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We identify a sufficient condition, treewidth-pliability, that gives a polynomial-time algorithm for an arbitrarily

good approximation of the optimal value in a large class of Max-2-CSPs parameterised by the class of allowed

constraint graphs (with arbitrary constraints on an unbounded alphabet). Our result applies more generally to

the maximum homomorphism problem between two rational-valued structures.

The condition unifies the two main approaches for designing a polynomial-time approximation scheme.

One is Baker’s layering technique, which applies to sparse graphs such as planar or excluded-minor graphs.

The other is based on Szemerédi’s regularity lemma and applies to dense graphs. We extend the applicability

of both techniques to new classes of Max-CSPs. On the other hand, we prove that the condition cannot be

used to find solutions (as opposed to approximating the optimal value) in general.

Treewidth-pliability turns out to be a robust notion that can be defined in several equivalent ways, including

characterisations via size, treedepth, or the Hadwiger number.We show connections to the notions of fractional-

treewidth-fragility from structural graph theory, hyperfiniteness from the area of property testing, and

regularity partitions from the theory of dense graph limits. These may be of independent interest. In particular

we show that a monotone class of graphs is hyperfinite if and only if it is fractionally-treewidth-fragile and

has bounded degree.
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1 INTRODUCTION
The problem of finding a maximum cut in a graph (Max-Cut) is one of the most studied problems

from Karp’s original list of 21 NP-complete problems [56]. While Max-Cut is NP-hard to solve

optimally, there is a trivial 0.5-approximation algorithm [81] and the celebrated 0.878-approximation

algorithm of Goemans and Williamson [42]. Papadimitriou and Yannakakis established that Max-

Cut is Max-SNP-hard [77]. By the work of Arora, Lund, Motwani, Sudan, and Szegedy [5] this

implies that, unless P=NP, there is no polynomial-time approximation scheme (PTAS) for Max-Cut

in general graphs. However, non-trivial results exist for important special cases. On the one hand,
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Max-Cut is solvable exactly in planar graphs, as shown by Hadlock [50], and more generally, Max-

Cut admits a PTAS on graph classes excluding a fixed minor, as shown by Demaine, Hajiaghayi, and

Kawarabayashi [23]. On the other hand, Arora, Karger, and Karpinski showed a PTAS for Max-Cut

in dense graphs [4], where a graph class is dense if every graph in it contains at least a constant

fraction of all possible edges.

Max-Cut is an example of maximum constraint satisfaction problem (Max-CSP), although a

very special one (the alphabet size is 2, in particular constant, and every constraint uses the

same symmetric predicate “𝑥 ≠ 𝑦” of arity 2). Another well-known example is Max-𝑟 -SAT, with

alphabet size 2 and 𝑟 -ary clauses. Motivated by results on planar, excluded-minor, and dense graph

classes, our goal in this paper is to understand the following question:

What structure allows for the existence of a PTAS for Max-CSPs?

We adopt a permissive definition of PTAS here: given a Max-CSP instance and an arbitrarily

small Y > 0, the goal is to find a (1 − Y) multiplicative approximation of the value of an optimal

solution to the instance (but, unlike in most papers, we do not require that the algorithm should

find a solution achieving the bound).

We focus on two computational problems. First, we study the general Max-2-CSP(G) problem
parameterised by the class of underlying constraint graphs (a.k.a. primal or Gaifman graphs). The

input is a graph𝐺 ∈ G, an alphabet Σ𝑣 for each vertex, and a valued constraint 𝑓𝑢𝑣 : Σ𝑢 ×Σ𝑣 → Q≥0

for each edge 𝑢𝑣 . The goal is to find an assignment ℎ(𝑣) ∈ Σ𝑣 maximising

∑
𝑢𝑣 𝑓𝑢𝑣 (ℎ(𝑢), ℎ(𝑣)).

Similarly, in Max-𝑟 -CSP(G) a constraint may appear on any 𝑟 -clique in 𝐺 . The constraints are

arbitrary (non-negative) and the alphabets are not fixed, making the problem very expressive.
1

Second, we consider a more general framework called the maximum homomorphism problem
(Max-Hom) of computing the maximum value of any map between two givenQ≥0-valued structures

A andB; the value will be denoted by opt(A,B) (see Section 2 for precise definitions). Intuitively, the
left-hand-side structure describes the (weighted) scopes of the constraints and the right-hand-side

structure describes the different types of constraints. Following Grohe’s notation [47], for a class of

structures A we denote by Max-Hom(A,−) the restriction of Max-Hom to instances (A,B) with
A ∈ A and B arbitrary. This framework captures the Max-𝑟 -CSP(G) problem as a particular case:

it is equivalent to Max-Hom(A (𝑟 )
G ,−), where by A (𝑟 )

G we denote the class of all valued structures

with an underlying graph in G and arity 𝑟 . Another example is the case of graphMax-CSP, by which

we mean a Max-2-CSP that uses the same symmetric predicate in all constraints (as in Max-Cut or

Max-𝑞-Cut); this case is equivalent to Max-Hom(A,−) where the structures in A are graphs.

The question of what structure allows to solve Max-CSPs exactly in polynomial time is well

understood. A standard dynamic approach works for Max-𝑟 -CSP(G) when G is a class of graphs

of bounded treewidth. Grohe, Schwentick, and Segoufin [48] in fact proved the converse: if G
has unbounded treewidth then Max-𝑟 -CSP(G), in fact already deciding the existence of a solution

satisfying all constraints, cannot be solved in polynomial time (assuming FPT≠W[1]). Grohe’s

theorem [47] then extended it to the more general framework: for a class of relational (or {0, 1}-
valued) structuresA of bounded arity, the decision problemHom(A,−) can be solved in polynomial

time if and only if the cores of structures in A have bounded treewidth. (The core is the smallest

homomorphically equivalent substructure; for example, bipartite graphs all have the single edge

graph 𝐾2 as a core, so Hom(A,−) is easy when A is a class of bipartite graphs). This was recently

extended further to exact optimisation with valued structures by Carbonnel, Romero, and Živný [11].

1
One could attempt to generalise counting problems by maximising

∏
𝑢𝑣 𝑓𝑢𝑣 (ℎ (𝑢 ), ℎ (𝑣) ) instead, or equivalently its

logarithm

∑
𝑢𝑣 log 𝑓𝑢𝑣 (ℎ (𝑢 ), ℎ (𝑣) ) . However, the requirement 𝑓𝑢𝑣 ≥ 0 and the approximation ratio change. This changes

the complexity: for example, approximating the number of 3-colourings requires deciding whether there is at least one in

polynomial time, which is NP-hard already in 4-regular planar graphs [15].
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Max-𝑟 -CSPs do not admit a PTAS in general, since already Max-Cut does not. On the other hand,

the techniques that give PTASes for Max-Cut on sparse and dense graphs apply more generally

(in fact to a variety of problems beyond Max-CSPs). Our main contribution is a unifying condi-

tion, treewidth-pliability, that captures all known PTASes for Max-𝑟 -CSP(G) and Max-Hom(A,−)
problems.

We call a class of structures A tw-pliable if it is uniformly close to structures of bounded

treewidth. More formally, for any Y > 0 there is a 𝑘 = 𝑘 (Y) such that every structure in A has an

Y-close structure with treewidth at most 𝑘 . Here we consider two structures A and B to be Y-close

if opt(A,C) is Y-close to opt(B,C) for all C (details in Section 2.3; this notion of distance, which we

also characterise combinatorially, may be of independent interest). While the structure of bounded

treewidth is not known and cannot be efficiently computed, we show that the Sherali-Adams LP

relaxation gives a PTAS for Max-Hom(A,−).

Theorem 1.1. IfA is a tw-pliable class of structures of bounded arity, then Max-Hom(A,−) admits
a PTAS.

We emphasise the generality of Theorem 1.1.
2
Firstly, the computational problem (Max-Hom)

captures many fundamental problems, including graph homomorphisms [52], Max-Cut, Max-DiCut,

Max-SAT, Max-CSPs, and query related problems coming from database theory [47]. Secondly, the

notion of pliability captures many previously discovered cases of structures that admit a PTAS. In

particular, we now discuss how Theorem 1.1 extends the applicability of the two main approaches

for obtaining PTASes.

1.1 Sparse structures: Baker’s technique and fragility
Perhaps the best known technique for solving problems on planar graphs is Lipton and Tarjan’s

planar separator theorem [63] and the divide & conquer approach it enables [64]. It can be used to

give a PTAS for Max-CSPs with fixed alphabet size on planar graphs (this extends to excluded-minor

graphs [2] and more [35]) of bounded degree.

This approach was superseded by Baker’s technique [6], which provides better running times

and is easily applied to general Max-𝑟 -CSPs on arbitrary planar graphs (see e.g. [57]). The idea is

very elegant: we partition a planar graph into Breadth-First-Search layers, remove every ℓ-th layer,

and show that the remaining components of ℓ − 1 consecutive layers have bounded treewidth (and

so can be solved exactly). By trying different starting layers we can ensure that the removed layers

intersect an unknown optimal solution at most O( 1

ℓ
) times, giving a 1 ± O( 1

ℓ
) approximation.

From planar graphs this was extended to graphs of bounded genus by Eppstein [40] and later

to all graph classes excluding a fixed minor by Grohe [46] and Demaine et al. [23]. The structural

property needed for this approach, originally proved for excluded-minor graphs by DeVos, Ding,

Oporowski, Sanders, Reed, Seymour, and Vertigan [24], is tw-fragility: they can be partitioned

into any constant number of parts such that removing any one part leaves a graph of bounded

treewidth. As shown by Hunt, Marathe, and Stearns [54, 70] (see also [55]) as well as Grigoriev

and Bodlaender [45], the same property applies to some geometrically-defined graph classes that

do not exclude any minor. One example is intersection graphs of unit disks whose centers are at

least some constant apart (capturing some applications of the closely related shifting technique

of Hochbaum and Maass [53] for geometric packing and covering problems). Another example is

1-planar graphs, or more generally graphs drawn on a fixed surface with a bounded number of

intersections per edge.

2
However, the generality comes at a cost, as detailed in Section 1.3: while an approximate optimum can be found, an

approximate solution cannot be constructed unless P=NP.
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An important generalisation, fractional-tw-fragility, was introduced by Dvořák [29]: it suffices

that the parts whose removal results in a graph of bounded treewidth are nearly-disjoint (Defini-

tion 4.2). This applies to 𝑑-dimensional variants of the geometric classes mentioned above (for any

constant 𝑑), in particular to 𝑑-dimensional grids, which are not tw-fragile [8]; this also includes

classes of polynomial growth [31, 60]. Another large family of fractionally-tw-fragile classes are

classes of bounded degree with strongly sublinear separators [29] (equivalently, bounded degree

and polynomial expansion [35]). For such concrete examples of fragile classes, known proofs show

that the nearly-disjoint parts can be computed efficiently. A PTAS can then easily be designed from

the definition [29].

We show that the assumption about efficient construction is not needed. We do this by proving

that if G is any fractionally-tw-fragile class of graphs (intuitively, any class where a Baker-like

technique is known to work), then the class A (𝑟 )
G of all possible structures of bounded arity 𝑟 and

with Gaifman graph in G is tw-pliable.

Theorem 1.2. Let G be a fractionally-tw-fragile class of graphs. ThenA (𝑟 )
G is tw-pliable for every 𝑟 .

Consequently, Max-𝑟 -CSP(G) admits a PTAS.

This captures all graph classes G where a PTAS for Max-𝑟 -CSP(G) is known.

1.2 Dense structures: the regularity lemma
It is perhaps more surprising that dense structures admit a PTAS. Here a class is dense if a constant
factor of all possible constraints is present in every structure in the class, e.g. graphs with Ω(𝑛2)
edges. Arora, Karger, and Karpinski [4] showed that Max-𝑟 -CSPs admit a PTAS in the dense regime

if the alphabet size is constant (in fact Boolean); de la Vega [18] independently gave a PTAS for

dense Max-Cut. Frieze and Kannan [41] proved that these results are essentially possible because

of Szemerédi’s regularity lemma [85]: intuitively, every graph can be approximated to within an

additive ±Y𝑛2
error by a random graph (with a constant number of parts, depending on Y only, so

that the edges between two parts form a uniformly random graph of some density). For dense

graphs, the additive error translates to a relative error, giving a PTAS. They also showed a variant of

the regularity lemma that is still applicable to Max-𝑟 -CSPs with constant alphabet size, yet avoids

its infamous tower-type dependency on Y.

Goldreich, Goldwasser, and Ron [44] connected these results to the area of property testing,
spawning an entirely new direction of research. They gave constant-time algorithms estimating

the optimum value of some graph Max-CSPs. In fact, Alon, de la Vega, Kannan, and Karpinski [1]

(see also Andersson and Engebretsen [3]) showed that Max-𝑟 -CSPs with a fixed alphabet can be

approximated with accuracy ±Y𝑛𝑟 by sampling a constant number of vertices (polynomial in
1

Y
)

and finding the optimum on the resulting (constant-size) induced substructure.

None of these results apply to any Max-𝑟 -CSP(G) and Max-Hom(A,−) problem, that is, to

unbounded alphabets. We give the first such example: undirected graphs with Ω(𝑛2) edges.

Theorem 1.3. Let 𝑐 > 0 and letA be a class of graphs with at least 𝑐𝑛2 edges. ThenA is tw-pliable.
Consequently, Max-Hom(A,−) admits a PTAS.

(Note here the graphs in A are input structures, not just Gaifman graphs of input structures). We

also show that this cannot be extended to general CSPs: already for the class of tournaments—that

is, orientations of complete graphs— a PTAS is impossible, (cf. Corollary 8.5 in Section 8) and indeed,

this class is not tw-pliable (cf. Remark 7.4).
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1.3 Robustness of pliability
The notion of treewidth-pliability not only unifies the different existing algorithmic techniques but

it is also quite robust: treewidth-pliability captures a valued analogue of “homomorphic equivalence”

(e.g. bipartite graphs, or 3-colourable graphs where each edge is contained in exactly one triangle,

cf. Examples 2.14 and 2.15 in Section 2.5) as well as small edits: if A is a pliable class of graphs,

say, then the class of graphs obtained by adding or removing 𝑜 (𝑚) edges from𝑚-edge graphs in A
is again pliable (Lemma 2.13 in Section 2.5). However, this generality comes at a price. First, we

show that even for fixed alphabet size, although the approximate optimum value can be found,

an approximate solution cannot be constructed (unless P = NP, cf. Example 2.16 in Section 2.5).

Second, unlike in some of the previous results for more restricted classes, our result does not give

an EPTAS (i.e., with the degree of the polynomial time bound independent of Y) for fixed alphabet

size (cf. Question 9.2). Finally, the use of strong versions of the regularity lemma yields tower-type

dependencies on the approximation ratio Y in the dense case.

In the definition of treewidth-pliability we approximate structures by comparing their opt()
values and we ask them to be close to structures where the problem can be solved exactly. This is a

non-constructive and very general definition. In fact, it is not inconceivable that this captures all

tractable cases, i.e., that Max-Hom(A,−) has a PTAS if and only if A is tw-pliable. Nevertheless,

we show a variety of equivalent combinatorial definitions, which allow us to place a fairly tight

bound on what pliability is, structurally.

