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Abstract
We identify a sufficient condition, treewidth-pliability, that
gives a polynomial-time approximation scheme (PTAS) for
a large class of Max-2-CSPs parametrised by the class
of allowed constraint graphs (with arbitrary constraints
on an unbounded alphabet). Our result applies more
generally to the maximum homomorphism problem between
two rational-valued structures.

The condition unifies the two main approaches for
designing PTASes. One is Baker’s layering technique, which
applies to sparse graphs such as planar or excluded-minor
graphs. The other is based on Szemerédi’s regularity lemma
and applies to dense graphs. We extend the applicability of
both techniques to new classes of Max-CSPs.

Treewidth-pliability turns out to be a robust notion that
can be defined in several equivalent ways, including char-
acterisations via size, treedepth, or the Hadwiger number.
We show connections to the notions of fractional-treewidth-
fragility from structural graph theory, hyperfiniteness from
the area of property testing, and regularity partitions from
the theory of dense graph limits. These may be of inde-
pendent interest. In particular we show that a monotone
class of graphs is hyperfinite if and only if it is fractionally-
treewidth-fragile and has bounded degree.

The full version [59] containing detailed proofs is avail-
able at https://arxiv.org/abs/1911.03204.

1 Introduction

The problem of finding a maximum cut in a graph
(Max-Cut) is one of the most studied problems from
Karp’s original list of 21 NP-complete problems [43].
While Max-Cut is NP-hard to solve optimally, there is
a trivial 0.5-approximation algorithm [60] and the cele-
brated 0.878-approximation algorithm of Goemans and
Williamson [31]. Papadimitriou and Yannakakis estab-
lished that Max-Cut is Max-SNP-hard [57]. By the work
of Arora, Lund, Motwani, Sudan, and Szegedy [5] this
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implies that, unless P=NP, there is no polynomial-time
approximation scheme (PTAS) for Max-Cut in general
graphs. However, non-trivial results exist for impor-
tant special cases. On the one hand, Max-Cut is solv-
able exactly in planar graphs, as shown by Hadlock [38],
and more generally, Max-Cut admits a PTAS on graph
classes excluding a fixed minor, as shown by Demaine,
Hajiaghayi, and Kawarabayashi [20]. On the other
hand, Arora, Karger, and Karpinski showed a PTAS
for Max-Cut in dense graphs [4], where a graph class is
dense if every graph in it contains at least a constant
fraction of all possible edges.

Max-Cut is an example of maximum constraint sat-
isfaction problem (Max-CSP), although a very special
one (the alphabet size is 2, in particular constant, and
every constraint uses the same symmetric predicate
“x 6= y” of arity 2). Another well-known example is
Max-r-SAT, with alphabet size 2 and r-ary clauses. Mo-
tivated by results on planar, excluded-minor, and dense
graph classes, our goal in this paper is to understand
the following question:

What structure allows for the existence of a
PTAS for Max-CSPs?

We focus on two computational problems. First,
we study the general Max-2-CSP(G) problem param-
eterised by the class of underlying constraint graphs
(a.k.a. primal or Gaifman graphs). The input is a
graph G ∈ G, an alphabet Σv for each vertex, and for
each edge uv a valued constraint fuv : Σu ×Σv → Q≥0.
The goal is to find an assignment h(v) ∈ Σv maximis-
ing

∑
uv fuv(h(u), h(v)). Similarly, in Max-r-CSP(G) a

constraint may appear on any r-clique in G. The con-
straints are arbitrary (non-negative) and the alphabets
are not fixed, making the problem very expressive.1

Second, we consider a more general frame-
work called the maximum homomorphism problem
(Max-Hom) of computing the maximum value of any

1One could attempt to generalise counting problems by maxi-

mizing
∏
uv fuv(h(u), h(v)) instead, or equivalently its logarithm∑

uv log fuv(h(u), h(v)). However, the requirement fuv ≥ 0 and
the approximation ratio change. This changes the complexity:
for example, approximating the number of 3-colourings requires

deciding whether there is at least one in polynomial time, which
is NP-hard already in 4-regular planar graphs [13].
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map between two given Q≥0-valued structures A and B;
the value will be denoted by opt(A,B) (see Section 2 for
precise definitions). Intuitively, the left-hand-side struc-
ture describes the (weighted) scopes of the constraints
and the right-hand-side structure describes the different
types of constraints. Following Grohe’s notation [36],
for a class of structures A we denote by Max-Hom(A,−)
the restriction of Max-Hom to instances (A,B) with
A ∈ A and B arbitrary. This framework captures the
Max-r-CSP(G) problem as a particular case: it is equiv-

alent to Max-Hom(A(r)
G ,−), where by A(r)

G we denote
the class of all valued structures with an underlying
graph in G and arity r. Another example is the case of
graph Max-CSP, by which we mean a Max-2-CSP that
uses the same symmetric predicate in all constraints (as
in Max-Cut or Max-q-Cut); this case is equivalent to
Max-Hom(A,−) where the structures in A are graphs.

