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Abstract
Valued constraint satisfaction problems (VCSPs) are discrete optimisation problems with a

Q-valued objective function given as a sum of fixed-arity functions, where Q = Q ∪ {∞} is the
set of extended rationals.

In Boolean surjective VCSPs variables take on labels from D = {0, 1} and an optimal assign-
ment is required to use both labels from D. A classic example is the global min-cut problem in
graphs. Building on the work of Uppman, we establish a dichotomy theorem and thus give a
complete complexity classification of Boolean surjective VCSPs. The newly discovered tractable
case has an interesting structure related to projections of downsets and upsets. Our work general-
ises the dichotomy for {0,∞}-valued constraint languages (corresponding to CSPs) obtained by
Creignou and Hébrard, and the dichotomy for {0, 1}-valued constraint languages (corresponding
to Min-CSPs) obtained by Uppman.
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1 Introduction

The (s, t)-Min-Cut problem asks, given a digraph G = (V,E) with source s ∈ V , sink t ∈ V ,
and edge weights w : E → Q>0, for a subset C ⊆ V with s ∈ C and t 6∈ C minimising
w(C) =

∑
(u,v)∈E,u∈C,v 6∈C w(u, v) [22]. This fundamental problem is an example of a Boolean

valued constraint satisfaction problem (VCSP).
Let D be an arbitrary finite set called the domain. A valued constraint language, or

just a language, Γ is a set of weighted relations; each weighted relation γ ∈ Γ is a function
γ : Dar(γ) → Q, where ar(γ) ∈ N is the arity of γ and Q = Q ∪ {∞} is the set of extended
rationals. If |D| = 2 then Γ is called a Boolean language. An instance I = (V,D, φI) of
the VCSP on domain D is given by a finite set of n variables V = {x1, . . . , xn} and an
objective function φI : Dn → Q expressed as a weighted sum of valued constraints over V ,
i.e. φI(x1, . . . , xn) =

∑q
i=1 wi · γi(xi), where γi is a weighted relation, wi ∈ Q≥0 is the weight

and xi ∈ V ar(γi) the scope of the ith valued constraint. (We note that we allow zero weights
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4:2 Boolean Surjective VCSPs

and for wi = 0 we define wi ·∞ =∞.) Given an instance I, the goal is to find an assignment
s : V → D of domain labels to the variables that minimises φI . Given a language Γ, we
denote by VCSP(Γ) the class of all instances I that use only weighted relations from Γ in
their objective function. Valued CSPS are also called general-valued CSPs to emphasise that
(decision) CSPs are a special case of valued CSPs.

To continue with the (s, t)-Min-Cut example, let D = {0, 1}. We will use the following
three weighted relations: γ : D2 → Q is defined by γ(x, y) = 1 if x = 0 and y = 1, and
γ(x, y) = 0 otherwise; ρd : D → Q, for d ∈ D, is defined by ρd(x) = 0 if x = d and ρd(x) =∞
if x 6= d. Now, given an (s, t)-Min-Cut instance G = (V,E), s, t ∈ V = {x1, . . . , xn}, and
w : E → Q>0 as before, the problem of finding an optimal (s, t)-Min-Cut in G is equivalent
to solving the following instance of VCSP(Γcut), where Γcut = {γ, ρ0, ρ1}: I = (V,D, φI) and
φI(x1, . . . , xn) =

∑
(u,v)∈E w(u, v) · γ(xu, xv) + ρ0(s) + ρ1(t).

It is well known that the (s, t)-Min-Cut problem is solvable in polynomial time. Since
every instance I of VCSP(Γcut) can be reduced to an instance of the (s, t)-Min-Cut problem,
I is solvable in polynomial time. Thus, Γcut is an example of a tractable constraint language.
When VCSP(Γ) is NP-hard, we call Γ an intractable language.

It is natural to ask about the complexity of VCSP(Γ) in terms of Γ. For Boolean valued
constraint languages, we have a complete answer: Cohen et al. [8] showed that every Boolean
valued constraint language is either tractable or intractable, thus obtaining what is known as
a dichotomy theorem. In fact, [8] identified eight different types of tractable valued constraint
languages; one of these types corresponds to submodularity [22] and includes Γcut. The
dichotomy theorem from [8] is an extension of Schaefer’s celebrated result, which gave a
dichotomy for {0,∞}-valued constraint languages [21], and the work of Creignou [9], who
gave a dichotomy theorem for {0, 1}-valued constraint languages.

The (global) Min-Cut problem asks, given a graph G = (V,E) and edge weights w : E →
Q>0, for a subset C ⊆ V with ∅ ( C ( V minimising w(C) =

∑
{u,v}∈E,|{u,v}∩C|=1 w(u, v) [22].

This fundamental problem is an example of a Boolean surjective VCSP. Given a VCSP
instance I = (V,D, φI), in the surjective setting the goal is to find a surjective assignment
s : V → D minimising φI ; here s is called surjective if for every d ∈ D there is x ∈ V such
that s(x) = d. For Boolean VCSPs with D = {0, 1}, this simply means that the all-zero and
all-one assignments are not allowed. Given a language Γ, we denote by VCSPs(Γ) the class
of all instances I of the surjective VCSP that use only weighted relations from Γ in their
objective function.