For classes of the form A (𝑟 )
G , that is, if we only restrict the underlying Gaifman graphs, we show

that pliability collapses to fractional fragility. In this sense we understand the “sparse” setting

exactly.

Lemma 1.4. Let G be a class of graphs. The following are equivalent, for any 𝑟 ≥ 2:
• G is fractionally-tw-fragile;
• A (𝑟 )

G is tw-pliable.

In general, we can replace treewidth with other parameters of the Gaifman graph: size (number

of vertices), treedepth, denoted by td, Hadwiger number (maximum clique minor size), or maximum

connected component size, which we denote by cc.

Theorem 1.5. Let A be any class of structures. The following are equivalent:

• A is td-pliable; • A is tw-pliable; • A is Hadwiger-pliable.

If structures in A have bounded signatures, then the following are equivalent to the above as well:

• A is size-pliable; • A is cc-pliable.

Classes of structures with bounded signatures (see Section 2 for precise definitions) correspond

to Max-CSP instances with a bounded number of constraint types; e.g. maximum graph homomor-

phism. For example, any class of dense graphs as in Theorem 1.3 is in fact size-pliable. An example

of a class with unbounded signatures is any class of the form A (𝑟 )
G (we do not consider infinite

signatures, but there are arbitrarily many symbols in those signatures). Theorem 1.5 allows us to

give concrete and general examples of classes that are not tw-pliable: the class of orientations of

graphs in G, where G is any class of unbounded average degree (Lemma 2.19 in Section 2.6), or

any class of 3-regular graphs with unbounded girth (Lemma 2.25 in Section 2.6).

Finally, as a side result, we connect hyperfiniteness to fragility. A class of graphs G is called

hyperfinite if for every Y > 0 there is a 𝑘 = 𝑘 (Y) such that in every 𝐺 ∈ G one can remove an
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6 Miguel Romero, Marcin Wrochna, and Stanislav Živný

at-most-Y fraction of edges to obtain a graph with connected components of size at most 𝑘 . For a

monotone class of graphs (closed under taking subgraphs), hyperfiniteness easily implies bounded

degree. It is an important notion in property testing: many results in sparse graphs were generalised

by the statement that every property of hyperfinite graphs is testable [76]. The idea, originating in

the work of Benjamini, Schramm, and Shapira [7] and Hassidim, Kelner, Nguyen, and Onak [51], is

that following the approach of Lipton and Tarjan, graphs with sufficiently sublinear separators,

such as planar or excluded-minor graphs [2], can be recursively partitioned into bounded-size

components, which for bounded-degree graphs gives hyperfiniteness (see e.g. [14, Cor. 3.2] for a

slightly stronger property, cf. [72]). This allows, analogously as in the dense case, to give a constant-

size approximate description of such graphs by sampling constant-radius balls in them [76]. See

[43] for a book on property testing and [61] for a recent improvement for excluded-minor graphs.

We show that a monotone class G is hyperfinite if and only if it is fractionally-tw-fragile and has

bounded degree. In fact, replacing the parameter treewidth by the maximum size of a connected

component in a graph, we have:

Theorem 1.6. Let G be a monotone class of graphs. The following are equivalent:
• G is hyperfinite;
• G is fractionally-tw-fragile and has bounded degree;
• G is fractionally-cc-fragile;
• A (𝑟 )

G is cc-pliable (for any 𝑟 ≥ 2).

The equivalence of the second and third bullet points was shown by Dvořák [29, Observation

15, Corollary 20], while for the third and fourth the proof is established by a generalisation of

Lemma 1.4, cf. Lemma 4.7.

Hyperfiniteness originates from the study of amenable groups and graphs limits, with motivations

in geometry and mathematical physics [38]. The unexpected connection with fractional fragility

already found an application in that area: Elek [39] showed that our Theorem 1.6 gives that last

missing implication in proving the equivalence of some properties of infinite, bounded-degree

graphs (in particular “uniform local amenability” and “Property A”), which answers a question of

Brodzki, Niblo, Spakula, Willett and Wright [10].

1.4 Related work
While this paper focuses onMax-𝑟 -CSPs, Baker’s technique and the regularity lemma apply to many

more problems. In fact Khanna and Motwani [57] argued that most known PTAS algorithms can be

derived from three canonical optimisation problems on planar graphs, the first being Max-CSP and

the latter two being so-called Max-Ones and Min-Ones CSPs (also solvable with Baker’s technique).

One of the very few results that did not fit their framework was the PTAS for dense Max-Cut. A

follow-up work by Mezei, Wrochna, and Živný [71] on the extended abstract of this work [80]

extended some of the results of the present paper to Min- and Max-CSPs with crisp constraints,

which include the Max-Ones and Min-Ones CSPs mentioned above.

Generic frameworks extending Baker’s technique include the bidimensionality theory of Demaine,

Fomin, Hajiaghayi, and Thilikos [21] and its application in the design of PTASes by Demaine and

Hajiaghayi [22] (which is however limited to minor-closed graph classes); monotone FO problems

on minor-closed graph classes by Dawar, Grohe, Kreutzer, and Schweikardt [17]; and the idea of

Baker games, introduced by Dvořák [30] (see also [33]). The latter gives conditions stronger than

fractional-tw-fragility, but useful for problems beyond Max-CSPs, and achievable for all examples

known to be fractionally fragile. The work of Dvořák and Lahiri [34], which appeared after the

present paper, gives a PTAS on fractionally-tw-fragile classes of graphs for problems incomparable

with Max-CSPs, namely monotone maximisation problems expressible in terms of distances.
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De la Vega and Karpinski [19, 20] extended the dense approach to subdense cases (Ω( 𝑛2

log𝑛
) edges)

for specific problems such as MaxCut and Max-2-SAT. In contrast, they show that Max-Cut on

graphs with Ω(𝑛2−𝛿 ) edges is hard to approximate, for any 𝛿 > 0.

The best known approximation algorithm for general Max-2-CSPs is due to Charikar, Hajiaghayi,

and Karloff [13] and achieves an approximation factor of O((𝑛𝑞)1/3), where 𝑛 is the number

of variables and 𝑞 is the alphabet size. On the hardness side, Dinur, Fischer, Kindler, Raz, and

Safra [27] showed that O(2log
1−𝛿 (𝑛𝑞) )-approximation of Max-2-CSPs is NP-hard. Manurangsi and

Moshkovitz [68] gave approximation algorithms for dense Max-2-CSPs with large alphabet size

(but not PTASes). Manurangsi and Raghavendra [69] establish a tight trade-off between running

time and approximation ratio for dense Max-𝑟 -CSPs for 𝑟 > 2.

CSPs have also been extensively studied for fixed constraint types, i.e., Max-Hom(−,B) problems

for fixed B. Raghavendra showed that the best approximation ratio is always achieved by the basic

SDP relaxation [78], assuming Khot’s unique games conjecture [58]. The exactly solvable cases

were characterised by Thapper and Živný [86]. The approximation factor of graph Max-CSPs was

studied by Langberg, Rabani, and Swamy [62].

1.5 Overview
In Section 2, we give formal definitions and present our basic tool: two structures A,B have similar

values of opt(−,C) if and only if there is a certain fractional cover, which we call an overcast, from
A to B and from B to A. Section 2 then relates our notion of pliability with two notions of distances,

and gives examples and non-examples of pliable classes of structures.

To prove that treewidth-pliability leads to a PTAS (Theorem 1.1) the main idea is that an overcast

allows to show that the values of opt(−,C) are still similar when we look at linear programming

relaxations. The details, as well as the definition of the Sherali-Adams linear programming relaxation,

are given in Section 3. In Section 4, we introduce equivalent definitions of fractional fragility and

study their properties. This will allow us to prove Theorem 1.2 by showing how the definition

implies suitable overcasts. This also allows us to establish Lemma 1.4. Theorem 1.5 is proved

in Section 5. Theorem 1.6 on hyperfiniteness is proved in Section 6. Section 7 gives a proof of

Theorem 1.3 on dense graphs.

We conclude with open questions in Section 9.

2 PRELIMINARIES
2.1 Structures
A signature is a finite set 𝜎 of (function) symbols 𝑓 , each with a specified finite arity ar(𝑓 ). We

denote by |𝜎 | the number of symbols in the signature 𝜎 . A structure A over a signature 𝜎 (or

𝜎-structure A, for short) is a finite domain 𝐴 together with a function 𝑓 A : 𝐴ar(𝑓 ) → Q≥0 for each

symbol 𝑓 ∈ 𝜎 . We say that a class of structures has bounded signatures if for the signatures 𝜎 of

structures in the class, |𝜎 | is bounded by a constant (so unbounded means arbitrarily many symbols;

we do not consider infinite signatures). Note that a class of 𝜎-structures (that is, structures over a

fixed signature 𝜎) has bounded signatures and bounded arities (the maximum arity occurring in 𝜎

is a finite constant).

We denote by 𝐴, 𝐵,𝐶, . . . the domains of structures A,B,C, . . . . For sets 𝐴 and 𝐵, we denote by

𝐵𝐴 the set of all mappings from 𝐴 to 𝐵. We define tup(A) to be the set of all pairs (𝑓 , x) such that

𝑓 ∈ 𝜎 and x ∈ 𝐴ar(𝑓 )
, and by tup(A)>0 the pairs (𝑓 , x) ∈ tup(A) with 𝑓 A (x) > 0.

We denote ∥A∥∞ := max(𝑓 ,x) ∈tup(A) 𝑓
A (𝑥) and ∥A∥1 :=

∑
(𝑓 ,x) ∈tup(A) 𝑓

A (𝑥). For _ ≥ 0 we write

_A for the rescaled 𝜎-structure with domain 𝐴 and 𝑓 _A (x) := _𝑓 A (x), for (𝑓 , x) ∈ tup(A).
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Given a 𝜎-structure A, the Gaifman graph (or primal graph), denoted by G(A), is the graph

whose vertex set is the domain 𝐴, and whose edges are the pairs {𝑢, 𝑣} for which there is a tuple x
and a symbol 𝑓 ∈ 𝜎 such that 𝑢, 𝑣 appear in x and 𝑓 A (x) > 0.

For 𝑟 ≥ 2 and a class of graphs G, we denote by A (𝑟 )
G the class of 𝜎-structures A with G(A) ∈ G

and ar(𝑓 ) ≤ 𝑟 for every 𝑓 ∈ 𝜎 . (Note that A (𝑟 )
G contains structures over distinct signatures.)

The maximum homomorphism problem (Max-Hom) is the following computational problem. An

instance of Max-Hom consists of two structures A and B over the same signature. For a mapping

ℎ : 𝐴 → 𝐵, we define value(ℎ) = ∑
(𝑓 ,x) ∈tup(A) 𝑓

A (x) 𝑓 B (ℎ(x)). The goal is to find the maximum

value over all possible mappings ℎ : 𝐴 → 𝐵.3 We denote this value by opt(A,B). Note that when
seen as a Max-CSP instance, the domain of the left-hand side structure A is the variable set, while

the domain of the right-hand side structure B is the alphabet.

Example 2.1. Let 𝜎 = {𝑓 } be a signature consisting of a single symbol 𝑓 of arity ar(𝑓 ) = 2. Let

B be a 𝜎-structure with the domain 𝐵 = {0, 1} and let 𝑓 B : 𝐵2 → Q≥0 be defined by 𝑓 B (𝑥,𝑦) = 1

if 𝑥 ≠ 𝑦 and 𝑓 B (𝑥,𝑦) = 0 if 𝑥 = 𝑦. Given an undirected graph 𝐺 = (𝑉 , 𝐸), we can encode it as

a 𝜎-structure A with the domain 𝐴 = 𝑉 and with 𝑓 A (𝑥,𝑦) = 1 if {𝑥,𝑦} ∈ 𝐸 and 𝑓 A (𝑥,𝑦) = 0

otherwise. Now, the instance (A,B) of Max-Hom is the same as the Max-Cut problem in 𝐺 . The

Max-DiCut problem (in a directed graph (𝑉 , 𝐸)) would be cast as Max-Hom very similarly. The

only differences would be in the definition of 𝑓 A and 𝑓 B: 𝑓 A (𝑥,𝑦) = 1 if (𝑥,𝑦) ∈ 𝐸 and 0 otherwise,

𝑓 B (𝑥,𝑦) = 1 if 𝑥 = 0 and 𝑦 = 1 and 0 otherwise.

Example 2.2. An example of a problem that is not a Max-Hom is the Maximum Independent Set

problem. Intuitively, the “no edges” constraints imposed on an independent set are strict. This

problem can be, however, cast as an instance of a Max-Hom with both rational and (negative)

infinite costs, cf. [71] for follow-up work.

Given a class A of structures, Max-Hom(A,−) is the problem restricted to instances (A,B) of
Max-HomwithA ∈ A (it is a promise problem: algorithms are allowed to do anythingwhenA ∉ A).

Recall that for a class of graphs G, the problemMax-𝑟 -CSP(G) is equivalent to Max-Hom(A (𝑟 )
G ,−).4

2.2 Overcasts
Before we define pliability formally, it is useful to consider the following relation. The starting point

of all our results is the equivalence of this relation to a more combinatorial notion: the existence of

a certain fractional cover, which we shall call an overcast.

Definition 2.3. Let A and B be 𝜎-structures. We say that A overcasts B, denoted A ⪰ B if, for all

𝜎-structures C, we have that opt(A,C) ≥ opt(B,C).

A distribution over a finite set𝑈 is a function 𝜋 : 𝑈 → Q≥0 such that

∑
𝑥∈𝑈 𝜋 (𝑥) = 1. We write

E𝑥∼𝜋 𝑓 (𝑥) for
∑
𝑥∈𝑈 𝜋 (𝑥) · 𝑓 (𝑥) and Pr𝑥∼𝜋 [𝜙 (𝑥)] for E𝑥∼𝜋 [𝜙 (𝑥)], where [𝜙 (𝑥)] is 1 if 𝑥 satisfies

the predicate 𝜙 and 0 otherwise.

Given a map 𝑔 : 𝐴 → 𝐵 and a tuple x = (𝑥1, . . . , 𝑥𝑚) ∈ 𝐴𝑚 , we write 𝑔(x) for (𝑔(𝑥1), . . . , 𝑔(𝑥𝑚));
i.e., we apply 𝑔 componentwise on x. Hence, 𝑔−1 (y) = {x | 𝑔(x) = y}.

3
While called maximum homomorphism, we note that the maximisation is over all possible maps, not only homomorphisms,

i.e., those that map non-zero tuples into non-zero tuples.

4
Note that Max-Hom(A (𝑟 )

G , −) is different from the maximum graph homomorphism problem Max-Hom(G, −) . Indeed,
graphs are also structures over the signature {𝑒 } with one symbol of arity 2 (where 𝑒𝐺 (𝑢, 𝑣) = [𝑢𝑣 is an edge of𝐺 ], if the
graph is not weighted). To avoid confusion, we use G for a class of Gaifman graphs of some structures and A for a class of

graphs that are themselves used as input structures.
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Definition 2.4. Let A and B be 𝜎-structures. An overcast from A to B is a distribution 𝜔 over 𝐵𝐴

such that for each (𝑓 , x) ∈ tup(B) we have that

E
𝑔∼𝜔

𝑓 A (𝑔−1 (x)) ≥ 𝑓 B (x).

Here 𝑓 A (𝑔−1 (x)) denotes the sum of 𝑓 A (y) over y ∈ 𝑔−1 (x) ⊆ 𝐴ar(𝑓 )
.