The question of what structure allows to solve Max-
CSPs exactly in polynomial time is well understood. A
standard dynamic approach works for Max-r-CSP(G)
when G is a class of graphs of bounded treewidth.
Grohe, Schwentick, and Segoufin [37] in fact proved
the converse: if G has unbounded treewidth then
Max-r-CSP(G), in fact already deciding the existence
of a solution satisfying all constraints, cannot be solved
in polynomial time (assuming FPT 6=W[1]). Grohe’s
theorem [36] then extended it to the more general
framework: for a class of relational (or {0, 1}-valued)
structures A of bounded arity, the decision problem
Hom(A,−) can be solved in polynomial time if and only
if the cores of structures in A have bounded treewidth.
(The core is the smallest homomorphically equivalent
substructure; for example, bipartite graphs all have the
single edge graph K2 as a core, so Hom(A,−) is easy
when A is a class of bipartite graphs). This was recently
extended further to optimisation with valued structures
by Carbonnel, Romero, and Živný [9, 10].

Max-r-CSPs do not admit a PTAS in general, since
already Max-Cut does not. On the other hand, the
techniques that give PTASes for Max-Cut on sparse
and dense graphs apply more generally (in fact to a
variety of problems beyond Max-CSPs). Our main
contribution is a unifying condition, treewidth-pliability,
that captures all known PTASes for Max-r-CSP(G) and
Max-Hom(A,−) problems.

We call a class of structures A tw-pliable if it is
uniformly close to structures of bounded treewidth.
More formally, for any ε > 0 there is a k = k(ε)
such that every structure in A has an ε-close structure
with treewidth at most k. Here we consider two
structures A and B to be ε-close if opt(A,C) is ε-close
to opt(B,C) for all C (details in Section 2.3; this notion
of distance, which we also characterise combinatorially,

may be of independent interest). While the structure
of bounded treewidth is not known and cannot be
efficiently computed, we show that the Sherali-Adams
LP relaxation gives a PTAS for Max-Hom(A,−).

Theorem 1.1. If A is a tw-pliable class of structures
of bounded arity, then Max-Hom(A,−) admits a PTAS.

We emphasise the generality of Theorem 1.1.
Firstly, the computational problem (Max-Hom) cap-
tures many fundamental problems. Secondly, the notion
of pliability captures many previously discovered cases
of structures that admit a PTAS. In particular, we now
discuss how Theorem 1.1 extends the applicability of
the two main approaches for obtaining PTASes.

1.1 Sparse structures: Baker’s technique and
fragility Perhaps the best known technique for solving
problems on planar graphs is Lipton and Tarjan’s
planar separator theorem [48] and the divide & conquer
approach it enables [49]. It can be used to give a
PTAS for Max-CSPs with fixed alphabet size on planar
graphs (this extends to excluded-minor graphs [2] and
more [28]) of bounded degree.

This approach was superseded by Baker’s tech-
nique [6], which provides better running times and is
easily applied to general Max-r-CSPs on arbitrary pla-
nar graphs (see e.g. [44]). The idea is very elegant: we
partition a planar graph into Breadth-First-Search lay-
ers, remove every `-th layer, and show that the remain-
ing components of `−1 consecutive layers have bounded
treewidth (and so can be solved exactly). By trying dif-
ferent starting layers we can ensure that the removed
layers intersect an unknown optimal solution at most
O( 1

` ) times, giving a 1±O( 1
` ) approximation.

From planar graphs this was extended to graphs
of bounded genus by Eppstein [29] and later to all
graph classes excluding a fixed minor by Grohe [35]
and Demaine et al. [20]. The structural property
needed for this approach, originally proved for excluded-
minor graphs by DeVos, Ding, Oporowski, Sanders,
Reed, Seymour, and Vertigan [21], is tw-fragility : they
can be partitioned into any constant number of parts
such that removing any one part leaves a graph of
bounded treewidth. As shown by Hunt, Marathe, and
Stearns [53, 41] (see also [42]) as well as Grigoriev and
Bodlaender [34], the same property applies to some
geometrically-defined graph classes that do not exclude
any minor. One example is intersection graphs of
unit disks whose centers are at least some constant
apart (capturing some applications of the closely related
shifting technique of Hochbaum and Maass [40] for
geometric packing and covering problems). Another
example is 1-planar graphs, or more generally graphs
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drawn on a fixed surface with a bounded number of
intersections per edge.

An important generalisation, fractional-tw-fragility,
was introduced by Dvořák [24]: it suffices that the parts
whose removal results in a graph of bounded treewidth
are nearly-disjoint (Definition 4.2). This applies to
d-dimensional variants of the geometric classes men-
tioned above (for any constant d), in particular to d-
dimensional grids, which are not tw-fragile [8]. For
such concrete examples of fragile classes, known proofs
show that the nearly-disjoint parts can be computed ef-
ficiently. A PTAS can then easily be designed from the
definition [24].

We show that the assumption about efficient con-
struction is not needed. We do this by proving that
if G is any fractionally-tw-fragile class of graphs (intu-
itively, any class where a Baker-like technique is known

to work), then the class A(r)
G of all possible structures

with Gaifman graph in G and bounded arity r is tw-
pliable.

Theorem 1.2. Let G be a fractionally-tw-fragile class

of graphs. Then A(r)
G is tw-pliable for every r. Conse-

quently, Max-r-CSP(G) admits a PTAS.

This captures all graph classes G where a PTAS for
Max-r-CSP(G) is known.