Let D = {0, 1} and define γ : D → Q by γ(x, y) = 0 if x = y and γ(x, y) = 1 if x 6= y.
VCSPs({γ}) captures Min-Cut as every instance of VCSPs({γ}) is a Min-Cut instance and
vice versa. Since Min-Cut is solvable in polynomial time (say, by a reduction to the (s, t)-Min-
Cut problem but other algorithms exist [23]), {γ} is an example of a surjectively tractable,
or s-tractable for short, valued constraint language. As before, if VCSPs(Γ) is NP-hard we
call Γ a surjectively intractable, or s-intractable for short, language.

Surjective VCSPs

What can we say about the complexity of VCSPs(Γ) for arbitrary Γ? In particular, is every Γ
s-tractable or s-intractable? What is the mathematical structure of s-tractable languages?

First, observe that for a language Γ defined on D, we have VCSP(Γ) ≤p VCSPs(Γ).
Indeed, given an instance I of VCSP(Γ), construct a new instance I ′ of VCSPs(Γ) by adding
|D| extra variables. Then, any solution to I can be extended to a surjective solution to I ′ of
the same value and conversely, any (surjective) solution to I ′ induces a solution to I of the
same value.
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Second, observe that for a language Γ defined on D, we have VCSPs(Γ) ≤p VCSP(Γ∪CD),
where CD is the set of constants on D; that is, CD = {ρd | d ∈ D}, where ρd is defined by
ρd(x) = 0 if x = d and ρd(x) =∞ if x 6= d. Indeed, given an instance of VCSPs(Γ), constants
can be used to go through all O(n|D|) ways to assign all the labels from D to a |D|-subset of
the n variables, each resulting in an instance of VCSP(Γ ∪ CD). Consequently, a tractable
language Γ defined on D with CD ⊆ Γ is also an s-tractable language.

In this paper we deal with Boolean valued constraint languages defined on D = {0, 1}.
By the two observations above, the only Boolean valued constraint languages for which
tractability could be different from s-tractability are tractable languages that do not include
constants.

For Boolean {0,∞}-valued languages, Schaefer’s dichotomy [21] gives six tractable cases,
four of which include constants. Creignou and Hébrard showed that the remaining two
cases (0-valid and 1-valid) are s-intractable, thus obtaining a dichotomy in the surjective
setting [10].

For Boolean {0, 1}-valued languages, Creignou’s dichotomy [9] gives three tractable cases,
one of which includes constants. Uppman showed that the remaining two cases (0-valid and
1-valid) are s-tractable if they are almost-min-min or almost-max-max, respectively, and
s-intractable otherwise, thus obtaining a dichotomy in the surjective setting [24].

Contributions As our main contribution we classify all Boolean valued constraint lan-
guages (i.e. Q-valued languages) as s-tractable or s-intractable. Our result extends the
classifications from [10] and [24]. Six of the eight tractable cases identified for Boolean valued
constraint languages [8] include constants and thus are also s-tractable. The remaining two
cases (0-optimal and 1-optimal1) are s-tractable if they satisfy a certain condition. This
condition, defined formally in Definition 5, says that both the feasibility and optimality
relations of every weighted relation in the language have to be a projection of a downset
(in the 0-optimal case), or a projection of an upset (in the 1-optimal case). This shows
that, surprisingly, s-tractability of valued constraint languages (that are not covered by the
tractable languages with constants) does not depend on the rational-values in the weighted
relations. It is only the structure of the underlying feasibility and optimality relations that
matters. (However, the running time of our algorithm depends on these values.) Identifying
this condition and establishing that it captures the precise borderline of s-tractability is our
main contribution.

The hardness part of our result is proved in the same spirit as for {0,∞}-valued and
{0, 1}-valued languages by carefully analysing the types of weighted relations that can be
obtained in gadgets in the surjective setting, and relying on the explicit dichotomy for
Boolean VCSPs [8].

While 0-optimal and 1-optimal languages are trivially tractable for VCSPs, the algorithm
for surjective VCSPs over the newly identified languages is nontrivial. The s-tractability part
of our result is established by a reduction from Q-valued VCSPs to the Generalised Min-Cut
problem (defined in Section 3), in which we require to find in polynomial time all α-optimal
solutions, where α is a constant depending on the (finite) valued constraint language. The
algorithm for the Generalised Min-Cut problem is essentially the same as in [24]. We show
that the algorithm works in the more general setting with one part of the objective function
being a (Q≥0 ∪ {∞})-valued superadditive set function given by an oracle; see Section 3 for
the details. By providing a tighter analysis we are able to improve the bound on the running

1 A weighted relation is 0-optimal (1-optimal) if the all-zero (all-one) tuple minimises it.

MFCS 2017



4:4 Boolean Surjective VCSPs

time from roughly O(n33α) to O(n20α), thus answering one of the open problems from [24].
We also show that the dependence of the running time on the language is unavoidable unless
P = NP (cf. Example 27).

All omitted proofs are available in the full version of the paper [14].

Related work Recent years have seen some remarkable progress on the computational
complexity of CSPs and VCSPs parametrised by the (valued) constraint language, see [1] for
a survey. We highlight the resolution of the “bounded width conjecture” [2] and the result
that a dichotomy for CSPs, conjectured in [11], implies a dichotomy for VCSPs [19, 18]. All
this work is for arbitrary (and thus not necessarily Boolean) finite domains and relies on
the so-called algebraic approach initiated in [6] and nicely described in a recent survey [3].
One of the important aspects of the algebraic approach is the assumption that constants are
present in (valued) constraint languages. (This is without loss of generality with respect to
polynomial-time solvability.) It is the lack of constants in the surjective setting that makes it
difficult, if not impossible, to employ the algebraic approach in this setting. See the work of
Chen [7] for an initial attempt.