Intuitively, an overcast from A to B is a random function from 𝐴 to 𝐵 such that for each edge

(tuple) in B, its preimage has larger expected weight (value). In other words, each edge must be

covered by at least its own weight, in expectation. The following is a consequence of Farkas’ lemma,

as shown in Appendix A.
5

Proposition 2.5. A ⪰ B if and only if there is an overcast from A to B.

2.3 Pliability and graph parameters
Our definition of pliability involves a notion of distance which may be of independent interest. It

quantifies the relative difference between two structures (as measured from the right by weighted

multicut densities, in the language of Lovász’s book on graph limits [66, Ch. 12]).

Definition 2.6. The opt-distance between two structures with the same signature is defined as:

dopt (A,B) := supC |ln opt(A,C) − ln opt(B,C) | .

Here ln 0 = −∞ and |ln 0 − ln 0| = 0. Equivalently, we can compare rescaled structures; by definition

of ⪰ and the fact that opt(_A,C) = _opt(A,C), we have:

dopt (A,B) = inf

{
Y
�� A ⪰ 𝑒−Y B and B ⪰ 𝑒−Y A

}
.

One may think of 𝑒±Y as close to 1 ± Y. Formally 1 − Y ≤ 𝑒−Y ≤ 1

1+Y = 1 − Y + O(Y2) for Y ≥ 0.

Note that the first definition readily implies that opt-distance satisfies the triangle inequality (it

defines a pseudometric).

Finally, a class is treewidth-pliable if it is uniformly close to structures of bounded treewidth:

Definition 2.7. A class of structures A is p-pliable with respect to a graph parameter p if for

every Y > 0, there is 𝑘 = 𝑘 (Y) such that for every 𝜎-structure A ∈ A there is a 𝜎-structure B with

p(B) ≤ 𝑘 and dopt (A,B) ≤ Y.

Thus to show tw-pliability of various classes, we will construct overcasts from structures A in

the class to (1 − Y)B, for some B of bounded treewidth, and from B back to (1 − Y)A.

Given a graph 𝐺 , we will consider pliability for the following graph parameters:

• size(𝐺) = |𝑉 (𝐺) | – the number of vertices of 𝐺 ,

• cc(𝐺) – the maximum size of a connected component of 𝐺 ,

• treedepth td(𝐺), which is a parameter due to Nešetřil and Ossona de Mendez [74], whose

definition we recall below,

• treewidth tw(𝐺),6

5
The definitions of the ⪰ relation and of an overcast are analogous to the “improvement” relation and “inverse fractional

homomorphisms” from [11]. Here, however, opt() is maximising, not minimising, so inequalities in definitions are swapped.

This has consequences such as the fact that mappings in the support of an overcast are in general not homomorphisms

(mapping non-zero tuples to non-zero tuples), unlike for inverse fractional homomorphisms. The proof of Proposition 2.5

nevertheless is identical to the proof of [11, Proposition 3.6].

6
We refer to [25] for the standard definitions of treewidth, pathwidth and minors.
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• and finally the Hadwiger number Hadwiger(𝐺), which is the maximum 𝑘 such that 𝐾𝑘 is a

minor of 𝐺 . We use the Hadwiger number as an example of a broader “sparsity” parameter:

for example, all planar graphs have Hadwiger number at most 4 (yet unbounded treewidth).

Definition 2.8. The treedepth td(𝐺) of a graph 𝐺 is defined recursively as:

• max

𝑖
td(𝐺𝑖 ), if 𝐺 is disconnected with components 𝐺𝑖 ;

• min

𝑣∈𝑉 (𝐺 )
td(𝐺 − 𝑣) + 1, if 𝐺 is connected and has more than one vertex;

• 1, if 𝐺 has one vertex.

An equivalent definition is as follows: a treedepth decomposition of a graph𝐺 is a rooted forest 𝑇

(a disjoint union of rooted trees) with𝑉 (𝑇 ) = 𝑉 (𝐺) such that for each𝑢𝑣 ∈ 𝐸 (𝐺),𝑢 is an ancestor or

descendant of 𝑣 in 𝑇 . In other words, 𝐺 is a subgraph of the transitive closure of a forest 𝑇 directed

towards roots. The treedepth of𝐺 is equal to the minimum depth among all such decompositions of

𝐺 . Treedepth is a rather strict parameter: for example, stars have treedepth 2, but paths already have

unbounded treedepth. In fact, a short proof shows that a class of graphs has bounded treedepth if

and only if the length of the longest path is bounded [74].

Bounded size implies bounded cc implies bounded td implies bounded pathwidth (pw) implies

bounded tw implies bounded Hadwiger number, more precisely:

Hadwiger(𝐺) − 1 ≤ tw(𝐺) ≤ pw(𝐺) ≤ td(𝐺) − 1 and td(𝐺) ≤ cc(𝐺) ≤ size(𝐺).
Moreover, we also have the following inequality (less useful, because of the dependency on 𝐺):

td(𝐺) ≤ (tw(𝐺) + 1) · log
2
|𝐺 |.

All these parameters are monotone, that is, p(𝐻 ) ≤ p(𝐺) for a subgraph 𝐻 of a graph 𝐺 . Their

boundedness implies bounded average degree
2 |𝐸 (𝐺 ) |
|𝑉 (𝐺 ) | . More precisely,

2 |𝐸 (𝐺 ) |
|𝑉 (𝐺 ) | ≤ 2 tw(𝐺) (because

a graph of treewidth 𝑘 has a vertex of degree at most 𝑘); Kostochka [59] proved
2 |𝐸 (𝐺 ) |
|𝑉 (𝐺 ) | ≤ O(ℎ

√
ℎ)

where ℎ = Hadwiger(𝐺).
The size of a structure A is the number of vertices of its Gaifman graph: size(A) = |𝑉 (G(A)) |.

The other graph parameters are also defined in terms of the same parameter on the Gaifman

graph of the structure; e.g., the treewidth of a structure A is the treewidth of its Gaifman graph:

tw(A) = tw(G(A)). In particular, since the edges of G(A) come only from tuples in A of non-zero

weight, a rescaled structure _A, for _ > 0, has G(_A) = G(A) so the parameters we consider do

not change by rescaling; for _ = 0, G(_A) has no edges.

We will often prove the easy directions in various characterisations via the following observation

that follows from the definition of pliability:

Observation 2.9. If two graph parameters p and p
′ satisfy p ≤ p

′ then p
′-pliability implies

p-pliability.

2.4 Opt-distance zero and edit-distance
In this section we define our relative version of edit distance and prove it upper-bounds opt-distance.

We define the edit distance d1 (A,B) between two valued 𝜎-structures A,B to be

d1 (A,B) := min

bij. 𝜙 : 𝐴→𝐵

∑︁
𝑓 ∈𝜎

∑
x∈𝐴ar(𝑓 )

��𝑓 A (x) − 𝑓 B (𝜙 (x))��
min(∥A𝑓 ∥1, ∥B𝑓 ∥1)

.

Here A𝑓 denotes the structure A limited to the signature {𝑓 }, so ∥A𝑓 ∥1 denotes

∑
x∈𝐴ar(𝑓 ) 𝑓 A (x).

The following generalises the notion of “looplessness” in graphs.
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Definition 2.10. A 𝜎-structure A is loopless if no tuple has a repetition. That is, for (𝑓 , x) ∈ tup(A)
with 𝑓 A (x) > 0, x consists of ar(𝑓 ) different elements of 𝐴.7

Lemma 2.11. For loopless structures, the opt-distance is bounded linearly by the edit distance:

dopt ≤ 𝐶𝜎 · d1,

where 𝐶𝜎 = max𝑓 ∈𝜎 ar(𝑓 )ar(𝑓 ) .

Proof. Let d1 = d1 (A,B) and let 𝜙 : 𝐴 → 𝐵 be a bijection minimising the expression in its

definition. We will show that 𝑒𝐶𝜎 ·d1A ⪰ (1 +𝐶𝜎 · d1)A ⪰ B. Symmetrically, 𝑒𝐶𝜎 ·d1B ⪰ A, hence
dopt ≤ 𝐶𝜎 · d1, which will conclude our claim.

Observe that for 𝑓 ∈ 𝜎∑︁
x∈𝐴ar(𝑓 )

��𝑓 A (x) − 𝑓 B (𝜙 (x))�� = ∑︁
x∈𝐵ar(𝑓 )

��𝑓 B (x) − 𝑓 A (𝜙−1 (x))
�� .

Let 𝛿 :=
𝐶𝜎 ·d1

1+𝐶𝜎 ·d1

, so 1 − 𝛿 = 1

1+𝐶𝜎 ·d1

. To show (1 + 𝐶𝜎 · d1)A ⪰ B, we construct an overcast 𝜔

from A to (1 − 𝛿)B as follows. With probability (1 − 𝛿) we map A to B with 𝜙 ; with probability 𝛿

we choose a tuple (𝑓 , x) ∈ tup(B) at random with probability proportional to its contribution in

𝑑1, that is,
| 𝑓 B (x)−𝑓 A (𝜙−1 (x) ) |
min( ∥A𝑓 ∥1,∥B𝑓 ∥1 ) · 1

𝑑1

, and we map all of A uniformly at random to the elements of this

tuple. That is, after choosing (𝑓 , x) ∈ tup(B), each tuple of A𝑓 gets mapped into x with probability

1

ar(𝑓 )ar(𝑓 ) (assuming A is loopless). Therefore, for each (𝑓 , x) ∈ tup(B):∑︁
𝑔∈𝐵𝐴

𝜔 (𝑔) · 𝑓 A (𝑔−1 (x)) ≥ (1 − 𝛿) · 𝑓 A (𝜙−1 (x)) + 𝛿 · |𝑓
B (x) − 𝑓 A (𝜙−1 (x)) |

min(∥A𝑓 ∥1, ∥B𝑓 ∥1)
· 1

𝑑1

·
∥A𝑓 ∥1

ar(𝑓 )ar(𝑓 )

≥ (1 − 𝛿) 𝑓 A (𝜙−1 (x)) + 𝛿

𝐶𝜎 · 𝑑1

· |𝑓 B (x) − 𝑓 A (𝜙−1 (x)) | ≥ (1 − 𝛿) 𝑓 B (x),

where the last inequality follows from
𝛿

𝐶𝜎 d1

= 1

1+𝐶𝜎 d1

= 1 − 𝛿 . This shows that 𝜔 is indeed an

overcast that certifies A ⪰ (1 − 𝛿)B. □

Observation 2.12. Let A be a tw-pliable class. Let B be a class of structures such that for every
B ∈ B there is an A ∈ A with dopt (B,A) ≤ 𝑓 (tw(B)), for some function 𝑓 (𝑛) −−−−→

𝑛→∞
0. Then B is

tw-pliable.

Proof. SinceA is tw-pliable, for every Y > 0 there is a 𝑘 = 𝑘 (Y) such that every structureA inA
is Y-close to some structure of tw ≤ 𝑘 (Y). To show that B is tw-pliable, consider any Y > 0. Let 𝑛Y be

large enough so that 𝑓 (𝑛) ≤ Y
2
for 𝑛 ≥ 𝑛Y . Then for B ∈ B, either tw(B) ≤ 𝑛Y or B is 𝑓 (tw(B)) ≤ Y

2
-

close to some structure A ∈ 𝐴, which in turn is
Y
2
-close to some structure of treewidth at most 𝑘 ( Y

2
).

In either case B is Y-close to a structure of treewidth at most max(𝑛Y , 𝑘 ( Y
2
)). □

2.5 Pliable examples
We give simple observations and examples: classes that are sufficiently close to pliable classes (in

edit or opt-distance) are themselves pliable. We first consider consider simple examples with a fixed

signature: graphs.

Lemma 2.13. Let A be a tw-pliable class of graphs. Let B be a class of graphs such that every
𝐻 ∈ B can be obtained from some 𝐺 ∈ A by adding or removing 𝑓 ( |𝐸 (𝐻 ) |) edges, for some function
𝑓 (𝑚) ∈ 𝑜 (𝑚). Then B is tw-pliable.
7
Equivalently, the Gaifman graph of A is loopless.

, Vol. 1, No. 1, Article . Publication date: September 2023.



12 Miguel Romero, Marcin Wrochna, and Stanislav Živný

Proof. By Lemma 2.11, dopt (𝐻,𝐺) ≤ 4 d1 (𝐻,𝐺) ≤ 𝑓 ( |𝐸 (𝐻 ) | )
|𝐸 (𝐻 ) |−𝑓 ( |𝐸 (𝐻 ) | ) = 𝑓 ′ ( |𝐸 (𝐻 ) |) for some

function 𝑓 ′ (𝑛) −−−−→
𝑛→∞

0. This function can be upper-bounded by a monotonic function 𝑓 ′′ decreasing

to 0, say 𝑓 ′′ (𝑥) := sup𝑛≥𝑥 𝑓
′ (𝑛). Since |𝐸 (𝐻 ) | ≥ tw(𝐻 ), we conclude dopt (𝐻,𝐺) ≤ 𝑓 ′′ ( |𝐸 (𝐻 ) |) ≤

𝑓 ′′ (tw(𝐻 )). The claim follows by Observation 2.12. □

Other simple examples arise from considering structures at opt-distance zero. This is a valued

analogue of being homomorphically equivalent (see also valued cores in [11]).

Example 2.14. For every non-empty bipartite graph𝐺 , dopt (𝐺, _𝐾2) = 0, for _ = |𝐸 (𝐺) |. Therefore,
since {_𝐾2 : _ ∈ Q≥0} is trivially tw-pliable, every class of bipartite graphs is tw-pliable.

Proof. A bipartite graph 𝐺 admits a homomorphism ℎ to 𝐾2. This gives an overcast showing

𝐺 ⪰ _𝐾2: always map everything according to ℎ. Conversely, mapping _𝐾2 uniformly at random to

edges of 𝐺 gives an overcast showing _𝐾2 ⪰ 𝐺 . □

Example 2.15. Let 𝐺 be a 3-colourable graph such that every edge of 𝐺 occurs in exactly one

triangle. Then dopt (𝐺, _𝐾3) = 0 for _ = |𝐸 (𝐺) |/3. Hence the class of all such graphs is tw-pliable.

Proof. A 3-colouring of𝐺 corresponds to a homomorphism ℎ to𝐾3. Composing ℎ with a random

rotation of 𝐾3 gives an overcast from 𝐺 to _𝐾3. Conversely, mapping _𝐾3 to a uniformly random

triangle in 𝐺 covers each edge with probability
1

_
, giving an overcast from _𝐾3 to 𝐺 . □

The above idea also implies that our results cannot be extended to finding solutions. This is

analogous to the hardness of finding a 3-colouring of a graph that is homomorphically equivalent

to 𝐾3.

Example 2.16. There is a class of weighted graphs A that is tw-pliable, yet for some Y > 0, there

is no poly-time algorithm that finds a map ℎ : 𝑉 (𝐺) → 𝑉 (𝐾3) with value(ℎ) ≥ (1 − Y)opt(𝐺,𝐾3)
for 𝐺 ∈ A, unless P = NP.

Proof. Let A be the class of weighted graphs 𝐺 satisfying dopt (𝐺, _𝐾3) = 0 for _ =
∥𝐺 ∥1

3
.

