3-colouring of G in which the colour
classes {a, c} and {b} induce a bipartition of G. Suppose
that G itself contains a path A,B,C. Then a retraction
from G to H is a homomorphism from G to H that
maps A to a, B to b and C to c. In general, let G and
H be graphs such that G contains a fixed copy of H as
an induced subgraph. Then a retraction from G to H
is a homomorphism from G to H that is the identity
function on this fixed copy of H in G.

Retractions have been studied over a long period of
time [24, 25, 29, 37]. In particular, the computational
decision problem of determining whether there is a
retraction from G to H is well-studied [28, 43, 45,
48, 13]. Retractions have also been studied under the
name of one-or-all list homomorphisms, pre-colouring
extensions or simply extensions, see, e.g., [10, 11, 1, 33,
41, 35, 12]. See Hell and Nešetřil’s review article [26]
for a more extensive list of such work.

Homomorphism counting problems have been re-
searched extensively as well [5, 19, 6, 16, 15, 31, 20, 9,
27, 3, 14]. The problem of exactly counting retractions
has been studied recently and a complete complexity
classification is given in [14]. However, very little is
known about approximately counting retractions.

1.1 First Contribution: A Trichotomy for Ap-
proximately Counting Tree Retractions In this
work we give a complete complexity classification for
the problem of approximately counting retractions to
trees (Theorem 1.1). We now informally introduce some
definitions in order to state this result.

Given a graph H, we use #Ret(H) to denote the
problem of counting retractions to H, given as input a
graph G containing a fixed copy of H. We view the fixed
graph H as a parameter of the problem #Ret(H).

To investigate the complexity of approximate count-
ing problems, Dyer, Goldberg, Greenhill and Jerrum [5]
introduce the concept of an approximation-preserving
reduction (AP-reduction). Intuitively, an AP-reduction
from a problem A to a problem B is an algorithm that
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is a “good” approximation to A if it has oracle access
to a “good” approximation to B. We write A ≤AP B
if such an AP-reduction exists. Two problems that are
studied in this paper appear frequently as benchmark
problems in this line of research. #SAT is the prob-
lem of counting the satisfying assignments of a Boolean
formula. This problem is complete for #P with respect
to AP-reductions. #BIS is the problem of counting the
independent sets of a bipartite graph. This problem is
complete for the approximate counting complexity class
RHΠ1 (with respect to AP-reductions). While it is not
believed that there is an efficient approximation algo-
rithm for #BIS, it is also not believed that it is com-
plete for #P with respect to AP-reductions.

While, in general, the vertices of H may or may not
have (self-)loops, we will consider two special cases. We
say that a graph is irreflexive if it does not contain any
loops. We say that it is reflexive if every vertex has
a loop. A tree may be irreflexive, reflexive, or neither,
but it may not have any cycles other than loops. A
caterpillar is an irreflexive tree which contains a path
P such that all vertices outside of P have degree 1. A
partially bristled reflexive path is a tree consisting of
a reflexive path P , together with a (possibly empty)
set of unlooped “bristle” vertices U and a matching
connecting all of the vertices of U to “internal” vertices
of P (vertices of P that are not endpoints of the path).
A more formal definition, along with an example, is
given in Section 3.

Theorem 1.1. Let H be a tree.

i) If H is an irreflexive star, a single looped vertex, or
an edge with two loops, then #Ret(H) is in FP.

ii) Otherwise, if H is an irreflexive caterpillar or a
partially bristled reflexive path, then #Ret(H) is
#BIS-equivalent under AP-reductions.

iii) Otherwise, #Ret(H) is #SAT-equivalent under
AP-reductions.

Theorem 1.1 immediately applies to the special
cases of irreflexive trees and reflexive trees and gives
the following classifications. First, suppose that H
is an irreflexive tree. Then #Ret(H) is in FP if H
is a star. If H is a caterpillar but not a star, then
#Ret(H) ≡AP #BIS. For all other irreflexive trees H,
the problem #Ret(H) is #SAT-equivalent under AP-
reductions. Now suppose that H is a reflexive tree.
Then #Ret(H) is in FP if H is a single looped vertex
or an edge with two loops. If H is a reflexive path
with at least three vertices, then #Ret(H) ≡AP #BIS.
Otherwise, #Ret(H) is #SAT-equivalent with respect
to AP-reductions.

We note that our hardness result for irreflexive trees
extends beyond trees and actually covers all square-free
graphs (Lemma 15 of the full version).

1.2 Second Contribution: Locating #Ret(H) in
the Approximate Counting Landscape We locate
the retraction counting problem in the complexity land-
scape of related homomorphism counting problems. In-
terestingly, it turns out that the complexity landscape
for approximate counting looks very different from the
one for exact counting.