For a binary (unweighted) relation γ, VCSPs({γ}) has been studied under the name of
surjective γ-Colouring [4, 20] and vertex-compaction [26]. We remark that our notion of
surjectivity is global. For the γ-Colouring problem, a local version of surjectivity has also
been studied [13, 12].

2 Preliminaries

We denote by ≤p the standard polynomial-time Turing reduction. If A ≤p B and B ≤p A
we write A ≡p B.

We use the notation [n] = {1, . . . , n}. For any tuple x ∈ Dr, we refer to its ith element
as xi. For x,y ∈ Dr, we define x ≤ y if and only if xi ≤ yi for all i ∈ [r].

We define relations as a special case of weighted relations with range {c,∞}, where value
c ∈ Q is assigned to tuples that are elements of the relation in the conventional sense. We
will use both views interchangeably and choose c = 0 unless stated otherwise. Relations are
also called unweighted or crisp.

If s ∈ [r]n is a tuple of coordinates then for any x ∈ Dr we denote its projection to s by
Prs(x) = (xs1 , . . . , xsn) ∈ Dn. For any relation ρ, we define Prs(ρ) = {Prs(x) | x ∈ ρ}. Note
that the coordinates in s may repeat.

We denote by ρ= the binary equality relation {(x, x) | x ∈ D}. Recall from Section 1
that we denote, for any d ∈ D, by ρd the unary relation {(d)}, i.e. ρd(x) = 0 if x = d and
ρd(x) =∞ if x 6= d.

I Definition 1. For a weighted relation γ : Dr → Q, we denote by
Feas(γ) = {x ∈ Dr | γ(x) <∞} the underlying feasibility relation; and by
Opt(γ) = {x ∈ Feas(γ) | γ(x) ≤ γ(y) for every y ∈ Dr} the relation of optimal tuples.

We define Feas(Γ) = {Feas(γ) | γ ∈ Γ} and Opt(Γ) = {Opt(γ) | γ ∈ Γ}.
An assignment s : V → D for a VCSP instance I = (V,D, φI) with V = {x1, . . . , xn}

is called feasible if φI(s(x1), . . . , s(xn)) <∞; s is called optimal if φI(s) ≤ φI(s′) for every
assignment s′.

Recall from Section 1 that any set of weighted relation Γ is called a valued constraint
language. Γ is called s-tractable if for any finite subset Γ′ ⊆ Γ any instance of VCSPs(Γ′)
can be solved in polynomial time. Γ is called s-intractable if VCSP(Γ′) is NP-hard for some
finite Γ′ ⊆ Γ.
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We apply a k-ary operation h : Dk → D to k r-tuples componentwise; i.e. h(x1, . . . ,xk) =
(h(x1

1, x
2
1, . . . , x

k
1), h(x1

2, x
2
2, . . . , x

k
2), . . . , h(x1

r, x
2
r, . . . , x

k
r )).

The following notion is at the heart of the algebraic approach to decision CSPs [6].

I Definition 2. Let γ be a weighted relation on D. A k-ary operation h : Dk → D is a
polymorphism of γ (and γ is invariant under or admits h) if, for every x1, . . . ,xk ∈ Feas(γ),
we have h(x1, . . . ,xk) ∈ Feas(γ). We say that h is a polymorphism of a language Γ if it is a
polymorphism of every γ ∈ Γ.

The following notion, which involves a collection of k k-ary polymorphisms, plays an
important role in the complexity classification of Boolean valued constraint languages [8].

I Definition 3. Let γ be a weighted relation on D. A list 〈h1, . . . , hk〉 of k-ary polymorphisms
of γ is a k-ary multimorphism of γ (and γ admits 〈h1, . . . , hk〉) if, for every x1, . . . ,xk ∈
Feas(γ), we have

k∑
i=1

γ(hi(x1, . . . ,xk)) ≤
k∑
i=1

γ(xi) .

〈h1, . . . , hk〉 is a multimorphism of a language Γ if it is a multimorphism of every γ ∈ Γ.

Boolean VCSPs

For the rest of the paper let D = {0, 1}. We define some important operations on D. For
any a ∈ D, ca is the constant unary operation such that ca(x) = a for all x ∈ D. Operation
¬ is the unary negation, i.e. ¬(0) = 1 and ¬(1) = 0. Binary operation min (max) returns the
smaller (larger) of its two arguments with respect to the order 0 < 1. Ternary operation Mn
(for minority) is the unique ternary operation on D satisfying Mn(x, x, y) = Mn(x, y, x) =
Mn(y, x, x) = y for all x, y ∈ D. Ternary operation Mj (for majority) is the unique ternary
operation on D satisfying Mj(x, x, y) = Mj(x, y, x) = Mj(y, x, x) = x for all x, y ∈ D.

I Theorem 4 ([8]). Let Γ be a Boolean valued constraint language. Then, Γ is tractable
if it admits any the following eight multimorphisms 〈c0〉, 〈c1〉, 〈min,min〉, 〈max,max〉,
〈min,max〉, 〈Mn,Mn,Mn〉, 〈Mj,Mj,Mj〉, 〈Mj,Mj,Mn〉. Otherwise, Γ is intractable.