Suppose there is an algorithm as above for each Y > 0. There are constants Y0, 𝑑 such that it is

NP-hard to distinguish 3-colourable graphs of maximum degree 𝑑 from graphs where any map

ℎ : 𝑉 (𝐺) → 𝑉 (𝐾3) miscolours more than an Y0 fraction of edges [49]. We use our algorithm to solve

the problem. Given an instance 𝐺 , let 𝐺 ′
be the weighted graph obtained by gluing a new triangle

to every edge, and then assigning to every edge 𝑒 ∈ 𝐸 (𝐺 ′) a weight 𝑤 (𝑒) equal to the number

of triangles it occurs in. Note 1 ≤ 𝑤 (𝑒) ≤ 𝑑 . Observe that if 𝐺 was 3-colourable, then 𝐺 ′
would

be as well, hence opt(𝐺 ′, 𝐾3) = ∥𝐺 ′∥1. Moreover, 𝐺 ′
would be in A by an argument similar as in

Example 2.15. Hence running the algorithm on𝐺 ′
, we would find a 3-colouring ℎ which miscolours

at most Yopt(𝐺 ′, 𝐾3) = Y∥𝐺 ′∥1 of the total weight ∥𝐺 ′∥1. Since𝑤 ≥ 1, it miscolours at most Y∥𝐺 ′∥1

edges. Since𝑤 ≤ 𝑑 , this is at most Y𝑑 |𝐸 (𝐺 ′) | ≤ 3Y𝑑 |𝐸 (𝐺) |. Hence running the algorithm for Y =
Y0

3𝑑

would find a colouring of the original graph 𝐺 that miscolours at most Y0 |𝐸 (𝐺) | edges. Therefore if
we run this procedure for any𝐺 (regardless of its 3-colourability), then it either outputs a colouring

as above, or we can conclude that 𝐺 is not 3-colourable. □

2.6 Non-pliable examples
In this section we give examples of non-pliable classes. In the process we show equivalent definitions

of pliability (Lemmas 2.22 and 2.23).

We will use the following bound (in this section and in the proof of Lemma 8.3 in Section 8):

_𝑚∑︁
𝑖=0

(
𝑚

𝑖

)
≤ 2

𝐻 (_)𝑚,
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where 𝐻 (_) is a function which satisfies lim_→0𝐻 (_) = 0; specifically, the binary entropy function

𝐻 (_) = _ log
2
( 1

_
) − (1 − _) log

2
(1 − _).

Recall that by Lemma 1.4, for a class of Gaifman graphsG, the classA (2)
G of all structures overG is

tw-pliable if and only if G is fractionally-tw-fragile. So the simplest examples of non-pliable classes

are A (2)
G for some non-fractionally-fragile G. Fractional-tw-fragility implies bounded expansion (a

notion from the theory of sparse graphs introduced by Nešetřil and Ossona de Mendez [75]) and

sublinear separators, e.g., 3-regular expander graphs are not fractionally-tw-fragile, see [29]. Hence

for G the class of all 3-regular graphs, A (2)
G is not tw-pliable.

A somewhat more direct proof is to consider any class of 3-regular graphs of high girth.

Thomassen [87] showed that such graphs behave much like graphs of high average degree. We use

essentially the same proof below:

Lemma 2.17. For 𝛿 > 0 and 𝑔 ∈ N, every graph with average degree ≥ 2 + 𝛿 and girth ≥ 3𝑔 has a
minor with average degree ≥ 𝑔𝛿 + 2.

Proof. Let𝐺 = (𝑉 , 𝐸). Without loss of generality assume that 𝐺 is connected (otherwise take

the component with the largest average degree). Let 𝐴1, . . . , 𝐴𝑚 be a partition of 𝑉 into parts of

size |𝐴𝑖 | ≥ 𝑔 that induce connected subgraphs, with𝑚 maximum among such partitions (clearly

one exists with𝑚 = 1).

We claim that each set 𝐴𝑖 induces a tree. Indeed, consider any spanning tree 𝑇 of 𝐺 [𝐴𝑖 ] and let

𝑒 be an edge of 𝐺 [𝐴𝑖 ] outside of 𝑇 . Then 𝑇 + 𝑒 contains a unique cycle, which must have length

≥ 3𝑔 ≥ 2𝑔. Hence one can remove 𝑒 and some other edge from this cycle to split it into two intervals

with ≥ 𝑔 vertices. Removing these two edges from 𝑇 + 𝑒 splits it into two components spanning 𝐴𝑖
with ≥ 𝑔 vertices each. Hence 𝐴𝑖 could be replaced with the vertex sets of these two components,

contradicting the choice of𝑚.

Similarly, we claim that every two sets 𝐴𝑖 , 𝐴 𝑗 are connected by at most one edge. Otherwise two

such edges together with spanning trees of 𝐴𝑖 and 𝐴 𝑗 would form a unicyclic graph, which could

be split as above into three connected parts with ≥ 𝑔 vertices each.
Let 𝐺 ′ = (𝐸′,𝑉 ′) be the graph resulting by contracting the sets 𝐴𝑖 . Since we contract sets of

≥ 𝑔 vertices, |𝑉 ′ | =𝑚 ≤ |𝑉 |
𝑔
. Since no two edges get identified and no loop gets created/removed

in the process, the number of contractions is equal to |𝐸 | − |𝐸′ | and to |𝑉 | − |𝑉 ′ |. Hence |𝐸′ | =
|𝐸 | − |𝑉 | + |𝑉 ′ | ≥ ( 2+𝛿

2
− 1) |𝑉 | + |𝑉 ′ | ≥ (𝑔 𝛿

2
+ 1) |𝑉 ′ |, so 𝐺 ′

has average degree ≥ 𝑔𝛿 + 2. (We note

that each 𝐺 [𝐴𝑖 ] had diameter < 2𝑔 − 1, as otherwise it could be split into two parts; hence the

minor we obtain is relatively shallow). □

Proposition 2.18. Let 𝛿 > 0 and let G be a class of graphs with unbounded girth and average
degree ≥ 2 + 𝛿 . Then G is not fractionally-tw-fragile.

Proof. Suppose that G is fractionally-tw-fragile. Then, by Lemma 4.4, for Y = 𝛿
2(2+𝛿 ) there

is a 𝑘 = 𝑘 (Y) such that every graph in G has a subset 𝐹 ⊆ 𝐸 (𝐺) with |𝐹 | ≤ Y |𝐸 (𝐺) | such that

tw(𝐺 − 𝐹 ) ≤ 𝑘 . Let𝐺 ∈ G be a graph with girth ≥ 12𝑘
𝛿
. Let 𝐹 be as above. Then tw(𝐺 − 𝐹 ) ≤ 𝑘 and

2|𝐸 (𝐺 − 𝐹 ) | ≥ (1 − Y) · 2|𝐸 (𝐺) | ≥ (1 − Y) (2 + 𝛿) |𝑉 (𝐺) | = (2 + 𝛿
2
) |𝑉 (𝐺 − 𝐹 ) |. Therefore, 𝐺 − 𝐹 has

average degree ≥ (2 + 𝛿
2
) and girth ≥ 3 · 4𝑘

𝛿
, so by Lemma 2.17 it has a minor with average degree

≥ 2 + 4𝑘
𝛿
𝛿
2
> 2𝑘 . But a minor of 𝐺 − 𝐹 must have treewidth at most tw(𝐺 − 𝐹 ) ≤ 𝑘 , so average

degree ≤ 2𝑘 , a contradiction. □

We now turn to classes of structures with a fixed signature 𝜎 . We will show that the class of

tournaments (orientations of complete graphs) is not tw-pliable (or equivalently, size-pliable, by

Theorem 1.5), in contrast to cliques and dense graphs (Example 7.2 and Theorem 1.3).
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Lemma 2.19. Let G be a class of graphs of unbounded average degree. Let A be the class of
(unweighted) orientations of graphs in G. Then A is not size-pliable.

In order to prove Lemma 2.19, we will need some definitions (only for this subsection) and

alternative characterisations of size-pliability.

Definition 2.20. For a graph parameter p, let p̄ be the parameter defined as p̄(𝐺) := max𝑖 (p(𝐺𝑖 )),
where 𝐺𝑖 are the connected components of 𝐺 .

For example, if p is size , then p̄ is cc (max component size). All the other parameters we consider

(cc, td, tw, Hadwiger) satisfy p̄ = p.

Definition 2.21. A parameter p is good if 𝑝-pliability is the same as size-pliability on classes of

structures with bounded signatures.

We use this definition to state the next few lemmas in full generality. Theorem 1.5 shows that

the parameters size, cc, td, tw, Hadwiger are good.

For two 𝜎-structures A,B and a function 𝑔 : 𝐴 → 𝐵, we define Im(𝑔) to be the 𝜎-structure on 𝐵

with 𝑓 Im(𝑔) (x) := min

(
𝑓 A (𝑔−1 (x)), 𝑓 B (x)

)
. Note that Im(𝑔) ⊆ B (meaning each tuple has value in

Im(𝑔) less than or equal its value in B).

Lemma 2.22. Let p be a good parameter. Then a class of 𝜎-structures A is size-pliable if and only if
∀Y>0∃𝑘∀A ∈ A there is an overcast 𝜔 from A to (1 − Y)A such that every 𝑔 : 𝐴 → 𝐴 in its support
has p(Im(𝑔)) ≤ 𝑘 .

Proof. For one direction, suppose that for every Y > 0 there is an integer 𝑘 such that all A ∈ A
have an overcast 𝜔 from A to (1 − Y)A such that every 𝑔 : 𝐴 → 𝐴 in its support has p(Im(𝑔)) ≤ 𝑘 .
Then for these Y, 𝑘,A we can take B to be the disjoint union of rescaled structures B𝑔 := 𝜔 (𝑔) Im(𝑔).
We have p̄(B) ≤ 𝑘 . The overcast 𝜔 naturally induces overcasts showing A ⪰ B ⪰ (1 − Y)A. Namely,

we can define an overcast 𝜔 ′
from A to B by letting 𝜔 ′ (𝑔′) = 𝜔 (𝑔) for 𝑔′ mapping 𝐴 to 𝐵𝑔 ⊆ 𝐵

just as 𝑔 maps 𝐴 to Im(𝑔) ⊆ A. We can also define an overcast 𝜔 ′′
from B to (1 − Y)A by letting

𝜔 ′′ (𝑔′′) = 1 for one function 𝑔′′ mapping each B𝑔 ⊆ B to Im(𝑔) ⊆ A. Hence dopt (A,B) ≤ Y + O(Y2)
(recall 1 ± Y is close to 𝑒±Y ), which concludes the proof that A is p̄-pliable. Since we assume that p

is a good parameter, A is size-pliable.

In the other direction, suppose A is size-pliable, meaning for every Y > 0 there is an integer 𝑘

such that all A have a B with dopt (A,B) ≤ Y and |𝐵 | ≤ 𝑘 . This means there are overcast 𝜔 and 𝜔 ′

showing A ⪰ 𝑒−YB and B ⪰ 𝑒−YA, respectively. Then composing 𝜔 with 𝜔 ′
gives an overcast from

A to (1 − 2Y)A (since 𝑒−2Y ≥ 1 − 2Y), with the property that all images of functions 𝑔 in the support

are of size at most |𝐵 | ≤ 𝑘 , which implies p(Im(𝑔)) is bounded by some function of 𝑘 (namely

max p(𝐻 ) over all 𝑘-vertex graphs 𝐻 ). □

We can now use Farkas’ lemma to deduce another equivalent formulation:

Lemma 2.23. Let p be a good parameter. Then a class of 𝜎-structuresA is not size-pliable if and only
if ∃Y>0∀𝑘∈N there is a pair of 𝜎-structures A ∈ A and C with 𝐶 = 𝐴, such that for every 𝑔 : 𝐴 → 𝐶

with p(Im(𝑔)) ≤ 𝑘 , value(𝑔) < (1 − Y) value(id). (Here id is the identity map from 𝐴 to 𝐶 = 𝐴).

Proof. By Lemma 2.22, A is not size-pliable if and only if ∃Y>0∀𝑘∈N the following LP over

variables {𝜔 (𝑔) : 𝑔 ∈ 𝑉 }, where 𝑉 := {𝑔 ∈ 𝐴𝐴 : p(Im(𝑔)) ≤ 𝑘}, has no non-negative rational

solution:
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∑︁
𝑔∈𝑉

𝜔 (𝑔) 𝑓 A (𝑔−1 (x)) ≥ (1 − Y) 𝑓 A (x) ∀(𝑓 , x) ∈ tup(A)∑︁
𝑔∈𝑉

𝜔 (𝑔) = 1

By applying Lemma A.2, the system above is equivalent to the existence of a non-negative vector

(𝑦 (𝑓 , x)) (𝑓 ,x) ∈tup(A) such that∑︁
(𝑓 ,x) ∈tup(A)

𝑦 (𝑓 , x) 𝑓 A (𝑔−1 (x)) < (1 − Y)
∑︁

(𝑓 ,x) ∈tup(A)
𝑦 (𝑓 , x) 𝑓 A (x) ∀𝑔 ∈ 𝑉

Let C be the 𝜎-structure on 𝐶 = 𝐴 with 𝑓 C (x) := 𝑦 (𝑓 , x). Then the above inequality is restated as

follows (interpreting 𝑔 ∈ 𝑉 and id as maps from A to C):

value(𝑔) < (1 − Y) value(id) ∀𝑔 ∈ 𝑉 . □

Remark 2.24. The structures A,C obtained above can be assumed to satisfy G(A) = G(C)
without loss of generality, because for any (𝑓 , x) ∈ tup(A) such that one of 𝑓 A (x) or 𝑓 C (x) is zero,
decreasing the other to zero will not change value(id) and can only decrease value(𝑔).

Proof of Lemma 2.19. Let Y be a constant to be chosen later (
1

10
will do). Given any 𝑘 , let𝐺 ∈ G

be a graph with𝑚 ≥ 20 ·
(
𝑘
2

)
edges, 𝑛 vertices, and average degree

2𝑚
𝑛

≥ 100 log
2
𝑘 . Let A be a

random orientation of 𝐺 (each edge is independently oriented in either direction with probability

1

2
). We claim that with positive probability A admits no map 𝑔 : 𝐴 → 𝐴 to itself with image of size

at most 𝑘 such that value(𝑔) ≥ (1 − Y) value(id). This will prove that A satisfies the conditions of

Lemma 2.23 and hence is not size-pliable.

If a map as above existed, it would imply the existence of an oriented graph 𝐷 (with at most

one arc between every two vertices) on at most 𝑘 vertices and a function 𝑔 : 𝐴 → 𝑉 (𝐷) with
value(𝑔) ≥ (1 − Y)𝑚. Observe that value(𝑔) is the number of arcs of A that are correctly mapped

by 𝑔 (i.e., to an arc of 𝐷 with the same orientation). Hence there would be a set 𝐹 of at most Y𝑚

arcs of A such that 𝑔 maps all arcs of A − 𝐹 correctly. Let us bound the probability that there exists

such 𝐷, 𝐹, 𝑔. The number of possible 𝐷 is ≤ 3
(𝑘

2
)
; the number of possible 𝐹 is ≤ ∑Y𝑚

𝑖=0

(
𝑚
𝑖

)
≤ 2

𝐻 (Y )𝑚
;

the number of possible 𝑔 is ≤ 𝑘𝑛 . Note that 2𝑚
𝑛

≥ 100 log
2
𝑘 and 3

(𝑘
2
) ≤ 2

𝑚/10
by our choice of 𝐺 .

