
1

Linearly ordered colourings of hypergraphs

TAMIO-VESA NAKAJIMA, Department of Computer Science, University of Oxford, UK

STANISLAV ŽIVNÝ, Department of Computer Science, University of Oxford, UK

A linearly ordered (LO) 𝑘-colouring of an 𝑟 -uniform hypergraph assigns an integer from {1, . . . , 𝑘} to every

vertex so that, in every edge, the (multi)set of colours has a unique maximum. Equivalently, for 𝑟 = 3, if two

vertices in an edge are assigned the same colour, then the third vertex is assigned a larger colour (as opposed

to a different colour, as in classic non-monochromatic colouring). Barto, Battistelli, and Berg [STACS’21]

studied LO colourings on 3-uniform hypergraphs in the context of promise constraint satisfaction problems

(PCSPs). We show two results.

First, given a 3-uniform hypergraph that admits an LO 2-colouring, one can find in polynomial time an LO

𝑘-colouring with 𝑘 = 𝑂 (3

√︁
𝑛 log log𝑛/log𝑛).

Second, given an 𝑟 -uniform hypergraph that admits an LO 2-colouring, we establish NP-hardness of finding
an LO 𝑘-colouring for every constant uniformity 𝑟 ≥ 𝑘 + 2. In fact, we determine relationships between

polymorphism minions for all uniformities 𝑟 ≥ 3, which reveals a key difference between 𝑟 < 𝑘 + 2 and

𝑟 ≥ 𝑘 + 2 and which may be of independent interest. Using the algebraic approach to PCSPs, we actually show

a more general result establishing NP-hardness of finding an LO 𝑘-colouring for LO ℓ-colourable 𝑟 -uniform

hypergraphs for 2 ≤ ℓ ≤ 𝑘 and 𝑟 ≥ 𝑘 − ℓ + 4.

CCS Concepts: • Theory of computation → Problems, reductions and completeness; Approximation
algorithms analysis; • Mathematics of computing→ Graph theory.

Additional Key Words and Phrases: hypegraph colourings, promise constraint satisfaction, PCSP, polymor-

phisms, minions, algebraic approach

ACM Reference Format:
Tamio-Vesa Nakajima and Stanislav Živný. 2022. Linearly ordered colourings of hypergraphs. ACM Trans.

Comput. Theory 1, 1, Article 1 (January 2022), 18 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
The computational complexity of the approximate graph colouring problem [23] is an outstanding

open problem in theoretical computer science. Given a 3-colourable graph 𝐺 on 𝑛 vertices, is it

possible to find a 𝑘-colouring of 𝐺? On the tractability side, the current best is a polynomial-time

algorithm of Kawarabayashi and Thorup [31] that finds a 𝑘-colouring with 𝑘 = 𝑘 (𝑛) = 𝑛0.199 colours.
On the intractability side, the state-of-the-art for constant 𝑘 has only recently been improved from

𝑘 = 4, due to Khanna, Linial, and Safra [32] and Guruswami and Khanna [24] to 𝑘 = 5, due to Barto,

Bulín, Krokhin, and Opršal [5]. The authors of [5] introduced a general algebraic methodology

for studying the computational complexity of so-called promise constraint satisfaction problems

(PCSPs). Going beyond the work in [5], for graphs with a promised higher chromatic number than

three, the current best intractability results for constantly many extra colours is due to Wrochna

Authors’ addresses: Tamio-Vesa Nakajima, Department of Computer Science, University of Oxford, Oxford, UK, tamio-

vesa.nakajima@cs.ox.ac.uk; Stanislav Živný, Department of Computer Science, University of Oxford, Oxford, UK, standa.

zivny@cs.ox.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1942-3454/2022/1-ART1 $15.00

https://doi.org/0000001.0000001

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

HTTPS://ORCID.ORG/000-0003-3684-9412
HTTPS://ORCID.ORG/0000-0002-0263-159X
https://doi.org/0000001.0000001
https://orcid.org/000-0003-3684-9412
https://orcid.org/0000-0002-0263-159X
https://doi.org/0000001.0000001

1:2 Tamio-Vesa Nakajima and Stanislav Živný

and Živný [41], building on the work of Huang [29]. Hardness of approximate graph colouring has

been established under stronger assumptions. In particular, Dinur, Mossel, and Regev [20] showed

NP-hardness under a non-standard variant of the UGC Conjecture of Khot [34] and Guruswami

and Sandeep [26] (building on [41]) showed NP-hardness under the 𝑑-to-1 conjecture [34] for any

fixed 𝑑 .

The situation is much better understood for the approximate hypergraph colouring problem

with the classic notion of a colouring leaving no edge monochromatic. A celebrated result of

Dinur, Regev, and Smyth established that finding a 𝑘-colouring of a 3-uniform hypergraph that is

ℓ-colourable is NP-hard for every constant 2 ≤ ℓ ≤ 𝑘 [21] (and this also implies the same result on

𝑟 -uniform hypergraphs for every constant uniformity 𝑟 ≥ 3). This was also recently proved, with

different techniques, by Wrochna [40].

Different variants of approximate hypergraph colourings, such as rainbow colourings, were

studied, e.g. in [2, 12, 14, 25, 27], but most complexity classifications related to these problems are

open. Some intractability results are also known for colourings with a super-constant number

of colours. For graphs, conditional hardness was established by Dinur and Shinkar [22]. For

hypergraphs, intractability results were obtained by Bhangale [10] and by Austrin, Bhanghale, and

Potukuchi [1].

Barto, Battistelli, and Berg have recently studied systematically a certain type of PCSPs on non-

Boolean domains and identified a very natural variant of 𝑘-colourings of 3-uniform hypergraphs,

called linearly ordered (LO) 𝑘-colourings [4]. A 𝑘-colouring of a 3-uniform hypergraph with colours

[𝑘] = {1, . . . , 𝑘} is an LO colouring if, for every edge, it holds that, if two vertices are coloured

with the same colour, then the third vertex is coloured with a larger colour. (In the classic non-

monochromatic colouring, the requirement is that the third vertex should be coloured with a

different colour, but not necessarily a larger one.) An LO 2-colouring is thus a “1-in-3” colouring.

Barto et al. asked whether finding an LO 𝑘-colouring of a 3-uniform hypergraph is NP-hard for a

fixed 𝑘 ≥ 3 if the input hypergraph is promised to admit an LO 2-colouring.

Contributions. While we do not resolve the question raised in [4], we obtain non-trivial results,

both positive (algorithmic) and negative (hardness).

First, we present an efficient algorithm for finding an LO 𝑘-colouring of a 3-uniform hypergraph

that admits an LO 2-colouring with 𝑘 = 𝑂 (3

√︁
𝑛 log log𝑛/log𝑛). As mentioned above, there are only

a few results on hypergraph colourings with super-constantly many colours, e.g. [18, 35, 36] that

deal with hypergraph non-monochromatic colourings.

Second, we establish NP-hardness of finding an LO 𝑘-colouring of an 𝑟 -uniform hypergraph if an

LO 2-colouring is promised for every constant uniformity 𝑟 ≥ 𝑘 +2. In fact, we prove a more general

result that finding an LO 𝑘-colouring of an 𝑟 -uniform hypergraph admitting an LO ℓ-colouring is

NP-hard for every constant 2 ≤ ℓ ≤ 𝑘 and 𝑟 ≥ 𝑘 − ℓ + 4. This result is based the algebraic approach

to PCSPs and in particular on minions [5]. As a matter of fact, we establish relationships of the

polymorphism minions of the LO 2- vs 𝑘-colourings on 𝑟 -uniform hypergraphs, which may be of

independent interest. This gives the advertised intractability result but also an impossibility result

on certain types of polynomial-time reductions (namely pp-constructions [5]) between LO 2- vs

𝑘-colourings on 𝑟 -uniform hypergraphs with uniformity 𝑟 ≥ 𝑘 + 2 and 𝑟 < 𝑘 + 2, cf. the discussion

in Section 5.

Related work. A classic non-monochromatic colouring of a hypergraph requires that no edge

should be monochromatic. Rainbow colourings, introduced in [3], require that every colour should

occur at least once in every edge, cf. also [2, 25, 27]. LO colourings are somewhat in-between

non-monochromatic and rainbow colourings, requiring that the largest colour in every edge is

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Linearly ordered colourings of hypergraphs 1:3

used exactly once. LO colourings – as well as a related notion of conflict-free colourings, which

require that at least one colour in each edge should occur exactly once – have been studied under

the name of unique maximum colourings, both for graphs (where the requirement is on paths) [17]

and hypergraphs [16]. As far as we know, our results are incomparable with existing results from

the rich body of literature on unique maximum colourings. We refer the reader to the papers cited

above and the references therein.

2 PRELIMINARIES
An 𝑟 -uniform hypergraph 𝐻 is a pair (𝑉 , 𝐸) where 𝑉 is the set of vertices of the hypergraph, and

𝐸 ⊆ 𝑉 𝑟
is the set of edges of the hypergraph. In our context the order of the vertices in each edge is

irrelevant. We will allow vertices to appear multiple times in edges; however, we exclude edges of

the form (𝑣, . . . , 𝑣) — such edges would be impossible in the problems we will consider anyway.

We say that two distinct vertices 𝑢, 𝑣 are neighbours if they both belong to some edge 𝑒 ∈ 𝐸. Let
𝑁 (𝑢) be the set of neighbours of 𝑢. Call a set 𝑆 an independent set of a hypergraph 𝐻 if and only if

no two members of 𝑆 are neighbours.

A linearly ordered (LO) 𝑘-colouring of an 𝑟 -uniform hypergraph 𝐻 = (𝑉 , 𝐸) is an assignment

𝑐 : 𝑉 → [𝑘] of colours from [𝑘] = {1, . . . , 𝑘} to the vertices of 𝐻 such that, for each edge

(𝑣1, . . . , 𝑣𝑟) ∈ 𝐸, the sequence 𝑐 (𝑣1), . . . , 𝑐 (𝑣𝑟) has a unique maximum. We omit the “𝑘-” if the

number of colours is unimportant.

Example 2.1. Consider the hypergraph 𝐻 = (𝑉 , 𝐸), where 𝑉 = [4] = {1, 2, 3, 4} and 𝐸 =

{(1, 2, 3), (1, 2, 4)}. The assignment 𝑐 = {1 ↦→ 1, 2 ↦→ 1, 3 ↦→ 2, 4 ↦→ 2} is an LO 2-colouring,

and 𝑐′ (𝑥) = 𝑥 is an LO 4-colouring. On the other hand, 𝑐′′ (𝑥) = 3 − 𝑐 (𝑥) is not an LO colouring at

all, since both of the edges have two equal maximal elements when mapped through 𝑐′′.