We note that Theorem 4 is a generalisation of Schaefer’s classification of {0,∞}-valued
constraint languages [21] and Creignou’s classification of {0, 1}-valued constraint languages [9].

The following definition is new in this paper and crucial for our main result.

I Definition 5. A relation ρ is a downset (upset) if for any x,y such that x ≥ y (x ≤ y) and
x ∈ ρ it holds y ∈ ρ. We will refer to relations that are a projection of a downset (upset) as
PDS (PUS). A weighted relation γ is called a PDS (PUS) weighted relation if both Feas(γ)
and Opt(γ) are PDS (PUS). A language Γ is called PDS (PUS) if every weighted relation
from Γ is PDS (PUS).

I Example 6. Relation ρ = {(0, 0), (0, 1), (1, 0)} is a downset and hence also a PDS, while
ρ′ = {(0, 0, 0), (0, 1, 1), (1, 0, 0)} is a PDS (as ρ′ = Pr(1,2,2)(ρ)) but not a downset. Relation
ρ= is a PDS relation and also a PDS weighted relation.

As one of the reviewers pointed out, PDS (PUS) relations are characterised by the binary
polymorphism x ∧ ¬y (¬x ∨ y).

MFCS 2017
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I Observation 7. Any PDS relation can be written as a sum of a downset and binary equality
relations. More formally, if ρ : Dr → {0,∞} is a PDS then we can write

ρ(x1, . . . , xr) = ρ′(xπ(1), . . . , xπ(r′)) +
r∑

j=r′+1
ρ=(xπ(j), xij ) ,

where ρ′ : Dr′ → {0,∞} is a downset, π is a permutation of [r], and ij ∈ {π(1), . . . , π(r′)}
for every r′ + 1 ≤ j ≤ r.

The following result is our main contribution.

I Theorem 8 (Main). Let Γ be a Boolean valued constraint language. Then, Γ is s-tractable
if it admits any of the following six multimorphisms 〈min,min〉, 〈max,max〉, 〈min,max〉,
〈Mn,Mn,Mn〉, 〈Mj,Mj,Mj〉, 〈Mj,Mj,Mn〉, or Γ is PDS, or Γ is PUS. Otherwise, Γ is
s-intractable.

Theorem 8 generalises the following two previously established results.

I Theorem 9 ([10]). Let Γ be a Boolean {0,∞}-valued constraint language. Then, Γ is s-
tractable if it admits any of the following four polymorphisms min, max, Mn, Mj. Otherwise,
Γ is s-intractable.

I Theorem 10 ([24]). Let Γ be a Boolean {0, 1}-valued constraint language. Then, Γ is
s-tractable if it admits the 〈min,max〉 multimorphism, or Γ is PDS, or Γ is PUS. Otherwise,
Γ is s-intractable.

Theorem 10 is stated differently in [24] as the definition of PDS (PUS) languages is
introduced in this paper. In fact, it was not a priori clear what the right condition for
tractability should be for Q-valued constraint languages. Note that for {0, 1}-valued languages,
the condition Feas(Γ) being PDS or PUS is vacuously true. Thus, a {0, 1}-valued language
Γ is PDS (PUS) if Opt(Γ) is PDS (PUS) and this is equivalent to Γ being almost-min-min
(almost-max-max) [24].

Recall that ¬ is the unary negation operation. For a weighted relation γ, we define
¬(γ) to be the weighted relation ¬(γ)(x) = γ(¬(x)). For a language Γ, we define ¬(Γ) =
{¬(γ) | γ ∈ Γ}.

The following observation follows from Definition 5.

I Observation 11. A valued constraint language Γ is PDS if and only if ¬(Γ) is PUS.

I Lemma 12. For a Boolean valued constraint language Γ, VCSPs(Γ) ≡p VCSPs(¬(Γ)).

Proof of Theorem 8. The s-tractability of languages admitting any of the six multimorph-
isms in the statement of the theorem follows from Theorem 4 via the reduction VCSPs(Γ) ≤p
VCSP(Γ∪{ρ0, ρ1}) discussed in the introduction. The s-tractability of PDS languages follows
from Theorem 19, proved in Section 3. The s-tractability of PUS languages is then a simple
corollary of Theorem 19, Observation 11, and Lemma 12.

The s-intractability of the remaining languages is proved in the full version of the paper [14].
The key in the hardness proof is to identify certain operators on weighted relations that
preserve s-tractability, polymorphisms for crisp relations and multimorphisms for weighted
relations, thus allowing for the construction of hardness gadgets. These operators include
scaling by a nonnegative rational, adding a rational, permutation of arguments, identification
of arguments, addition, the Feas(·) and Opt(·) operators, and pinning labels to variables
(assuming the corresponding crisp constant is available). J
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3 Tractability of PDS languages

We prove that PDS languages are s-tractable by a reduction to a generalised variant of
the Min-Cut problem. The problem and the reduction are stated in Subsection 3.1. The
tractability of the Generalised Min-Cut problem is established in Subsection 3.2.

3.1 Reduction to the Generalised Min-Cut problem
Let V be a finite set. A set function on V is a function f : 2V → Q≥0 ∪ {∞} with f(∅) = 0.