For fixed 𝐷, 𝐹, 𝑔, the probability that 𝑔 maps all arcs of A − 𝐹 correctly to 𝐷 is at most ( 1

2
) (1−Y )𝑚 .

Hence in total the probability that some such 𝐷, 𝐹, 𝑔 exist is at most

3
(𝑘

2
) · 2

𝐻 (Y )𝑚 · 𝑘𝑛 · 2
−(1−Y )𝑚 ≤ 2

𝑛 log
2
𝑘−(1−Y−𝐻 (Y )− 1

10
)𝑚 ≤ 2

−(1−Y−𝐻 (Y )− 1

10
− 1

50
) ·𝑚 .

This is less than 1 for Y small enough so that 1 − Y − 𝐻 (Y) − 1

10
− 1

50
> 0. □

Finally, not all classes of bounded degree give pliable classes, even with a fixed signature.

Lemma 2.25. Let G be a class of graphs with unbounded girth and average degree ≥ 2 + 𝛿 (𝛿 > 0).
Let A be the class of (unweighted) orientations of graphs in G. Then A is not size-pliable.

Proof. We show there exists an Y such that for all 𝑘 , there is an orientation A ∈ A of a graph

in G such that every function 𝑔 : A→ A with cc(Im(𝑔)) ≤ 𝑘 has value(𝑔) < (1 − Y) value(id). We

choose Y later depending on 𝛿 only.

For any given 𝑘 , let 𝐺 ∈ G be a graph of girth > 𝑘 . Let 𝑚 = |𝐸 (𝐺) |. Let A be a random

orientation of𝐺 : every edge is independently oriented in one direction or the other. We claim that

the probability that there exists a 𝑔 : A→ Awith cc(Im(𝑔)) ≤ 𝑘 and value(𝑔) ≥ (1−Y) value(id) is
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strictly less than one (so there exists an orientation that satisfies our goal). Note that value(id) =𝑚
and value(𝑔) is the number of arcs in A that are mapped correctly (to an arc in A with the same

orientation); moreover, since the graph underlying A has girth > 𝑘 and cc(Im(𝑔)) ≤ 𝑘 , 𝑔 must

map into an oriented forest (disjoint union of trees). So the event is equivalent to the following:

there exists a set 𝐹 ⊆ 𝐸 (𝐺) with |𝐹 | ≤ Y𝑚 and a function 𝑔 : A→ A which maps all arcs of A − 𝐹
correctly into an oriented forest in A.
The probability of this event can be union-bounded by the sum over 𝐹 ⊆ 𝐸 (𝐺) with |𝐹 | ≤ Y𝑚 of

the probability that all of A − 𝐹 can be mapped correctly into a subdigraph. The number of such 𝐹

is

∑Y𝑚
𝑖=0

(
𝑚
𝑖

)
≤ 2

𝐻 (Y ) ·𝑚
; It remains to bound, for a fixed 𝐹 , the probability that A − 𝐹 can be mapped

correctly.

Consider a fixed 𝐹 ⊆ 𝐸 (𝐺) with |𝐹 | ≤ Y𝑚. If A − 𝐹 can be mapped correctly into an oriented

forest in A, then in particular it admits a homomorphism to 𝐶3, the directed cycle digraph with

three arcs. Let 𝑇 be a spanning forest of A − 𝐹 (a union of spanning trees of each connected

component of 𝐺 − 𝐹 ). There exists exactly one homomorphism from the edges of 𝑇 in A to 𝐶3

(up to rotations in 𝐶3 of each component); every remaining edge in A − 𝐹 − 𝐸 (𝑇 ) closes an

oriented cycle, so it has at most one orientation which allows to extend this unique homomorphism

to it. Hence the probability that A − 𝐹 admits a homomorphism to 𝐶3 is at most ( 1

2
)𝑚′

where

𝑚′ =𝑚 − |𝐹 | − |𝐸 (𝑇 ) | ≥ 𝑚 − Y𝑚 − |𝑉 (𝐺) | ≥ (1 − Y − 2

2+𝛿 )𝑚 = ( 𝛿
2+𝛿 − Y)𝑚.

All in all, the probability of our original event is at most 2
𝐻 (Y ) ·𝑚 · ( 1

2
)𝑚′ ≤ 2

−( 𝛿
2+𝛿 −Y−𝐻 (Y ) )𝑚

. Hence

it suffices to choose Y small enough so that Y + 𝐻 (Y) < 𝛿
2+𝛿 . □

3 PLIABLE STRUCTURES ADMIT A PTAS: PROOF OF THEOREM 1.1
We first define the Sherali-Adams LP hierarchy [83] for Max-Hom. Let (A,B) be an instance of

Max-Hom over a signature 𝜎 and let 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓 ). For a tuple x, we denote by Set(x) the set
of elements appearing in x. We write

(
𝐴
≤𝑘
)
for the set of subsets of 𝐴 with at most 𝑘 elements. The

Sherali-Adams relaxation of level 𝑘 [83] of (A,B) is the linear program given in Figure 1, which has

one variable _(𝑋, 𝑠) for each 𝑋 ∈
(
𝐴
≤𝑘
)
and each 𝑠 : 𝑋 → 𝐵.

We denote by opt𝑘 (A,B) the optimum value of this linear program.

max

∑︁
(𝑓 ,x) ∈tup(A), 𝑠 : Set(x)→𝐵

_(Set(x), 𝑠) 𝑓 A (x) 𝑓 B (𝑠 (x))

_(𝑋, 𝑠) =
∑︁

𝑟 : 𝑌→𝐵, 𝑟 |𝑋 =𝑠

_(𝑌, 𝑟 ) for 𝑋 ⊆ 𝑌 ∈
(
𝐴
≤𝑘
)
and 𝑠 : 𝑋 → 𝐵∑︁

𝑠 : 𝑋→𝐵

_(𝑋, 𝑠) = 1 for 𝑋 ∈
(
𝐴
≤𝑘
)

_(𝑋, 𝑠) ≥ 0 for 𝑋 ∈
(
𝐴
≤𝑘
)
and 𝑠 : 𝑋 → 𝐵

Fig. 1. The Sherali-Adams relaxation of level 𝑘 of Max-Hom instance (A,B).

Observation 3.1. Let A be a 𝜎-structure, _ ≥ 0 and 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓 ). Then for all 𝜎-structures
C, we have opt(_A,C) = _opt(A,C) and opt𝑘 (_A,C) = _opt𝑘 (A,C).

Definition 3.2. Let A and B be 𝜎-structures and 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓 ). We write A ⪰𝑘 B if, for all

𝜎-structures C, we have opt𝑘 (A,C) ≥ opt𝑘 (B,C).
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The proof of the following is analogous to the proof of [11, Proposition 5.2]. For completeness, it

is given in Appendix B.

Proposition 3.3. Let A and B be 𝜎-structures and 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓 ). If there is an overcast from
A to B then A ⪰𝑘 B.

Using Observation 3.1 and Proposition 3.3, we are ready to prove the following.

Proposition 3.4. Let A be a 𝜎-structure. Let Y ≥ 0 and 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓 ). Suppose that there
exists a 𝜎-structure B such that dopt (A,B) ≤ Y and tw(B) ≤ 𝑘 . Then, for every 𝜎-structure C, we have
that

opt(A,C) ≤ opt𝑘 (A,C) ≤ (1 + O(Y))opt(A,C).
Proof. The left-hand side inequality is from the definition of Sherali-Adams. For the right-hand

side inequality, observe first that, by definition of dopt, A ⪰ 𝑒−YB and B ⪰ 𝑒−YA. By Proposition 2.5,

there is an overcast from B to 𝑒−YA, so by Proposition 3.3, it follows that B⪰𝑘 𝑒−YA. By Observation
3.1, we have that opt𝑘 (B,C) ≥ 𝑒−Yopt𝑘 (A,C). Since tw(B) ≤ 𝑘 , we have opt𝑘 (B,C) = opt(B,C) –
this follows, for example, from [11, Theorem 5.8].

8
Since moreover A ⪰ 𝑒−YB, by Observation 3.1,

it follows that opt(A,C) ≥ 𝑒−Yopt(B,C). Together, opt(A,C) ≥ 𝑒−Yopt(B,C) = 𝑒−Yopt𝑘 (B,C) ≥
𝑒−2Y

opt𝑘 (A,C). Hence opt𝑘 (A,C) ≤ 𝑒2Y
opt(A,C). □

Since opt𝑘 (A,C) can be computed in time ( |𝐴| · |𝐶 |)O(𝑘 )
, this concludes the proof of Theorem 1.1.

4 FRACTIONAL FRAGILITY
To give Dvořák’s definition of fractional fragility [29] we first define Y-thin distributions.

Definition 4.1. Let F be a family of subsets of a set𝑉 and Y > 0. We say that a distribution 𝜋 over

F is Y-thin if Pr𝑋∼𝜋 [𝑣 ∈ 𝑋 ] ≤ Y for all 𝑣 ∈ 𝑉 .
Definition 4.2. For a graph parameter p and a number 𝑘 , we define a (p ≤ 𝑘)-modulator of a graph
𝐺 to be a set 𝑋 ⊆ 𝑉 (𝐺) such that p(𝐺 − 𝑋 ) ≤ 𝑘 . A fractional (p ≤ 𝑘)-modulator is a distribution 𝜋
of such modulators 𝑋 . We say that a class of graphs G is fractionally-p-fragile if for every Y > 0

there is a 𝑘 such that every 𝐺 ∈ G has an Y-thin fractional (p ≤ 𝑘)-modulator. We can analogously

define (p ≤ 𝑘)-edge-modulators 𝐹 ⊆ 𝐸 (𝐺) and fractionally-p-edge-fragility.

One crucial property of fractional fragility is that it allows a dual definition by a variant of Farkas’

lemma (cf. Appendix A for details); this is already implicit in [32, Lemma 6].

Lemma 4.3. Let F be a family of subsets of a set 𝑉 . The following are equivalent:
• there is an Y-thin distribution 𝜋 of sets in F ;
• for all non-negative weights (𝑤 (𝑣))𝑣∈𝑉 , there is an 𝑋 ∈ F such that 𝑤 (𝑋 ) :=

∑
𝑥∈𝑋 𝑤 (𝑥) ≤

Y ·𝑤 (𝑉 ).
Thus a class of graphs G is fractionally-tw-fragile if and only if for every Y > 0 there is a 𝑘 such

that for every graph 𝐺 ∈ G and every vertex-weight function𝑤 , one can remove a set of vertices

of weight at most Y ·𝑤 (𝑉 ) to obtain a graph with tw ≤ 𝑘 .
Another useful property of fractional fragility is that the edge version is equivalent to the vertex

version, for most parameters of interest. Recall that each parameter we consider (Hadwiger, tw ,

tw , td , cc , size ) is monotone, meaning p(𝐻 ) ≤ p(𝐺) for 𝐻 a subgraph of 𝐺 ; and that the average

degree
2 |𝐸 (𝐺 ) |
|𝑉 (𝐺 ) | is bounded by a function of p.

8
Our definition of the LP slightly differs from [11], where there are additional variables _ (𝑓 , x, 𝑠 ) associated with tuples

(𝑓 , x) with 𝑓 A (x) > 0. However, since we are assuming without loss of generality that 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓 ) , the two

definitions are equivalent.
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Lemma 4.4. Let p be a monotone graph parameter such that the average degree 2 |𝐸 (𝐺 ) |
|𝑉 (𝐺 ) | of a graph

is bounded by a function of p(𝐺). Let G be a class of graphs. Then the following are equivalent:
• G is fractionally-p-fragile;
• G is fractionally-p-edge-fragile;
• ∀Y>0∃𝑘∀𝐺∈G∀𝑤 : 𝑉 (𝐺 )→Q≥0

∃𝑋 ⊆𝑉 (𝐺 ) 𝑤 (𝑋 ) ≤ Y𝑤 (𝑉 (𝐺)) and p(𝐺 − 𝑋 ) ≤ 𝑘 ;
• ∀Y>0∃𝑘∀𝐺∈G∀𝑤 : 𝐸 (𝐺 )→Q≥0

∃𝐹⊆𝐸 (𝐺 ) 𝑤 (𝐹 ) ≤ Y𝑤 (𝐸 (𝐺)) and p(𝐺 − 𝐹 ) ≤ 𝑘 .

Proof. (𝑖) is equivalent to (𝑖𝑖𝑖) and (𝑖𝑖) is equivalent to (𝑖𝑣) by Lemma 4.3.

It is easy to see that (𝑖) implies (𝑖𝑣): suppose for every Y > 0 there is a 𝑘 such that every 𝐺 ∈ G
has an Y-thin fractional (p ≤ 𝑘)-modulator 𝜋 . Let𝑤 : 𝐸 (𝐺) → Q≥0 be any edge-weight function. If

we take a set 𝑋 from the distribution 𝜋 and remove the set 𝐹 of all edges incident to 𝑋 , this yields

a graph with p(𝐺 − 𝐹 ) ≤ 𝑘 . Every vertex is in 𝑋 with probability ≤ Y, so every edge is in 𝐹 with

probability ≤ 2Y. Hence the expected weight of 𝐹 is ≤ 2Y𝑤 (𝐸 (𝐺)). So there exists a set 𝐹 ⊆ 𝐸 (𝐺)
such that𝑤 (𝐹 ) ≤ 2Y𝑤 (𝐸 (𝐺)) and p(𝐺 − 𝐹 ) ≤ 𝑘 .
It remains to show that (𝑖𝑣) implies (𝑖𝑖𝑖). Let 𝑓 : N→ N be such that

2 |𝐸 (𝐺 ) |
|𝑉 (𝐺 ) | ≤ 𝑓 (p(𝐺)) for all

graphs 𝐺 .

We first show that (𝑖𝑣) implies that G has bounded maximum average degree mad(𝐺) :=

max𝐻⊆𝐺
2 |𝐸 (𝐻 ) |
|𝑉 (𝐻 ) | . Indeed, let 𝑘 := 𝑘 (Y) be a number satisfying (𝑖𝑣) for Y = 1

2
. Then for any

𝐺 ∈ G and any 𝐻 ⊆ 𝐺 , let 𝑤 : 𝐸 (𝐺) → Q≥0 assign 1 to edges in 𝐻 and 0 to edges not in 𝐻 .

By assumption there is a set 𝐹 ⊆ 𝐸 (𝐺) such that 𝑤 (𝐹 ) ≤ Y𝑤 (𝐸 (𝐺)) and p(𝐺 − 𝐹 ) ≤ 𝑘 . Let

𝐹 ′ := 𝐹 ∩ 𝐸 (𝐻 ); then |𝐹 ′ | = 𝑤 (𝐹 ) ≤ Y𝑤 (𝐸 (𝐺)) = Y |𝐸 (𝐻 ) | and p(𝐻 − 𝐹 ′) ≤ p(𝐺 − 𝐹 ) ≤ 𝑘 . Hence

(1− Y) |𝐸 (𝐻 ) | ≤ |𝐸 (𝐻 − 𝐹 ′) | ≤ 𝑓 (𝑘 )
2

· |𝑉 (𝐻 − 𝐹 ′) |, which means
2 |𝐸 (𝐻 ) |
|𝑉 (𝐻 ) | ≤ 𝑓 (𝑘 (Y ) )

1−Y = 2𝑓 (𝑘 ( 1

2
)). That

is, every subgraph 𝐻 of every graph 𝐺 in G has average degree at most 𝐷 := 2𝑓 (𝑘 ( 1

2
)).

