
QCSP on Reflexive Tournaments1

Benoît Larose £2

LACIM, Université du Québec a Montréal, Canada3

Petar Marković £4

Department of Mathematics and Informatics, University of Novi Sad, Serbia5

Barnaby Martin £6

Department of Computer Science, Durham University, UK7

Daniël Paulusma £8

Department of Computer Science, Durham University, UK9

Siani Smith £10

Department of Computer Science, Durham University, UK11

Stanislav Živný £12

Department of Computer Science, University of Oxford, UK13

Abstract14

We give a complexity dichotomy for the Quantified Constraint Satisfaction Problem QCSP(H) when15

H is a reflexive tournament. It is well-known that reflexive tournaments can be split into a sequence16

of strongly connected components H1, . . . , Hn so that there exists an edge from every vertex of Hi17

to every vertex of Hj if and only if i < j. We prove that if H has both its initial and final strongly18

connected component (possibly equal) of size 1, then QCSP(H) is in NL and otherwise QCSP(H) is19

NP-hard.20

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness21

Keywords and phrases computational complexity, algorithmic graph theory, quantified constraints,22

universal algebra, constraint satisfaction23

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.224

Related Version A full version of this paper is available at https://arxiv.org/abs/2104.10570.25

Funding Stanislav Živný: Stanislav Zivny was supported by a Royal Society University Research26

Fellowship. This project has received funding from the European Research Council (ERC) under the27

European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532).28

The paper reflects only the authors’ views and not the views of the ERC or the European Commission.29

The European Union is not liable for any use that may be made of the information contained therein.30

© Benoît Larose, Peter Marković, Barnaby Martin, Daniël Paulusma, Siani Smith and Stanislav
Živný;
licensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 2; pp. 2:1–2:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:blarose@lacim.ca
mailto:pera@dmi.uns.ac.rs
mailto:barnaby.d.martin@durham.ac.uk
mailto:daniel.paulusma@durham.ac.uk
mailto:siani.smith@durham.ac.uk
mailto:standa.zivny@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.ESA.2021.2
https://arxiv.org/abs/2104.10570
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 QCSP on Reflexive Tournaments

1 Introduction31

The Quantified Constraint Satisfaction Problem QCSP(B), for a fixed template (structure) B,32

is a popular generalisation of the Constraint Satisfaction Problem CSP(B). In the latter, one33

asks if a primitive positive sentence (the existential quantification of a conjunction of atoms)34

φ is true on B, while in the former this sentence may also have universal quantification. Much35

of the theoretical research into (finite-domain1) CSPs has been in respect of a complexity36

classification project [11, 5], recently completed by [4, 22, 24], in which it is shown that all37

such problems are either in P or NP-complete. Various methods, including combinatorial38

(graph-theoretic), logical and universal-algebraic were brought to bear on this classification39

project, with many remarkable consequences.40

Complexity classifications for QCSPs appear to be harder than for CSPs. Indeed, a41

classification for QCSPs will give a fortiori a classification for CSPs (if B ⊎ K1 is the disjoint42

union of B with an isolated element, then QCSP(B ⊎ K1) and CSP(B) are polynomial-43

time many-one equivalent). Just as CSP(B) is always in NP, so QCSP(B) is always in44

Pspace. However, no polychotomy has been conjectured for the complexities of QCSP(B),45

though, until recently, only the complexities P, NP-complete and Pspace-complete were46

known. Recent work [25] has shown that this complexity landscape is considerably richer,47

and that dichotomies of the form P versus NP-hard (using Turing reductions) might be the48

sensible place to be looking for classifications.49

CSP(B) may equivalently be seen as the homomorphism problem which takes as input50

a structure A and asks if there is a homomorphism from A to B. The surjective CSP,51

SCSP(B), is a cousin of CSP(B) in which one requires that this homomorphism from A to B52

be surjective. From the logical perspective this translates to the stipulation that all elements53

of B be used as witnesses to the (existential) variables of the primitive positive input φ.54

The surjective CSP appears in the literature under a variety of names, including surjective55

homomorphism [2], surjective colouring [12, 15] and vertex compaction [19, 20]. CSP(B) and56

SCSP(B) have various other cousins: see the survey [2] or, in the specific context of reflexive57

tournaments, [15]. The only one we will dwell on here is the retraction problem CSPc(B)58

which can be defined in various ways but, in keeping with the present narrative, we could59

define logically as allowing atoms of the form v = b in the input sentence φ where b is some60

element of B (the superscript c indicates that constants are allowed). It has only recently61

been shown that there exists a B so that SCSP(B) is in P while CSPc(B) is NP-complete [23].62

It is still not known whether such an example exists among the (partially reflexive) graphs.63

It is well-known that the binary cousin relation is not transitive, so let us ask the64

question as to whether the surjective CSP and QCSP are themselves cousins? The algebraic65

operations pertaining to the CSP are polymorphisms and for QCSP these become surjective66

polymorphisms. On the other hand, a natural use of universal quantification in the QCSP67

might be to ensure some kind of surjective map (at least under some evaluation of many68

universally quantified variables). So it is that there may appear to be some relationship69

between the problems. Yet, there are known irreflexive graphs H for which QCSP(H) is in70

NL, while SCSP(H) is NP-complete (take the 6-cycle [18, 20]). On the other hand, one can71

find a 3-element B whose relations are preserved by a semilattice-without-unit operation72

such that both CSPc(B) and SCSP(B) are in P but QCSP(B) is Pspace-complete. We are73

not aware of examples like this among graphs and it is perfectly possible that for (partially74

reflexive) graphs H, SCSP(H) being in P implies that QCSP(H) is in P.75

1 All structures considered in this article are finite.
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Tournaments, both irreflexive and reflexive (and sometimes in between), have played a76

strong role as a testbed for conjectures and a habitat for classifications, for relatives of the77