We use H(G,H) to denote the set of homomor-
phisms from G to H and N

(
G→ H

)
to denote the size

of H(G,H). The following is the well-known homomor-
phism counting problem.

Name: #Hom(H).
Input: An irreflexive graph G.
Output: N

(
G→ H

)
.

Note that, in the problem #Hom(H), the input
graph G is required to be irreflexive. This is standard
in the field, and the reason for it is to make results
stronger — typically it is the hardness results that are
most challenging. In the problem #Ret(H), as we have
informally defined it, it does not make sense to force G
to be irreflexive, since it contains an induced copy of H,
which may have loops. However, we can insist that
G have no loops outside of the induced copy of H.
Theorem 1.1 is still true under this restriction, and we
incorporate this restriction into our formal definitions
below. In order to give formal definitions, it is more
natural to re-cast the retraction problem in terms of
list homomorphisms, so we define these next.

Let S = {Sv ⊆ V (H) | v ∈ V (G)} be a set of “lists”
indexed by the vertices of G. Each list Sv is a subset
of V (H). We say that a function h : V (G) → V (H) is
a homomorphism from (G,S) to H (also called a list
homomorphism) if h is a homomorphism from G to H
and, for each vertex v of G, we have h(v) ∈ Sv. We
use H((G,S), H) to denote the set of homomorphisms
from (G,S) to H and we use N

(
(G,S)→ H

)
to denote

the size of H((G,S), H). We will be interested in the
following generalisation of #Hom(H).

Name: #LHom(H).
Input: An irreflexive graph G and a collection of lists

S = {Sv ⊆ V (H) | v ∈ V (G)}.
Output: N

(
(G,S)→ H

)
.

As noted earlier, we will find it convenient to
formally define the computational problem #Ret(H)
in terms of list homomorphisms.
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Name: #Ret(H).

Input: An irreflexive graph G and a collection of lists
S = {Sv ⊆ V (H) | v ∈ V (G)} such that, for all
v ∈ V (G), |Sv| ∈ {1, |V (H)|}.

Output: N
(
(G,S)→ H

)
.

The polynomial-time interreducibility between the
problem #Ret(H) which we defined informally (with
the restriction on loops in G) and the one defined here,
is demonstrated by Feder and Hell [10, Theorem 4.1]
who give a parsimonious reduction between them. This
reduction also shows that the corresponding decision
problems are polynomial-time interreducible.

We consider two more related counting problems,
namely #SHom(H), the problem of counting vertex-
surjective homomorphisms, and #Comp(H), the prob-
lem of counting edge-surjective homomorphisms, which
are called compactions. We give their formal defini-
tions in Section 2. Both problems are well-studied in
the decision setting [2, 22, 23, 21, 34, 42, 44, 46, 47].
All three of the problems #SHom(H), #Comp(H) and
#Ret(H) can be interpreted as problems requiring one
to count homomorphisms with some kind of surjectiv-
ity constraint. #LSHom(H) and #LComp(H) are the
corresponding list homomorphism problems and these
are formally defined in the full version.

A separation between two homomorphism-counting
problems A and B is given by a parameter H for which
A and B are of different complexity, subject to some
complexity-theory assumptions.

Before stating our results we give an overview
of the approximate counting complexity landscape in
Figure 1. The results summarised in this figure are
consistent with the results that are known concerning
the corresponding decision problems, as surveyed by
Bodirsky, Kára and Martin [2], but they are in contrast
to the situation in the exact counting world. For exact
counting, #Hom(H), #Ret(H) and #LHom(H) are
interreducible. Also, all of the exact counting problems
that we have mentioned reduce to #Comp(H) and
#LComp(H) [14], as depicted in Figure 2. Moreover,
#Comp(H) and #LComp(H) are separated from the
remaining problems.

We now give our results in more detail. We start
off with the following simple observation which follows
immediately from the problem definitions.

Observation 1.1. Let H be a graph. Then
#Hom(H) ≤AP #Ret(H) ≤AP #LHom(H).

As we will see later, the complexity of approxi-
mately counting homomorphisms is still open (despite
a lot of work on the problem) — even if restricted to
trees H. The complexity of approximately counting

list homomorphisms is known, due to Galanis, Gold-
berg and Jerrum [16]. Thus, Observation 1.1 indi-
cates that #Ret(H) is an important intermediate prob-
lem, between the solved #LHom(H) and the wide-open
#Hom(H).

The first interesting consequence of Theorem 1.1 is
a separation between #Ret(H) and #LHom(H).