This implies that every subgraph has some vertex of degree at most𝐷 (this is called the degeneracy
of the graph: it is upper bounded by mad). Hence every graph 𝐺 in G has an orientation ®𝐺 with

maximum in-degree at most𝐷 (obtained by iteratively finding a vertex of degree at most𝐷 , orienting

all remaining edges towards it, and removing the vertex).

To show (𝑖𝑖𝑖), let Y > 0, 𝑘 ′ := 𝑘 ( Y
𝐷
), 𝐺 ∈ G. Choose an orientation ®𝐺 of 𝐺 with maximum

in-degree at most 𝐷 . Given𝑤 : 𝑉 (𝐺) → Q≥0, we can define𝑤 ′
: 𝐸 (𝐺) → Q≥0 as𝑤

′ (𝑢𝑣) := 𝑤 (𝑣) if
𝑢𝑣 is directed towards 𝑣 . By assumption, there is a set of edges 𝐹 such that p(𝐺 − 𝐹 ) ≤ 𝑘 ′ and

𝑤 ′ (𝐹 ) ≤ Y

𝐷
𝑤 ′ (𝐸 (𝐺)) .

Let 𝑋 := {𝑣 : ∃𝑢𝑣 ∈ 𝐹 directed towards 𝑣}; then 𝐺 − 𝑋 ⊆ 𝐺 − 𝐹 , so p(𝐺 − 𝑋 ) ≤ 𝑘 ′. Note that

𝑤 ′ (𝐸 (𝐺)) =
∑︁

®𝑢𝑣∈𝐸 ( ®𝐺 )

𝑤 (𝑣) =
∑︁

𝑣∈𝑉 (𝐺 )
in-deg(𝑣) ·𝑤 (𝑣) ≤ 𝐷 ·𝑤 (𝑉 (𝐺))

and

𝑤 ′ (𝐹 ) =
∑︁
®𝑢𝑣∈𝐹

𝑤 (𝑣) ≥
∑︁
𝑣∈𝑋

𝑤 (𝑣) = 𝑤 (𝑋 )

Hence

𝑤 (𝑋 ) ≤ 𝑤 ′ (𝐹 ) ≤ Y

𝐷
𝑤 ′ (𝐸 (𝐺)) ≤ Y ·𝑤 (𝑉 (𝐺)) .

This concludes the proof that (𝑖𝑣) implies (𝑖𝑖𝑖). □

Dvořák and Sereni [32, Theorem 31] showed that graphs of bounded treewidth are fractionally-

td-fragile. It follows from a result of DeVos et al. [24, Theorem 1.2] that for 𝐻 -minor-free graphs

(for any graph 𝐻 , that is classes of graphs that exclude some minor, or equivalently, classes of
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bounded Hadwiger number) are fractionally-tw-fragile.
9
These two facts establish the following

equivalence, by [29, Lemma 12].

Theorem 4.5 ([24, 29, 32]). The following are equivalent for a class of graphs G:
• G is fractionally-td-fragile;
• G is fractionally-tw-fragile;
• G is fractionally-Hadwiger-fragile.

4.1 Fragility implies pliability: proof of Theorem 1.2
We denote by 𝐺 ⊎ 𝐻 the disjoint union of graphs 𝐺 and 𝐻 . All graph parameters p we consider

satisfy p(𝐺 ⊎𝐻 ) = max(p(𝐺), p(𝐻 )) for all𝐺,𝐻 (that is: cc, td, tw, Hadwiger, excluding only size;

we never consider fractional-size-fragility, as it is equivalent to just bounded size).

Lemma 4.6. Let p be a graph parameter such that p(𝐺 ⊎ 𝐻 ) = max(p(𝐺), p(𝐻 )) for all 𝐺,𝐻 .
Let A be a class of structures of bounded arity 𝑟 such that the class G of their Gaifman graphs is
fractionally-p-fragile. Then A is p-pliable.

Proof. For Y > 0, let Y′ := Y
1+Y ·

1

𝑟
. By definition of fractional-p-fragility,∃𝑘 (Y )∀𝐺∈G 𝐺 has an Y′-thin

fractional (p ≤ 𝑘)-modulator. Let A ∈ A be a structure with Gaifman graph𝐺 ∈ G. By assumption,

𝐺 has a fractional (p ≤ 𝑘)-modulator 𝜋 such that for every 𝑣 ∈ 𝑉 (𝐺), Pr𝑋∼𝜋 [𝑣 ∈ 𝑋 ] ≤ Y′. For
𝑋 ⊆ 𝑉 (𝐺) = 𝐴 in the support of 𝜋 , let B𝑋 be the rescaling of A − 𝑋 by a factor of 𝜋 (𝑋 ); let B be

the disjoint union of all B𝑋 . Since each 𝑋 in the support of 𝜋 is a (p ≤ 𝑘)-modulator and p is closed

under disjoint union, p(G(B)) ≤ 𝑘 .
We define overcasts 𝜔 : A→ B and 𝜔 ′

: B→ (1 − 𝑟Y′)A. The first, 𝜔 , maps A identically to each

component B𝑋 of B with probability 𝜋 (𝑋 ) (vertices of A in 𝑋 are mapped arbitrarily in the same

component). The second, 𝜔 ′
, deterministically maps each component B𝑋 of B identically to A. To

check that 𝜔 ′
is indeed an overcast, consider a tuple (𝑓 , x) ∈ tup(A). The tuple is covered by its

copies in B𝑋 with weight 𝜋 (𝑋 ) · 𝑓 A (𝑋 ) for all 𝑋 which do not intersect x. In total, the fraction of

𝑓 A (x) lost is hence exactly Pr𝑋∼𝜋 [𝑋 ∩ x ≠ ∅], which is (by union bound and by the assumption

|x| ≤ 𝑟 ) at most Y′𝑟 . Since 1 − Y′𝑟 = 1

1+Y ≥ 𝑒−Y , we have A ⪰ B ⪰ (1 − Y′𝑟 )A ⪰ 𝑒−YA, which means B
is a structure at opt-distance ≤ Y from A. □

This concludes Theorem 1.2: structures on fractionally-tw-fragile graphs are tw-pliable.

4.2 Pliability vs fragility: proof of Lemma 1.4
For Lemma 1.4, we need the other direction than in Theorem 1.2: that if all structures on Gaifman

graphs in G are tw-pliable, then G is fractionally-tw-fragile. To do this, intuitively, we consider, for

a graph 𝐺 ∈ G, a structure A where each edge is used by a different symbol of the signature. If we

have a structure B (of bounded treewidth) close to A in opt-distance, this implies overcasts from

A to 𝑒−YB and from B to 𝑒−YA; composing the two gives an overcast from 𝑒+YA to 𝑒−YA in which

(since each edge is used by a different symbol) an edge can only be covered by itself. This shows

that the overcasts are mostly injective and that B, sandwiched between 𝑒+YA and 𝑒−YA, must be

close in edit distance. The bounded treewidth of B then implies that the graph𝐺 underlying A is in

fact fractionally-tw-edge-fragile, which by Lemma 4.4 concludes the proof.

The formal proof of Lemma 1.4 follows. In fact, we prove prove the statement for any reasonable

parameter, including cc, td, tw, and Hadwiger; the conclusion is the edge variant of fractional

fragility, but the two are equivalent by Lemma 4.4.

9
In fact, as shown by Dvořák [30], a proof of van den Heuvel et al. [88, Lemma 4.1] can be adapted to show this without the

Graph Minors Structure Theorem.
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Lemma 4.7 (Lemma 1.4 more generally). Let p be a monotone graph parameter such that p(𝐺 ⊎
𝐻 ) = max(p(𝐺), p(𝐻 )). For every integer 𝑟 ≥ 2, a class of graphs G is fractionally-p-edge-fragile if
and only if A (𝑟 )

G is p-pliable.

Proof. If G is fractionally-p-fragile, then by Lemma 4.6 A (𝑟 )
G is p-pliable.

For the other direction, suppose A (𝑟 )
G is p-pliable:

∀Y>0∃𝑘 (Y )∀A∈A (𝑟 )
G
∃
B

p(B) ≤ 𝑘 and dopt (A,B) ≤ Y.

Let Y > 0 and let 𝑘 := 𝑘 ( Y
2
). For a graph 𝐺 ∈ G, let 𝜎 be the signature with a different binary

symbol 𝑓𝑒 for each 𝑒 ∈ 𝐸 (𝐺). Let A be the 𝜎-structure with domain 𝑉 (𝐺) and values 𝑓 A𝑒 (𝑢, 𝑣) = 1

if {𝑢, 𝑣} = 𝑒 , 0 otherwise. (The arity can be increased to exactly 𝑟 by adding dummy or repeated

variables). By assumption, there is a 𝜎-structure B such that p(B) ≤ 𝑘 and dopt (A,B) ≤ Y
2
. Let 𝜔,𝜔 ′

be overcasts from A to exp(− Y
2
) · B and from B to exp(− Y

2
) · A, respectively.

For 𝑔 with 𝜔 (𝑔) > 0 and 𝑔′ with 𝜔 ′ (𝑔′) > 0, let 𝐹𝑔𝑔′ ⊆ 𝐸 (𝐺) be the subset of edges 𝑒 such that

𝑔′ (𝑔(𝑒)) ≠ 𝑒 or 𝑓 B𝑒 (𝑔(𝑒)) = 0. Since 𝑔′ ◦ 𝑔 is the identity on 𝐸 (𝐺) − 𝐹𝑔𝑔′ , the functions 𝑔′ and 𝑔
are bijections between this set and a subset of edges of G(B). Hence 𝐺 − 𝐹𝑔𝑔′ is isomorphic to a

subgraph of G(B), which implies p(𝐺 − 𝐹𝑔𝑔′ ) ≤ 𝑘 .
Let 𝑒 ∈ 𝐸 (𝐺). We claim that Pr

𝑔∼𝜔
𝑔′∼𝜔 ′

[𝑒 ∈ 𝐹𝑔𝑔′ ] ≤ Y. This holds essentially because the composition

of 𝜔 and 𝜔 ′
is an overcast from A to exp(−Y) ·A and because the only edge with non-zero value of

𝑓 A𝑒 is 𝑒 itself. Formally, since 𝜔 is an overcast, we have:

for each 𝑒𝐵 ∈ 𝐸 (G(B)) E
𝑔∼𝜔

𝑓 A𝑒 (𝑔−1 (𝑒𝐵)) ≥ exp(− Y
2
) 𝑓 B𝑒 (𝑒𝐵).

Note that by construction of A, 𝑓 A𝑒 (𝑔−1 (𝑒𝐵)) = [𝑔(𝑒) = 𝑒𝐵]. Hence for each 𝑒𝐵 ∈ 𝐸 (G(B)),
E
𝑔∼𝜔

[𝑔(𝑒) = 𝑒𝐵] ≥ exp(− Y
2
) 𝑓 B𝑒 (𝑒𝐵).

Moreover, since 𝜔 ′
is an overcast, we have:

E
𝑔′∼𝜔 ′

𝑓 B𝑒 (𝑔′−1 (𝑒)) ≥ exp(− Y
2
) 𝑓 A𝑒 (𝑒).

That is:

E
𝑔′∼𝜔 ′

∑︁
𝑒𝐵 ∈𝐸 (G(B) )
𝑔′ (𝑒𝐵 )=𝑒

𝑓 B𝑒 (𝑒𝐵) ≥ exp(− Y
2
).

Putting the two together:

Pr
𝑔∼𝜔
𝑔′∼𝜔 ′

[𝑒 ∉ 𝐹𝑔𝑔′ ] = Pr
𝑔∼𝜔
𝑔′∼𝜔 ′

[𝑔′ (𝑔(𝑒)) = 𝑒 and 𝑔(𝑒) ∈ 𝐸 (G(B))]

= E
𝑔∼𝜔
𝑔′∼𝜔 ′

∑︁
𝑒𝐵 ∈𝐸 (G(B) )
𝑔′ (𝑒𝐵 )=𝑒

[𝑔(𝑒) = 𝑒𝐵]

≥ E
𝑔′∼𝜔 ′

∑︁
𝑒𝐵 ∈𝐸 (G(B) )
𝑔′ (𝑒𝐵 )=𝑒

exp(− Y
2
) 𝑓 B𝑒 (𝑒𝐵)

≥ exp(−Y) ≥ 1 − Y.
Therefore, we obtained a distribution of edge sets 𝐹𝑔𝑔′ ⊆ 𝐸 (𝐺) such that p(𝐺−𝐹𝑔𝑔′ ) ≤ 𝑘 satisfying

Pr
𝑔∼𝜔
𝑔′∼𝜔 ′

[𝑒 ∈ 𝐹𝑔𝑔′ ] ≤ Y. This is an Y-thin fractional (p ≤ 𝑘)-edge-modulator. □
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5 FROM HADWIGER- TO SIZE-PLIABILITY: PROOF OF THEOREM 1.5
In this section, we prove Theorem 1.5: pliability with respect to different parameters yields equiva-

lent definitions. The first half of Theorem 1.5 follows easily from already established results and

a simple observation, cf. Section 5.1. The second half of Theorem 1.5 reduces to showing that

structures of bounded treedepth with a bounded signature are size-pliable. The strategy for the

proof is similar to a proof of Nešetřil and Ossona de Mendez [74, Corollary 3.3] that relational

structures of bounded treedepth have bounded cores. However the argument is much more intricate

due to the fact that we consider valued structures: the statement that there are only finitely many

structures of size at most 𝐶 , for every 𝐶 , is not true anymore. The main difficulty is proving an

approximate version of it.

5.1 Treewidth-, treedepth-, and Hadwiger-pliability
The first half of Theorem 1.5, that is, the equivalence of p-pliability for p ∈ {tw, td,Hadwiger}, will
follow (as detailed in Corollary 5.2 below) from the equivalence of fractional-p-fragility for these

parameters (Theorem 4.5), the fact that fragility implies pliability (Lemma 4.6), and transitivity of

pliability, in the following sense.

Observation 5.1 (Transitivity of pliability). Let A be a class of structures with signatures
from a set Σ. Suppose A is p-pliable and for each 𝑘 , {A : p(A) ≤ 𝑘} is p

′-pliable, where A runs over
all structures with signatures in Σ. Then A is p

′-pliable.

Proof. Intuitively, this hold because dopt is a pseudometric. Formally, suppose a class A is

p-pliable. Then every A ∈ A is
Y
2
-close (in dopt distance) to some B with p(B) ≤ 𝑘 (for some 𝑘

depending on
Y
2
). By assumption, every B with p(B) ≤ 𝑘 is

Y
2
-close to some C with p

′ (C) ≤ 𝑘 ′ (for
some 𝑘 ′ depending on Y

2
and 𝑘). Hence A is Y-close to some structure C with p

′ (C) ≤ 𝑘 ′ ( Y
2
, 𝑘 ( Y

2
)),

which only depends on Y. □

Corollary 5.2. Let A be any class of structures. The following are equivalent:
• A is td-pliable;
• A is tw-pliable;
• A is Hadwiger-pliable.