1.2 Dense structures: the regularity lemma It
is perhaps more surprising that dense structures admit
a PTAS. Here a class is dense if a constant factor of all
possible constraints is present in every structure in the
class, e.g. graphs with Ω(n2) edges. Arora, Karger, and
Karpinski [4] showed that Max-r-CSPs admit a PTAS
in the dense regime if the alphabet size is constant
(in fact Boolean); de la Vega [15] independently gave
a PTAS for dense Max-Cut. Frieze and Kannan [30]
proved that these results are essentially possible because
of Szemerédi’s regularity lemma [63]: intuitively, every
graph can be approximated to within an additive ±εn2
error by a random graph (with a constant number of
parts, depending on ε only, so that the edges between
two parts form a uniformly random graph of some
density). For dense graphs, the additive error translates
to a relative error, giving a PTAS. They also showed a
variant of the regularity lemma that is still applicable
to Max-r-CSPs with constant alphabet size, yet avoids
its infamous tower-type dependency on ε.

Goldreich, Goldwasser, and Ron [33] connected
these results to the area of property testing, spawning
an entirely new direction of research. They gave
constant-time algorithms estimating the optimum value
of some graph Max-CSPs. In fact, Alon, de la Vega,
Kannan, and Karpinski [1] (see also Andersson and

Engebretsen [3]) showed that Max-r-CSPs with a fixed
alphabet can be approximated with accuracy ±εnr by
sampling a constant number of vertices (polynomial in
1
ε ) and finding the optimum on the resulting (constant-
size) induced substructure.

None of these results apply to any Max-r-CSP(G)
and Max-Hom(A,−) problem, that is, to unbounded
alphabets. We give the first such example: undirected
graphs with Ω(n2) edges.

Theorem 1.3. Let c > 0 and let A be a class of
graphs with at least cn2 edges. Then A is tw-pliable.
Consequently, Max-Hom(A,−) admits a PTAS.

(Note here the graphs in A are input structures, not just
Gaifman graphs of input structures). We also show that
this cannot be extended to non-graph CSPs: already
for the class of tournaments—that is, orientations of
complete graphs—a PTAS is impossible, assuming Gap-
ETH [59, Corollary E.5].

1.3 Robustness of pliability The notion of
treewidth-pliability not only unifies the different
existing algorithmic techniques but it is also quite
robust: treewidth-pliability captures a valued analogue
of “homomorphic equivalence” (e.g. bipartite graphs,
or 3-colourable graphs where each edge is contained in
exactly one triangle, cf. [59, Examples D.5 and D.6] as
well as small edits: if A is an pliable class of graphs,
say, then the class of graphs obtained by adding or
removing o(m) edges from m-edge graphs in A is again
pliable [59, Corollary D.4]. However, this generality
comes at a price. First, we show that even for fixed
alphabet size, although the approximate optimum
value can be found, an approximate solution cannot be
constructed (unless P = NP, cf. [59, Example D.7]).
Second, unlike in some of the previous results for
more restricted classes, our result does not give an
EPTAS (i.e., with the degree of the polynomial time
bound independent of ε) for fixed alphabet size (cf. [59,
Question D.8]). Finally, the use of strong versions of
the regularity lemma yields tower-type dependencies
on the approximation ratio ε in the dense case.

In the definition of treewidth-pliability we approx-
imate structures by comparing their opt() values and
we ask them to be close to structures where the prob-
lem can be solved exactly. This is a non-constructive
and very general definition. In fact, it is not incon-
ceivable that this captures all tractable cases, i.e., that
Max-Hom(A,−) has a PTAS if and only if A is tw-
pliable. Nevertheless, we show a variety of equivalent
combinatorial definitions, which allow us place a fairly
tight bound on what pliability is, structurally.

For classes of the form A(r)
G , that is, if we only
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restrict the underlying Gaifman graphs, we show that
pliability collapses to fractional fragility. In this sense
we understand the “sparse” setting exactly.

Lemma 1.1. Let G be a class of graphs. The following
are equivalent, for any r ≥ 2:

• G is fractionally-tw-fragile;

• A(r)
G is tw-pliable.

In general, we can replace treewidth with other
parameters of the Gaifman graph: size (number of
vertices), treedepth td, Hadwiger number (maximum
clique minor size), or maximum connected component
size, which we denote by cc.

Theorem 1.4. Let A be any class of structures. The
following are equivalent:

• A is td-pliable;

• A is tw-pliable;

• A is Hadwiger-pliable.

If structures in A have bounded signatures, then the
following are equivalent to the above as well:

• A is size-pliable;

• A is cc-pliable.

Classes of structures with bounded signatures (see
Section 2 for precise definitions) correspond to Max-
CSP instances with a bounded number of constraint
types; e.g. maximum graph homomorphism. For
example any class of dense graphs as in Theorem 1.3 is in
fact size-pliable. An example of a class with unbounded

signatures is any class of the form A(r)
G . Theorem 1.4

allows us to give concrete and general examples of
classes that are not tw-pliable: the class of orientations
of graphs in G, where G is any class of unbounded
average degree, or any class of 3-regular graphs with
unbounded girth [59, Lemmas 10.3 and 10.8].

Finally, as a side result, we connect hyperfiniteness
to fragility. A class of graphs G is called hyperfinite
if for every ε > 0 there is a k = k(ε) such that in
every G ∈ G one can remove an at-most-ε fraction of
edges to obtain a graph with connected components of
size at most k. For a monotone class of graphs (closed
under taking subgraphs), hyperfiniteness easily implies
bounded degree. It is an important notion in property
testing: many results in sparse graphs were generalised
by the statement that every property of hyperfinite
graphs is testable [56]. The idea, originating in the work
of Benjamini, Schramm, and Shapira [7] and Kassidim,

Kelner, Nguyen, and Onak [39], is that following the
approach of Lipton and Tarjan, graphs with sufficiently
sublinear separators, such as planar or excluded-minor
graphs [2], can be recursively partitioned into bounded-
size components, which for bounded-degree graphs gives
hyperfiniteness (see e.g. [12, Cor. 3.2] for a slightly
stronger property, cf. [54]). This allows, analogously as
in the dense case, to give a constant-size approximate
description of such graphs by sampling constant-radius
balls in them [56]. See [32] for a book on property
testing and [46] for a recent improvement for excluded-
minor graphs.