Corollary 1.1. #Ret(H) and #LHom(H) are sep-
arated subject to the assumption that #BIS and #SAT
are not AP-interreducible. In particular, if H is a
partially bristled reflexive path with at least one un-
looped vertex, then #Ret(H) ≡AP #BIS, whereas
#LHom(H) ≡AP #SAT.

The fact that #Ret(H) ≡AP #BIS for partially
bristled reflexive paths follows from Theorem 1.1. The
fact that #LHom(H) ≡AP #SAT is from [16], see
Theorem 1.4 in the Related Work section.

As a second consequence, Theorem 1.1 separates
#Ret(H) from #Hom(H), but in a different sense. For
q ≥ 3 let Jq be the irreflexive tree obtained from the q-
leaf star by subdividing each edge. From Goldberg and
Jerrum [19] it is known that the problem #Hom(Jq)
is AP-interreducible with the task of computing the
partition function of the q-state ferromagnetic Potts
model [38] — a well-studied model from statistical
physics. Despite extensive work on this problem [19, 18,
17] it is only known to be #BIS-hard but is not known
to be #BIS-easy or to be #SAT-hard (with respect to
AP-reductions).

Corollary 1.2. Let q be an integer with q ≥ 3.
#Hom(H) and #Ret(H) are separated subject to the
assumption that approximately computing the partition
function of the q-state ferromagnetic Potts model is not
#SAT-hard. In particular, it follows from Theorem 1.1
that #SAT ≤AP #Ret(Jq).

In addition to these separations, we show that ap-
proximately counting retractions is at least as hard as
approximately counting surjective homomorphisms and
also at least as hard as approximately counting com-
pactions. The latter is surprising as it is in contrast
to known results for the corresponding exact counting
problems (see Figure 2). Our proof uses an interest-
ing Monte Carlo approach to AP-reductions and more
details on this method are given in Section 1.3. The ap-
proach gives analogous reductions for the list versions
of these problems for free.

Theorem 1.2. Let H be a graph. Then
#SHom(H) ≤AP #Ret(H) and #Comp(H) ≤AP

#Ret(H).
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#Hom(H)

#SHom(H)

#Comp(H)

#Ret(H) #LHom(H)

#LSHom(H)

#LComp(H)

[14, Lem.37]

Obs. 1.1

Cor. 1.2

[14, Lem.38]

Thm. 1.2

Thm. 1.2

Obs. 1.1

Cor. 1.1

Thm. 1.3

Thm. 1.3

Figure 1: Approximate counting complexity landscape. An arrow from a problem A to a problem B means that
there exists an AP-reduction from A to B. A struck through arrow corresponds to a reduction with a separation.
The references for the reduction and the separation are given above and below the arrow, respectively.

#Hom(H), #SHom(H), #Ret(H),
#LHom(H), #LSHom(H)

#Comp(H), #LComp(H)

[14]

Figure 2: Exact counting complexity landscape. All problems in the same box are interreducible with respect to
polynomial-time Turing reductions. The arrow means that each problem in the box on the left-hand side reduces
to each problem on the right-hand side using a polynomial-time Turing reduction. The arrow is struck through
as there exists a separation between each problem on the left and each problem on the right.

Theorem 1.3. Let H be a graph. Then
#LSHom(H) ≡AP #LHom(H) and
#LComp(H) ≡AP #LHom(H).

Using Theorem 1.2 and Corollary 1.1 we can deduce
that #SHom(H) and #LHom(H) are also separated
subject to the assumption that #BIS and #SAT are
not AP-interreducible. The same holds for #Comp(H)
and #LHom(H). Moreover, from Theorem 1.3 it fol-
lows that we can replace the problem #LHom(H) with
#LSHom(H) or #LComp(H) in these separations.

Our reductions #SHom(H) ≤AP #Ret(H) and
#Comp(H) ≤AP #Ret(H) allow us to state new
#BIS-easiness results which are not limited to trees,
namely the #BIS-easiness results in the following corol-
lary.

Corollary 1.3. Let H be one of the following:

• A reflexive proper interval graph but not a complete
graph.

• An irreflexive bipartite permutation graph but not
a complete bipartite graph.

Then #SHom(H), #Comp(H) and #Ret(H) are
#BIS-equivalent.

The #BIS-easiness results in Corollary 1.3 come
from our Theorem 1.2 together with Observation 1.1
and the #BIS-easiness results for #LHom(H) given
in Theorem 1.4 on page 5. The corresponding #BIS-
hardness comes from [14, Theorem 35]).