I Definition 13. A set function f : 2V → Q≥0 ∪ {∞} is increasing if f(X) ≤ f(Y ) for all
X ⊆ Y ⊆ V ; it is superadditive if f(X) + f(Y ) ≤ f(X ∪ Y ) for all disjoint X,Y ⊆ V ; it
is posimodular if f(X) + f(Y ) ≥ f(X \ Y ) + f(Y \X) for all X,Y ⊆ V ; and finally it is
submodular if f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for all X,Y ⊆ V .

It is known and easy to show that any superadditive set function is also increasing.

I Example 14. Let U be a finite set and T ⊆ U a non-empty subset. We define a set function
f on U by f(X) = 1 if T ⊆ X and f(X) = 0 otherwise. Intuitively, this corresponds to a
soft NAND constraint if we interpret T as its scope and X as the set of variables assigned
true. The set function f is superadditive, and hence also increasing.

We now formally define the Min-Cut problem introduced in Section 1.

I Definition 15. An instance of the Min-Cut (MC) problem is given by a graph G = (V,E)
with edge weights w : E → Q>0. The goal is to minimise the objective function g, which is a
set function on V defined by g(X) =

∑
{u,v}∈E,|{u,v}∩X|=1 w(u, v).

Note that g from Definition 15 is posimodular.
Any set X such that ∅ ( X ( V is called a solution of the MC problem. Note that

a cut (X,V \ X) corresponds to two solutions, namely X and V \ X. Any solution that
minimises the objective function g is called optimal, and any optimal solution with no proper
subset being an optimal solution is called minimal. Note that any two different minimal
optimal solutions X,Y are disjoint, as X \ Y and Y \X are also optimal solutions (by the
posimodularity of g).

We now define the Generalised Min-Cut problem, which is key to establishing Theorem 8.

I Definition 16. Let G = (V,E) be an undirected graph with edge weights w : E → Q>0.
Let g be the objective function of the Min-Cut problem on G and f a superadditive set
function on V given by an oracle. A solution to the Generalised Min-Cut (GMC) problem is
any set X such that ∅ ( X ( V , and the objective is to minimise the value of f(X) + g(X).

We will denote this minimum by λ. A solution achieving the minimum is called optimal.
In case of 0 < λ < ∞, we will also be looking for all α-optimal solutions (for α ≥ 1) to
the problem, i.e. solutions X such that f(X) + g(X) ≤ αλ. As shown in Subsection 3.2,
Theorem 26, this can be done in polynomial time (for a fixed α).

Uppman [24] used the term “Generalised Min-Cut problem” for a special case of Defini-
tion 16, in which the superadditive function f is given explicitly as a weighted sum of soft
NANDs (cf. Example 14).

Our reduction from the surjective VCSP over a PDS language to the GMC problem is
based on the following notion.

MFCS 2017
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I Definition 17. Let γ be an r-ary weighted relation on domain D = {0, 1}. We will associate
any r-tuple x ∈ Dr with the set X = {i ∈ [r] | xi = 1} and use them interchangeably.

Let J be an instance of the GMC problem on vertices [r] with J(X) denoting the objective
value for any x ∈ Dr (including the all-zero and all-one tuples, which correspond to non-
solutions ∅ and [r]). For any α ≥ 1, we say that J α-approximates γ if J(X) ≤ γ(x) ≤ α·J(X)
for all x ∈ Dr.

I Lemma 18. Let γ be a weighted relation such that Feas(γ) is a downset, Opt(γ) is a PDS,
and γ(x) = 0 for x ∈ Opt(γ). There is a constant α and an instance of the GMC problem
that α-approximates γ.

Proof. We define a set function fFeas on [r] as fFeas(X) = 0 if x ∈ Feas(γ) and fFeas(X) =∞
otherwise. Because Feas(γ) is a downset, fFeas is superadditive.

By Observation 7, we can write Opt(γ) as a sum of a downset ρ on coordinates A ⊆ [r]
and equalities xi = xj for (i, j) ∈ E with |A|+ |E| = r. Let x|A denote the projection of an
r-tuple x to coordinates A in the same order as in ρ. We define a set function fOpt on [r] as
fOpt(X) = 0 if x|A ∈ ρ and fOpt(X) = |X ∩ A| otherwise. Because ρ is a downset, fOpt is
superadditive.

We define a GMC instance J ′ on vertices [r], unit-weight edges E, and the superadditive
set function fFeas + fOpt. By the construction, it holds

J ′(X) =∞ ⇐⇒ fFeas(X) =∞ ⇐⇒ x 6∈ Feas(γ) ⇐⇒ γ(x) =∞ (1)

and

J ′(X) = 0 ⇐⇒ fFeas(X) = fOpt(X) = 0 ∧ |{i, j} ∩X| 6= 1 for all (i, j) ∈ E (2)
⇐⇒ x ∈ Feas(γ) ∧ x|A ∈ ρ ∧ xi = xj for all (i, j) ∈ E (3)
⇐⇒ x ∈ Opt(γ) ⇐⇒ γ(x) = 0 . (4)

Moreover, for any X such that 0 < J ′(X) <∞ it holds 1 ≤ J ′(X) ≤ r.
If γ is crisp then the instance J ′ 1-approximates γ; otherwise let δmin, δmax denote the

minimum and maximum of {γ(x) | 0 < γ(x) <∞}. We scale the weights of the edges and
the superadditive function of J ′ by a factor of δmin/r to obtain an instance J such that
J(X) ≤ γ(x) for all X. Setting α = r · δmax/δmin then gives γ(x) ≤ α · J(X) for all X. J

Finally, we state the reduction.