We show that a monotone class G is hyperfinite if
and only if it is fractionally-tw-fragile and has bounded
degree. In fact, replacing the parameter treewidth by
the maximum size of a connected component in a graph,
we have:

Theorem 1.5. Let G be a monotone class of graphs.
The following are equivalent, for any r ≥ 2:

• G is hyperfinite;

• G is fractionally-tw-fragile and has bounded degree;

• G is fractionally-cc-fragile;

• A(r)
G is cc-pliable.

The equivalence of the second and third bullet points
was shown by Dvořák [24, Observation 15, Corollary 20],
while for the third and fourth the proof is established
by the same proof as Lemma 1.1.

1.4 Related work While this paper focuses on
Max-r-CSPs, Baker’s technique and the regularity
lemma apply to many more problems. In fact Khanna
and Motwani [44] argued that most known PTAS algo-
rithms can be derived from three canonical optimisation
problems on planar graphs, the first being Max-CSP and
the latter two being so-called Max-Ones and Min-Ones
CSPs (also solvable with Baker’s technique). One of the
very few results that did not fit their framework was the
PTAS for dense Max-Cut.

Generic frameworks extending Baker’s technique in-
clude the bidimensionality theory of Demaine, Fomin,
Hajiaghayi, and Thilikos [18] and its application
in the design of PTASes by Demaine and Haji-
aghayi [19] (which is however limited to minor-closed
graph classes); monotone FO problems on minor-
closed graph classes by Dawar, Grohe, Kreutzer, and
Schweikardt [14]; and the very recent idea of Baker
games, introduced by Dvořák [25] (see also [27]).
The latter gives conditions stronger than fractional-tw-
fragility, but useful for problems beyond Max-CSPs,
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and achievable for all examples known to be fraction-
ally fragile.

De la Vega and Karpinski [16, 17] extended the

dense approach to subdense cases (Ω( n2

logn ) edges) for
specific problems such as MaxCut and Max-2-SAT.
In contrast, they show that Max-Cut on graphs with
Ω(n2−δ) edges is hard to approximate, for any δ > 0.

The best known approximation algorithm for gen-
eral Max-2-CSPs is due to Charikar, Hajiaghayi, and
Karloff [11] and achieves an approximation factor of
O((nq)1/3), where n is the number of variables and q is
the alphabet size. On the hardness side, Dinur, Fischer,

Kindler, Raz, and Safra [23] showed that O(2log
1−δ(nq))-

approximation of Max-2-CSPs is NP-hard. Manurangsi
and Moshkovitz [51] gave approximation algorithms for
dense Max-2-CSPs with large alphabet size (but not
PTASes). Manurangsi and Raghavendra [52] establish
a tight trade-off between running time and approxima-
tion ratio for dense Max-r-CSPs for r > 2.

CSPs have also been extensively studied for fixed
constraint types, i.e., Max-Hom(−,B) problems for
fixed B. Raghavendra showed that the best approxi-
mation ratio is always achieved by the basic SDP re-
laxation [58], assuming Khot’s unique games conjec-
ture [45]. The exactly solvable cases were characterised
by Thapper and Živný [64]. The approximation factor
of graph Max-CSPs was studied by Langberg, Rabani,
and Swamy [47].

1.5 Overview In Section 2, we give formal defini-
tions and present our basic tool: two structures A,B
have similar values of opt(−,C) if and only if there
is a certain fractional cover, which we call an over-
cast, from A to B and from B to A. To prove that
treewidth-pliability leads to a PTAS (Theorem 1.1) the
main idea is that an overcast allows to show that the
values of opt(−,C) are still similar when we look at lin-
ear programming relaxations. We delay the details to
Section 5.

Section 3 sketches our approach to dense graphs and
to Theorem 1.3. In Section 4, we introduce equivalent
definitions of fractional fragility and prove Theorem 1.2
by showing how the definition implies suitable overcasts.
This also allows us to conclude half of Lemma 1.1 and
Theorem 1.4, and to outline the remainder of their
proofs.

Sections 5 defines the Sherali-Adams linear pro-
gramming relaxation and gives the proof of Theo-
rem 1.1. The rest of the proofs and future directions
can be found in the full version of this paper [59].

2 Preliminaries

2.1 Structures A signature is a finite set σ of (func-
tion) symbols f , each with a specified arity ar(f). We
denote by |σ| the number of symbols in the signature σ.
A structure A over a signature σ (or σ-structure A, for
short) is a finite domain A together with a function
fA : Aar(f) → Q≥0 for each symbol f ∈ σ.

We denote by A,B,C, . . . the domains of structures
A,B,C, . . . . For sets A and B, we denote by BA the set
of all mappings from A to B. We define tup(A) to be the
set of all pairs (f,x) such that f ∈ σ and x ∈ Aar(f), and
by tup(A)>0 the pairs (f,x) ∈ tup(A) with fA(x) > 0.