Proof. Since td(𝐺) ≥ tw(𝐺) + 1 ≥ Hadwiger(𝐺) for any graph 𝐺 , each bullet point implies

the next by Observation 2.9. It suffices to show that Hadwiger-pliability implies td-pliability. By

Observation 5.1 it suffices to show that for every 𝑘 , the class A of all structures with Hadwiger

number at most 𝑘 (and arbitrary signatures) is td-pliable. These are structures whose Gaifman

graphs exclude the clique 𝐾𝑘+1 as a minor. Their Gaifman graphs are thus fractionally-td-fragile

by Theorem 4.5. Since their Gaifman graphs do not include cliques 𝐾𝑘+1 the arity of symbols with

non-zero tuples is bounded by 𝑘 . By Lemma 4.6, this implies thatA is td-pliable (high-arity symbols

with no non-zero tuples can be ignored). □

5.2 From cc-pliability to size-pliability
To show the second half of Theorem 1.5, i.e., the equivalence of td-pliability, cc-pliability, and

size-pliability (for structures with bounded signatures), it will be easier to first focus on the latter

two. Since there are only finitely many distinct signatures of bounded size and arity, we can focus

on a single fixed signature (as finite unions of pliable classes are pliable).

Since cc ≤ size, by Observation 2.9 we have that size-pliability implies cc-pliability. The rest

of this section is devoted to proving that cc-pliability implies size-pliability (for a single fixed

signature). This (and in fact equivalence of the two) would be trivial if there were only a bounded
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number of distinct values of tuples, since then there can be only a bounded number of components

up to isomorphism, and isomorphic components can be merged.

Observation 5.3. For any structure A and numbers _1, . . . , _𝑛 ∈ Q≥0, the disjoint union _1A ⊎
· · · ⊎ _𝑛A is equivalent (i.e., at dopt-distance zero) to _A, where _ = _1 + · · · + _𝑛 .

Proof. An overcast in one direction deterministicallymaps each component _𝑖A to _A identically.

An overcast in the other direction maps _A to the component _𝑖A with probability _𝑖/_. □

For a structure A with components of bounded size and Q≥0-values, we can try to change the

values slightly to find a structure B at small edit distance which uses a bounded number of different

values (and then proceed as above). This works if the ratio of the maximum value to the minimum

non-zero value is bounded. If this ratio is large, we could try to change the extremely small values

to zero, hoping the edit distance is small (relative to the extremely large values). However, this does

not always work: consider structures A with few large values and many small values (for example a

structure having 2
𝑖
tuples of value 2

𝑛−𝑖
, for 𝑖 = 0 . . . 𝑛). So the general case cannot be reduced to the

case of finitely many distinct values just by finding a structure close in edit distance. Nevertheless,

instead of requiring the modified structure B to have a bounded number of components up to

isomorphism, it suffices to require a bounded number of components up to rescaling (two structures

B1,B2 being the same up to rescaling if B1 = _B2 for some _ > 0). This minor weakening turns out

to be sufficient to fix our problem. We formalise this first as a statement on sequences of vectors of

bounded dimension (which will encode a sequence of components of bounded size).

Lemma 5.4. Let 𝑑 ∈ N, Y > 0. There is a 𝑘 such that for every sequence of vectors 𝑣 (1) , . . . , 𝑣 (𝑛) ∈
Q𝑑≥0

, there is a sequence 𝑤 (1) , . . . ,𝑤 (𝑛) ∈ Q𝑑≥0
such that for each coordinate 𝑖 = 1, . . . , 𝑑 we have∑

𝑗=1...𝑛 |𝑣
( 𝑗 )
𝑖

−𝑤 ( 𝑗 )
𝑖

| ≤ Y∑𝑗=1...𝑛 𝑣
( 𝑗 )
𝑖

, and such that up to rescaling, there are only 𝑘 distinct vectors
in𝑤 (1) , . . . ,𝑤 (𝑛) .

Proof. The proof is by induction on 𝑑 . Let 𝑑 ∈ N, Y > 0 and consider a sequence 𝑣1, . . . , 𝑣𝑛 ∈ Q𝑑≥0
.

For 𝑑 = 1, the sequence already has only one vector up to rescaling (or two, if it contains the zero

vector), so let 𝑑 ≥ 2.

Let 𝐽 = {1, . . . , 𝑛}. For a subset 𝑋 ⊆ 𝐽 , denote mass𝑖 (𝑋 ) :=
∑
𝑗∈𝑋 𝑣

( 𝑗 )
𝑖

. We focus on the first two

coordinates and in particular the ratio of the second to the first. For 𝑐 ∈ R, let 𝐽<𝑐 := { 𝑗 ∈ 𝐽 : 𝑣
( 𝑗 )
2

<

𝑐 · 𝑣 ( 𝑗 )
1

}. Define 𝐽≤𝑐 , 𝐽>𝑐 , 𝐽≥𝑐 analogously.
Let 𝑐 be maximum such that mass2 (𝐽<𝑐 ) ≤ Y

3
·mass2 (𝐽 ). For 𝑗 ∈ 𝐽<𝑐 , let𝑤 𝑗 be the vector obtained

from 𝑣 𝑗 by zeroing the 2nd coordinate. The resulting difference is∑︁
𝑗∈ 𝐽<𝑐

|𝑣 ( 𝑗 )
2

−𝑤 ( 𝑗 )
2

| ≤ Y

3

∑︁
𝑗∈ 𝐽

𝑣
( 𝑗 )
2
.

By maximality of 𝑐 we have

mass2 (𝐽≤𝑐 ) >
Y

3

·mass2 (𝐽 ).

Observe that the left hand side can be bounded as follows:

mass2 (𝐽≤𝑐 ) ≤ 𝑐 ·mass1 (𝐽≤𝑐 ) ≤ 𝑐 ·mass1 (𝐽 )

and similarly the right hand side can be bounded as follows, for 𝑐′ := 𝑐 · 3𝑑
Y2
:

Y

3

·mass2 (𝐽 ) ≥
Y

3

·mass2 (𝐽≥𝑐′ ) ≥ 𝑐 ·
𝑑

Y
·mass1 (𝐽≥𝑐′ ).
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Altogether, this implies

𝑐 ·mass1 (𝐽 ) > 𝑐 ·
𝑑

Y
·mass1 (𝐽≥𝑐′ ),

which after rearranging gives

mass1 (𝐽≥𝑐′ ) <
Y

𝑑
·mass1 (𝐽 ).

For 𝑗 ∈ 𝐽≥𝑐′ , let 𝑤 𝑗 be the vector obtained from 𝑣 𝑗 by zeroing the 1st coordinate. The resulting

difference is

∑
𝑗∈ 𝐽≥𝑐′ |𝑣

( 𝑗 )
1

−𝑤 ( 𝑗 )
1

| ≤ Y
𝑑

∑
𝑗∈ 𝐽 𝑣

( 𝑗 )
1

.

The only remaining vectors, in 𝐽𝑚𝑖𝑑 := 𝐽 \ (𝐽<𝑐 ∪ 𝐽≥𝑐′ ), satisfy 𝑐 · 𝑣 ( 𝑗 )
1

≤ 𝑣 ( 𝑗 )
2

< 𝑐′ · 𝑣 ( 𝑗 )
1

. We can

round down their 2nd coordinate to 𝑐 · 𝑣 ( 𝑗 )
1

times an integer power of 𝑒Y/3
. That is, for 𝑗 ∈ 𝐽𝑚𝑖𝑑 , let

𝑤 𝑗 be the vector obtained from 𝑣 𝑗 by decreasing the 2nd coordinate to𝑤
( 𝑗 )
2

:= 𝑐 · 𝑒𝑎Y/3 · 𝑣 ( 𝑗 )
1

with

𝑎 ∈ N maximum such that𝑤
( 𝑗 )
2

≤ 𝑣 ( 𝑗 )
2

. Observe that 𝑎 ≥ 0 and since 𝑐 · 𝑒𝑎Y/3 · 𝑣 ( 𝑗 )
1

≤ 𝑣 ( 𝑗 )
2

≤ 𝑐′ · 𝑣 ( 𝑗 )
1

,

we have 𝑒𝑎Y/3 ≤ 𝑐′

𝑐
= 3𝑑

Y2
and thus 𝑎 ≤ 3

Y
· ln( 3𝑑

Y2
). Note also that 1 ≥ 𝑤

( 𝑗 )
2

𝑣
( 𝑗 )
2

> 𝑒−Y/3
, hence

|𝑣 ( 𝑗 )
2

−𝑤 ( 𝑗 )
2

|
𝑣
( 𝑗 )
2

≤ 1 − 𝑒−Y/3 < Y
3
, so the resulting difference is

∑
𝑗∈ 𝐽𝑚𝑖𝑑

|𝑣 ( 𝑗 )
2

−𝑤 ( 𝑗 )
2

| ≤ Y
3

∑
𝑗∈ 𝐽 𝑣

( 𝑗 )
2

To summarise, all vectors𝑤 𝑗 satisfy𝑤 𝑗 ≤ 𝑣 𝑗 (coordinate-wise) and when limited to their first

two coordinates as

(
𝑤

( 𝑗 )
1

𝑤
( 𝑗 )
2

)
, are either multiples of ( 1

0
) (if 𝑗 ∈ 𝐽<𝑐 ), or multiples of ( 0

1
) (if 𝑗 ∈ 𝐽≥𝑐′ ),

or multiples of ( 1

𝑐 ·𝑒𝑎Y/3 ), for some 𝑎 ∈ {0, 1, . . . , 𝐾} for 𝐾 := ⌊ 3

Y
· ln( 3𝑑

Y2
)⌋. The resulting differences

in the first and second coordinate, respectively, are bounded by as∑︁
𝑗∈ 𝐽≥𝑐′

|𝑣 ( 𝑗 )
1

−𝑤 ( 𝑗 )
1

| ≤ Y

𝑑

∑︁
𝑗∈ 𝐽

𝑣
( 𝑗 )
1∑︁

𝑗∈ 𝐽<𝑐
|𝑣 ( 𝑗 )

2
−𝑤 ( 𝑗 )

2
| +

∑︁
𝑗∈ 𝐽𝑚𝑖𝑑

|𝑣 ( 𝑗 )
2

−𝑤 ( 𝑗 )
2

| ≤ ( Y
3

+ Y
3

)
∑︁
𝑗∈ 𝐽

𝑣
( 𝑗 )
2
.

We replace the sequence 𝑣 ( 𝑗 ) with the sequence𝑤 ( 𝑗 )
and repeat the same process for the 1st and

𝑖-th coordinate, for 𝑖 = 3, . . . , 𝑑 . Since each step only zeroes the 1st coordinate of some vectors and

decreases the other coordinates, the final resulting sequence𝑤 ( 𝑗 )
, when compared to the initial

sequence 𝑣 ( 𝑗 ) satisfies: ∑︁
𝑗∈ 𝐽

|𝑣 ( 𝑗 )
1

−𝑤 ( 𝑗 )
1

| ≤ (𝑑 − 1) · Y
𝑑

∑︁
𝑗∈ 𝐽

𝑣
( 𝑗 )
1∑︁

𝑗∈ 𝐽
|𝑣 ( 𝑗 )
𝑖

−𝑤 ( 𝑗 )
𝑖

| ≤ ( Y
2

+ Y
2

)
∑︁
𝑗∈ 𝐽

𝑣
( 𝑗 )
𝑖

for 𝑖 = 2, . . . , 𝑑 .

Each vector𝑤 ( 𝑗 )
either has its 1st coordinate zeroed, or all its other coordinates are determined

as 𝑤
( 𝑗 )
1

times one of 2 + 𝐾 possible ratios. Among vectors with 𝑤
( 𝑗 )
1

≠ 0 there are thus at most

(2 + 𝐾)𝑑−1
different vectors, up to rescaling. The vectors with𝑤

( 𝑗 )
1

= 0 can be inductively reduced

as (𝑑 −1)-dimensional vectors to𝑤 ( 𝑗 ) ′
containing 𝑘 (𝑑 −1, Y

3
) distinct vectors up to rescaling (where

𝑘 (𝑑 − 1, Y
3
) is the constant 𝑘 obtained by inductive assumption for 𝑑 − 1 and

Y
3
) and satisfying∑︁

𝑗∈ 𝐽
|𝑤 ( 𝑗 )
𝑖

−𝑤 ( 𝑗 )
𝑖

′
| ≤ Y

3

∑︁
𝑗∈ 𝐽

𝑤
( 𝑗 )
𝑖

≤ Y

3

∑︁
𝑗∈ 𝐽

𝑣
( 𝑗 )
𝑖
.

Altogether, the difference is bounded by
2Y
3
+ Y

3
= Y and the number of distinct vectors up to rescaling

is bounded by (2 + 𝐾)𝑑−1 + 𝑘 (𝑑 − 1, Y
3
). □
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Lemma 5.5. For a fixed signature 𝜎 and 𝑑 ∈ N, the class of 𝜎-structures with maximum connected
component size at most 𝑑 is size-pliable.

Proof. We simply present each component A𝑖 of A as a vector encoding the value of all tuples

(𝑓 , x) ∈ tup(A𝑖 ). The dimension of such a vector, for a component of size 𝑑 , is 𝑑 ′ :=
∑
𝑓 ∈𝜎 𝑑

ar(𝑓 )
.

Smaller components can be treated as components of size 𝑑 by adding dummy vertices and tuples.

For any Y > 0, let Y′ :=
Y/𝐶𝜎

1+Y/𝐶𝜎
, where 𝐶𝜎 = max𝑓 ∈𝜎 ar(𝑓 )ar(𝑓 )

. The previous lemma guarantees

the existence of a number 𝑘 = 𝑘 (Y′, 𝑑 ′) such that for every 𝜎-structure A with 𝑛 components of

size at most 𝑑 , the corresponding vectors 𝑣 (1) , . . . , 𝑣 (𝑛) are approximated by vectors𝑤 (1) , . . . ,𝑤 (𝑛)

such that there are at most 𝑘 distinct vectors up to rescaling and such that, for 𝑖 = 1 . . . 𝑑 ′,∑︁
𝑗=1...𝑛

|𝑣 ( 𝑗 )
𝑖

−𝑤 ( 𝑗 )
𝑖

| ≤ Y′
∑︁
𝑗=1...𝑛

𝑣
( 𝑗 )
𝑖
.

These vectors encode a 𝜎-structure B with only at most 𝑘 distinct components up to rescaling, all

of size at most 𝑑 , which is hence (by Observation 5.3) equivalent to a 𝜎-structure B′ bounded in

size by 𝑘 · 𝑑 . Moreover, the guarantee on Y′ allows us to bound edit distance as follows:∑︁
𝑗=1...𝑛

|𝑣 ( 𝑗 )
𝑖

−𝑤 ( 𝑗 )
𝑖

| ≤ Y′
∑︁
𝑗=1...𝑛

𝑣
( 𝑗 )
𝑖

≤ Y′
∑︁
𝑗=1...𝑛

(
min(𝑣 ( 𝑗 )

𝑖
,𝑤

( 𝑗 )
𝑖

) + |𝑣 ( 𝑗 )
𝑖

−𝑤 ( 𝑗 )
𝑖

|
)

(for 𝑖 = 1 . . . 𝑑 ′), hence the edit distance (as defined in Section 2.4) is

d1 (A,B) ≤ max

𝑖=1...𝑑 ′

∑
𝑗=1...𝑛

���𝑣 ( 𝑗 )𝑖
−𝑤 ( 𝑗 )

𝑖

���
min(∑𝑗=1...𝑛 𝑣

( 𝑗 )
𝑖
,
∑
𝑗=1...𝑛𝑤

( 𝑗 )
𝑖

)
≤ Y′

1 − Y′ =
Y

𝐶𝜎
.