I Theorem 19. Let Γ be a Boolean valued constraint language. If Γ is PDS, then it is
s-tractable.

Proof. Let Γ′ ⊆ Γ be a finite language. The feasibility relation Feas(γ) for any γ ∈ Γ′ is a
PDS and hence, by Observation 7, a sum of a downset and binary equality relations. A crisp
equality constraint ρ=(x, y) in an instance can be omitted after identifying the variables x
and y. Therefore, we will assume that Feas(γ) is a downset. Moreover, we will assume that
the minimum value assigned by γ is 0, as changing values γ(x) by the same constant for all
x ∈ Dar(γ) affects all assignments equally.

By Lemma 18, for any γ ∈ Γ′, there is a constant αγ and a GMC instance Jγ that
αγ-approximates γ. Let α be the smallest integer such that α ≥ αγ for all γ ∈ Γ′.

Given a VCSPs(Γ′) instance I with an objective function φI(x1, . . . , xn) =
∑q
i=1 wi ·γi(xi),

we construct a GMC instance J that α-approximates φI . For i ∈ [q], we relabel the vertices
of Jγi to match the variables in the scope xi of the ith constraint (i.e. vertex j is relabelled
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to xij) and identify vertices in case of repeated variables. We also scale both the weights of
the edges of Jγi and the superadditive function by wi. The instance J is obtained by adding
up the GMC instances Jγi for all i ∈ [q].

Let x ∈ Dn denote a surjective assignment minimising φI and y ∈ Dn an optimal solution
to J with J(Y ) = λ. Because J α-approximates φI , it holds

λ ≤ J(X) ≤ φI(x) ≤ φI(y) ≤ α · J(Y ) = αλ , (5)

and hence x is an α-optimal solution to J . By Lemma 20 in Subsection 3.2, we can determine
whether λ = 0, in which case any optimal solution to J is also optimal for φI ; and whether
λ =∞. If 0 < λ <∞, we find all α-optimal solutions by Theorem 26 in Subsection 3.2. J

3.2 Tractability of the Generalised Min-Cut problem
Proofs of Lemmas 20, 21, and 23 can be found in the full version of the paper [14].

I Lemma 20. There is a polynomial-time algorithm that, given an instance of the GMC
problem, either finds a solution X with f(X) + g(X) = 0, or determines that λ = ∞, or
determines that 0 < λ <∞.

In view of Lemma 20, we can assume that 0 < λ <∞. Our goal is to show that, for a
given α ≥ 1, all α-optimal solutions to a GMC instance can be found in polynomial time.
This will be proved in Theorem 26; before that we need to prove several auxiliary lemmas on
properties of the MC and GMC problems.

I Lemma 21. For any instance J of the GMC problem on a graph G = (V,E) and any
non-empty set V ′ ⊆ V , there is an instance J ′ on the induced subgraph G[V ′] that preserves
the objective value of all solutions X ( V ′. In particular, any α-optimal solution X of J
such that X ( V ′ is α-optimal for J ′ as well.

I Lemma 22. Let X be an optimal solution to an instance of the GMC problem over vertices
V with λ < ∞, and Y a minimal optimal solution to the underlying MC problem. Then
X ⊆ Y , X ⊆ V \ Y , or X is an optimal solution to the underlying MC problem.

Proof. Assume that X 6⊆ Y and X 6⊆ V \ Y . If Y ⊆ X, we have f(Y ) ≤ f(X) as f is
increasing, and hence f(Y ) + g(Y ) ≤ f(X) + g(X) < ∞. Therefore, Y is optimal for the
GMC problem and X is optimal for the MC problem. In the rest, we assume that Y 6⊆ X.

By the posimodularity of g we have g(X) + g(Y ) ≥ g(X \ Y ) + g(Y \X). Because Y \X
is a proper non-empty subset of Y , it holds g(Y \X) > g(Y ), and hence g(X) > g(X \ Y ).
But then f(X) + g(X) > f(X \ Y ) + g(X \ Y ) as ∞ > f(X) ≥ f(X \ Y ). Set X \ Y is
non-empty, and therefore contradicts the optimality of X. J

The following lemma relates the number of optimal solutions and the number of minimal
optimal solutions to the MC problem. Note that this bound is tight for (unweighted) paths
and cycles with at most one path attached to each vertex.

I Lemma 23. For any instance of the MC problem on a connected graph with n vertices
and p minimal optimal solutions, there are at most p(p− 1) + 2(n− p) optimal solutions.

I Lemma 24. For any instance of the GMC problem on n vertices with 0 < λ < ∞, the
number of optimal solutions is at most n(n− 1). There is an algorithm that finds all of them
in polynomial time.
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Note that the bound of n(n− 1) optimal solutions precisely matches the known upper
bound of

(
n
2
)
for the number of minimum cuts [17]; the bound is tight for cycles.

Proof. Let t(n) denote the maximum number of optimal solutions for such instances on n
vertices. We prove the bound by induction on n. If n = 1, there are no solutions and hence
t(1) = 0. For n ≥ 2, let Y1, . . . , Yp be the minimal optimal solutions to the underlying MC
problem. As there exists at least one minimum cut and the minimal optimal solutions are all
disjoint, it holds 2 ≤ p ≤ n.