1.3 Methods In the proof of Theorem 1.1 we use sev-
eral different techniques. In the #BIS-easiness proof for
partially bristled reflexive paths (Lemma 17 of the full
version) we build upon a technique that was introduced
by Dyer et al. [5] and extended by Kelk [31] to reduce the
problem of approximately counting homomorphisms to
the problem of approximately counting the downsets of
a partial order. In order to obtain more general results,
we formalise this technique and use it in the context of
the constraint satisfaction framework. Our framework is
convenient to generate #BIS-easiness results, not only
for counting homomorphisms but also for counting re-
tractions, both in the setting of undirected graphs (as
used in this work) and even in the setting of directed
graphs.

For the #SAT-hardness part of Theorem 1.1, we
identify a special class of trees that we callR. The hard-
ness results for trees outside of R are shown mainly by
combining existing results. For instance, we use mod-
ifications of, and a more careful analysis of, a gadget
from [19] to prove the #SAT-hardness for irreflexive
trees (Lemma 15 of the full version) — which actually
extends to square-free graphs. The bulk of the work is
then to prove hardness for the trees in R (Lemma 45
of the full version). This requires a more sophisticated
analysis of homomorphism structures arising from in-
tricate gadgets that are based on simpler versions used
in [5] and [31].

Our proof of the reductions #SHom(H) ≤AP

#Ret(H) and #Comp(H) ≤AP #Ret(H) is based
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on a Monte Carlo argument (a sketch of the argument
is given in Section 2 — the proof is in Lemma 48 of
the full version). It uses the fact that #Ret(H) is a
self-reducible problem, and therefore a #Ret(H) or-
acle gives an algorithm to efficiently sample from the
set of retractions to H, as was shown in general by
Jerrum, Valiant and Vazirani [30]. A naive rejection
sampling approach, however, does not lead to an ef-
ficient algorithm as the number of surjective homo-
morphisms and the number of compactions might be
very small compared to the total number of retractions.
Our method to shrink the sample space is based on
the following fact. For every surjective homomorphism
(for every compaction) h from G to H there exists a
constant-size set of vertices U ⊆ V (G) such that the
restriction of h to U is already surjective (is already
a compaction). We can enumerate all these constant-
size sets U and use single vertex lists to fix their im-
ages. Consequently we obtain a (polynomial) number
of instances I1, . . . , Ik of the problem #Ret(H). For
i ∈ {1, . . . , k} let Ri be the set of retractions of the
instance Ii. Then the total number of surjective homo-
morphisms (the total number of compactions) from G

to H is the size of the union R =
⋃k
i=1Ri. The final

building block of our reduction is the idea that we can
sample the union R by first sampling from the disjoint
union R+ =

⋃k
i=1{(h, i) | h ∈ Ri}. This idea is ex-

plained more generally, for instance, in [36]. The point
is that we can sample uniformly from R+ by using a
#Ret(H) oracle, and the union R is relatively dense
in the disjoint union R+ (its size is at least |R+|/k).
So we can obtain a sample from R. Then the samples
can be combined to obtain, with high probability, an
approximate count. A lot of AP-reductions are based
on gadgets and we have not seen the use of Monte Carlo
algorithms in AP-reductions before.

1.4 Related Work Let H be a graph. It is well-
known that the complexity of #LHom(H) is deter-
mined by the maximum complexity #LHom(C) for a
connected component C of H. In the connected case
the complexity is determined by the following theorem
by Galanis et al. [16].

Theorem 1.4. ([16]) Let H be a connected graph.

(i) If H is an irreflexive complete bipartite graph or
a reflexive complete graph, then #LHom(H) is in
FP.

(ii) Otherwise, if H is an irreflexive bipartite permu-
tation graph or a reflexive proper interval graph,
then #LHom(H) is #BIS-equivalent under AP-
reductions.

(iii) Otherwise, #LHom(H) is #SAT-equivalent under
AP-reductions.

Naturally, Theorem 1.4 also gives a complete classi-
fication for the subclass of problems where the graph H
is a tree. From our Theorem 1.1 and Theorem 1.4 we im-
mediately obtain the separation between #Ret(H) and
#LHom(H) given in Corollary 1.1. Note that the clas-
sifications of #Ret(H) for irreflexive trees and reflexive
trees are identical to the corresponding classifications of
the problem #LHom(H). A separation between these
problems only occurs for trees with at least one looped
and one unlooped vertex.

The complexity of approximately counting homo-
morphisms in the absence of lists is still far from being
resolved. Galanis, Goldberg and Jerrum [15] give a di-
chotomy for the problem in terms of #BIS.

Theorem 1.5. ([15]) Let H be a connected graph.
If H is a reflexive complete graph or an irreflexive
complete bipartite graph, then #Hom(H) admits an
FPRAS. Otherwise, #BIS ≤AP #Hom(H).