CSP both complexity-theoretic [1, 10, 15] and algebraic [14, 21]. Looking at Table 1 one can78

see the last unresolved case is precisely QCSP on reflexive tournaments. This is the case we79

address in this paper. For irreflexive tournaments H, QCSP(H) is in P if and only if SCSP(H)80

in P, but for reflexive tournaments this is not the case. When H is a reflexive tournament, we81

prove that QCSP(H) is in NL if H has both initial and final strongly connected components82

trivial, and is NP-hard otherwise. In contrast to the proof from [10] and like the proof of83

[15], we will henceforth work largely combinatorially rather than algebraically. Note that we84

do not investigate beyond NP-hard, so our dichotomy cannot be compared directly to the85

trichotomy of [10] for irreflexive tournaments which distinguishes between P, NP-complete86

and Pspace-complete.87

QCSP CSP Surjective CSP Retraction
irreflexive
tournaments

trichotomy [10] dichotomy [1] dichotomy [1] dichotomy [1]

reflexive
tournaments

this paper all trivial dichotomy [15] dichotomy [14]

Table 1 Our result in a wider context. The results for irreflexive tournaments were all proved in
the more general setting of irreflexive semicomplete digraphs in the papers cited.

In Section 3 we prove the NP-hard cases of our dichotomy. Our proof method follows88

that from [15], while adapting the ideas of [8] in order to make what was developed for89

Surjective CSP applicable to QCSP. The QCSP is not naturally a combinatorial problem90

but can be seen thusly when viewed in a certain way. We indeed closely mirror [15] with [8]91

in the strongly connected case. For the not strongly connected case, the adaptation from the92

strongly connected case was straightforward for the Surjective CSP in [15]. However, the93

straightforward method does not work for the QCSP. Instead, we seek a direct argument94

that essentially sees us extending the method from [15].95

In Section 4 we prove the NL cases of our dichotomy. Here, we use ideas originally96

developed in (the conference version of) [8] and first used in the wild in [17]. Thus, we do not97

introduce new proof techniques as such but rather weave our proof through the reasonably98

intricate synthesis of different known techniques. In Section 5 we state our dichotomy and99

give some directions for future work. Owing to space restrictions in the original submission,100

some of our proofs are omitted.101

2 Preliminaries102

For an integer k ≥ 1, we write [k] := {1, . . . , k}. A vertex u ∈ V (G) in a digraph G is103

backwards-adjacent to another vertex v ∈ V if (u, v) ∈ E. It is forwards-adjacent to another104

vertex v ∈ V if (v, u) ∈ E. If a vertex u has a self-loop (u, u), then u is reflexive; otherwise u105

is irreflexive. A digraph G is reflexive or irreflexive if all its vertices are reflexive or irreflexive,106

respectively.107

The directed path on k vertices is the digraph with vertices u0, . . . , uk−1 and edges108

(ui, ui+1) for i = 0, . . . , k − 2. By adding the edge (uk−1, u0), we obtain the directed cycle109

on k vertices. A digraph G is strongly connected if for all u, v ∈ V (G) there is a directed110

path in E(G) from u to v. A double edge in a digraph G consists in a pair of distinct111

ESA 2021



2:4 QCSP on Reflexive Tournaments

vertices u, v ∈ V (G), so that (u, v) and (v, u) belong to E(G). A digraph G is semicomplete112

if for every two distinct vertices u and v, at least one of (u, v), (v, u) belongs to E(G). A113

semicomplete digraph G is a tournament if for every two distinct vertices u and v, exactly114

one of (u, v), (v, u) belongs to E(G). A reflexive tournament G is transitive if for every115

three vertices u, v, w with (u, v), (v, w) ∈ E(G), also (u, w) belongs to E(G). A digraph F116

is a subgraph of a digraph G if V (F) ⊆ V (G) and E(F) ⊆ E(G). It is induced if E(F)117

coincides with E(G) restricted to pairs containing only vertices of V (F). A subtournament is118

an induced subgraph of a tournament. It is well known that a reflexive tournament H can be119

split into a sequence of strongly connected components H1, . . . , Hn for some integer n ≥ 1 so120

that there exists an edge from every vertex of Hi to every vertex of Hj if and only if i < j.121

We will use the notation H1 ⇒ · · · ⇒ Hn for H and we refer to H1 and Hn as the initial and122

final components of H, respectively.123

A homomorphism from a digraph G to a digraph H is a function f : V (G) → V (H) such124

that for all u, v ∈ V (G) with (u, v) ∈ E(G) we have (f(u), f(v)) ∈ E(H). We say that f is125

(vertex)-surjective if for every vertex x ∈ V (H) there exists a vertex u ∈ V (G) with f(u) = x.126

A digraph H′ is a homomorphic image of a digraph H if there is a surjective homomorphism127

from H to H′ that is also edge-surjective, that is, for all (x′, y′) ∈ E(H′) there exists an128

(x, y) ∈ E(H) with x′ = h(x) and y′ = h(y).129

The problem H-Retraction takes as input a graph G of which H is an induced subgraph130

and asks whether there is a homomorphism from G to H that is the identity on H. This131

definition is polynomial-time many-one equivalent to the one we suggested in the introduction132

(see e.g. [2]). The quantified constraint satisfaction problem QCSP(H) takes as input a133

sentence φ := ∀x1∃y1 . . . ∀xn∃yn Φ(x1, y1, . . . , xn, yn), where Φ is a conjunction of positive134

atomic (binary edge) relations. This is a yes-instance to the problem just in case H |= φ.135

The canonical query of G (from [13]) is a primitive positive sentence φG that has the136

property that, for all H, G has a homomorphism to H iff H |= φG. It is built by mapping137

edges (x, y) from E(G) to atoms E(x, y) is an existentially quantified conjunctive query.138

The direct product of two digraphs G and H, denoted G × H, is the digraph on vertex139

set V (G) × V (H) with edges ((x, y), (x′, y′)) if and only if (x, x′) ∈ E(G) and (y, y′) ∈ E(H).140