Finding an LO 𝑘-colouring, for constant 𝑘 ≥ 3, of a 3-uniform hypergraph that admits an LO

2-colouring was studied by Barto et al. [4] in the context of promise constraint satisfaction problems

(PCSPs), which we define next.

Promise CSPs. Promise CSPs have been introduced in the works of Austrin, Guruswami, and

Håstad [3] and Brakensiek and Guruswami [13]. We follow the notation and terminology of Barto,

Bulín, Krokhin, and Opršal [5], adapted to structures consisting of a single relation.

An 𝑟 -ary structure is a pair D = (𝐷, 𝑅D), where 𝑅D ⊆ 𝐷𝑟
and 𝐷 is finite. We call 𝐷 the domain

of the structure, and 𝑅D the relation of the structure. For two 𝑟 -ary structures A,B, a homomor-

phism from A to B is a function ℎ : 𝐴 → 𝐵 such that, for each (𝑎1, . . . , 𝑎𝑟) ∈ 𝑅A, we have

(ℎ(𝑎1), . . . , ℎ(𝑎𝑟)) ∈ 𝑅B. This is written ℎ : A → B. If we wish to assert only the existence of such a

homomorphism, we write A → B.
We now define fixed-template promise constraint satisfaction problems (PCSPs). Let A and B be

two 𝑟 -ary structures with A → B; we call A and B templates. In the search version of the PCSP

with templates A and B, denoted by PCSP(A,B), the task is: Given an 𝑟 -ary structure I with the

promise that I → A, find a homomorphism from I to B, which exists by the composition of promised

homomorphism from I to A and the assumed homomorphism from A to B. In the decision version

of PCSP(A,B), the task is: Given an 𝑟 -ary structure I, output yes if I → A, and output no if I ̸→ B.
Observe that the decision version can be reduced to the search version: to solve the decision version,

run an algorithm for the search version, then check if it gives a correct answer. However, it is not

known whether the search version is polynomial-time reducible to the decision version in general.

In any case, we will use PCSP(A,B) to mean the decision version when proving hardness, and the

search version when showing algorithmic results.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Tamio-Vesa Nakajima and Stanislav Živný

LO colourings can be readily seen as PCSPs. First, observe that an 𝑟 -uniform hypergraph can

be seen as an 𝑟 -ary structure. Second, define an 𝑟 -ary structure LO𝑟
𝑘
with domain [𝑘], and whose

relation contains a tuple (𝑐1, . . . , 𝑐𝑟) if and only if the sequence 𝑐1, . . . , 𝑐𝑟 has a unique maximum.

Then, an LO 𝑘-colouring of an 𝑟 -uniform hypergraph H is the same as a homomorphism from

H (viewed as an 𝑟 -ary structure) to LO𝑟
𝑘
. Thus, the problem of finding an LO 𝑘-colouring of an

𝑟 -uniform hypergraph that has an LO 2-colouring is the same as PCSP(LO𝑟
2
, LO𝑟

𝑘
).

Results. In Section 3, we study the computational complexity of PCSP(LO3

2
, LO3

𝑘 (𝑛)), were 𝑘 (𝑛)
depends on the input size; here𝑛 denotes the number of vertices of the input (3-uniform) hypergraph.

As in Example 2.1, this is obviously possible for 𝑘 (𝑛) = 𝑛. As our first contribution, we will present
in Theorem 3.1 an efficient algorithm with 𝑘 (𝑛) = 𝑂 (3

√︁
𝑛 log log𝑛/log𝑛) colours.

In Section 5, we study the computational complexity of PCSP(LO𝑟
ℓ , LO

𝑟
𝑘
) for constant uniformity

𝑟 ≥ 3 and constant ℓ and 𝑘 with 2 ≤ ℓ ≤ 𝑘 . We establish NP-hardness of PCSP(LO𝑟
ℓ , LO

𝑟
𝑘
) for every

constant 2 ≤ ℓ ≤ 𝑘 and constant uniformity 𝑟 ≥ 𝑘 − ℓ + 4, cf. Corollary 5.7. Our hardness results are
based on the algebraic theory of minions [5], briefly introduced in Section 4. In fact, we establish

relationships between polymorphism minions of PCSP(LO𝑟
2
, LO𝑟

𝑘
) for all 𝑟 ≥ 3, cf. Theorem 5.4.

This is the full version of an ICALP 2022 paper [37], which showed weaker tractability and

intractability results. Firstly, in [37] NP-hardness of only PCSP(LO𝑟
𝑘
, LO𝑟

𝑘+1) was shown for 𝑘 ≥ 2

and 𝑟 ≥ 5. Secondly, in [37] we designed an algorithm that, for a given 3-uniform hypergraph that

admits an LO 2-colouring, finds an LO 𝑘-colouring with 𝑘 = 𝑂 (
√︁
𝑛 log log𝑛/log𝑛).1 Some of the

techniques used to establish the tractability result in the current paper are different in character to

those used for approximate graph colouring, which was the main technique used in the tractability

result in [37]. In particular, the techniques in [37] (see also the full version [38]) built on [9, 39]. We

note that we do not know how to apply the SDP-based methods from [30] directly as they seem

specific to approximate graph colouring and less suited for LO colourings.
2

3 ALGORITHMIC RESULTS
In this section we will prove the tractability results advertised above. In particular, we prove the

following.

Theorem 3.1. There is a polynomial-time algorithm that, if given an LO 2-colourable 3-uniform

hypergraph with 𝑛 vertices, finds an LO 𝑂 (3

√︁
𝑛 log log𝑛/log𝑛)-colouring.

Our algorithm will use the notion of linear hypergraphs: we call a 3-uniform hypergraph linear

if no two edges intersect in 2 or more vertices.
3

Proposition 3.2. There is a polynomial-time algorithm that, if given an LO 2-colourable 3-uniform

hypergraph 𝐻 , constructs an LO 2-colourable linear 3-uniform hypergraph 𝐻 ′
with no more vertices

than 𝐻 such that, if given an LO 𝑘-colouring of 𝐻 ′
, one can compute in polynomial time an LO

𝑘-colouring of 𝐻 .

Proof. Suppose 𝐻 is not linear already. Then it has edges (𝑥,𝑦, 𝑎) and (𝑥,𝑦, 𝑏). In all LO 2-

colourings of 𝐻 , 𝑎 and 𝑏 must be assigned the same colours. Therefore it is safe to merge 𝑎 and 𝑏.

Repeat this procedure until 𝐻 is linear. To find an LO 𝑘-colouring of 𝐻 given one of 𝐻 ′
, simply

undo the merges. □

1
The previous version of this paper [38] also contains a weaker result for 4-uniform hypergraphs.

2
Interestingly, the approximability result for the independent set problem from [28], which we will use as a black-box in

Section 3, does build on [30].

3
This needs to hold even for a pair of non-distinct vertices. For instance, we forbid the edges (1, 1, 2) and (1, 1, 3) from
existing simultaneously in the hypergraph.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Linearly ordered colourings of hypergraphs 1:5

In order to more elegantly express the algorithm we now propose, we will adapt the notion of

“progress”, introduced by Blum [11], to approximate LO colouring.

Definition 3.3. To make progress towards an LO 𝑂 (𝑓 (𝑛))-colouring of a 3-uniform hypergraph

consists of one of the following:

Type 1 Finding an independent set of size Ω(𝑛/𝑓 (𝑛)).
Type 2 Finding a set of Ω(𝑛/𝑓 (𝑛)) vertices that intersects each edge in 0 or 2 vertices.

That this notion of progress is useful is shown in the following proposition.

Proposition 3.4. Suppose there is a polynomial-time algorithm that, if given a linear LO 2-

colourable 3-uniform hypergraph, makes progress towards an LO 𝑂 (𝑓 (𝑛))-colouring, where 𝑓 (𝑛) =
Θ(𝑛𝛼 (log𝑛)𝛽 (log log𝑛)𝛾) and 𝛼 > 0. Then, there is a polynomial-time algorithm that finds an LO

𝑂 (𝑓 (𝑛))-colouring of an LO 2-colourable 3-uniform hypergraph.

Proof. We will describe a recursive procedure that achieves our goal. Due to Proposition 3.2,

we can assume that our input hypergraph is linear.

Now, at each recursive call, apply our progress-making algorithm. If we make type 1 progress,

then colour the set of vertices with a large colour ; if we make type 2 progress, then colour the set

of vertices with a small colour. In any case, remove all edges incident to the coloured set.

First, note that this algorithm always produces a valid LO colouring. It suffices to note that for

type 1 progress, any edge that was not coloured recursively intersects the maximum colour in

one vertex; whereas for type 2 progress, any edge that was not coloured recursively intersects the

minimum colour in two vertices. All such edges are thus coloured correctly.

To see why we use only𝑂 (𝑓 (𝑛)) colours, consider the number of iterations needed to reduce the

number of uncoloured vertices in the hypergraph by half — it is not difficult to see, for our choice

of 𝑓 , that it takes at most𝑂 (𝑛/(𝑛/𝑓 (𝑛))) = 𝑂 (𝑓 (𝑛)) iterations. Applying the Master Theorem [19],

noting that 𝑓 (𝑛) = Ω(𝑛𝛼 ′) for some 𝛼 ′ > 0, it follows that there are𝑂 (𝑓 (𝑛)) iterations overall. (We

can take any 𝛼 ′ such that 0 < 𝛼 ′ < 𝛼 .) This bound on the number of iterations also immediately

gives us polynomial run time. □

With this framework in hand, we are ready to prove our result. We will essentially split into two

cases: one for sparse hypergraphs, and one for dense hypergraphs.

Proposition 3.5. Fix Δ = Θ(𝑛𝛼 (log𝑛)𝛽 (log log𝑛)𝛾), with 𝛼 > 0. There is a polynomial-time

algorithm that makes progress towards an LO 𝑂 (Δ log log𝑛/log𝑛)-colouring of an LO 2-colourable

3-uniform linear hypergraph if |𝐸 | = 𝑂 (𝑛Δ).

Fix 𝐻 to be our linear hypergraph. We will prove Proposition 3.5 with a series of lemmata.

Lemma 3.6. 𝐻 has Ω(𝑛) vertices with degree 𝑂 (Δ).

Proof. Observe that the average degree of 𝐻 is 𝑂 (Δ). Applying Markov’s inequality to a ran-

domly chosen vertex immediately gives us our result. □

Let 𝑉 ′
be the set of vertices of 𝐻 with degree 𝑂 (Δ), and let 𝐸′ be the set of edges induced by 𝑉 ′

.

Lemma 3.7. An independent set of size |𝐸′ |/Δ exists within 𝑉 ′
.