Surprisingly, even for the subclass of problems
where H is an irreflexive tree, the complexity of ap-
proximately counting homomorphisms is not completely
classified. The following partial classification, originally
due to Goldberg and Jerrum [19], follows from Theo-
rems 1.4 and 1.5.

Theorem 1.6. ([19]) Let H be an irreflexive tree.

i) If H is a star, then #Hom(H) is in FP.

ii) Otherwise, if H is a caterpillar, then #Hom(H) is
#BIS-equivalent under AP-reductions.

iii) Otherwise, #Hom(H) is #BIS-hard under AP-
reductions.

Note that, in general, for irreflexive trees H that are
neither stars nor caterpillars it is open whether approx-
imately counting homomorphisms is #BIS-equivalent,
#SAT-hard or even none of the two. It is only known
that #BIS AP-reduces to #Hom(H). However, there
exist trees for which #Hom(H) is #SAT-equivalent
with respect to AP-reductions (see [19, Section 5]).

The decision version of the retraction problem is
formally defined as follows.1

1The literature is slightly inconsistent in the sense that the
decision problem Ret(H) is often defined without the restriction
that G is irreflexive. It is easy to see that the two versions (with

and without the restriction) are polynomial-time interreducible
since a looped vertex v of G with list Sv can be replaced with an
irreflexive clique of size |V (H)|+1 (all of whose members have list

Sv) without changing whether or not there is a homomorphism
to H. Thus, results stated for one version apply to the other.
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Name: Ret(H).

Input: An irreflexive graph G and a collection of lists
S = {Sv ⊆ V (H) | v ∈ V (G)} such that, for all
v ∈ V (G), |Sv| ∈ {1, |V (H)|}.

Output: Is N
(
(G,S)→ H

)
positive?

Ret(H) is completely classified as a result of the
recent proof of the CSP dichotomy conjecture [4, 50].
However, these proofs do not give a graph-theoretical
characterisation. Feder, Hell, Jonsson, Krokhin and
Nordh [13] give the following graph-theoretical charac-
terisation for pseudotrees, where a pseudotree is a graph
with at most one non-loop cycle. A graph H is called
loop-connected if, for every connected component C of
H, the looped vertices in C induce a connected subgraph
of C.

Theorem 1.7. ([13]) Let H be a pseudotree. Then
Ret(H) is in P only if all of the following hold:

• H is loop-connected,

• H does not contain an induced cycle of size at least
5,

• H does not contain an induced reflexive cycle of
size 4 and

• H does not contain an induced irreflexive cycle of
size 3.

Otherwise Ret(H) is NP-complete.

Finally, the complexity of exactly counting retrac-
tions is completely classified. It is in FP if every con-
nected component of H is a reflexive complete graph
or an irreflexive complete bipartite graph and #P-
complete otherwise [14].

2 Retractions and the complexity landscape

This section relates to the “second contribution” dis-
cussed in the introduction — locating #Ret(H) in
the approximate counting landscape. In particular,
we discuss the ideas needed to prove Theorems 1.2
and 1.3. The proofs of these theorems use a Monte
Carlo approach to reduce #SHom(H) and #Comp(H)
to #Ret(H) and also to reduce #LSHom(H) and
#LComp(H) to #LHom(H).

We start with brief definitions. Let G be an
irreflexive graph. A homomorphism h : G → H is
surjective if, for every vertex v ∈ V (H), there is a vertex
u ∈ V (G) such that h(u) = v. Also, h is a compaction
if it is surjective and, for every non-loop edge {v1, v2} ∈
E(H), there is is an edge {u1, u2} ∈ E(G) such that
h(u1) = v1 and h(u2) = v2. #SHom(H) is the problem

of counting surjective homomorphisms from G to H
and #Comp(H) is the problem of counting compactions
from G to H. #LSHom(H) and #LComp(H) are the
list-homomorphism versions of these problems (see the
full version for details).

To smooth the presentation, and avoid redundancy,
the full version defines a common generalisation of the
problems #Comp(H) and #LComp(H) so that a single
algorithm provides both the reduction from #Comp(H)
to #Ret(H) and the reduction from #LComp(H)
to #LHom(H).2 This is accomplished by defining
an additional parameter L, which is a set of subsets
of V (H). Given an irreflexive graph G and a collection
of lists S = {Sv ∈ L | v ∈ V (G)}, we show how
to approximately count, e.g., compactions from (G,S)
to H using an oracle for list homomorphisms to H where
all lists are in L ∪ {{v} | v ∈ V (H)}.