We denote the direct product of k copies of G by Gk. A k-ary polymorphism of G is a141

homomorphism f from Gk to G; if k = 1, then f is also called an endomorphism. A k-ary142

polymorphism f is essentially unary if there exists a unary operation g and i ∈ [k] so that143

f(x1, . . . , xk) = g(xi) for every (x1, . . . , xk) ∈ Gk. Let us say that a k-ary polymorphism f144

is uniformly z for some z ∈ V (G) if f(x1, . . . , xk) = z for every (x1, . . . , xk) ∈ V (Gk). We145

need the following two lemmas.146

▶ Lemma 1. Let H be a reflexive tournament and f be a k-ary polymorphism of H. If147

f(x, . . . , x) = z for every x ∈ V (H), then f is uniformly z.148

Proof. Consider some tuple (x1, . . . , xk) which has m distinct vertices. We proceed by149

induction on m, where the base case m = 1 is given as an assumption. Suppose we have150

the result for m vertices and let (x1, . . . , xk) have m + 1 distinct entries. For simplicity151

(and w.l.o.g.) we will consider this reordered and without duplicates as (y1, . . . , ym, ym+1).152

Suppose f maps (x1, . . . , xk) to z′. Assume (ym, ym+1) ∈ E(H) (the case (ym+1, ym) is153

symmetric). Then consider the tuples (y1, . . . , ym, ym) and (y1, . . . , ym+1, ym+1). By the154

inductive hypothesis, f maps each of these (when reordered and padded appropriately155

with duplicates) to z. Furthermore, we have co-ordinatewise edges from (y1, . . . , ym, ym) to156

(y1, . . . , ym, ym+1) and from (y1, . . . , ym, ym+1) to (y1, . . . , ym+1, ym+1). Since we deduce by157

the definition of polymorphism that both (z, z′), (z′, z) ∈ E(H), it follows that z′ = z. Thus,158
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f maps also (y1, . . . , ym, ym+1) (when reordered and padded appropriately with duplicates)159

to z. That is, f(x1, . . . , xk) = z. ◀160

▶ Lemma 2. Let H be the reflexive tournament H1 ⇒ · · · ⇒ Hi ⇒ · · · ⇒ Hn. If f is a k-ary161

surjective polymorphism of H, then f preserves each of V (H1), . . . , V (Hn); that is, for every162

i and every tuple of k vertices x1, . . . , xk ∈ V (Hi), f(x1, . . . , xk) ∈ V (Hi).163

Proof. Suppose f maps some tuple (x1, . . . , xm) from V (Hi) to y ∈ V (Hℓ). Let (x′
1, . . . , x′

m)164

be any tuple from V (Hi). Since Hi is strongly connected, f(x′
1, . . . , x′

m) in V (Hℓ). It follows165

that if ℓ ̸= i, e.g. w.l.o.g. ℓ < i, then some component ℓ′ ≥ i can not be in the range of f . ◀166

The relevance of this lemma is in its sequent corollary, which follows according to Proposition167

3.15 of [3].168

▶ Corollary 3. Let H be the reflexive tournament H1 ⇒ · · · ⇒ Hi ⇒ · · · ⇒ Hn. Each subset169

of the domain V (Hi) is definable by a QCSP instance in one free variable.170

An endomorphism e of a digraph G is a constant map if there exists a vertex v ∈ V (G)171

such that e(u) = v for every u ∈ V (G), and e is the identity if e(u) = u for every u ∈ G.172

An automorphism is a bijective endomorphism whose inverse is a homomorphism. An173

endomorphism is trivial if it is either an automorphism or a constant map; otherwise174

it is non-trivial. A digraph is endo-trivial if all of its endomorphisms are trivial. An175

endomorphism e of a digraph G fixes a subset S ⊆ V (G) if e(S) = S, that is, e(x) ∈ S176

for every x ∈ S, and e fixes an induced subgraph F of G if it is the identity on V (F). It177

fixes an induced subgraph F up to automorphism if e(F) is an automorphic copy of F. An178

endomorphism e of G is a retraction of G if e is the identity on e(V (G)). A digraph is179

retract-trivial if all of its retractions are the identity or constant maps. Note that endo-180

triviality implies retract-triviality, but the reverse implication is not necessarily true (see181

[15]). However, on reflexive tournaments both concepts do coincide [15].182

We need a series of results from [15]. The third one follows from the well-known fact that183

every strongly connected tournament has a directed Hamilton cycle [6].184

▶ Lemma 4 ([15]). A reflexive tournament is endo-trivial if and only if it is retract-trivial.185

▶ Lemma 5 ([15]). Let H be an endo-trivial reflexive digraph with at least three vertices.186

Then every polymorphism of H is essentially unary.187

▶ Lemma 6 ([15]). If H is an endo-trivial reflexive tournament, then H contains a directed188

Hamilton cycle.189

▶ Lemma 7 ([15]). If H is an endo-trivial reflexive tournament, then every homomorphic190

image of H of size 1 < n < |V (H)| has a double edge.191

▶ Corollary 8. If H is an endo-trivial reflexive digraph on at least three vertices, then192

QCSP(H) is NP-hard (in fact it is even Pspace-complete).193

Proof. This follows from Lemma 5 and [3]. ◀194

3 The Proof of the NP-Hard Cases of the Dichotomy195

We commence with the NP-hard cases of the dichotomy. The simpler NL cases will follow.196
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Figure 1 The gadget Cyl∗m in the case m := 4 (self-loops are not drawn). We usually visualise
the right-hand copy of DC∗

4 as the “bottom” copy and then we talk about vertices “above” and
“below” according to the red arrows.