Proof. Each edge in 𝐸′ must contain at least one vertex coloured with 2 in an LO 2-colouring;

each such vertex is included in at most Δ edges. Thus there exists an independent set of size

|𝐸′ |/Δ. □

We will use the following algorithm as a black box.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 Tamio-Vesa Nakajima and Stanislav Živný

Lemma 3.8 ([28]). There is a polynomial-time algorithm that, if given a graph with an independent

set of size 𝑠 and average degree 𝑑 , finds an independent set of size at least Ω(𝑠 log𝑑/𝑑 log log𝑑).
Corollary 3.9. There is a polynomial-time algorithm that, if given a graph with an independent

set of size 𝑠 and average degree 𝑑 , finds an independent set of size at least

max(Ω(𝑠 log𝑑/𝑑 log log𝑑),Ω(𝑛/𝑑)) .
Proof. As established above for the more general case of hypergraphs, since the input graph

has Θ(𝑛𝑑) edges, there must be Ω(𝑛) vertices with degree 𝑂 (𝑑). Thus, by greedily selecting an

independent set on these vertices, we get the lower bound of Ω(𝑛/𝑑). Take the larger of this

independent set and the one generated by the previous algorithm to get the desired result. □

Proof of Proposition 3.5. Apply the algorithm from Corollary 3.9 to the primal graph of

𝐻 ′ = (𝑉 ′, 𝐸′). (The primal graph of a hypergraph replaces each hyperedge with a clique.) This

graph has an independent set of size |𝐸′ |/Δ and average degree 𝑑 = 𝑂 (|𝐸′ |/|𝑉 ′ |) = 𝑂 (|𝐸′ |/𝑛).
Therefore, the algorithm will find an independent set of size at least equal to the maximum

of Ω((|𝐸′ |/Δ) log𝑑/(|𝐸′ |/𝑛) log log𝑑) = Ω(𝑛 log𝑑/Δ log log𝑛) and Ω(|𝑉 ′ |/𝑑) = Ω(𝑛/𝑑). If 𝑑 =

𝑜 (Δ log log𝑛/log𝑛) then we get the independent set size we want from Ω(𝑛/𝑑). On the other

hand, if 𝑑 = Ω(Δ log log𝑛/log𝑛) = Ω(𝑛𝛼−𝜖) for some 𝜖 < 𝛼 , then we get the independent set

size we want from Ω(𝑛 log𝑑/Δ log log𝑑) — the assumption on the size of 𝑑 is necessary to make

log𝑑/log log𝑑 = Ω(log𝑛/log log𝑛). □

Proposition 3.10. There is a polynomial-time algorithm that makes progress towards an LO

𝑂 (
√︁
𝑛/Δ)-colouring of an LO 2-colourable 3-uniform linear hypergraph if |𝐸 | = Ω(𝑛Δ).

Fix 𝐻 to be a 3-uniform linear hypergraph that admits an LO 2-colouring. The following two

lemmata prove Proposition 3.10.

Lemma 3.11. There exists an LO 2-colouring of 𝐻 with Ω(
√
𝑛Δ) vertices set to 1.

Proof. Consider any LO 2-colouring of 𝐻 (one must exist by assumption). Consider the set 𝑆 of

vertices set to 1. Each edge intersects 𝑆 in exactly two vertices; furthermore, every pair of vertices

is included in at most one edge by linearity. Thus, by connecting these pairs of vertices, we find

that we can construct a simple graph on 𝑆 with |𝐸 | edges. Thus |𝑆 |2 ≥ |𝐸 | = Ω(𝑛Δ), from which it

follows that |𝑆 | = Ω(
√
𝑛Δ). □

Definition 3.12. For any 3-uniform hypergraph𝐻 , let E(𝐻) denote a set of linear equations mod 2.

These equations have one variable 𝑥𝑣 for each vertex 𝑣 of 𝐻 , and one equation for each edge of 𝐻 .

The equation for edge (𝑎, 𝑏, 𝑐) is 𝑥𝑎 + 𝑥𝑏 + 𝑥𝑐 ≡ 0 mod 2.

Lemma 3.13 ([33, Theorem 2.12, (2)]). The problem of finding a solution to a set of linear equations

mod 2 that maximises the number of variables set to 1 can be approximated to within some constant

factor in polynomial time.

Proof of Proposition 3.10. Consider E(𝐻). Observe that a set of vertices that intersects each
edge in an even number of vertices is equivalent to a solution to E(𝐻). Furthermore, the size of

the set is the same as the number of variables set to one in this solution; it is therefore sufficient

to show that we can find a solution to this system of linear equations mod 2 that sets Ω(
√
𝑛Δ)

variables to one.

Now, consider the LO 2-colouring of 𝐻 that sets Ω(
√
𝑛Δ) variables to 1. By recolouring 2 into 0,

this gives a solution to E(𝐻) that sets at least Ω(
√
𝑛Δ) variables to 1. Finally, using the algorithm

from Lemma 3.13, we can find a solution that is at most a constant factor away from this one —

i.e. with at least Ω(
√
𝑛Δ) variables set to 1. This concludes the proof. □

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Linearly ordered colourings of hypergraphs 1:7

Proof of Theorem 3.1. Set Δ = 𝑛1/3 (log𝑛)2/3 (log log𝑛)−2/3 so that

√︁
𝑛/Δ = Δ log log𝑛/log𝑛

and combine Proposition 3.5 and Proposition 3.10. Thus, we can always make progress towards

an LO 𝑂 (3

√︁
𝑛 log log𝑛/log𝑛)-colouring in polynomial time, if given an LO 2-colourable 3-uniform

linear hypergraph. □

4 ALGEBRAIC THEORY OF FIXED-TEMPLATE PROMISE CSPS
We recount the algebraic theory of fixed-template PCSPs developed in [5] and specialised to

templates with a single relation (of arity 𝑟).

The 𝑝-the power of an 𝑟 -ary template A = (𝐴, 𝑅A) is a template A𝑝 = (𝐴𝑝 , 𝑅A
𝑝) where

𝑅A
𝑝

= {((𝑎1
1
, . . . , 𝑎

𝑝

1
), . . . , (𝑎1𝑟 , . . . , 𝑎

𝑝
𝑟)) | (𝑎11, . . . , 𝑎1𝑟) ∈ 𝑅A, . . . , (𝑎

𝑝

1
, . . . , 𝑎

𝑝
𝑟) ∈ 𝑅A}.

In other words, a tuple of 𝑅A
𝑝

contains 𝑟 vectors of 𝑝 elements of 𝐴, such that if these are written

as a matrix with 𝑟 rows and 𝑝 columns, each column is a member of 𝑅A. For two 𝑟 -ary templates

A,B, a 𝑝-ary polymorphism from A to B is a homomorphism 𝑓 : A𝑝 → B. We let ar(𝑓) denote the
arity of a polymorphism.

Example 4.1. Consider the binary template A = ([2], 𝑅A), where 𝑅A is the binary disequality

relation ≠ (restricted to [2]2). The power A5
has domain [2]5 and relation {(a, b) | a, b ∈ [2]5, 𝑎𝑖 ≠

𝑏𝑖 , 𝑖 = 1, . . . , 5}. This relation is constructed as follows: (a, b) belongs to the relation if and only if

every column of a matrix with 5 columns and 2 rows constructed out of a, b satisfies ≠. The matrix

is the following one: (
𝑎1 𝑎2 𝑎3 𝑎4 𝑎5
𝑏1 𝑏2 𝑏3 𝑏4 𝑏5

)
.

Thus, for each column to satisfy ≠, we must have 𝑎𝑖 ≠ 𝑏𝑖 for 𝑖 = 1, . . . , 5, as indicated above.

Now, consider a quinary polymorphism 𝑓 : A5 → A. This is a function 𝑓 : [2]5 → [2] that
satisfies the following property: if given a matrix with 2 rows and 5 columns, such that each column

is a member of 𝑅A, then by applying 𝑓 to the rows of this matrix we also get a member of 𝑅A. For

instance, for the matrix (
1 2 2 1 1

2 1 1 2 2

)
,

we deduce that the pair (𝑓 (1, 2, 2, 1, 1), 𝑓 (2, 1, 1, 2, 2)) ∈ 𝑅A i.e. 𝑓 (1, 2, 2, 1, 1) ≠ 𝑓 (2, 1, 1, 2, 2). One
such polymorphism is given by selecting the values of 𝑓 from [2] such that 𝑓 (𝑥1, . . . , 𝑥5) ≡

∑
5

𝑖=1 𝑥𝑖
(mod 2).

The real power of this theory comes from minions.
4
A minion M is just a sequence of sets

M (0) ,M (1) , . . ., equipped with (so-called minor) operations, one for each 𝜋 : [𝑝] → [𝑞]; given
𝑓 ∈ M (𝑝)

the minor operation yields 𝑓𝜋 ∈ M (𝑞)
. The operation must satisfy the following

conditions:

• For 𝑓 ∈ M (𝑝)
, if id : [𝑝] → [𝑝] is the identity on [𝑝], then 𝑓id = 𝑓 .

• For 𝑓 ∈ M (𝑝)
, 𝜋 : [𝑝] → [𝑞] and 𝜎 : [𝑞] → [𝑡], we have 𝑓𝜎◦𝜋 = (𝑓𝜋)𝜎 .

An important class of minions is class of polymorphism minions. The polymorphism minion M =

Pol(A,B) for two templates A,B with the same arity is a minion where M (𝑝)
is the set of 𝑝-ary

polymorphisms from A to B, and where, for 𝑓 : 𝐴𝑝 → 𝐵 and 𝜋 : [𝑝] → [𝑞], 𝑓𝜋 is given by

4
In category-theoretic terms, a minion is a functor from the skeleton of the category of finite sets to the category of sets.

The objects of the first category are sets [𝑝] for 𝑝 ∈ N, and the arrows are functions between them. The functor equivalent

to a minion M takes [𝑝] to M (𝑝)
, and 𝜋 : [𝑝] → [𝑞] to 𝑓 ↦→ 𝑓𝜋 .