We denote ‖A‖∞ := max(f,x)∈tup(A) f
A(x) and

‖A‖1 :=
∑

(f,x)∈tup(A) f
A(x). For λ ≥ 0 we write

λA for the rescaled σ-structure with domain A and
fλA(x) := λfA(x), for (f,x) ∈ tup(A).

Given a σ-structure A, the Gaifman graph (or pri-
mal graph), denoted by G(A), is the graph whose vertex
set is the domain A, and whose edges are the pairs {u, v}
for which there is a tuple x and a symbol f ∈ σ such that
u, v appear in x and fA(x) > 0. For r ≥ 2 and a class

of graphs G, we denote by A(r)
G the class of σ-structures

A with G(A) ∈ G and ar(f) ≤ r for every f ∈ σ.
The maximum homomorphism problem (Max-Hom)

is the following computational problem. An instance of
Max-Hom consists of two structures A and B over the
same signature. For a mapping h : A → B, we define
value(h) =

∑
(f,x)∈tup(A) f

A(x)fB(h(x)). The goal is
to find the maximum value over all possible mappings
h : A → B.2 We denote this value by opt(A,B). Note
that when seen as a Max-CSP instance, the domain of
the left-hand side structure A is the variable set, while
the domain of the right-hand side structure B is the
alphabet.

Given a class A of structures, Max-Hom(A,−) is
the problem restricted to instances (A,B) of Max-Hom
with A ∈ A (it is a promise problem: algorithms are
allowed to do anything when A 6∈ A). Recall that
for a class of graphs G, the problem Max-r-CSP(G) is

equivalent to Max-Hom(A(r)
G ,−).3

2.2 Overcasts Before we define pliability formally, it
is useful to consider the following relation. The starting

2While called maximum homomorphism, we note that the
maximisation is over all possible maps, not only homomorphisms,

i.e. those that map non-zero tuples into non-zero tuples.
3Note that Max-Hom(A(r)

G ,−) is different from the maximum

graph homomorphism problem Max-Hom(G,−). Indeed, graphs
are also structures over the signature {e} with one symbol of
arity 2 (where eG(u, v) = [uv is an edge of G], if the graph is not

weighted). To avoid confusion, we use G for a class of Gaifman
graphs of some structures and A for a class of graphs that are
themselves used as input structures.
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point of all our results is the equivalence of this relation
to a more combinatorial notion: the existence of a
certain fractional cover, which we shall call an overcast.

Definition 2.1. Let A and B be σ-structures. We say
that A overcasts B, denoted A�B if, for all σ-structures
C, we have that opt(A,C) ≥ opt(B,C).

A distribution over a finite set U is a function
π : U → Q≥0 such that

∑
x∈U π(x) = 1. The support of

π is the set supp(π) := {x ∈ U : π(x) > 0}. We write
Ex∼π f(x) for

∑
x∈U π(x) · f(x) and Prx∼π[φ(x)] for

Ex∼π[φ(x)], where [φ(x)] is 1 if x satisfies the predicate
φ and 0 otherwise.

Definition 2.2. Let A and B be σ-structures. An
overcast from A to B is a distribution ω over BA such
that for each (f,x) ∈ tup(B) we have that

E
g∼ω

fA(g−1(x)) ≥ fB(x).

Here fA(g−1(x)) denotes the sum of fA(y) over y ∈
g−1(x) ⊆ Aar(f).

The following is a consequence of Farkas’ Lemma
(or LP duality), as shown in [59, Appendix B]. 4

Proposition 2.1. A � B if and only if there is an
overcast from A to B.

2.3 Pliability Our definition of pliability involves
a notion of distance which may be of independent
interest. It quantifies the relative difference between
two structures (as measured from the right by weighted
multicut densities, in the language of Lovász’ book on
graph limits [50, Ch. 12]).

Definition 2.3. The opt-distance between two struc-
tures with the same signature is defined as:

dopt(A,B) := supC |ln opt(A,C)− ln opt(B,C)| .

Here ln 0 = −∞ and |ln 0− ln 0| = 0. Equivalently, we
can compare rescaled structures; by definition of � and
the fact that opt(λA,C) = λopt(A,C), we have:

dopt(A,B) = inf
{
ε
∣∣ A � e−ε B and B � e−εA

}
.

4The definitions of the � relation and of an overcast are
analogous to the “improvement” relation and “inverse fractional
homomorphisms” from [10]. Here, however, opt() is maximising,
not minimising, so inequalities in definitions are swapped. This

has consequences such as the fact that mappings in the support
of an overcast are in general not homomorphisms (mapping
non-zero tuples to non-zero tuples), unlike for inverse fractional

homomorphisms. The proof of Proposition 2.1 nevertheless is
identical to the proof of [10, Proposition 6].

One may think of e±ε as close to 1 ± ε. Formally
1− ε ≤ e−ε ≤ 1

1+ε = 1− ε+O(ε2) for ε ≥ 0.

Finally, a class is treewidth-pliable if it is uniformly
close to structures of bounded treewidth:

Definition 2.4. A class of structures A is p-pliable
with respect to a parameter p if for every ε > 0, there
is k = k(ε) such that for every σ-structure A ∈ A there
is a σ-structure B with p(B) ≤ k and dopt(A,B) ≤ ε.

Thus to show tw-pliability of various classes, we will
construct overcasts from structures A in the class to
(1− ε)B, for some B of bounded treewidth, and from B
back to (1− ε)A.