3.1 The NP-Hardness Gadget197

We introduce the gadget Cyl∗m from [15] drawn in Figure 1. Take m disjoint copies of the198

(reflexive) directed m-cycle DC∗
m arranged in a cylindrical fashion so that there is an edge199

from i in the jth copy to i in the (j + 1)th copy (drawn in red), and an edge from i in the200

(j + 1)th copy to (i + 1) mod m in the jth copy (drawn in green). We consider DC∗
m to201

have vertices {1, . . . , m}. Recall that every strongly connected (reflexive) tournament on m202

vertices has a Hamilton Cycle HCm. We label the vertices of HCm as 1, . . . , m in order to203

attach it to the gadget Cyl∗m.2204

The following lemma follows from induction on the copies of DC∗
m, since a reflexive205

tournament has no double edges.206

▶ Lemma 9 ([15]). In any homomorphism h from Cyl∗m, with bottom cycle DC∗
m, to a207

reflexive tournament, if |h(DC∗
m)| = 1, then |h(Cyl∗m)| = 1.208

We will use another property, denoted (†), of Cyl∗m, which is that the retractions from Cyl∗m209

to its bottom copy of DC∗
m, once propagated through the intermediate copies, induce on210

the top copy precisely the set of automorphisms of DC∗
m. That is, the top copy of DC∗

m is211

mapped isomorphically to the bottom copy, and all such isomorphisms may be realised. The212

reason is that in such a retraction, the (j + 1)th copy may either map under the identity213

to the jth copy, or rotate one edge of the cycle clockwise, and Cyl∗m consists of sufficiently214

many (namely m) copies of DC∗
m. Now let H be a reflexive tournament that contains a215

subtournament H0 on m vertices that is endo-trivial. By Lemma 6, we find that H0 contains216

at least one directed Hamilton cycle HC0. Define Spillm(H[H0, HC0]) as follows. Begin with217

H and add a copy of the gadget Cyl∗m, where the bottom copy of DC∗
m is identified with HC0,218

to build a digraph F(H0, HC0). Now ask, for some y ∈ V (H) whether there is a retraction r219

of F(H0, HC0) to H so that some vertex x (not dependent on y) in the top copy of DC∗
m220

in Cyl∗m is such that r(x) = y. Such vertices y comprise the set Spillm(H[H0, HC0]).221

Remark 1. If x belongs to some copy of DC∗
m that is not the top copy, we can find a222

vertex x′ in the top copy of DC∗
m and a retraction r′ from F(H0, HC0) to H with r′(x′) =223

r(x) = y, namely by letting r′ map the vertices of higher copies of DC∗
m to the image224

2 The superscripted ∗ indicates that the corresponding graph is reflexive. This notation is inherited from
[15]. It is not significant since we could safely assume every graph we work with is reflexive as the
template is a reflexive tournament.
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of their corresponding vertex in the copy that contains x. In particular this implies that225

Spillm(H[H0, HC0]) contains V (H0).226

We note that the set Spillm(H[H0, HC0]) is potentially dependent on which Hamilton cycle227

in H0 is chosen. We now recall that Spillm(H[H0, HC0]) = V (H) if H retracts to H0.228

▶ Lemma 10 ([15]). If H is a reflexive tournament that retracts to a subtournament H0 with229

Hamilton cycle HC0, then Spillm(H[H0, HC0]) = V (H).230

We now review a variant of a construction from [8]. Let G be a graph containing H where231

|V (H)| is of size n. Consider all possible functions λ : [n] → V (H) (let us write λ ∈ V (H)[n] of232

cardinality N). For some such λ, let G(λ) be the graph G enriched with constants c1, . . . , cn233

where these are interpreted over V (H) according to λ in the natural way (acting on the234

subscripts). We use calligraphic notation to remind the reader the signature has changed235

from {E} to {E, c1, . . . , cn} but we will still treat these structures as graphs. If we write236

G(λ) without calligraphic notation we mean we look at only the {E}-reduct, that is, we drop237

the constants. Of course, G(λ) will always be G.238

Let G =
⊗

λ∈V (H)[n] G(λ). That is, the vertices of G are N -tuples over V (G) and239

there is an edge between two such vertices (x1, . . . , xN ) and (y1, . . . , yN ) if and only if240

(x1, y1), . . . , (xN , yN ) ∈ E(G). Finally, the constants ci are interpreted as (x1, . . . , xN ) so241

that λ1(ci) = x1, . . . , λN (ci) = xN . An important induced substructure of G is {(x, . . . , x) :242

x ∈ V (G)}. It is a copy of G called the diagonal copy and will play an important role in243

the sequel. To comprehend better the construction of G from the sundry G(λ), confer on244

Figure 2.245

The final ingredient of our fundamental construction involves taking some structure G246

and making its canonical query with all vertices other than those corresponding to c1, . . . , cn247

becoming existentially quantified variables (as usual in this construction). We then turn248

the c1, . . . , cn to variables y1, . . . , yn to make φG(y1, . . . , yn). Let H come from the given249

construction in which G = H. It is proved in [8] that H′ |= ∀y1, . . . , yn φH(y1, . . . , yn) if and250

only if QCSP(H) ⊆ QCSP(H′) (here we identify QCSP(H) with the set of sentences that251

form its yes-instances). By way of a side note, let us consider a k-ary relation R over H with252

tuples (x1
1, . . . , x1

k), . . . , (xr
1, . . . , xr

k). For i ∈ [r], let λi map (c1, . . . , ck) to (xi
1, . . . , xi

k). Let253

H =
⊗

λ∈{λ1,...,λr} H(λ). Then φH(y1, . . . , yn) is the closure of R under the polymorphisms254

of H.255

3.2 The strongly connected case: Two Base Cases256

Recall that if H is a (reflexive) endo-trivial tournament, then QCSP(H) is NP-hard due to257

Lemma 5 combined with the results from [3] (indeed, we may even say Pspace-complete).258

However H may not be endo-trivial. We will now show how to deal with the case where H is259

not endo-trivial but retracts to an endo-trivial subtournament. For doing this we use the260