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 Tamio-Vesa Nakajima and Stanislav Živný

𝑓𝜋 (𝑥1, . . . , 𝑥𝑞) = 𝑓 (𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑝)).5 It is not difficult to check that, if 𝑓 : A𝑝 → B and 𝜋 : [𝑝] →
[𝑞], then 𝑓𝜋 : A𝑞 → B, as required.
In order to be able to relate polymorphism minions with the complexity of PCSPs, we use

minion homomorphisms.
6
A minion homomorphism fromM to N is a mapping b that takes each

M (𝑝)
to N (𝑝)

and that satisfies the following condition: for any 𝜋 : [𝑝] → [𝑞] and 𝑓 ∈ M (𝑝)
,

b (𝑓)𝜋 = b (𝑓𝜋). The following theorem links minion homomorphisms to PCSPs in the sense that

minion homomorphisms capture precisely a certain type of polynomial-time reductions, know as

primitive-positive constructions.
7

Theorem 4.2 ([5, Theorems 3.1 and 4.12]). For 𝑟 -ary templates A,B and 𝑟 ′-ary templates A′,B′
,

a primitive-positive construction-based polynomial-time reduction from PCSP(A′,B′) to PCSP(A,B)
exists if and only if Pol(A,B) → Pol(A′,B′).
In particular, a minion homomorphism between polymorphism minions implies a polynomial-

time reduction (in the other direction). Unfortunately, it is usually a complex task to explicitly

construct minion homomorphisms. An auxiliary construction called the free structure allows us to

construct them more easily. For an arbitrary minion M and an 𝑟 -ary template A = (𝐴, 𝑅A), the
free structure F = FM (A) ofM generated by A is an 𝑟 -ary template whose domain is 𝐹 = M (|𝐴 |)

.

To construct its relation 𝑅F, first identify 𝐴 with [𝑛] for 𝑛 = |𝐴|, and then enumerate the tuples

of 𝑅A as vectors r1, . . . , r𝑘 , where 𝑘 = |𝑅A |. Construct functions 𝜋1, . . . , 𝜋𝑟 : [𝑘] → [𝑛] where
𝜋𝑖 (𝑗) = r𝑗

𝑖
. (If we were to arrange r1, . . . , r𝑘 as columns of a matrix with 𝑟 rows and 𝑘 columns, then

𝜋𝑖 (1), . . . , 𝜋𝑖 (𝑘) is the 𝑖-th row of the matrix.) Now, the tuple (𝑓1, . . . , 𝑓𝑟), where 𝑓1, . . . , 𝑓𝑟 ∈ M (𝑛)
,

belongs to 𝑅F if and only if for some 𝑓 ∈ M (𝑘)
we have 𝑓𝑖 = 𝑓𝜋𝑖 .

Example 4.3. Consider some polymorphism minionM and the ternary template LO3

3
. We will

construct F = FM (LO3

3
). The domain isM (3)

. To construct the relation of F, we first arrange the
15 tuples of 𝑅LO

3

3 into a matrix with 3 rows and 15 columns:

©«
2 1 1 3 1 1 3 2 3 1 2 1 3 2 2

1 2 1 1 3 1 2 3 1 3 1 2 2 3 2

1 1 2 1 1 3 1 1 2 2 3 3 2 2 3

ª®¬ .
Row 𝑖 of this matrix can be seen as a function 𝜋𝑖 : [15] → [3]. Now the relation 𝑅F contains

precisely the tuples (𝑓𝜋1
, 𝑓𝜋2

, 𝑓𝜋3
) for all 𝑓 ∈ M (15)

. Substituting the definition for 𝑓𝜋𝑖 , we find that

these polymorphisms 𝑓𝜋1
, 𝑓𝜋2

, 𝑓𝜋3
are:

(𝑥,𝑦, 𝑧) ↦→𝑓 (𝑦, 𝑥, 𝑥, 𝑧, 𝑥, 𝑥, 𝑧,𝑦, 𝑧, 𝑥,𝑦, 𝑥, 𝑧,𝑦,𝑦)
(𝑥,𝑦, 𝑧) ↦→𝑓 (𝑥,𝑦, 𝑥, 𝑥, 𝑧, 𝑥,𝑦, 𝑧, 𝑥, 𝑧, 𝑥,𝑦,𝑦, 𝑧,𝑦)
(𝑥,𝑦, 𝑧) ↦→𝑓 (𝑥, 𝑥,𝑦, 𝑥, 𝑥, 𝑧, 𝑥, 𝑥,𝑦,𝑦, 𝑧, 𝑧,𝑦,𝑦, 𝑧)

Observe that the matrix and the arguments of 𝑓 are actually arranged in the same configuration,

with 1 replaced by 𝑥 , 2 by 𝑦 and 3 by 𝑧.

The following theorem connects minion homomorphisms and free structures.

Theorem 4.4 ([5, Lemma 4.4]). IfM is a minion and A,B are 𝑟 -ary templates, the homomorphisms

ℎ : FM (A) → B are in a (natural) 1-to-1 correspondence to the minion homomorphisms b : M →
Pol(A,B).8 As a consequence, FM (A) → B if and only if M → Pol(A,B).
5
Put differently, minors in polymorphism minions permute variables, identify variables, and introduce dummy variables.

6
In category-theoretic terms, a minion homomorphism is just a natural transformation.

7
Primitive-positive constructions (or pp-constructions, for short) capture so-called “gadget reductions”, cf. [7, Section 3].

8
In category-theoretic terms, F− (A) and Pol(A, −) are functors between (in opposite directions) the category of 𝑟 -ary

templates and the category of minions, and F− (A) ⊣ Pol(A, −) .

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Linearly ordered colourings of hypergraphs 1:9

5 HARDNESS RESULTS
In this section we will investigate the hardness of PCSP(LO𝑟

ℓ , LO
𝑟
𝑘
).

First, we will establish that PCSP(LO𝑟
2
, LO𝑟

𝑘
) is NP-hard for each 𝑘 , for some (large but constant)

𝑟 (cf. Theorem 5.1). We then use minion homomorphisms to show that PCSP(LO𝑟
ℓ , LO

𝑟
𝑘
) is NP-hard

for 𝑟 ≥ 𝑘 − ℓ + 4 (cf. Corollary 5.7).

Second, we will show that PCSP(LO𝑟
2
, LO𝑟

𝑘
) with 𝑟 ≥ 𝑘 + 2 cannot be reduced to PCSP(LO𝑟

2
, LO𝑟

𝑘
)

with 𝑟 < 𝑘 + 2 using primitive-positive constructions (i.e. gadget reductions [5]). Thus in particular,

it is not possible to prove hardness of PCSP(LO3

2
, LO3

3
) and PCSP(LO4

2
, LO4

3
) via gadget reductions

from PCSP(LO5

2
, LO5

3
). More generally, if PCSP(LO𝑟 ′

2
, LO𝑟 ′

𝑘
) is proved NP-hard for some 𝑟 ′ ≥ 𝑘 + 2

then this will imply NP-hardness of PCSP(LO𝑟
2
, LO𝑟

𝑘
) for every 𝑟 ≥ 𝑘 + 2 but no gadget reductions

would imply NP-hardness of PCSP(LO𝑟
2
, LO𝑟

𝑘
) for 2 ≤ 𝑟 < 𝑘 + 2 (cf. Theorem 5.4).

5.1 Source of hardness
In this subsection we will show that, for each 𝑘 ≥ 2, PCSP(LO𝑟

2
, LO𝑟

𝑘
) is NP-hard for some large 𝑟 .

Theorem 5.1. For any 𝑘 ≥ 2, there exists some large 𝑟 such that PCSP(LO𝑟
2
, LO𝑟

𝑘
) is NP-hard.

To do this, we will construct a hardness condition and apply it to this problem. The following

hardness condition is almost identical to the one from [15] (later reformulated in [6]). It is somewhat

more general, in that the arity of the polymorphisms are bounded — we do not need to prove

something for polymorphisms of arbitrarily large arity.

For the purposes of this section, a chain of minors is a sequence of polymorphisms with minors

between them: 𝑓0
𝜋0,1−−→ . . .

𝜋𝑘−1,𝑘−−−−→ 𝑓𝑘 . We let 𝜋𝑖, 𝑗 denote the composition of the minors between 𝑓𝑖

and 𝑓𝑗 i.e. 𝜋𝑖, 𝑗 = 𝜋 𝑗−1, 𝑗 ◦ . . . ◦ 𝜋𝑖,𝑖+1. Thus 𝑓𝑖
𝜋𝑖,𝑗−−→ 𝑓𝑗 .

Theorem 5.2. Suppose M = Pol(A,B). Fix constants ℓ, 𝑘 ∈ N. There exists a constant𝑚 =𝑚(ℓ, 𝑘)
such that the following holds. Suppose that for each polymorphism 𝑓 : A𝑛 → B where 𝑛 ≤ 𝑚 we assign

a set 𝐼 (𝑓) ⊆ [𝑛] of size at most 𝑘 , such that for each chain of minors 𝑓0
𝜋0,1−−→ . . .

𝜋ℓ−1,ℓ−−−−→ 𝑓ℓ containing

polymorphisms of arity at most𝑚, there exist 𝑖, 𝑗 such that 𝜋𝑖, 𝑗 (𝐼 (𝑓𝑖)) ∩ 𝐼 (𝑓𝑗) ≠ ∅. Then PMCM (𝑚) is
NP-hard, and furthermore PCSP(A,B) is NP-hard.

We do not need the definition of the “promise satisfaction of a bipartite minor condition” problem

from [5], denoted by PMCM (𝑚) in the statement, as we never use it; it is only included to match

the result from [15].

Proof. Identical to the proof in [15, Corollary 4.2], but noting that 𝐼 (called sel in [15]) is only

ever applied on polymorphisms with arity at most𝑚, and that the selection of𝑚 depends only on ℓ

and 𝑘 . □

We define M𝑟
ℓ,𝑘

= Pol(LO𝑟
ℓ , LO

𝑟
𝑘
). In order to apply this condition, we will have to better

understand M𝑟
ℓ,𝑘

from a combinatorial point of view — the following remark gives a useful way to

see the polymorphisms in M𝑟
ℓ,𝑘
.

Remark 5.1. Observe that an (𝑟 ′)-ary polymorphism 𝑓 ∈ (M𝑟
2,𝑘
) (𝑟 ′) is a function from [2]𝑟 ′ to

[𝑘]; if it is applied to the rows of an 𝑟 × 𝑟 ′ matrix whose columns are tuples of the relation of LO𝑟
2

(i.e. they contain one 2 and otherwise are 1), then the resulting values contain a unique maximum.

Similarly to Barto et. al. [4], we view 𝑓 as a function from the powerset of [𝑟 ′] to [𝑘] indicating
the coordinates of 2s. (For example, the input tuple (1, 2, 1, 2) is seen as equivalent to the input set

{2, 4}.) Under this view, 𝑓 is a polymorphism if and only if, for any partition 𝐴1, . . . , 𝐴𝑟 of [𝑟 ′], the
sequence 𝑓 (𝐴1), . . . , 𝑓 (𝐴𝑟) has a unique maximum element. (Observe that each part𝐴𝑖 corresponds

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Tamio-Vesa Nakajima and Stanislav Živný

to a row in the matrix mentioned earlier. Put differently, part 𝐴𝑖 corresponds to columns in which

the 𝑖-th row contains a (unique in its column) 2.)