Suppose that the minimal optimal solutions cover all vertices, i.e.
⋃
Yi = V . By Lemma 22,

any optimal solution to the GMC problem is either a proper subset of some Yi or an optimal
solution to the underlying MC problem. Restricting solutions to a proper subset of Yi is by
Lemma 21 equivalent to considering a GMC problem instance on vertices Yi, and hence the
number of such optimal solutions is bounded by t(|Yi|) ≤ |Yi| · (|Yi| − 1). Note that the sum∑
|Yi| · (|Yi| − 1) is maximised when p− 1 of the sets Yi are singletons and the size of the

remaining one equals n− p+ 1. If the graph is connected then, by Lemma 23, there are at
most p(p − 1) + 2(n − p) optimal solutions to the underlying MC problem. Adding these
upper bounds we get

p(p− 1) + 2(n− p) +
p∑
i=1
|Yi| · (|Yi| − 1) (6)

≤ p(p− 1) + 2(n− p) + (p− 1) · 1 · 0 + (n− p+ 1) · (n− p) (7)
= n(n− 1)− 2(p− 2) · (n− p) (8)
≤ n(n− 1) . (9)

If the graph is disconnected, the sets Y1, . . . , Yp are precisely its connected components.
The optimal solutions to the underlying MC problem are precisely unions of connected
components (with the exception of ∅ and V ), which means that there can be exponentially
many of them. However, only the sets Y1, . . . , Yp themselves can be optimal solutions to the
GMC problem: We have 0 < λ ≤ f(Yi) + g(Yi) = f(Yi). Because f is superadditive, it holds
f(Yi1 ∪ · · · ∪ Yik) ≥ f(Yi1) + · · ·+ f(Yik) ≥ kλ for any distinct i1, . . . , ik, and hence no union
of two or more connected components can be an optimal solution to the GMC problem. This
gives us an upper bound of p ≤ p(p− 1) + 2(n− p), and the rest follows as in the previous
case.

Finally, suppose that
⋃
Yi 6= V , and hence the graph is connected. This case can be

handled similarly as for
⋃
Yi = V . (The full version of the paper [14] includes a complete

proof.)
Using a procedure generating all minimum cuts [25], it is straightforward to turn the

above proof into a recursive algorithm that finds all optimal solutions in polynomial time. J

I Lemma 25. Let α, β ≥ 1. Let X be an α-optimal solution to an instance of the GMC
problem over vertices V with 0 < λ <∞, and Y an optimal solution to the underlying MC
problem. If g(Y ) < λ/β, then

(f(X \ Y ) + g(X \ Y )) + (f(X ∩ Y ) + g(X ∩ Y )) <
(
α+ 2

β

)
λ ; (10)

if g(Y ) ≥ λ/β, then X is an αβ-optimal solution to the underlying MC problem.

Proof. If g(Y ) ≥ λ/β, it holds g(X) ≤ f(X) + g(X) ≤ αλ ≤ αβ · g(Y ), and hence X is an
αβ-optimal solution to the underlying MC problem. In the rest we assume that g(Y ) < λ/β.
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Because g is posimodular, we have

g(X) + g(Y ) ≥ g(X \ Y ) + g(Y \X) (11)
g(Y ) + g(Y \X) ≥ g(X ∩ Y ) + g(∅) , (12)

and hence

g(X) + 2g(Y ) ≥ g(X \ Y ) + g(X ∩ Y ) . (13)

By superadditivity of f , it holds f(X) ≥ f(X \ Y ) + f(X ∩ Y ). The claim then follows from
the fact that f(X) + g(X) + 2g(Y ) < (α+ 2/β)λ. J

Finally, we prove that α-optimal solutions to the GMC problem can be found in polynomial
time.

I Theorem 26. For any instance of the GMC problem on n vertices with 0 < λ <∞ and
α ∈ Z≥1, the number of α-optimal solutions is at most n20α−15. There is an algorithm that
finds all of them in polynomial time.

Note that for a cycle on n vertices, the number of α-optimal solutions to the MC problem
is Θ(n2α), and thus the exponent in our bound is asymptotically tight in α.

Proof. Let β ∈ Z≥3 be a parameter. Throughout the proof, we relax the integrality restriction
on α and require only that αβ is an integer. For α = 1, the claim follows from Lemma 24,
therefore we assume α ≥ 1 + 1/β in the rest of the proof.

Define `(x) = 2(β+1)
β−2 · (βx− 3). We will prove that the number of α-optimal solutions

is at most n`(α); taking β = 4 then gives the claimed bound. Function ` was chosen as a
slowest growing function satisfying the following properties required in this proof: It holds
`(x) + `(y) ≤ `(x+ y − 3/β) for any x, y, and `(x) ≥ 2βx for any x ≥ 1 + 1/β.

We prove the bound by induction on n+αβ. As it trivially holds for n ≤ 2, we will assume
n ≥ 3 in the rest of the proof. Let Y be an optimal solution to the underlying MC problem
with k = |Y | ≤ n/2. If g(Y ) ≥ λ/β then, by Lemma 25, any α-optimal solution to the GMC
problem is an αβ-optimal solution to the underlying MC problem. Because g(Y ) ≥ λ/β > 0,
the graph is connected, and hence there are at most 22αβ( n

2αβ
)
≤ n2αβ ≤ n`(α) such solutions

by [17]. (In detail, [17, Theorem 6.2] shows that the number of αβ-optimal cuts in an n-vertex
graph is 22αβ−1( n

2αβ
)
, and every cut corresponds to two solutions.)