NP-hardness gadget, but we need to distinguish between two different cases.261

▶ Lemma 11 (Base Case I.). Let H be a reflexive tournament that retracts to an endo-262

trivial subtournament H0 with Hamilton cycle HC0. Assume that H retracts to H′
0 for263

every isomorphic copy H′
0 = i(H0) of H0 in H with Spillm(H[H′

0, i(HC0)]) = V (H). Then264

H0-Retraction can be polynomially reduced to QCSP(H).265

Proof. Let m be the size of |V (H0)| and n be the size of |V (H)|. Let G be an instance of266

H0-Retraction. We build an instance φ of QCSP(H) in the following fashion. First, take267

a copy of H together with G and build G′ by identifying these on the copy of H0 that they268
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Figure 2 Illustrations of direct product with constants.
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both possess as an induced subgraph. Now, consider all possible functions λ : [n] → V (H).269

For some such λ, let G′(λ) be the graph enriched with constants c1, . . . , cn where these are270

interpreted over some subset of V (H) according to λ in the natural way (acting on the271

subscripts).272

Let G′ =
⊗

λ∈V (H)[n] G′(λ). Let G′d, Hd and Hd
0 be the diagonal copies of G′, H and H0273

in G′. Let H be the subgraph of G′ induced by V (H) × · · · × V (H). Note that the constants274

c1, . . . , cn live in H. Now build G′′ from G′ by augmenting a new copy of Cyl∗m for every275

vertex v ∈ V (H)\V (Hd
0). Vertex v is to be identified with any vertex in the top copy of DC∗

m276

in Cyl∗m and the bottom copy of DC∗
m is to be identified with HC0 in Hd

0 according to the277

identity function. (Thus, in each case, the new vertices are the middle cycles of Cyl∗m and all278

but one of the vertices in the top cycle of Cyl∗m.)279

Finally, build φ from the canonical query of G′′ where we additionally turn the constants280

c1, . . . , cn to outermost universal variables. The size of φ is doubly exponential in n (the size281

of H) but this is constant, so still polynomial in the size of G.282

We claim that G retracts to H0 if and only if φ ∈ QCSP(H).283

First suppose that G retracts to H0. Let λ be some assignment of the universal variables of284

φ to H. To prove φ ∈ QCSP(H) it suffices to prove that there is a homomorphism from G′′ to H285

that extends λ. Then for this it suffices to prove that there is a homomorphism h from G′ that286

extends λ. Let us explain why. Because H retracts to H0, we have Spillm(H[H0, HC0]) = V (H)287

due to Lemma 10. Hence, if h(x) = y for two vertices x ∈ V (H) \ V (Hd
0) and y ∈ V (H), we288

can always find a retraction of the graph F(H0, HC0) to H that maps x to y, and we mimic289

this retraction on the corresponding subgraph in G′′. The crucial observation is that this can290

be done independently for each vertex in V (H) \ V (Hd
0), as two vertices of different copies of291

Cyl∗m are only adjacent if they both belong to H.292

Henceforth let us consider the homomorphic image of G′ that is G′(λ). To prove φ ∈293

QCSP(H) it suffices to prove that there is a homomorphism from G′(λ) to H that extends λ.294

Note that it will be sufficient to prove that G′ retracts to H. Let h be the natural retraction295

from G′ to H that extends the known retraction from G to H0. We are done.296

Suppose now φ ∈ QCSP(H). Choose some surjection for λ, the assignment of the universal297

variables of φ to H. Recall N = |V (H)[n]|. The evaluation of the existential variables that298

witness φ ∈ QCSP(H) induces a surjective homomorphism s from G′′ to H which contains299

within it a surjective homomorphism s′ from H = HN to H. Consider the diagonal copy of300

Hd
0 ⊂ Hd ⊂ G′d in G′. By abuse of notation we will also consider each of s and s′ acting just301

on the diagonal. If |s′(Hd
0)| = 1, by construction of G′′, we have |s′(Hd)| = 1. Indeed, this was302

the property we noted in Lemma 9. By Lemma 1, this would mean s′ is uniformly mapping303

H to one vertex, which is impossible as s′ is surjective. Now we will work exclusively in the304

diagonal copy G′d. As 1 < |s′(Hd
0)| < m is not possible either due to Lemma 7, we find that305

|s′(Hd
0)| = m, and indeed s′ maps Hd

0 to a copy of itself in H which we will call H′
0 = i(Hd

0)306

for some isomorphism i.307

We claim that Spillm(H[H′
0, i(HCd

0)]) = V (H). In order to see this, consider a vertex308

y ∈ V (H). As s′ is surjective, there exists a vertex x ∈ V (H) with s′(x) = y. By construction,309

x belongs to some top copy of DC∗
m in Cyl∗m in F(H0, HC0). We can extend i−1 to an310

isomorphism from the copy of Cyl∗m (which has i(HCd
0) as its bottom cycle) in the graph311

F(H′
0, i(HCd

0)) to the copy of Cyl∗m (which has HCd
0 as its bottom cycle) in the graph312

F(H0, HC0). We define a mapping r∗ from F(H′
0, i(HCd

0)) to H by r∗(u) = s′ ◦ i−1(u) if313

u is on the copy of Cyl∗m in F(H′
0, i(HCd

0)) and r∗(u) = u otherwise. We observe that314

r∗(u) = u if u ∈ V (H′
0) as s′ coincides with i on H0. As Hd

0 separates the other vertices315

of the copy of Cyl∗m from V (Hd) \ V (Hd
0), in the sense that removing Hd

0 would disconnect316
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Figure 3 An interesting tournament H on six vertices (self-loops are not drawn). This tournament
does not retract to the DC∗

3 on the left-hand side, yet Spill3(H[DC∗
3, DC3]) = V (H).