Lemma 5.3. Suppose 𝑓 : 2
[𝑛] → [𝑘] is a function such that, for each partition 𝐴1, . . . , 𝐴𝑝 , 𝑝 ∈ [𝑛],

of [𝑛], 𝑓 (𝐴1), . . . , 𝑓 (𝐴𝑝) has a unique maximum.

Fix a partition 𝐴1, . . . , 𝐴𝑝 of [𝑛]. Suppose that the unique maximum of 𝑓 (𝐴1), . . . , 𝑓 (𝐴𝑝) is equal
to the unique maximum of 𝑓 {1}, . . . , 𝑓 {𝑛}. Then, if the unique maximum of the first is 𝑓 (𝐴𝑖) and the
unique maximum of the second is 𝑓 { 𝑗}, it follows that 𝑗 ∈ 𝐴𝑖 .

Proof. Suppose not. Thus suppose 𝑗 ∉ 𝐴𝑖 . Consider the partition𝐴𝑖 , {1}, . . . , { 𝑗}, . . . , {𝑛}, where
all singletons included in 𝐴𝑖 have been removed. This partition must have a unique maximum.

Since 𝑓 (𝐴𝑖) = 𝑓 { 𝑗}, it must be larger than 𝑓 { 𝑗} and 𝑓 (𝐴𝑖). But this is impossible, since 𝑓 { 𝑗} is the
maximum of 𝑓 {1}, . . . , 𝑓 {𝑛}. □

Proof of Theorem 5.1. Fix 𝑚 = 𝑚(1, 𝑘) and 𝑟 = 𝑚 + 2. Consider any 𝑓 ∈ (M𝑟
2,𝑘
) (𝑛) for

𝑛 ≤ 𝑚. For any partition 𝐴1, . . . , 𝐴𝑝 of [𝑛] where 𝑝 ∈ [𝑛], observe that due to the partition

𝐴1, . . . , 𝐴𝑝 , ∅, . . . , ∅, where ∅ is added 𝑟 − 𝑝 ≥ 𝑚 + 2 −𝑚 = 2 times, it follows that 𝑓 (𝐴1), . . . , 𝑓 (𝐴𝑝)
has a unique maximum. This means that we can apply Lemma 5.3 to any such 𝑓 .

For any 𝑓 ∈ (M𝑟
2,𝑘
) (𝑛) for 𝑛 ≤ 𝑚 it follows that 𝑓 {1}, . . . , 𝑓 {𝑛} has a unique maximum. If it is

given by 𝑓 {𝑖}, then set 𝐼 (𝑓) = {𝑖}. We will now show that this selection 𝐼 satisfies the condition of

Theorem 5.2, and thus PCSP(LO𝑟
2
, LO𝑟

𝑘
) is NP-hard.

Consider any chain of minors 𝑓0
𝜋0,1−−→ . . .

𝜋𝑘−1,𝑘−−−−→ 𝑓𝑘 . By the pigeonhole principle applied to

𝑓0 (𝐼 (𝑓0)), . . . , 𝑓𝑘 (𝐼 (𝑓𝑘)), for some 𝑓 = 𝑓𝑖
𝜋=𝜋𝑖,𝑗−−−−−→ 𝑓𝑗 = 𝑔 we have 𝑓 (𝐼 (𝑓)) = 𝑔(𝐼 (𝑔)) = 𝑐 ∈ [𝑘].

Supposing that 𝑝 = ar(𝑓), 𝑞 = ar(𝑔), 𝑝, 𝑞 ≤ 𝑚, it follows that the unique maximum value in

𝑓 {1}, . . . , 𝑓 {𝑝} and in 𝑔{1}, . . . , 𝑔{𝑞} are both 𝑐 . Suppose the first is given by 𝑓 {𝑖} and the second

is given by 𝑔{ 𝑗}. Thus 𝐼 (𝑓) = {𝑖} and 𝐼 (𝑔) = { 𝑗}.
Observe that, by definition, 𝑔{𝑥} = 𝑓 (𝜋−1 (𝑥)). It follows that the unique maximum of

𝑓 (𝜋−1 (1)), . . . , 𝑓 (𝜋−1 (𝑞))
is given by 𝑓 (𝜋−1 (𝑗)). Since additionally 𝑓 {𝑖} = 𝑓 (𝜋−1 (𝑗)) and 𝑓 {𝑖} is the unique maximum of

𝑓 {1}, . . . , 𝑓 {𝑖}, by Lemma 5.3 it follows that 𝑖 ∈ 𝜋−1 (𝑗) or equivalently 𝜋 (𝑖) = 𝑗 . This implies that

𝜋 (𝐼 (𝑓)) ∩ 𝐼 (𝑔) = { 𝑗} ≠ ∅. Thus by Theorem 5.2 it follows that PCSP(LO𝑟
2
, LO𝑟

𝑘
) is NP-hard. □

5.2 Minion homomorphisms
How can we now leverage this basic hardness result to other values of 𝑟? We will use chains of

minion homomorphisms to do this. Our main result in this section is the following.

Theorem 5.4. For each 𝑘 ≥ 3, we have thatM𝑘+2
2,𝑘
⇆M𝑘+3

2,𝑘
⇆ Furthermore for each 2 ≤ 𝑟 <

𝑘 + 2,M𝑘+2
2,𝑘

→ M𝑟
2,𝑘
, yetM𝑟

2,𝑘
̸→ M𝑘+2

2,𝑘
.

Theorem 5.4 is illustrated in Figure 1. The more complicated Figure 2 illustrates minion relation-

ships from Theorem 5.4 and those implied by Theorems 5.17,5.19, and 5.20.

Remark 5.2. For 𝑘 = 3, we know the precise relationship of all minions in Theorem 5.4: M3

2,3
̸→

M4

2,3 and M4

2,3 ̸→ M3

2,3
; i.e, the (in this case) two minions in the “left fan” in Figure 2 are incompa-

rable. This follows from Theorem 5.19 and Theorem 5.20.

Combining Theorems 4.2, 5.1, and 5.4 gives the following.

Corollary 5.5. PCSP(LO𝑟
2
, LO𝑟

𝑘
) is NP-hard for 𝑟 ≥ 𝑘 + 2. Moreover, there is no polynomial-time

reduction using pp-constructions from PCSP(LO𝑟 ′
2
, LO𝑟 ′

𝑘
) to PCSP(LO𝑟

2
, LO𝑟

𝑘
) for 𝑟 ′ ≥ 𝑘 + 2 and

3 ≤ 𝑟 < 𝑘 + 2.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Linearly ordered colourings of hypergraphs 1:11

M𝑘+1
2,𝑘

M𝑘
2,𝑘

... M𝑘+2
2,𝑘

M𝑘+3
2,𝑘

M𝑘+4
2,𝑘

. . .

M3

2,𝑘

M2

2,𝑘

Fig. 1. Minions from Theorem 5.4. Solid black arrows indicate the existence of minion homomorphisms,
whereas red dashed arrows indicate the non-existence of minion homomorphisms.

The next theorem will allow us to lift NP-hardness of PCSP(LO𝑟
2
, LO𝑟

𝑘
) to PCSP(LO𝑟

2+𝑎, LO
𝑟
𝑘+𝑎) for

every positive integer 𝑎.

Theorem 5.6. For every 𝑟 ≥ 3 and 2 ≤ ℓ < 𝑘 , M𝑟
ℓ+1,𝑘+1 → M𝑟

ℓ,𝑘
.

Proof. Consider any 𝑝-ary polymorphism 𝑓 ∈ (M𝑟
ℓ+1,𝑘+1)

(𝑝)
. Consider the value of 𝑓 for inputs

𝑎1, . . . , 𝑎𝑝 ∈ [ℓ]; due to the following matrix with 𝑟 ≥ 3 rows

©«
𝑎1 + 1 . . . 𝑎𝑝 + 1

𝑎1 . . . 𝑎𝑝
...

. . .
...

𝑎1 . . . 𝑎𝑝

ª®®®®¬
,

we can deduce that 𝑓 (𝑎1, . . . , 𝑎𝑝) < 𝑓 (𝑎1 + 1, . . . , 𝑎𝑝 + 1) ∈ [𝑘 + 1]. This implies that 𝑓 (𝑎1, . . . , 𝑎𝑝) ∈
[𝑘]. We claim this implies that 𝑓 , restricted to [ℓ]𝑝 , is a polymorphism ofM𝑟

ℓ,𝑘
. Consider matrix

of inputs 𝑎
𝑗

𝑖
where 𝑖 ∈ [𝑝], 𝑗 ∈ [𝑟], such that each column 𝑎1𝑖 , . . . , 𝑎

𝑟
𝑖 is a tuple of LO

𝑟
ℓ . Thus each

column is also a tuple of LO𝑟
ℓ+1. Since 𝑓 is a polymorphism of PCSP(LO𝑟

ℓ+1, LO
𝑟
𝑘+1), we deduce that

(𝑓 (𝑎1
1
, . . . , 𝑎1𝑝), . . . , 𝑓 (𝑎𝑟1, . . . , 𝑎𝑟𝑝))

is a tuple of LO𝑟
𝑘+1 i.e. has a unique maximum. But we already know these values belong to [𝑘]. Since

they have a unique maximum, they are a tuple of LO𝑟
𝑘
. Thus 𝑓 , restricted to [𝑘]𝑝 , is a polymorphism

ofM𝑟
ℓ,𝑘
.

We now claim that the map 𝑓 ↦→ 𝑓 | [𝑘]𝑝 taking a 𝑝-ary polymorphism to its restriction on

[𝑘]𝑝 is a minion homomorphism M𝑟
ℓ+1,𝑘+1 → M𝑟

ℓ,𝑘
. To see why, consider any polymorphism

𝑓 ∈ (M𝑟
ℓ+1,𝑘+1)

(𝑝)
and a function 𝜋 : [𝑝] → [𝑞]. What we need to prove is that

(𝑓𝜋) | [𝑘]𝑝 = (𝑓 | [𝑘]𝑝)𝜋 .

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 Tamio-Vesa Nakajima and Stanislav Živný

M2

2,𝑘

M3

2,𝑘

...
... M𝑘+2

2,𝑘
M𝑘+3

2,𝑘
M𝑘+4

2,𝑘
. . .

M𝑘−2
2,𝑘

M𝑘−1
2,𝑘

M𝑘
2,𝑘

M𝑘+1
2,𝑘

Fig. 2. Minions from Theorems 5.4, 5.17, 5.19, and 5.20. Solid black arrows indicate the existence of minion
homomorphisms, whereas red dashed arrows indicate the non-existence of minion homomorphisms. We
have taken the case when 𝑘 is odd; if 𝑘 is even, thenM2

2,𝑘
and M3

2,𝑘
are swapped.