The “base case” where L = {V (H)} constitutes
an AP-reduction from #Comp(H) to #Ret(H). We
stick to this “base case” here — avoiding the extra
notation (and referring the reader to the full version
for the other results). Thus, our goal here is to give a
randomised algorithm for #Comp(H), using an oracle
for #Ret(H). We will use the (possibly randomised)
#Ret(H) oracle and self-reducibility to obtain the
following subroutines.

1. CountHomH is an algorithm that takes an in-
put (G,S) to #Ret(H), along with accuracy pa-
rameters ε and δ. Its output is, with probability
at least 1 − δ, within 1 ± ε of the desired output
N
(
(G,S)→ H

)
.

2. SampleHomH is an algorithm that takes as in-
put an input (G,S) to #Ret(H), along with an
accuracy parameter ε. It samples from a distribu-
tion which is very close to the uniform distribution
on H((G,S), H) — the total variation distance be-
tween the two distributions is at most ε.

The running time of CountHomH is polynomial in
n = |V (G)|, ε−1 , and log δ−1. Similarly, the running
time of SampleHomH is polynomial in n and log ε−1.
We will need the fact that this is logarithmic as the
precision that we use is exponential in n.

Given a subset U of V (G), G[U ] denotes the sub-
graph of G that is induced by U . The following ob-
servation is the key to the design of our algorithm: If
there is a compaction from G to H then there is a set
U ⊆ V (G) with |U | ≤ |V (H)| + 2|E(H)| and a com-

2In this short section, we stick with compactions — details
concerning #SHom(H) and #LSHom(H) are in the full version.
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paction τ from G[U ] to H. Thus, we define

TG = {(U, τ) | U ⊆ V (G), |U | ≤ |V (H)|+ 2|E(H)|,
τ is a compaction from G[U ] to H}

and tG = |TG|. To shorten the notation, for a positive
integer k, we let [k] = {1, . . . , k}. Let (Ui, τi)i∈[tG] be an
arbitrary indexing of the elements of TG. For i ∈ [tG]
we define ΩG,i = {σ ∈ H(G,H) | σ|Ui = τi}, Ω+

G =

{(i, σ) | i ∈ [tG] and σ ∈ ΩG,i} and ΩG =
{

(i, σ) ∈ Ω+
G |

σ /∈
⋃i−1
k=1 ΩG,k

}
. Note that

∣∣Ω+
G

∣∣ =
∑
i∈[tG]|ΩG,i|. As

every element of a set ΩG,i is a compaction from G to
H and every such compaction is contained in a set ΩG,i,
we have

|ΩG| =
∣∣∣ ⋃
i∈[tG]

ΩG,i

∣∣∣
=
∣∣∣{σ ∈ H(G,H) | ∃i ∈ [tG] with σ ∈ ΩG,i}

∣∣∣
= N comp

(
G→ H

)
.

It is clear from the definitions that |ΩG| ≥ |Ω+
G|/tG.

Thus, N comp
(
G→ H

)
= |ΩG| ≥ Ω+

G/tG.
This lower bound shows that |ΩG| is reasonably

dense in
∣∣Ω+
G

∣∣. Using the routines CountHomH and

SampleHomH we can obtain samples from
∣∣Ω+
G

∣∣ and
design a Monte Carlo algorithm to approximately com-
pute |ΩG| = N comp

(
(G,S)→ H

)
with high probability.

This algorithm is presented in Algorithm 1. Note that
single-vertex lists are used in our algorithm to fix the
images of the sets Ui. The size of each Ui is bounded
by |V (H)|+ 2|E(H)|. Consequently, the algorithm can
enumerate all elements of TG in polynomial time. The
more general version of the algorithm and its analysis
are given in Section 3 of the full version.

3 Approximately Counting Retractions to
Trees

In this section we give an overview of the proof of our
first contribution, Theorem 1.1. The most difficult part
of the proof is the #SAT-hardness part. To shorten the
terminology, we will refer to a tree H as “#SAT-hard”
whenever #Ret(H) is #SAT-hard. In the proof, we
must identify a manageable number of different classes
of trees such that, for each class we can give a separate
#SAT-hardness proof, and the union of these classes
covers the entire (infinite) class of #SAT-hard trees.
Finding the right classes (and the right formulation of
these classes) is the first challenge.

First, consider the graph H from Figure 3. H is an
important example of what turns out to be the key class
of #SAT-hard trees. To prove #SAT ≤AP #Ret(H),

Algorithm 1 Approximate Computation of |ΩG|. Note
that (Ui, τi) is the i’th element of TG.