them, this means that r∗ is a retraction from F(H′
0, i(HCd

0)) to H. We find that r∗ maps i(x)317

to s′ ◦ i−1(i(x)) = s′(x) = y. Moreover, as x is in the top copy of DC∗
m in F(H0, HC0), we318

conclude that y always belongs to Spillm(H[H′
0, i(HCd

0)]).319

As Spillm(H[H′
0, i(HCd

0)]) = V (H), we find, by assumption of the lemma, that there exists320

a retraction r from H to H′
0. Now, recalling that we can view s′ acting just on the diagonal321

copy Hd of H, i−1 ◦ r ◦ s′ is the desired retraction of G to H0. ◀322

We now need to deal with the situation in which we have an isomorphic copy H′
0 = i(H0)323

of H0 in H with Spillm(H[H′
0, i(HC0)]) = V (H), such that H does not retract to H′

0 (see324

Figure 3 for an example). We cannot deal with this case in a direct manner and first show325

another base case. For this we need the following lemma and an extension of endo-triviality326

that we discuss afterwards.327

▶ Lemma 12 ([15]). Let H be a reflexive tournament, containing a subtournament H0 so that328

any endomorphism of H that fixes H0 as a graph is an automorphism. Then any endomorphism329

of H that maps H0 to an isomorphic copy H′
0 = i(H0) of itself is an automorphism of H.330

Let H0 be an induced subgraph of a digraph H. We say that the pair (H, H0) is endo-trivial331

if all endomorphisms of H that fix H0 are automorphisms.332

▶ Lemma 13 (Base Case II). Let H be a reflexive tournament with a subtournament H0 with333

Hamilton cycle HC0 so that (H, H0) and H0 are endo-trivial and Spillm(H[H0, HC0]) = V (H).334

Then H-Retraction can be polynomially reduced to QCSP(H).335

Proof. Let G be an instance of H-Retraction. Let m be the size of |V (H0)| and n be the336

size of |V (H)|. We build an instance φ of QCSP(H) in the following fashion. Consider all337

possible functions λ : [n] → V (H). For some such λ, let G(λ) be the graph enriched with338

constants c1, . . . , cn where these are interpreted over some subset of V (H) according to λ in339

the natural way (acting on the subscripts).340

Let G =
⊗

λ∈V (H)[n] G(λ). Let Gd, Hd and Hd
0 be the diagonal copies of G, H and H0341

in G. Let H be the subgraph of G induced by V (H) × · · · × V (H). Note that the constants342

c1, . . . , cn live in H. Now build G′ from G by augmenting a new copy of Cyl∗m for every vertex343

v ∈ V (H) \ V (Hd
0). Vertex v is to be identified with any vertex in the top copy of DC∗

m344

in Cyl∗m and the bottom copy of DC∗
m is to be identified with HC0 in Hd

0 according to the345

identity function.346

Finally, build φ from the canonical query of G′ where we additionally turn the constants347

c1, . . . , cn to outermost universal variables.348
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First suppose that G retracts to H by r. Let λ be some assignment of the universal349

variables of φ to H. To prove φ ∈ QCSP(H) it suffices to prove that there is a homomorphism350

from G′ to H that extends λ and for this it suffices to prove that there is a homomorphism351

from G that extends λ. This is always possible since we have Spillm(H[H0, HC0]) = V (H) by352

assumption.353

Henceforth let us consider the homomorphic image of G that is G(λ). To prove φ ∈354

QCSP(H) it suffices to prove that there is a homomorphism from G(λ) to H that extends355

λ. Note that it will be sufficient to prove that G retracts to H. Well this was our original356

assumption so we are done.357

Suppose now φ ∈ QCSP(H). Choose some surjection for λ, the assignment of the universal358

variables of φ to H. Recall N = |V (H)[n]|. The evaluation of the existential variables that359

witness φ ∈ QCSP(H) induces a surjective homomorphism s from G′ to H which contains360

within it a surjective homomorphism s′ from H = HN to H. Consider the diagonal copy of361

Hd
0 ⊂ Hd ⊂ Gd in (G)N . By abuse of notation we will also consider each of s and s′ acting362

just on the diagonal. If |s′(Hd
0)| = 1, by construction of G′, we have |s′(Hd)| = 1. By Lemma363

1, this would mean s′ is uniformly mapping H to one vertex, which is impossible as s′ is364

surjective. Now we will work exclusively on the diagonal copy Gd. As 1 < |s′(Hd
0)| < m is365

not possible either due to Lemma 7, we find that |s′(Hd
0)| = m, and indeed s′ maps Hd

0 to a366

copy of itself in H which we will call H′
0 = i(Hd

0) for some isomorphism i.367

As (H, H0) is endo-trivial, Lemma 12 tells us that the restriction of s′ to Hd is an368

automorphism of Hd, which we call α. The required retraction from G to H is now given by369

α−1 ◦ s′. ◀370

3.3 The strongly connected case: Generalising the Base Cases371

We now generalise the two base cases to more general cases via some recursive procedure.372

Afterwards we will show how to combine these two cases to complete our proof. We will first373

need a slightly generalised version of Lemma 12, which nonetheless has virtually the same374

proof.375

▶ Lemma 14 ([15]). Let H2 ⊃ H1 ⊃ H0 be a sequence of strongly connected reflexive376

tournaments, each one a subtournament of the one before. Suppose that any endomorphism377

of H1 that fixes H0 is an automorphism. Then any endomorphism h of H2 that maps H0 to378

an isomorphic copy H′
0 = i(H0) of itself also gives an isomorphic copy of H1 in h(H1).379

The following two lemmas generalise Lemmas 11 and 13. The proof of the second is380

omitted.381

▶ Lemma 15 (General Case I). Let H0, H1, . . . , Hk, Hk+1 be reflexive tournaments, the first382

k of which have Hamilton cycles HC0, HC1, . . . , HCk, respectively, so that H0 ⊆ H1 ⊆ · · · ⊆383

Hk ⊆ Hk+1. Assume that H0, (H1, H0), . . . , (Hk, Hk−1) are endo-trivial and that384

Spilla0(H1[H0, HC0]) = V (H1)
Spilla1(H2[H1, HC1]) = V (H2)

...
...

...
Spillak−1

(Hk[Hk−1, HCk−1]) = V (Hk).