But note that, for 𝑥1, . . . , 𝑥𝑝 ∈ [𝑘],

((𝑓𝜋) | [𝑘]𝑝) (𝑥1, . . . , 𝑥𝑝) = 𝑓𝜋 (𝑥1, . . . , 𝑥𝑝) = 𝑓 (𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑝))
= (𝑓 | [𝑘]𝑝) (𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑝)) = (𝑓 | [𝑘]𝑝)𝜋 (𝑥1, . . . , 𝑥𝑝).

This concludes the proof. □

Theorems 4.2, 5.6, 5.1, and 5.4 imply the following:

Corollary 5.7. PCSP(LO𝑟
ℓ , LO

𝑟
𝑘
) is NP-hard for 2 ≤ ℓ ≤ 𝑘 and 𝑟 ≥ 𝑘 − ℓ + 4.

The rest of this section is devoted to the proof of Theorem 5.4.

In order to construct minion homomorphisms, as the first milestone we exhibit a simple necessary

and sufficient condition for the existence of a minion homomorphism to M𝑟
2,𝑘
, and a sufficient

condition for such a homomorphism to not exist.

Lemma 5.8. Fix 𝑟 ≥ 2 and 𝑘 ≥ 3. Consider any polymorphism minion M. For any element

𝑓 ∈ M (𝑟)
, let 𝑓1 (𝑥,𝑦) = 𝑓 (𝑦, 𝑥, . . . , 𝑥), 𝑓2 (𝑥,𝑦) = 𝑓 (𝑥,𝑦, 𝑥, . . . , 𝑥), . . . , 𝑓𝑟 (𝑥,𝑦) = 𝑓 (𝑥, . . . , 𝑥,𝑦). Now,

M → M𝑟
2,𝑘

if and only if there exists some 𝜔 : M (2) → [𝑘] such that, for all 𝑓 ∈ M (𝑟)
, there exists

a unique maximum value among 𝜔 (𝑓1), . . . , 𝜔 (𝑓𝑟).

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Linearly ordered colourings of hypergraphs 1:13

Proof. We construct FM (LO𝑟
2
). The tuples of the relation of LO𝑟

2
are all the 𝑟 -dimensional vectors

containing exactly one 2, with the other entries equal to 1. We can arrange these tuples into an

𝑟 -by-𝑟 matrix where the diagonal contains 2 and all the other elements are 1. Replacing 1 with 𝑥

and 2 with 𝑦, and applying 𝑓 , we get the definitions of 𝑓1, . . . , 𝑓𝑟 . Thus the relation of FM (LO𝑟
2
)

contains precisely the tuples of the form (𝑓1, . . . , 𝑓𝑟) for 𝑓 ∈ M (𝑟)
.

Thus our condition amounts to the existence of a homomorphism 𝜔 : FM (LO𝑟
2
) → LO𝑟

𝑘
. By

Theorem 4.4, this is equivalent to M → M𝑟
2,𝑘
. □

Corollary 5.9. Fix 𝑟 ≥ 2, 𝑟 ′ ≥ 2 and 𝑘 ≥ 3. If 𝑓 {1}, . . . , 𝑓 {𝑟 ′} has a unique maximum for any

function 𝑓 : 2
[𝑟 ′] → [𝑘] such that, for any partition𝐴1, . . . , 𝐴𝑟 of [𝑟 ′], 𝑓 (𝐴1), . . . , 𝑓 (𝐴𝑟) has a unique

maximum, then M𝑟
2,𝑘

→ M𝑟 ′

2,𝑘
.

Proof. Apply Lemma 5.8 using 𝜔 (𝑓) = 𝑓 (1, 2), and reinterpreting polymorphisms as indicated

by Remark 5.1. Observe that the polymorphisms 𝑓 ∈ (M𝑟
2,𝑘
) (𝑟 ′) can then be seen as functions

from 2
[𝑟 ′]

to [𝑘] such that, for any partition 𝐴1, . . . , 𝐴𝑟 of [𝑟 ′], a unique maximum exists among

𝑓 (𝐴1), . . . , 𝑓 (𝐴𝑟). The precondition of our corollary then implies that 𝑓 {1}, . . . , 𝑓 {𝑟 ′} have a unique
maximum. By definition,𝜔 (𝑓𝑖) = 𝑓𝑖 (1, 2) = 𝑓 {𝑖}, where 𝑓𝑖 is defined as in Lemma 5.8. Thus a unique

maximum exists among 𝜔 (𝑓1), . . . , 𝜔 (𝑓𝑟). It follows, by Lemma 5.8, that M𝑟
2,𝑘

→ M𝑟 ′

2,𝑘
. □

As a second milestone, we introduce the notion of (𝑘, 𝑝)-edge co-colouring and show in Corol-

lary 5.14 and Lemma 5.15 that cliques have no co-colourings with certain parameters. For this, we

will need three technical lemmata, namely Lemmata 5.11, 5.12, and 5.13.

Definition 5.10. A (𝑘, 𝑝)-edge co-colouring of a graph 𝐺 is an assignment of 𝑘 colours to the

edges of 𝐺 such that any 𝑝 disjoint edges of 𝐺 are not assigned the same colour. Two edges are

considered disjoint if the sets of their endpoints are disjoint.

The “co-” prefix is included since, in such a colouring, we colour disjoint edges with different

colours, as opposed to incident edges as with normal edge colouring.

Lemma 5.11. A graph with 𝑘 + 3 vertices and 3𝑘 edges has an independent set of size 2.

Proof. There are (𝑘 + 3) (𝑘 + 2)/2 possible independent sets of size 2. Each edge eliminates one

of them. Since (𝑘 + 3) (𝑘 + 2)/2 > 3𝑘 for 𝑘 ∈ R, it follows that at least one independent set of size 2
remains after adding in all the edges. □

Lemma 5.12. A graph with 𝑛 vertices where all pairs of edges intersect is either a cycle of length 3

or a star graph (ignoring vertices with no neighbours).

Proof. This is immediately true if there are no edges, so suppose at least one edge, say {𝑥,𝑦},
exists. All other edges must intersect {𝑥,𝑦}, so they must be of the form {𝑥, 𝑎} or {𝑦,𝑏} for some

{𝑎, 𝑏}. If all the edges are of the form {𝑥, 𝑎} or {𝑦,𝑏} respectively, then the graph is a star, as

required. Otherwise, there exist two edges {𝑥, 𝑎}, {𝑦,𝑏}. For these edges to intersect, it must be

the case that 𝑎 = 𝑏; thus we have found the cycle 𝑥,𝑦, 𝑎 = 𝑏 in our graph. To show that only this

cycle exists within our graph, consider any edge {𝑢, 𝑣} in our graph. It must intersect {𝑥,𝑦}, so we

can assume, without loss of generality, that 𝑢 = 𝑥 . It must also intersect {𝑦,𝑏}, so we deduce that

𝑣 ∈ {𝑦,𝑏}. Thus our edge must already exist within the cycle. □

Lemma 5.13. If 𝐺 is a graph with 𝑘 + 3 vertices with a (𝑘, 2)-edge co-colouring, then 𝐺 has an

independent set of size 2.

Proof. We prove this fact inductively. The result is immediate for 𝑘 = 0 (in which case the graph

has no edges).

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Tamio-Vesa Nakajima and Stanislav Živný

Suppose a colour 𝑐 exists for which a vertex exists that is adjacent to all edges of colour 𝑐 .

Removing this vertex from the graph and applying the inductive hypothesis gives us the required

independent set. Thus suppose that no vertex exists that covers all edges of a particular colour. In

this case, by Lemma 5.12, it follows that, for each colour, the edges with that colour form a cycle

of length 3. Thus our graph has 3𝑘 edges at most. It follows by Lemma 5.11 that there exists an

independent set of size 2. □

Corollary 5.14. Thus, for any 𝑘 ∈ N, 𝐾𝑘+3 has no (𝑘, 2)-edge co-colouring.
Proof. This is the contrapositive of Lemma 5.13. □

Remark 5.3. This corollary is tight, in the sense that 𝐾𝑘+2 admits a (𝑘, 2)-edge co-colouring,

viz. colour edge {𝑥,𝑦} with max{𝑥,𝑦, 3}, assuming that the vertex-set of 𝐾𝑘+2 is [𝑘 + 2]. This
colouring will reappear implicitly in Theorem 5.19 and Theorem 5.20.

Lemma 5.15. For any 𝑘 ≥ 3, 𝐾10𝑘 has no (𝑘, 3)-edge co-colouring.
Proof. Suppose such a colouring exists, and let 𝑐 be the most frequent colour. Since there are

10𝑘 (10𝑘 − 1)/2 edges in total, and 𝑘 colours, it follows that there are at least 5(10𝑘 − 1) ≥ 45𝑘

edges of colour 𝑐 . Select an edge 𝑒 from these, removing all edges that share an endpoint with it

(of which there are at most 20𝑘). There now remain at least 25𝑘 edges. Do the same thing again,

selecting an edge 𝑒′, and leaving at least 5𝑘 edges. Select 𝑒′′ from among these edges. The edges

𝑒, 𝑒′, 𝑒′′ contradict the fact that 𝐾10𝑘 is a (𝑘, 3)-edge co-colouring. □

As the third milestone, using the developed results so far, we will establish, firstly, minion

homomorphisms in Theorems 5.16, 5.17, and 5.18, and, secondly, the lack of minion homomorphisms

in Theorems 5.19 and 5.20.

Theorem 5.16. For 𝑘 ≥ 3, 𝑟 ≥ 10𝑘 + 1,M𝑟
2,𝑘

→ M𝑟+1
2,𝑘

.

Proof. Consider any function 𝑓 : 2
[𝑟+1] → [𝑘] such that, for any partition 𝐴1, . . . , 𝐴𝑟 of

[𝑟 + 1], 𝑓 (𝐴1), . . . , 𝑓 (𝐴𝑟) has a unique maximum. By Corollary 5.9, it is sufficient to show that

𝑓 {1}, . . . , 𝑓 {𝑟 + 1} has a unique maximum.