Input: Irreflexive graph G and ε, δ ∈ (0, 1).
if tG = 0

Y = 0.
else

ε′ = ε
12 , δ′ = δ

2 , δ′′ = δ′

tG
.

for i = 1, . . . , tG
For all v ∈ V (G), if v ∈ Ui, set Siv = {τi(v)},

otherwise set Siv = V (H).
Si = {Siv ⊆ V (H) | v ∈ V (G)}
ωi = CountHomH(G,Si, ε′, δ′′).

ω =

tG∑
i=1

ωi.

m =

⌈
2tG · 3

ln(2/δ′)

ε′2

⌉
.

for j = 1, . . . ,m
Choose i ∈ [tG] with probability ωi

ω .

σj = SampleHomH(G,Si, ε′/(2|V (H)|n)).
Let Xj be 1 in the event (i, σj) ∈ ΩG and 0

otherwise.
Y = ω

m

∑m
j=1Xj .

Output: Y

we use a gadget (J,S) as displayed in Figure 4. It turns
out that almost all homomorphisms from (J,S) to H are
in one of two “states”. In particular, for almost every
such homomorphism h, one of the following holds:

• h(A) = {b, y}, h(B) = h(C ′) = {r1, r2, b, g} and
h(C) = h(B′) = h(A′) = {b} (this is state 1).

• h(A′) = {b, y}, h(B′) = h(C) = {r1, r2, b, g} and
h(C ′) = h(B) = h(A) = {b} (this is state 2).

This bistable behaviour of homomorphisms from
(J,S) to H is suitable for a reduction from the problem
of counting large cuts, which is known to be #SAT-
hard [5]. The underlying idea is as follows. We are
to (approximately) count (large) cuts of a graph G
using a #Ret(H) oracle. To this end, we replace

w1 r1 b r2 w2

d1 g d2

y

w1 r1 b r2 w2

d1 g d2

y1 y2

Figure 3: The graphs H (and the left) and H ′ (on the
right).
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α α′β β′

A B C C ′ B′ A′

Figure 4: In the graph J , the sets A, B, C, C ′, B′ and A′ are independent sets. The size of C and C ′ is chosen
to be appropriately larger than the others. A is matched to B, which is completely connected to C, which is
matched to C ′. A′ is matched to B′, which is completely connected to C ′. There are four additional vertices: α,
β, β′ and α′, which are completely connected to A, B, B′ and A′, respectively. All lists in S are V (H) except
Sα = Sα′ = {g} andSβ = Sβ′ = {b}.

each vertex of G with a vertex gadget (J,S). The
two states of the vertex gadget then model the two
different parts of a cut of the graphG. This way, (almost
all) retractions correspond to cuts of G. We then use
different edge gadgets to ensure that the retractions
actually correspond to large cuts. The details on this
construction are in Section 2.2.2 of the full version. The
essence is that we have to carefully tailor a gadget to the
graph H with the goal of obtaining bistable behaviour
of the gadget.

The next challenge is to use this gadget to obtain
hardness results for a broader class of trees, which
we call R. R turns out to be the most important
subclass of trees for which we show #SAT-hardness.
The definition of this class will exclude partially bristled
reflexive paths, since we show that these are #BIS-easy.
To ease the notation, we first give the formal definition
of a partially bristled reflexive path. Then we define the
class R.

Definition 3.1. A partially bristled reflexive path (see
Figure 5) is a reflexive path, or a tree with the following
form. Let Q be a positive integer and let S be a non-
empty subset of [Q]. Then V (H) = {c0, . . . , cQ+1} ∪⋃
i∈S{gi} and E(H) =

⋃Q
i=0{ci, ci+1} ∪

⋃Q+1
i=0 {ci, ci} ∪⋃

i∈S{ci, gi}.

Note that the graph H from Figure 3 is almost a
partially bristled reflexive path. The only difference is
the vertex y. However, we will see that counting re-
tractions to partially bristled reflexive paths is actually
#BIS-easy. Therefore the vertex y is what causes the
difference in complexity. Note that this vertex appears
in the two dominating states of the vertex gadget (J,S).
In general, the class R is more complicated, and there
can be entire trees in place of the vertex y (and there
can be multiple such trees as well). Here is the definition

of R.

Definition 3.2. A tree H is in the set R if it is not a
partially bristled reflexive path, but it has the following
form (see Figure 5). Let Q be a positive integer and let
S be a non-empty subset of [Q]. For each i ∈ S, there is
an irreflexive tree Ti with a designated vertex gi ∈ V (Ti).
Then V (H) = {c0, . . . , cQ+1}∪

⋃
i∈S V (Ti) and E(H) =⋃Q

i=0{ci, ci+1} ∪
⋃Q+1
i=0 {ci, ci} ∪

⋃
i∈S({ci, gi} ∪ E(Ti)).