In this paper we only consider graph parameters:
size(A) = |V (G(A))| = |A|, cc(A) – the maximum size
of a connected component of G(A), treedepth td(A)
as defined in [59, Section 7.3], treewidth tw(A), and
finally the Hadwiger number Hadwiger(A), which is
the maximum Kk minor of G(A). The treewidth of
a structure A is the treewidth of its Gaifman graph:
tw(A) = tw(G(A)), similarly for other graph parame-
ters. We refer to [22] for definitions of treewidth and
minors.

3 Dense graphs: sketch of Theorem 1.3

We start with simple examples of dense graphs. Observe
that large cliques can be arbitrarily well approximated
by cliques of constant size d 2εe (up to normalising total
edge weights).

Definition 3.1. Let 0 < ε < 1 and let n, k ≥ 2
ε . Then

dopt(Kn, λKk) ≤ ε, for λ =
(
n
2

)
/
(
k
2

)
.

Proof. For n, k ≥ 2, define an overcast ω by taking
a random function V (Kn) → V (Kk) (each vertex is
placed independently uniformly at random). Then for
each e ∈ E(Kk),

E
g∼ω
|g−1(e)| =

∑
e′∈E(Kn)

E
g∼ω

[g(e′) = e]

=

(
n

2

)
2

k2
= λ ·

(
k

2

)
· 2

k2
= (1− 1

k
)λ.

Therefore Kn� (1− 1
k )λKk. Symmetrically λKk� (1−

1
n )Kn. Since 1 − x ≥ e−2x for 0 ≤ x ≤ 1

2 , this means
dopt(Kn, λKk) ≤ 2

min(n,k) . Consequently if n, k ≥ 2
ε ,

then dopt(Kn, λKk) ≤ ε.

In particular, this means the classA consisting of all
clique graphs is size-pliable. This corresponds to an easy
PTAS for graph Max-Hom(A,−): the maximum graph
homomorphism from Kn to G is well approximated
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by finding the maximum graph homomorphism from
a constant size Kk to G and mapping Kn randomly
to the resulting ≤ k vertices in G. The situation is
very different for Densest Subgraph problems, because
they disallow choosing two equal vertices in G (see [59,
Observation E.2]).

As another important example, consider Erdős-
Rényi random graphs G(n, p) (for constant p ∈ (0, 1);
each pair in

(
n
2

)
becomes an edge independently with

probability p). They are similar to each other (and
in fact to pKn, as well as to λKk for constant k and
suitable λ):

Definition 3.2. Let p, ε > 0 be constants. Let G1, G2

be independent Erdős-Rényi random graphs G(n, p).
Then Pr[dopt(G1, G2) < ε]→ 1 as n→∞.

Proof. [Proof sketch] Let k be a sufficiently large con-
stant depending on ε only. It is sufficient to prove that
Pr[dopt(G1, λKk) < ε

2 ] → 1 as n → ∞. The rescaling

factor here is λ := p
(
n
2

)
/
(
k
2

)
. The number of edges of

G(n, p) is concentrated around p
(
n
2

)
, so just as before a

random function gives G(n, p)�(1− 1
k )λKk�e−ε/2λKk

with high probability (tending to 1 as n→∞).
For the other direction, we use the fact that the

number of k-cliques in G(n, p) is concentrated around

the mean
(
n
k

)
p(
k
2) and, more strongly, the number of

k-cliques containing any given edge of G(n, p) (condi-
tioned on it being an edge) is concentrated around the

mean
(
n−2
k−2
)
p(
k
2)−1. The concentration is good enough

that with high probability, every edge of G(n, p) is con-

tained in (1 ± ε
4 )
(
n−2
k−2
)
p(
k
2)−1 k-cliques (see e.g. [62]).

Thus if we take ω by mapping λKk injectively to a ran-
dom k-clique in G(n, p), then w.h.p. for each edge e of
G(n, p) we have

E
g∼ω
|g−1(e)| ≥ (1− ε

4
)

(
n− 2

k − 2

)
p(
k
2)−1/

(
n

k

)
p(
k
2)

= (1− ε

4
)
k(k − 1)

n(n− 1)
p−1 = (1− ε

4
)λ−1.

Thus λKk�e−ε/2G1 and consequently dopt(G1, λKk) ≤
ε
2 w.h.p.

To show Theorem 1.3, we extend the above informal
proof to any class of dense graphs. This is possible
because of the Szemerédi’s regularity lemma [63], which,
very roughly speaking, guarantees that all such graphs
are random-like. This allows to provide similar bounds
on the number of k-cliques containing any given edge,
a fact known as the extension lemma, though we prove
a variant that is somewhat tighter than usual. More
details and the full proof can be found in [59].

Note that the above proof sketch does not work for
random tournaments (orientations of cliques): if we try

to approximate them by the small graph 1
2

↔
Kk (each arc

taken with weight 1
2 ), then every overcast from it to a

tournament will always lose at least half of the total
weight. If instead we tried to take a small random
tournament, no overcast to it from the big random
tournament would work. Indeed, [59, Lemma 10.3]
shows the class of tournaments is not pliable (neither
are “random tournaments”, i.e. the proof can be
adapted to show that any class which contains a random
tournament with constant probability cannot be pliable)
and in fact the problem Max-Hom(A,−) for the class
of tournaments A is hard to approximate, as we show
in [59, Lemma E.4]. This is why, even though variants
of the regularity lemma exist for directed graphs and
even more general structures, we limit our discussion
to undirected graphs (the proofs do extend to [0, 1]-
weighted undirected graphs, however).