Consider all pairs {𝑥,𝑦} such that the unique maximum of 𝑓 {𝑥,𝑦}, 𝑓 {1}, . . . , 𝑓 {𝑟 + 1} is given
by 𝑓 {𝑥,𝑦}. Construct a graph 𝐺 whose vertices are [𝑟 + 1], and whose edges are given by all such

pairs {𝑥,𝑦}. Observe that 𝑓 is a (𝑘, 3)-edge co-colouring of 𝐺 . This is because, for any disjoint

edges 𝑒, 𝑒′, 𝑒′′, due to the partition formed out of 𝑒, 𝑒′, 𝑒′′, the empty set twice and all remaining

singletons, there must exist a unique maximum cost edge among 𝑒, 𝑒′, 𝑒′′.
Now suppose that no uniquemaximum exists among 𝑓 {1}, . . . , 𝑓 {𝑟+1}. Without loss of generality,

let 𝑓 {𝑟 + 1} = 𝑓 {𝑟 } = 𝑐 , and 𝑓 {𝑖} ≤ 𝑐 for 𝑖 ∈ [𝑟 + 1]. Now note that, for any distinct 𝑥,𝑦 ∈ [𝑟 − 1],
𝑓 {𝑥,𝑦} must be the unique maximum of 𝑓 {𝑥,𝑦}, 𝑓 {1}, . . . , 𝑓 {𝑟 + 1}. Thus the subgraph of 𝐺 given

by restricting to [𝑟 − 1] is a complete graph — in fact, as 𝑟 − 1 ≥ 10𝑘 , the subgraph 𝐺 given by

restricting to [10𝑘] is a complete graph. Due to 𝑓 it is also (𝑘, 3)-edge co-colourable. But this

contradicts Lemma 5.15. Thus we deduce that 𝑓 {1}, . . . , 𝑓 {𝑟 + 1} has a unique maximum. □

Theorem 5.17. For any 𝑟 ≥ 2, 𝑘 ≥ 3, M𝑟+2
2,𝑘

→ M𝑟
2,𝑘
.

Proof. Consider any function 𝑓 : 2
[𝑟] → [𝑘] such that, for any partition 𝐴1, . . . , 𝐴𝑟+2 of

[𝑟], 𝑓 (𝐴1), . . . , 𝑓 (𝐴𝑟+2) has a unique maximum. By Corollary 5.9, it is sufficient to show that

𝑓 {1}, . . . , 𝑓 {𝑟 } has a unique maximum. But consider the partition {1}, . . . , {𝑟 }, ∅, ∅, and note that the
largest value cannot be 𝑓 (∅) (since 𝑓 (∅) appears twice). Thus we deduce that one of 𝑓 {1}, . . . , 𝑓 {𝑟 }
is the maximum, and furthermore that this maximum is strictly larger than all the other values in

this sequence. Thus, M𝑟+2
2,𝑘

→ M𝑟
2,𝑘
. □

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Linearly ordered colourings of hypergraphs 1:15

Theorem 5.18. For 𝑘 ≥ 3, 𝑟 ≥ 𝑘 + 2,M𝑟
2,𝑘

→ M𝑟+2
2,𝑘

.

Proof. Let 𝑓 : 2
[𝑟+2] → [𝑘] be a function such that, for any partition 𝐴1, . . . , 𝐴𝑟 of [𝑟 + 2],

𝑓 (𝐴1), . . . , 𝑓 (𝐴𝑟) has a uniquemaximum. ByCorollary 5.9, it is sufficient to show that 𝑓 {1}, . . . , 𝑓 {𝑟+
2} has a unique maximum. Assume for contradiction that it does not. Then we have two cases

depending on the maximum cost value among them.

Maximum is 1. In this case, construct a complete graph 𝐺 on [𝑟 + 2], and assign edge {𝑥,𝑦}
cost 𝑓 {𝑥,𝑦}. Observe that this 𝐺 is (𝑘, 2)-edge co-colourable, since, for any disjoint edges

{𝑥,𝑦}, {𝑧, 𝑡}, due to partition {𝑥,𝑦}, {𝑧, 𝑡}, {1}, . . . , {𝑟 + 2}, one of the edges is assigned the

unique maximum value by 𝑓 , and thus the edges are assigned distinct costs. This contradicts

Corollary 5.14, as 𝑟 + 2 ≥ 𝑘 + 3, and thus a subgraph of 𝐺 with 𝑘 + 3 vertices is a (𝑘, 2)-edge
co-colourable copy of 𝐾𝑘+3.

Maximum is not 1. In this case, suppose the maximum is 𝑐 > 1, and suppose that 𝑓 {𝑟 + 1} =
𝑓 {𝑟 + 2} = 𝑐 . Construct a complete graph 𝐺 on [𝑟], where edge {𝑥,𝑦} is assigned cost

max(𝑓 {𝑥,𝑦}, 𝑐). Observe that this 𝐺 is (𝑘 − 1, 2)-edge co-colourable, since for any disjoint

edges {𝑥,𝑦}, {𝑧, 𝑡}, due to the partition {𝑥,𝑦}, {𝑧, 𝑡}, {1}, . . . , {𝑟 + 2}, these edges are assigned
distinct costs, one of which is strictly greater than 𝑐 (and thus these costs remain distinct

after the operation 𝑥 ↦→ max(𝑥, 𝑐)). This contradicts Corollary 5.14, as 𝑟 ≥ 𝑘 + 2, and thus a

subgraph of 𝐺 with 𝑘 + 2 vertices is a (𝑘 − 1, 2)-edge co-colourable copy of 𝐾𝑘+2.

Thus, since a contradiction is found in all cases, M2,𝑘 → M𝑟+2
2,𝑘

. □

Theorem 5.19. For 𝑘 ≥ 3,M𝑘
2,𝑘

̸→ M𝑘+1
2,𝑘

.

Proof. Let 𝑣 (𝑥) = max(2, 𝑥 − 1). Let 𝑓 : 2
[𝑘+1] → [𝑘] be a function that maps the empty set

and singletons to 1, sets of size 𝑘 or 𝑘 + 1 to 𝑘 , and any other set 𝑆 to max𝑥∈𝑆 𝑣 (𝑥). Observe that
𝑓1 = . . . = 𝑓𝑘+1 (all of them map (1, 1) and (1, 2) to 1, and (2, 1) and (2, 2) to 𝑘). Thus if 𝑓 is a

polymorphism, by Lemma 5.8, and using the interpretation of Remark 5.1, our conclusion follows.

To see why 𝑓 is a polymorphism consider any partition 𝐴1, . . . , 𝐴𝑘 of [𝑘 + 1]. If the partition has

one part of size 𝑘 or 𝑘 + 1, then it has only one such part, and the other parts are either singletons or

empty sets — thus in this case 𝑓 (𝐴1), . . . , 𝑓 (𝐴𝑘) contains one 𝑘 and 𝑘 − 1 ones. Otherwise, observe

that the partition must contain at least one part of size 2 or higher. The cost of this part will be the

maximum element in the part minus 1, or 2, whichever is higher. All other parts of size 1 or 0 are

assigned 1. The only way in which this partition could lack a unique maximum element is if there

are two parts of size 2 or above, both of whose maximum values through 𝑣 are at most 2. This is

impossible by the pigeonhole principle, since there are only 3 elements mapped by 𝑣 to 1 or 2. □

Theorem 5.20. For 𝑘 ≥ 3,M𝑘+1
2,𝑘

̸→ M𝑘
2,𝑘
.

Proof. Let 𝑣 (𝑥) = max(3, 𝑥). Let 𝑓 : 2
[𝑘] → [𝑘] be a function that maps singletons to 1, the

empty set to 2, sets of size 𝑘 or 𝑘 + 1 to 𝑘 , and any other set 𝑆 to max𝑥∈𝑆 𝑣 (𝑥). Observe that

𝑓1 = . . . = 𝑓𝑘 (all of them map (1, 1) to 2, (1, 2) to 1, and (2, 1) and (2, 2) to 𝑘). Thus if 𝑓 is a

polymorphism, by Lemma 5.8, and using the interpretation of Remark 5.1, our conclusion follows.

To see why 𝑓 is a polymorphism consider any partition 𝐴1, . . . , 𝐴𝑘+1 of [𝑘]. If the partition has

one part of size 𝑘 or 𝑘 + 1, then it has only one such part, and the other parts are either singletons

or empty sets — thus in this case 𝑓 (𝐴1), . . . , 𝑓 (𝐴𝑘+1) contains one 𝑘 and 𝑘 ones. Otherwise, observe

that the partition must either contain at least one part of size 2 or higher, or it must contain the

empty set and all singletons. In the latter case, the empty set supplies the unique maximum. In

the former case, the cost of a non-singleton part will be the maximum element in the part or 3,

whichever is higher. All parts of size 1 or 0 are assigned 1 or 2. The only way in which this partition

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 Tamio-Vesa Nakajima and Stanislav Živný

could lack a unique maximum element is if there are two parts of size 2 or above, both of whose

maximum values through 𝑣 are at most 3. This is impossible, by the pigeonhole principle, since

there are at most 3 elements mapped by 𝑣 to 1, 2 or 3. □

Finally, we will now combine Theorems 5.16–5.20 to establish Theorem 5.4.

Proof of Theorem 5.4. Fix 𝑘 ≥ 3. Consider any 𝑟 ≥ 𝑘 + 2. Letting 𝑟 ′ be any number greater or

equal to 10𝑘 with the same parity as 𝑟 , note that, by applying Theorem 5.18, Theorem 5.16 and

Theorem 5.17, we have

M𝑟
2,𝑘

→ M𝑟+2
2,𝑘

→ . . . → M𝑟 ′−2
2,𝑘

→ M𝑟 ′

2,𝑘
→ M𝑟 ′+1

2,𝑘
→ M𝑟 ′−1

2,𝑘
→ . . . → M𝑟+3

2,𝑘
→ M𝑟+1

2,𝑘
.

Thus, for 𝑟 ≥ 𝑘 + 2,M𝑟
2,𝑘

→ M𝑟+1
2,𝑘

. Furthermore, by applying Theorem 5.17,

M𝑟
2,𝑘

→ M𝑟−2
2,𝑘

→ . . . ,

and

M𝑟
2,𝑘

→ M𝑟+1
2,𝑘

→ M𝑟−1
2,𝑘

→ M𝑟−3
2,𝑘

. . . .

Thus we deduce that, for any 𝑟 ′ such that 2 ≤ 𝑟 ′ ≤ 𝑟 ,M𝑟
2,𝑘

→ M𝑟 ′

2,𝑘
. This supplies all the minion

homomorphisms required by Theorem 5.4.

Now, consider any 2 ≤ 𝑟 < 𝑘 + 2. Note that by Theorem 5.19 and Theorem 5.20, we know

that M𝑘+1
2,𝑘

̸→ M𝑘
2,𝑘

and M𝑘
2,𝑘

̸→ M𝑘+1
2,𝑘

. Note that M𝑘+2
2,𝑘

→ M𝑘
2,𝑘

and M𝑘+2
2,𝑘

→ M𝑘+1
2,𝑘

. Thus

by contrapositive, M𝑘
2,𝑘

̸→ M𝑘+2
2,𝑘

and M𝑘+1
2,𝑘

̸→ M𝑘+2
2,𝑘

. Now, depending on the parity of 𝑟 , by

Theorem 5.17, M𝑘
2,𝑘

→ M𝑟
2,𝑘

or M𝑘+1
2,𝑘

→ M𝑟
2,𝑘
. Thus in either case, by contrapositive, M𝑟

2,𝑘
̸→

M𝑘+1
2,𝑘

. This supplies all the homomorphism nonexistence proofs required by Theorem 5.4. □

6 CONCLUSIONS
The question about the complexity of PCSP(LO3

2
, LO3

𝑘
) for constant 𝑘 ≥ 3 raised in [4] stays open.