The good thing about R is that we can always
apply the gadget idea described for the graph H to
obtain bistable behaviour. The behaviour might differ
depending on the graph in R, but that is fine. For
instance, consider the graph H ′ as given in Figure 3.
Here the dominating states are

• h(A) = h(C) = {b, y1, y2}, h(B) = {g}, h(C ′) =
{r1, r2, b, g} and h(B′) = h(A′) = {b}, and

• h(A′) = h(C ′) = {b, y1, y2}, h(B′) = {g}, h(C) =
{r1, r2, b, g} and h(B) = h(A) = {b}.

This gives the intuition on how to handle graphs in
R. What about trees outside of R for which #Ret(H)
is #SAT-hard? There are actually a number of different
classes for which we show #SAT-hardness by different
means:

1. For irreflexive trees that contain an induced J3
we show hardness via a reduction from counting
multiterminal cuts.

2. For graphs that are not loop-connected, hardness
carries over from the fact that the corresponding
decision problem is NP-complete.

3. For a number of remaining cases we combine ex-
isting hardness results for the problem of counting
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c0 c1 c2 c3 c4 c5

g1 g3 g4

. . . . . .

c0 c1 ci cQ cQ+1

g1 gi gQ

T1 Ti TQ

Figure 5: On the left, a partially bristled reflexive path. On the right, a graph in the class R.

homomorphisms to certain small graphs to obtain
hardness for #Ret(H).

This completes our sketch of the #SAT-hardness
proof, the details of which are given in Sections 2.1
and 2.2.2 of the full version. The important consequence
of the different hardness proofs is that they actually
cover all trees that are not covered by our easiness
results and therefore give a complete classification.

Finally, we briefly consider the #BIS-easiness part
of Theorem 1.1. The interesting piece is the result for
partially bristled reflexive paths, as for these graphs
approximately counting list homomorphisms is known
to be #SAT-hard (and therefore easiness does not carry
over from #LHom(H)).

As shown by Dyer et al. [5] #BIS-easiness proofs
are often based on a reduction to the problem of count-
ing downsets of a partial order. It turns out that we
can generalise this technique to apply to retractions.
To this end, we cast the problem of counting downsets
as a counting constraint satisfaction problem (CSP).
We introduce a convenient general framework which
can be used to generate #BIS-easiness results both
for the problem of approximately counting homomor-
phisms and for that of approximately counting retrac-
tions. Moreover, the framework is sufficiently general to
handle not only undirected but also directed graphs —
even though the latter is not used in this work.

The idea is to reduce to the problem
#CSP({Imp, δ0, δ1}), which is the counting CSP
problem where the constraint language consists of the
two unary relations δ0 = {(0)} and δ1 = {(1)} and
the “Implies” relation Imp = {(0, 0), (0, 1), (1, 1)}.
#CSP({Imp, δ0, δ1}) is known to be #BIS-
equivalent [7].

We sketch the construction for the undirected case.
Given any instances Iv and Ie of #CSP({Imp}) on a
variable set X we define an undirected graph HIv,Ie

as follows. The vertices of HIv,Ie are the satisfying
assignments of Iv. Given any assignments σ and σ′ in
V (HIv,Ie), there is an edge {σ, σ′} in HIv,Ie if and only
if the following holds: For every constraint Imp(x, y) in
Ie, we have σ(x)⇒ σ′(y) and σ′(x)⇒ σ(y).

We then show that the problem #Ret(HIv,Ie) re-
duces to the #BIS-easy problem #CSP({Imp, δ0, δ1}).
By choosing different instances Iv and Ie one can gener-
ate different #BIS-easiness results. It remains to show
how to set up these instances to obtain the easiness re-
sult for partially bristled reflexive paths. This builds on
the work of Kelk [31]. The details of this, along with
the generalisation of the framework to directed graphs,
are given in Section 2.2.1 of the full version.
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putational complexity of disconnected cut and 2K2-
partition. J. Combin. Theory Ser. B, 111:17–37, 2015.

[35] Dániel Marx. Parameterized coloring problems on
chordal graphs. Theoret. Comput. Sci., 351(3):407–
424, 2006.

[36] Michael Mitzenmacher and Eli Upfal. Probability and
Computing. Cambridge University Press, Cambridge,
second edition, 2017. Randomization and Probabilistic
techniques in Algorithms and Data Analysis.

[37] Erwin Pesch. Retracts of graphs, volume 110 of Math-
ematical Systems in Economics. Athenäum Verlag
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