4 Fractional fragility: proof of Theorem 1.2

To give Dvořák’s definition of fractional fragility [24] we
first define ε-thin distributions.

Definition 4.1. Let F be a family of subsets of a set
V and ε > 0. We say a distribution π over F is ε-thin
if PrX∼π[v ∈ X] ≤ ε for all v ∈ V .

Definition 4.2. For a graph parameter p and a num-
ber k, we define a (p ≤ k)-modulator of a graph G to
be a set X ⊆ V (G) such that p(G − X) ≤ k. A frac-
tional (p ≤ k)-modulator is a distribution π of such
modulators X. We say that a class of graphs G is
fractionally-p-fragile if for every ε > 0 there is a k such
that every G ∈ G has an ε-thin fractional (p ≤ k)-
modulator. We can analogously define (p ≤ k)-edge-
modulators F ⊆ E(G) and fractionally-p-edge-fragility.

One crucial property of fractional fragility is that it
allows a dual definition by a variant of Farkas’ Lemma
(cf. [59, Appendix A] for details); this is already implicit
in [26, Lemma 5].

Lemma 4.1. Let F be a family of subsets of a set V .
The following are equivalent:

• there is an ε-thin distribution π of sets in F ;

• for all non-negative weights (w(v))v∈V , there is an
X ∈ F such that w(X) ≤ ε · w(V ).

Thus a class of graphs G is fractionally-tw-fragile if
and only if for every ε > 0 there is a k such that for every
graph G ∈ G and every vertex-weight function w, one

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



can remove a set of vertices of weight at most ε ·w(V ) to
obtain a graph with tw ≤ k. Here w(X) :=

∑
x∈X w(x).

Another useful property is that the edge version is
equivalent to the vertex version, for most parameters of
interest. A parameter is monotone if p(H) ≤ p(G) for
H a subgraph of G. The proof of the following is in [59,
Section 6].

Lemma 4.2. Let p be a monotone graph parameter such

that the average degree 2|E(G)|
|V (G)| of a graph is bounded by

a function of p(G). Let G be a class of graphs. Then
the following are equivalent:

• G is fractionally-p-fragile;

• G is fractionally-p-edge-fragile;

• ∀ε>0∃k∀G∈G∀w : V (G)→Q≥0
∃X⊆V (G) w(X) ≤

εw(V (G)) and p(G−X) ≤ k;

• ∀ε>0∃k∀G∈G∀w : E(G)→Q≥0
∃F⊆E(G) w(F ) ≤

εw(E(G)) and p(G− F ) ≤ k.

Dvořák and Sereni [26, Theorem 28] showed that
graphs of bounded treewidth are fractionally-td-fragile.
It follows from a result of DeVos et al. [21, Theorem
1.2] that for every graph H, H-minor-free graphs are
fractionally-tw-fragile. In fact, as shown by Dvořák [25],
a proof of van den Heuvel et al. [65, Lemma 4.1] can
be adapted to show this without the Graph Minors
Structure Theorem.

Theorem 4.1. ([26, 21]) For every H, the class of H-
minor-free graphs is fractionally-tw-fragile. For every k,
the class of graphs of treewidth at most k is fractionally-
td-fragile.

Consequently (cf. [24, Lemma 12]), the following
are equivalent for a class of graphs G:

• G is fractionally-td-fragile;

• G is fractionally-tw-fragile;

• G is fractionally-Hadwiger-fragile.

4.1 Fragility implies pliability We denote by G ]
H the disjoint union of graphs G and H.

Lemma 4.3. Let p be a graph parameter such that
p(G ] H) = max(p(G),p(H)) for all G,H. Let A be
a class of structures of bounded arity r such that the
class G of their Gaifman graphs is fractionally-p-fragile.
Then A is p-pliable.

Proof. By definition of fractional-p-fragility,
∀ε>0∃k(ε)∀G∈G G has an ε-thin fractional (p ≤ k)-
modulator, for some function k(ε). For ε > 0, let

ε′ := ε
1+ε ·

1
r and let k := k(ε′). Let A ∈ A be a struc-

ture with Gaifman graph G ∈ G. By assumption, G has
a fractional (p ≤ k)-modulator π such that for every
v ∈ V (G), PrX∼π[v ∈ X] ≤ ε′. For X ⊆ V (G) = A in
the support of π, let BX be the rescaling of A − X by
a factor of π(X); let B be the disjoint union of all BX .
Since each X in the support of π is a (p ≤ k)-modulator
and p is closed under disjoint union, p(G(B)) ≤ k.

We define overcasts ω : A → B and ω′ : B →
(1 − rε′)A. The first, ω, maps A identically to each
component BX of B with probability π(X) (vertices
of A in X are mapped arbitrarily). The second,
ω′, deterministically maps each component BX of B
identically to A. To check that ω′ is indeed an overcast,
consider a tuple (f,x) ∈ tup(A). The tuple is covered by
its copies in BX with weight π(X)·fA(X) for allX which
do not intersect x. In total, the fraction of fA(x) lost
is hence exactly PrX∼π[X ∩ x 6= ∅], which is (by union
bound and by the assumption |x| ≤ r) at most ε′r. Since
1−ε′r = 1

1+ε ≥ e
−ε, we have A�B� (1−ε′r)A�e−εA,

which means B is a structure at opt-distance ≤ ε from
A.