385

Moreover, assume that Hk+1 retracts to Hk and also to every isomorphic copy H′
k = i(Hk)386

of Hk in Hk+1 with Spillak
(Hk+1[H′

k, i(HCk)]) = V (Hk+1). Then Hk-Retraction can be387

polynomially reduced to QCSP(Hk+1).388
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Proof. Let ak+1, . . . , a0 be the cardinalities of |V (Hk+1)|, . . . , |V (H0|), respectively. Let389

n = ak+1. Let G be an instance of Hk-Retraction. We will build an instance φ of390

QCSP(Hk+1) in the following fashion. First, take a copy of Hk+1 together with G and build391

G′ by identifying these on the copy of Hk that they both possess as an induced subgraph.392

Consider all possible functions λ : [n] → V (Hk+1). For some such λ, let G′(λ) be the393

graph enriched with constants c1, . . . , cn where these are interpreted over some subset of394

V (Hk+1) according to λ in the natural way (acting on the subscripts).395

Let G′ =
⊗

λ∈V (Hk+1)[n] G′(λ). Let G′d, Hd
k+1 and Hd

k etc. be the diagonal copies of G′d,396

Hk+1 and Hk in G′. Let Hk+1 be the subgraph of G′ induced by V (Hk+1) × · · · × V (Hk+1).397

Note that the constants c1, . . . , cn live in Hk+1. Now build G′′ from G′ by augmenting a new398

copy of Cyl∗ak
for every vertex v ∈ V (Hk+1) \ V (Hd

k). Vertex v is to be identified with any399

vertex in the top copy of DCak
in Cyl∗ak

and the bottom copy of DCak
is to be identified400

with HCk in Hd
k according to the identity function.401

Then, for each i ∈ [k], and v ∈ V (Hd
i ) \ V (Hd

i−1), add a copy of Cyl∗ai−1
, where v is402

identified with any vertex in the top copy of DC∗
ai−1

in Cyl∗ai−1
and the bottom copy of403

DC∗
i−1 is to be identified with Hi−1 according to the identity map of DC∗

ai−1
to HCi−1.404

Finally, build φ from the canonical query of G′′ where we additionally turn the constants405

c1, . . . , cn to outermost universal variables.406

First suppose that G retracts to Hk. Let λ be some assignment of the universal variables407

of φ to Hk+1. To prove φ ∈ QCSP(Hk+1) it suffices to prove that there is a homomorphism408

from G′′ to Hk+1 that extends λ and for this it suffices to prove that there is a homomorphism409

from G′ that extends λ. Let us explain why. We map the various copies of Cyl∗ai−1
in G′′

410

in any suitable fashion, which will always exist due to our assumptions and the fact that411

Spillak
(Hk+1[Hk, HCk]) = V (Hk+1), which follows from our assumption that Hk+1 retracts412

to Hk and Lemma 10.413

Henceforth let us consider the homomorphic image of G′ that is G′(λ). To prove φ ∈414

QCSP(Hk+1) it suffices to prove that there is a homomorphism from G′(λ) to Hk+1 that415

extends λ. Note that it will be sufficient to prove that G′ retracts to Hk+1. Let h be the416

natural retraction from G′ to Hk+1 that extends the known retraction from G to Hk. We are417

done.418

Suppose now φ ∈ QCSP(Hk+1). Choose some surjection for λ, the assignment of the419

universal variables of φ to Hk+1. Let N = |V (Hk+1)[n]|. The evaluation of the existential420

variables that witness φ ∈ QCSP(Hk+1) induces a surjective homomorphism s from G′ to421

Hk+1 which contains within it a surjective homomorphism s′ from H = HN
k+1 to Hk+1.422

Consider the diagonal copy of Hd
0 ⊂ · · · ⊂ Hd

k ⊂ Hd
k+1 ⊂ G′d in G′. By abuse of notation we423

will also consider each of s and s′ acting just on the diagonal. If |s′(Hd
0)| = 1, by construction424

of G′′, we could follow the chain of spills to deduce that |s′(Hd
k+1)| = 1, which is not possible425

by Lemma 1. Moreover, 1 < |s′(Hd
0 )| < |V (Hd

0 )| is impossible due to Lemma 7. Now we will426

work exclusively on the diagonal copy G′d.427

Thus, |s′(Hd
0)| = |V (Hd

0)| and indeed s′ maps Hd
0 to an isomorphic copy of itself in Hk+1428

which we will call H′
0 = i(Hd

0). We now apply Lemma 14 as well as our assumed endo-429

trivialities to derive that s′ in fact maps Hd
k by the isomorphism i to a copy of itself in Hk+1430

which we will call H′
k. Since s′ is surjective, we can deduce that Spillak

(Hk+1[H′
k, i(HCd

k)]) =431

V (Hk+1) in the same way as in the proof of Lemma 11. and so there exists a retraction r432

from Hk+1 to H′
k. Now i−1 ◦ r ◦ s′ gives the desired retraction of G to Hk. ◀433

▶ Lemma 16 (General Case II). Let H0, H1, . . . , Hk, Hk+1 be reflexive tournaments, the first434

k + 1 of which have Hamilton cycles HC0, HC1, . . . , HCk, respectively, so that H0 ⊆ H1 ⊆435

· · · ⊆ Hk ⊆ Hk+1. Suppose that H0, (H1, H0), . . . , (Hk, Hk−1), (Hk+1, Hk) are endo-trivial436
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and that437

Spilla0(H1[H0, HC0]) = V (H1)
Spilla1(H2[H1, HC1]) = V (H2)

...
...