More generally, the complexity of PCSP(LO𝑟
ℓ , LO

𝑟
𝑘
) is open except for the hardness results obtained

in this paper: We established NP-hardness for every constant 2 ≤ 𝑘 ≤ ℓ and every constant

uniformity 𝑟 ≥ ℓ − 𝑘 + 4.

Minion homomorphisms (and lack thereof) between the polymorphism minionsM𝑟
2,𝑘

for various

values of 𝑟 have interesting implications for the complexity of PCSPs more broadly, beyond our

hardness results. In particular, if one were to prove NP-hardness of LO 2- vs. 𝑘-colourings on

𝑟 -uniform hypergraphs for 𝑟 < 𝑘 + 2 , then our results imply that this NP-hardness does not follow
from NP-hardness of the same problem with uniformity at least 𝑘 + 2 via minion homomorphisms

and thus in particular cannot be obtained from the latter problem via “gadget reductions” [5].

This is in contrast to the case of (non-promise) CSPs, where it is known [8] (cf. also [7])
9
that all

NP-hardness can be shown using minion homomorphisms.
10

Going beyond the realm of fixed-template PCSPs [5] (which limits the number of colours

by a constant), what is the smallest function 𝑘 (𝑛) for which PCSP(LO3

2
, LO3

𝑘 (𝑛)) is solvable ef-

ficiently? There is no clear reason to believe that positive result from the present paper with

𝑘 (𝑛) = 𝑂 (3

√︁
𝑛 log log𝑛/log𝑛) is optimal.

9
[7] uses the terminology of height 1 identities.

10
This would not be the first occurrence of this phenomenon in the context of PCSPs; a recent example of the same

phenomenon comes from [41] for the problem of approximate graph colouring.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

Linearly ordered colourings of hypergraphs 1:17

ACKNOWLEDGMENTS
An extended abstract of part of this work (with weaker both tractability and intractability results)

appeared in the Proceedings of ICALP 2022 [37]. This project has received funding from the Euro-

pean Research Council (ERC) under the European Union’s Horizon 2020 research and innovation

programme (grant agreement No 714532). The paper reflects only the authors’ views and not the

views of the ERC or the European Commission. The European Union is not liable for any use

that may be made of the information contained therein. This work was also supported by UKRI

EP/X024431/1 and a Clarendon Fund Scholarship.

We thank the anonymous reviewers of both the ICALP version [37] and this full version for

their comments. We also thank Dömötör Pálvölgyi for informing us that LO colourings have been

studied under the name of unique maximum colourings.

REFERENCES
[1] Per Austrin, Amey Bhangale, and Aditya Potukuchi. Simplified inpproximability of hypergraph coloring via 𝑡 -agreeing

families, 2019.

[2] Per Austrin, Amey Bhangale, and Aditya Potukuchi. Improved inapproximability of rainbow coloring. In Proc. 31st

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’20), pages 1479–1495, 2020.

[3] Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+𝜖)-Sat is NP-hard. SIAM J. Comput., 46(5):1554–1573, 2017.

[4] Libor Barto, Diego Battistelli, and Kevin M. Berg. Symmetric Promise Constraint Satisfaction Problems: Beyond the

Boolean Case. In Proc. 38th International Symposium on Theoretical Aspects of Computer Science (STACS’21), volume 187

of LIPIcs, pages 10:1–10:16, 2021.

[5] Libor Barto, Jakub Bulín, Andrei A. Krokhin, and Jakub Opršal. Algebraic approach to promise constraint satisfaction.

J. ACM, 68(4):28:1–28:66, 2021.

[6] Libor Barto and Marcin Kozik. Combinatorial Gap Theorem and Reductions between Promise CSPs. In Proc. 2022

ACM-SIAM Symposium on Discrete Algorithms (SODA’22), pages 1204–1220, 2022.

[7] Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them. In Andrei Krokhin and Stanislav

Živný, editors, The Constraint Satisfaction Problem: Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups,

pages 1–44. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2017.

[8] Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. Isr. J. Math, 223(1):363–398, Feb 2018.

[9] Bonnie Berger and John Rompel. A better performance guarantee for approximate graph coloring. Algorithmica,

5(3):459–466, 1990.

[10] Amey Bhangale. NP-Hardness of Coloring 2-Colorable Hypergraph with Poly-Logarithmically Many Colors. In Proc.

45th International Colloquium on Automata, Languages, and Programming (ICALP’18), volume 107 of LIPIcs, pages

15:1–15:11, 2018.

[11] Avrim Blum. New approximation algorithms for graph coloring. J. ACM, 41(3):470–516, 1994.

[12] Joshua Brakensiek and Venkatesan Guruswami. New hardness results for graph and hypergraph colorings. In Proc.

31st Conference on Computational Complexity (CCC’16), volume 50 of LIPIcs, pages 14:1–14:27, 2016.

[13] Joshua Brakensiek and Venkatesan Guruswami. Promise Constraint Satisfaction: Algebraic Structure and a Symmetric

Boolean Dichotomy. SIAM J. Comput., 50(6):1663–1700, 2021.

[14] Joshua Brakensiek and Venkatesan Guruswami. The quest for strong inapproximability results with perfect complete-

ness. ACM Trans. Algorithms, 17(3):27:1–27:35, 2021.

[15] Alex Brandts, Marcin Wrochna, and Stanislav Živný. The complexity of promise SAT on non-Boolean Domains. ACM

Trans. Comput. Theory, 13(4), 2021.

[16] Panagiotis Cheilaris, Balázs Keszegh, and Dömötör Pálvölgyi. Unique-maximum and conflict-free coloring for

hypergraphs and tree graphs. SIAM J. Discret. Math., 27(4):1775–1787, 2013.

[17] Panagiotis Cheilaris and Géza Tóth. Graph unique-maximum and conflict-free colorings. J. Discrete Algorithms,

9(3):241–251, 2011.

[18] Eden Chlamtac and Gyanit Singh. Improved approximation guarantees through higher levels of SDP hierarchies. In

Proc. 11th International Workshiop on Approximation, Randomization and Combinatorial Optimization (APPROX’08),

volume 5171 of Lecture Notes in Computer Science, pages 49–62. Springer, 2008.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd Edition.

MIT Press, 2009.

[20] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional Hardness for Approximate Coloring. SIAM J. Comput.,

39(3):843–873, 2009.

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 Tamio-Vesa Nakajima and Stanislav Živný

[21] Irit Dinur, Oded Regev, and Clifford Smyth. The hardness of 3-uniform hypergraph coloring. Comb., 25(5):519–535,

September 2005.

[22] Irit Dinur and Igor Shinkar. On the Conditional Hardness of Coloring a 4-Colorable Graph with Super-Constant

Number of Colors. In Proc. 13th International Workshop on Approximation Algorithms for Combinatorial Optimization

(APPROX’10), volume 6302 of LNCS, pages 138–151. Springer, 2010.

[23] M. R. Garey and D. S. Johnson. The complexity of near-optimal graph coloring. J. ACM, 23(1):43–49, 1976.

[24] Venkatesan Guruswami and Sanjeev Khanna. On the hardness of 4-coloring a 3-colorable graph. SIAM J. Discret. Math,

18(1):30–40, 2004.

[25] Venkatesan Guruswami and Euiwoong Lee. Strong inapproximability results on balanced rainbow-colorable hyper-

graphs. Comb., 38(3):547–599, 2018.

[26] Venkatesan Guruswami and Sai Sandeep. d-To-1 Hardness of Coloring 3-Colorable Graphs with O(1) Colors. In Proc.

47th International Colloquium on Automata, Languages, and Programming (ICALP’20), volume 168 of LIPIcs, pages

62:1–62:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

[27] Venkatesan Guruswami and Sai Sandeep. Rainbow coloring hardness via low sensitivity polymorphisms. SIAM J.

Discret. Math, 34(1):520–537, 2020.

[28] Magnús M. Halldórsson. Approximations of weighted independent set and hereditary subset problems. J. Graph

Algorithms Apppl., 4(1):1–16, 2000.

[29] Sangxia Huang. Improved hardness of approximating chromatic number. In Proc. 16th International Workshop on

Approximation Algorithms for Combinatorial Optimization (APPROX’13), pages 233–243. Springer, 2013.

[30] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidefinite programming. J.

ACM, 45(2):246–265, 1998.

[31] Ken-ichi Kawarabayashi and Mikkel Thorup. Coloring 3-colorable graphs with less than 𝑛1/5 colors. J. ACM,

64(1):4:1–4:23, 2017.

[32] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating the chromatic number. Comb.,

20(3):393–415, Mar 2000.

[33] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The approximability of constraint satisfaction

problems. SIAM J. Comput., 30(6):1863–1920, 2000.

[34] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. 34th Annual ACM Symposium on Theory of

Computing (STOC’02), pages 767–775. ACM, 2002.

[35] Michael Krivelevich, Ram Nathaniel, and Benny Sudakov. Approximating coloring and maximum independent sets in

3-uniform hypergraphs. J. Algorithms, 41(1):99–113, 2001.

[36] Michael Krivelevich and Benny Sudakov. Approximate coloring of uniform hypergraphs. Journal of Algorithms,

49(1):2–12, 2003.

[37] Tamio-Vesa Nakajima and Stanislav Živný. Linearly Ordered Colourings of Hypergraphs. In 49th International

Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of LIPIcs, pages 128:1–128:18, 2022.

[38] Tamio-Vesa Nakajima and Stanislav Živný. Linearly ordered colourings of hypergraphs. Technical report, 2022. Version

1, April 2022.

[39] Avi Wigderson. Improving the performance guarantee for approximate graph coloring. J. ACM, 30(4):729–735, 1983.

[40] Marcin Wrochna. A note on hardness of promise hypergraph colouring. Technical report, 2022.

[41] Marcin Wrochna and Stanislav Živný. Improved hardness for 𝐻 -colourings of 𝐺-colourable graphs. In Proc. 31st

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’20), pages 1426–1435, 2020.

Received April 2022; revised August 2022

ACM Trans. Comput. Theory, Vol. 1, No. 1, Article 1. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithmic results
	4 Algebraic theory of fixed-template promise CSPs
	5 Hardness results
	5.1 Source of hardness
	5.2 Minion homomorphisms

	6 Conclusions
	Acknowledgments
	References