This concludes Theorem 1.2: structures on fractionally-
tw-fragile graphs are tw-pliable.

For Lemma 1.1, we need the other direction: that
if all structures on Gaifman graphs in G are tw-pliable,
then G is fractionally-tw-fragile. To do this, we consider,
for a graph G ∈ G, a structure A where each edge is
used by a different symbol of a signature. If we have a
structure B (of bounded treewidth) close to A in opt-
distance, this implies overcasts from A to e−εB and
from B to e−εA; composing the two gives an overcast
from e+εA to e−εA in which (since each edge is used
by a different symbol) an edge can only be covered by
itself. This shows that the overcasts are mostly injective
and that B, sandwiched between e+εA and e−εA, must
be close in edit distance. The bounded treewidth of
B then implies that the graph G underlying A is in
fact fractionally-tw-edge-fragile, which by Lemma 4.2
concludes the proof. Details can be found in [59,
Section 6].

The first half of Theorem 1.4 already follows easily
as a corollary of Theorem 4.1, Lemma 4.3 and the
following simple observation. Details can be found
in [59, Section 7].

Definition 4.1. (Transitivity of pliability)
Let A be a class of structures with signatures from a
set Σ. Suppose A is p-pliable and that for each k,
{A : p(A) ≤ k} is p′-pliable, where A runs over all
structures with signatures in Σ. Then A is p′-pliable.

The second half of Theorem 1.4 similarly reduces to
showing that structures of bounded treedepth with a
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max
∑

(f,x)∈tup(A), s : Set(x)→B

λ(Set(x), s)fA(x)fB(s(x))

λ(X, s) =
∑

r : Y→B, r|X=s

λ(Y, r) for X ⊆ Y ∈
(
A
≤k
)

and s : X → B

∑
s : X→B

λ(X, s) = 1 for X ∈
(
A
≤k
)

λ(X, s) ≥ 0 for X ∈
(
A
≤k
)

and s : X → B

Figure 1: The Sherali-Adams relaxation of level k of (A,B).

bounded signature are size-pliable. The strategy for
the proof is similar to a proof of Nešetřil and Ossona
de Mendez [55, Corollary 3.3] that relational structures
of bounded treedepth have bounded cores. However the
argument is much more intricate due to the fact that
we consider valued structures: the statement that there
are only finitely many structures of size at most C, for
every C, is not true anymore. The main difficulty is
proving an approximate version of it: we do this in the
full version of this paper [59].

5 Pliable structures admit a PTAS: proof of
Theorem 1.1

We first define the Sherali-Adams LP hierarchy [61] for
Max-Hom. Let (A,B) be an instance of Max-Hom over
a signature σ and let k ≥ maxf∈σ ar(f). For a tuple x,
we denote by Set(x) the set of elements appearing in x.
We write

(
A
≤k
)

for the set of subsets of A with at most k

elements. The Sherali-Adams relaxation of level k [61]
of (A,B) is the linear program given in Figure 1, which
has one variable λ(X, s) for each X ∈

(
A
≤k
)

and each
s : X → B.

We denote by optk(A,B) the optimum value of this
linear program.

Definition 5.1. Let A be a σ-structure, λ ≥ 0 and
k ≥ maxf∈σ ar(f). Then for all σ-structures C, we
have opt(λA,C) = λopt(A,C) and optk(λA,C) =
λoptk(A,C).

Definition 5.1. Let A and B be σ-structures and k ≥
maxf∈σ ar(f). We write A�k B if, for all σ-structures
C, we have optk(A,C) ≥ optk(B,C).

The proof of the following is analogous to the
proof of [10, Proposition 27] and can be found in [59,
Appendix C].

Proposition 5.1. Let A and B be σ-structures and
k ≥ maxf∈σ ar(f). If there is an overcast from A to
B then A�k B.

Using Observation 5.1 and Proposition 5.1, we are
ready to prove the following.

Proposition 5.2. Let A be a σ-structure. Let ε ≥ 0
and k ≥ maxf∈σ ar(f). Suppose that there exists a σ-
structure B such that dopt(A,B) ≤ ε and tw(B) ≤ k.
Then, for every σ-structure C, we have that

opt(A,C) ≤ optk(A,C) ≤ (1 +O(ε))opt(A,C).

Proof. The left-hand side inequality is from the defini-
tion of Sherali-Adams. For the right-hand side inequal-
ity, observe first that, by definition of dopt, A � e−εB
and B � e−εA. By Proposition 2.1, there is an over-
cast from B to e−εA, so by Proposition 5.1, it fol-
lows that B �k e−εA. By Observation 5.1, we have
that optk(B,C) ≥ e−εoptk(A,C). Since tw(B) ≤ k,
we have optk(B,C) = opt(B,C) – this follows, for
example, from [10, Theorem 33].5 Since moreover
A�e−εB, by Observation 5.1, it follows that opt(A,C) ≥
e−εopt(B,C). Together, opt(A,C) ≥ e−εopt(B,C) =
e−εoptk(B,C) ≥ e−2εoptk(A,C). Hence optk(A,C) ≤
e2εopt(A,C).

Since optk(A,C) can be computed in time (|A| ·
|C|)O(k), this concludes the proof of Theorem 1.1.
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[27] Z. Dvořák. Thin graph classes and polynomial-time
approximation schemes. In Proc. 29th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’18),
pages 1685–1701. SIAM, 2018.
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