...
Spillak−1

(Hk[Hk−1, HCk−1]) = V (Hk)
Spillak

(Hk+1[Hk, HCk]) = V (Hk+1)

438

Then Hk+1-Retraction can be polynomially reduced to QCSP(Hk+1).439

▶ Corollary 17. Let H be a non-trivial strongly connected reflexive tournament. Then440

QCSP(H) is NP-hard.441

Proof. As H is a strongly connected reflexive tournament, which has more than one vertex by442

our assumption, H is not transitive. Note that H-Retraction is NP-complete (see Section443

4.5 in [15], using results from [14, 5, 16]). Thus, if H is endo-trivial, the result follows from444

Lemma 11 (note that we could also have used Corollary 8).445

Suppose H is not endo-trivial. Then, by Lemma 4, H is not retract-trivial either. This446

means that H has a non-trivial retraction to some subtournament H0. We may assume that447

H0 is endo-trivial, as otherwise we will repeat the argument until we find a retraction from448

H to an endo-trivial (and consequently strongly connected) subtournament.449

Suppose that H retracts to all isomorphic copies H′
0 = i(H0) of H0 within it, except possibly450

those for which Spillm(H[H′
0, i(HC0)]) ̸= V (H). Then the result follows from Lemma 11. So451

there is a copy H′
0 = i(H0) to which H does not retract for which Spillm(H[H′

0, i(HC0)]) =452

V (H). If (H, H′
0) is endo-trivial, the result follows from Lemma 13. Thus we assume (H, H′

0)453

is not endo-trivial and we deduce the existence of H′
0 ⊂ H1 ⊂ H (H1 is strictly between H454

and H′
0) so that (H1, H′

0) and H ′
0 are endo-trivial and H retracts to H1. Now we are ready to455

break out. Either H retracts to all isomorphic copies of H′
1 = i(H1) in H, except possibly456

for those so that Spillm(H[H′
1, i(HC1)]) ̸= V (H), and we apply Lemma 15, or there exists457

a copy H′
1, with Spillm(H[H′

1, i(HC1)]) = V (H), to which it does not retract. If (H, H′
1) is458

endo-trivial, the result follows from Lemma 16. Otherwise we iterate the method, which will459

terminate because our structures are getting strictly larger. ◀460

3.4 An initial strongly connected component that is non-trivial461

This section follows a similar methodology to the previous two sections. However, the proofs462

are a little more involved and are omitted from this version of the paper.463

▶ Corollary 18. Let H be a reflexive tournament with an initial strongly connected component464

that is non-trivial. Then QCSP(H) is NP-hard.465

4 The Proof of the NL Cases of the Dichotomy466

A particular role in the tractable part of our dichotomy will be played by TT∗
2, the reflexive467

transitive 2-tournament, which has vertex set {0, 1} and edge set {(0, 0), (0, 1), (1, 1)}.468

▶ Lemma 19. Let H = H1 ⇒ · · · ⇒ Hn be a reflexive tournament on m + 2 vertices with469

V (H1) = {s} and V (Hn) = {t}. Then there exists a surjective homomorphism from (TT∗
2)m

470

to H.471
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Proof. Build a surjective homomorphism f from (TT∗
2)m to H in the following fashion. Let472

xi be the m-tuple which has 1 in the ith position and 0 in all other positions. For i ∈ [m],473

let f map xi to i. Let f map (0, . . . , 0) to s and everything remaining to t.474

By construction, f is surjective. To see that f is a homomorphism, let ((y1, . . . , ym),475

(z1, . . . , zm)) ∈ E((TT∗
2)m), which is the case exactly when yi ≤ zi for all i ∈ [m]. Let476

f(y1, . . . , ym) = u and f(z1, . . . , zm) = v. First suppose that y1, . . . , ym are all 0. Then u = s.477

As s has an out-edge to every vertex of H, we find that (u, v) ∈ E(H). Now suppose that478

y1, . . . , ym contains a single 1. If (y1, . . . , ym) = (z1, . . . , zm), then u = v. As H is reflexive,479

we find that (u, v) ∈ H. If (y1, . . . , ym) ̸= (z1, . . . , zm), then v = t. As t has an in-edge from480

every vertex of H, we find that (u, v) ∈ E(H). Finally suppose that y1, . . . , ym contains more481

than one 1. Then u = v = t. As H is reflexive, we find that (u, v) ∈ E(H). ◀482

We also need the following lemma, which follows from combining some known results.483

▶ Lemma 20. If H is a transitive reflexive tournament then QCSP(H) is in NL.484

Proof. It is noted in [15] that H has the ternary median operation as a polymorphism. It485

follows from well-known results (e.g. in [7, 9]) that QCSP(H) is in NL. ◀486

The other tractable cases are more interesting.487

We are now ready to prove the main result of this section.488

▶ Theorem 21. Let H = H1 ⇒ · · · ⇒ Hn be a reflexive tournament. If |V (H1)| = |V (Hn)| =489

1, then QCSP(H) is in NL.490

Proof. Let |V (H)| = m + 2 for some m ≥ 0. By Lemma 19, there exists a surjective491

homomorphism from (TT∗
2)m to H. There exists also a surjective homomorphism from H to492

TT∗
2; we map s to 0 and all other vertices of H to 1. It follows from [8] that QCSP(H) =493

QCSP(TT∗
2) meaning we may consider the latter problem. We note that TT∗

2 is a transitive494

reflexive tournament. Hence, we may appply Lemma 20. ◀495

5 Final result and remarks496

We are now in a position to prove our main dichotomy theorem.497

▶ Theorem 22. Let H = H1 ⇒ · · · ⇒ Hn be a reflexive tournament. If |V (H1)| = |V (Hn)| =498

1, then QCSP(H) is in NL; otherwise it is NP-hard.499

Proof. The NL case follow from Theorem 21. The NP-hard cases follow from Corollary 17 and500

Corollary 18, bearing in mind the case with a non-trivial final strongly connected component501

is dual to the case with a non-trivial initial strongly connected component (map edges (x, y)502

to (y, x)). ◀503

Theorem 22 resolved the open case in Table 1. Recall that the results for the irreflexive504

tournaments in this table were all proven in a more general setting, namely for irreflexive505

semicomplete graphs. A natural direction for future research is to determine a complexity506

dichotomy for QCSP and SCSP for reflexive semicomplete graphs. We leave this as an507

interesting open direction.508
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