From now on we assume that g(Y ) < λ/β and hence inequality (10) holds. Upper bounds
in this case may be quite loose; in particular, we will use the following inequalities:

(k/n)`(α) ≤ (k/n)`(1+1/β) = (k/n)2(β+1) ≤ (k/n)8 ≤ (k/n)(1/2)7 = k/128n (14)
(1/n)2β ≤ (1/n)6 ≤ (1/n)(1/3)5 < 1/128n . (15)

Consider any α-optimal solution to the GMC problem X.
If X ( Y then, by Lemma 21, X is an α-optimal solution to an instance on vertices Y .

By the induction hypothesis, there are at most k`(α) ≤ (k/128n) · n`(α) such solutions.
Similarly, if X ( V \ Y , then X is an α-optimal solution to an instance on vertices V \ Y ,

and there are at most (n− k)`(α) = (1− k/n)`(α) · n`(α) ≤ (1− k/n) · n`(α) such solutions.
If Y ( X, then X \ Y is an (α − 1 + 2/β)-optimal solution on vertices V \ Y by (10)

and the fact that f(X ∩ Y ) + g(X ∩ Y ) ≥ λ. Similarly, if V \ Y ( X, then X ∩ Y is
an (α − 1 + 2/β)-optimal solution on vertices Y . In either case, we bound the number of
such solutions depending on the value of α: For α < 2− 2/β, there are trivially none; for
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α = 2 − 2/β, Lemma 24 gives a bound of n(n − 1) ≤ n`(α)−2β ; and for α > 2 − 2/β we
get an upper bound of n`(α−1+2/β) ≤ n`(α)−2β by the induction hypothesis. The number of
solutions is thus at most n`(α)−2β ≤ (1/128n) · n`(α) for any α.

Finally, we consider X such that ∅ ( X \ Y ( V \ Y and ∅ ( X ∩ Y ( Y , i.e. X \ Y and
X ∩ Y are solutions on vertices V \ Y and Y respectively. Let i be the integer for which(

1 + i

β

)
λ ≤ f(X ∩ Y ) + g(X ∩ Y ) <

(
1 + i+ 1

β

)
λ . (16)

Then, by (10), it holds f(X \ Y ) + g(X \ Y ) < (α− 1− (i− 2)/β)λ. Therefore, X ∩ Y is a
(1 + (i+ 1)/β)-optimal solution on vertices Y and X \ Y is an (α− 1− (i− 2)/β)-optimal
solution on vertices V \ Y . Because 0 ≤ i ≤ (α− 2)β + 1, we can bound the number of such
solutions by the induction hypothesis as at most

k`(1+ i+1
β ) · (n− k)`(α−1− i−2

β ) ≤
(
k

n

)`(1+ i+1
β )
· n`(1+ i+1

β )+`(α−1− i−2
β ) (17)

≤
(
k

n

)2(β+1)
· 1

2i · n
`(α) , (18)

which is at most 2 · (k/128n) · n`(α) in total for all i.
By adding up the bounds we get that the number of α-optimal solutions is at most n`(α).

A polynomial-time algorithm that finds the α-optimal solutions follows from the above proof
using a procedure generating all αβ-optimal cuts [25]. J

4 Conclusions

While the complexity of (valued) constraint languages is, as in this paper, studied mostly for
finite languages, all known results also hold for languages of infinite size. We now show that
this is not the case for Boolean surjective VCSPs.

I Example 27. We give an example of an infinite Boolean valued constraint language Γ that
is a PDS language but VCSPs(Γ) is NP-hard.

Let D = {0, 1}. For any w ∈ Z≥1, we define γw : D3 → Q by γ(0, 0, 0) = 0, γ(·, ·, 0) = w,
γ(x, y, 1) = 2 if x = y and γ(x, y, 1) = 1 if x 6= y. Note that Feas(γw) = D3 and
Opt(γw) = {(0, 0, 0)} are PDS relations. Let Γ = {γw | w ∈ Z≥1}.

Given an instance G = (V,E) of the Max-Cut problem with V = {x1, . . . , xn} and
no isolated vertices, we choose a value w > 2|E| and construct a VCSPs(Γ) instance
I = (V ∪ {z}, D, φI) with φI(x1, . . . , xn, z) =

∑
{i,j}∈E,i<j γw(xi, xj , z). Cuts in G are in

one-to-one correspondence with assignments to I satisfying z = 1. In particular, a cut of
value k corresponds to an assignment to I of value k + 2(|E| − k) = 2|E| − k. Moreover, any
surjective assignment that assigns label 0 to variable z is of value at least w > 2|E| ≥ 2|E|−k.
Thus, solving I amounts to solving Max-Cut in G.

An obvious open problem is to consider surjective VCSPs on a three-element domain. A
complexity classification is known for {0,∞}-valued languages [5] and Q-valued languages [15]
(the latter generalises the {0, 1}-valued case obtained in [16]). In fact [18] implies a dichotomy
for Q-valued languages on a three-element domain. However, all these results depend on the
notion of core and the presence of constants in the language, and thus it is unclear how to
use them to obtain a complexity classification in the surjective setting. Moreover, one special
case of the CSP on a three-element domain is the 3-No-Rainbow-Colouring problem [4],
whose complexity status is open.
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