By Lemma 2.11, dopt (A,B′) ≤ dopt (A,B) + dopt (B,B′) = dopt (A,B) ≤ 𝐶𝜎 · d1 (A,B) ≤ Y. (While

Lemma 2.11 assumes the structures to be loopless, this can be ensured by replacing tuples with

repeated elements like (𝑓 , (𝑥1, 𝑥1, 𝑥2)), say, with (𝑓 ′, (𝑥1, 𝑥2)) for a new symbol 𝑓 ′). □

By Observation 5.1 (transitivity of pliability), we conclude that for a fixed signature 𝜎 , if a class

of 𝜎-structures A is cc-pliable then it is also size-pliable. Thus, we have shown equivalence of

size-pliability and cc-pliability (for structures of bounded signatures).

5.3 From treedepth-pliability to size-pliability
In order to finish the proof of Theorem 1.5, it remains to show the equivalence of td- and size-

pliability. We do this by extending the above proof for cc- and size-pliability.

One of the main reasons for which treedepth is useful (and easier to work with than, say,

treewidth) is that the only way for a graph of small treedepth to be large is to have many repeating

parts, like in a large star graph (see e.g. [74, Theorem 3.1]). This implies that in a class of graphs

of bounded treedepth, homomorphic cores have bounded size. This does not extend to weighted

graphs or structures in general, but we can approximate the weights or values as before.

Lemma 5.6. For a fixed signature 𝜎 and 𝑑 ∈ N, the class of 𝜎-structures {A : td(A) ≤ 𝑑} is
size-pliable.

Proof. We prove by induction on 𝑑 that the statement holds for each signature 𝜎 . It suffices to

prove the statement for connected 𝜎-structures of treedepth at most 𝑑 . Indeed, this implies that

disconnected 𝜎-structures of treedepth at most 𝑑 are cc-pliable, which we already know implies

size-pliability.

For 𝑑 = 1, each component of the Gaifman graph is a single vertex and we are done. So let 𝑑 > 1

and assume that for each signature 𝜎 and each Y > 0, there is a 𝑘 = 𝑘 (𝑑 − 1, 𝜎, Y) such that every

𝜎-structure with treedepth ≤ 𝑑 − 1 has a 𝜎-structure of size ≤ 𝑘 at opt-distance at most Y. Let 𝜎
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be a signature and A a 𝜎-structure of treedepth 𝑑 . Let 𝐺 be the Gaifman graph of A. Since it is
connected, we can find a vertex 𝑣 ∈ 𝑉 (𝐺) = 𝐴 such that td(𝐺 − 𝑣) = 𝑑 − 1.

We now define a new signature 𝜎 ′ and a 𝜎 ′-structure pack(A) whose Gaifman graph will be

𝐺 − 𝑣 , but will contain all the information about A. Let 𝜎 ′ = {(𝑓 , 𝐼 ) : 𝑓 ∈ 𝜎, 𝐼 ⊆ {1, . . . , ar(𝑓 )}} and
ar((𝑓 , 𝐼 )) := ar(𝑓 ) − |𝐼 |, for (𝑓 , 𝐼 ) ∈ 𝜎 ′. For x ∈ (𝐴 − 𝑣)ar( (𝑓 ,𝐼 ) )

, let (𝑓 , 𝐼 )pack(A) (x) := 𝑓 A (x′) where
x′ ∈ 𝐴ar(𝑓 )

is the tuple obtained from x by introducing 𝑣 at positions 𝐼 . Note that 𝜎 ′ is bounded:
|𝜎 ′ | = ∑

𝑓 ∈𝜎 2
ar(𝑓 )

.

The 𝜎 ′-structure pack(A) has treedepth 𝑑 − 1, so by inductive assumption there is a 𝜎 ′-structure
B at opt-distance at most Y with size at most 𝑘 = 𝑘 (𝑑 − 1, 𝜎 ′, Y). We define unpack(B) to be

the 𝜎-structure with domain 𝐵 ∪ {𝑣} and 𝑓 unpack(B) (x) := (𝑓 , 𝐼 )B (x′), where 𝐼 is the set of posi-
tions in x containing 𝑣 and x′ is the tuple obtained by removing these positions. It is straightfor-

ward to check that unpack(pack(A)) is equal to A and that for any 𝜎 ′-structures A′,B′ we have
dopt (unpack(A′), unpack(B′)) ≤ dopt (A′,B′), hence

dopt (A, unpack(B)) = dopt (unpack(pack(A)), unpack(B)) ≤ dopt (pack(A),B) ≤ Y.
Hence unpack(B) is a 𝜎-structure at opt-distance ≤ Y from A of size ≤ 𝑘 + 1. □

By Observation 5.1 (transitivity of pliability), this shows that, for a class of 𝜎-structures, td-

pliability implies size-pliability. Since td ≤ size, Observation 2.9 shows that size-pliability implies

td-pliability, thus concluding the proof of Theorem 1.5:

Corollary 5.7. A class of 𝜎-structures is td-pliable if and only if it is size-pliable.

6 HYPERFINITE CLASSES ARE FRACTIONALLY FRAGILE: PROOF OF THEOREM 1.6
Recall that class of graphs is if hyperfinite if for every Y > 0 there is a 𝑘 ∈ N such that every graph

in the class can be turned into a graph with connected components of size at most 𝑘 by removing an

at-most-Y fraction of all edges.
10
A class of graphs ismonotone if it is closed under taking subgraphs.

In this section, we prove the following result.

Theorem (Theorem 1.6 restated). Let G be a monotone class of graphs. The following are
equivalent:

• G is hyperfinite;
• G is fractionally-tw-fragile and has bounded degree;
• G is fractionally-cc-fragile;
• A (𝑟 )

G is cc-pliable for any 𝑟 ≥ 2.

The last two bullets are shown equivalent by Lemma 4.7; the middle two bullets were shown

equivalent by Dvořák [29, Observation 15, Corollary 20]. It remains to prove their equivalence with

the first bullet point.

Lemma 6.1. Let G be a monotone class of graphs. G is hyperfinite if and only if it is fractionally-cc-
fragile.

Proof. Hyperfiniteness of a monotone class G is equivalent to hyperfiniteness of 0-1-edge

weighted graphs in G:

∀Y>0∃𝑘∀𝐺∈G∀𝑤 : 𝐸 (𝐺 )→{0,1}∃𝐹⊆𝐸 (𝐺 ) 𝑤 (𝐹 ) ≤ Y𝑤 (𝐸 (𝐺)) and cc(𝐺 − 𝐹 ) ≤ 𝑘.
10
In other work, the definition of hyperfinite often considers the number of removed edges divided by the total number of

vertices. However, they only deal with bounded degree graphs (in which the number of edges is linear in the number of

vertices), which makes the two definitions equivalent.
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Hence it is trivially implied by the edge version of fractional-cc-fragility (which allows arbitrary

nonnegative weights) in Lemma 4.4. It remains to show the other direction.

By definition of hyperfiniteness, for every Y > 0 there is a 𝑘 = 𝑘 (Y) such that for all graphs

𝐺 ∈ G, one can remove a set of edges 𝐹 with |𝐹 | ≤ Y |𝐸 (𝐺) | so that cc(𝐺 − 𝐹 ) ≤ 𝑘 . Observe that

graphs in G have degree bounded by Δ := 2𝑘 ( 1

2
); otherwise, a graph with degree ≥ 2𝑘 ( 1

2
) + 1 would

contain a star with that many edges as a subgraph and removing half of these edges always leaves

a component with at least 𝑘 ( 1

2
) + 1 edges and vertices.

We aim to show that

∀Y>0∃𝑘∀𝐺∈G∀𝑤 : 𝐸 (𝐺 )→Q≥0
∃𝐹⊆𝐸 (𝐺 ) 𝑤 (𝐹 ) ≤ Y𝑤 (𝐸 (𝐺)) and cc(𝐺 − 𝐹 ) ≤ 𝑘.

For Y > 0, let Y′ be chosen later and let 𝑘 ′ = 𝑘 (Y′). Let𝐺 ∈ G and𝑤 : 𝐸 (𝐺) → Q≥0. We want to find a

set 𝐹 ⊆ 𝐸 (𝐺) such that𝑤 (𝐹 ) ≤ Y𝑤 (𝐸 (𝐺)) and cc(𝐺 − 𝐹 ) ≤ 𝑘 ′. Note that our task would be trivial if
the weights of all edges were within a constant factor 𝛼 of each other: just set Y′ = Y

𝛼
, find 𝐹 ⊆ 𝐸 (𝐺)

such that |𝐹 | ≤ Y′ |𝐸 (𝐺) | and cc(𝐺 − 𝐹 ) ≤ 𝑘 ′ and conclude that𝑤 (𝐹 ) ≤ 𝛼Y′𝑤 (𝐸 (𝐺)) = Y𝑤 (𝐸 (𝐺)).
In general, let us partition the edges of 𝐺 into buckets depending on their weight: for 𝑖 ∈ Z, let

𝐵𝑖 := {𝑒 ∈ 𝐸 (𝐺) |
(
Y

6Δ

)𝑖 ≥ 𝑤 (𝑒) >
(
Y

6Δ

)𝑖+1} (edges with weight zero can be removed without loss of

generality).
11
For 𝐿 := ⌈ 3

Y
⌉, we will remove every 𝐿-th bucket from𝐺 . That is, for 𝑗 ∈ {0, . . . , 𝐿 − 1},

let 𝐵′𝑗 :=
⋃
𝑖∈Z 𝐵𝑖𝐿+𝑗 . Let 𝑗

∗ ∈ {0, . . . , 𝐿 − 1} be such that𝑤 (𝐵′
𝑗∗ ) is minimum; since 𝐵′

0
∪ · · · ∪ 𝐵′

𝐿−1

is a partition of 𝐸 (𝐺), 𝑤 (𝐵′
𝑗∗ ) ≤ 1

𝐿
𝑤 (𝐸 (𝐺)) ≤ Y

3
𝑤 (𝐸 (𝐺)). We can thus remove the edges 𝐵′

𝑗∗

from 𝐺 . Since this removes every 𝐿-th bucket, the remaining edges are partitioned into blocks

𝐶𝑖 := 𝐵𝑖𝐿+𝑗∗+1 ∪ · · · ∪ 𝐵𝑖𝐿+𝑗∗+𝐿−1 of 𝐿 − 1 buckets for 𝑖 ∈ Z. Each block contains weights within

a constant factor of each other: min{𝑤 (𝑒) : 𝑒 ∈ 𝐶𝑖 } ≥
(
Y

6Δ

)𝐿−1 · max{𝑤 (𝑒) : 𝑒 ∈ 𝐶𝑖 }. Moreover,

since there is a gap of one bucket in between one block and the next, max{𝑤 (𝑒) : 𝑒 ∈ 𝐶𝑖+1} <
Y

6Δ · min{𝑤 (𝑒) : 𝑒 ∈ 𝐶𝑖 }.
The latter property allows us to disconnect the blocks from each other. Indeed, for each 𝐶𝑖 with

increasing 𝑖 (starting from the smallest 𝑖 such that 𝐶𝑖 is non-empty), we shall remove all remaining

edges on the boundary of 𝐶𝑖 :

𝐹𝑖 := {𝑒 : 𝑒 ∈ 𝐶 𝑗 for some 𝑗 > 𝑖, 𝑒 shares a vertex with some 𝑒′ ∈ 𝐶𝑖 }.
Since |𝐹𝑖 | ≤ 2Δ|𝐶𝑖 | and max{𝑤 (𝑒) : 𝑒 ∈ 𝐹𝑖 } < Y

6Δ · min{𝑤 (𝑒) : 𝑒 ∈ 𝐶𝑖 }, we have𝑤 (𝐹𝑖 ) < Y
3
𝑤 (𝐶𝑖 ). In

total, for 𝐹 :=
⋃
𝑖∈Z 𝐹𝑖 , we have 𝑤 (𝐹 ) < Y

3
𝑤 (𝐸 (𝐺)). For all 𝑖 ∈ Z, the edges of 𝐶𝑖 − 𝐹 are disjoint

from edges of 𝐶 𝑗 − 𝐹 for all 𝑗 > 𝑖 . Since the sets 𝐶𝑖 − 𝐹 partition edges of 𝐺 − 𝐵′
𝑗∗ − 𝐹 , this means

that every connected component of 𝐺 − 𝐵′
𝑗∗ − 𝐹 is contained in one of the edge sets 𝐶𝑖 − 𝐹 .

Finally, since min{𝑤 (𝑒) : 𝑒 ∈ 𝐶𝑖 − 𝐹 } ≥ 𝛼 · max{𝑤 (𝑒) : 𝑒 ∈ 𝐶𝑖 − 𝐹 } for 𝛼 :=
(
Y

3Δ

)𝐿−1

, we have

reduced our problem to the trivial case when weights are all within a constant factor of each

other. That is, let Y′ := 𝛼Y
3
. For each 𝑖 ∈ Z, let 𝐺𝑖 be the subgraph of 𝐺 − 𝐵′

𝑗∗ − 𝐹 formed from

connected components contained in 𝐶𝑖 − 𝐹 . By assumption, there is a set 𝐹 ′𝑖 ⊆ 𝐸 (𝐺𝑖 ) such that

|𝐹 ′𝑖 | ≤ Y′ |𝐸 (𝐺𝑖 ) | and cc(𝐺𝑖 − 𝐹 ′𝑖 ) ≤ 𝑘 (Y′) = 𝑘 ′. Then 𝑤 (𝐹 ′𝑖 ) ≤ max{𝑤 (𝑒) : 𝑒 ∈ 𝐸 (𝐺𝑖 )} · |𝐹 ′𝑖 | ≤
1

𝛼
· min{𝑤 (𝑒) : 𝑒 ∈ 𝐸 (𝐺𝑖 )} · Y′ · |𝐸 (𝐺𝑖 ) | ≤ Y′

𝛼
𝑤 (𝐸 (𝐺𝑖 )) = Y

3
𝑤 (𝐸 (𝐺𝑖 )). In total, for 𝐹 ′ :=

⋃
𝑖∈Z 𝐹

′
𝑖 we

have𝑤 (𝐵′
𝑗∗ ∪ 𝐹 ∪ 𝐹 ′) ≤ ( Y

3
+ Y

3
+ Y

3
)𝑤 (𝐸 (𝐺)) and cc(𝐺 − 𝐵′

𝑗∗ − 𝐹 − 𝐹 ′) ≤ 𝑘 ′. □

7 DENSE GRAPHS ARE PLIABLE: PROOF OF THEOREM 1.3
Our goal is to prove Theorem 1.3.

Theorem (Theorem 1.3 restated). Let 𝑐 > 0 and let A be a class of graphs with at least 𝑐𝑛2

edges. Then A is tw-pliable. Consequently, Max-Hom(A,−) admits a PTAS.

11
Note that all but a finite number of 𝐵𝑖 ’s will be empty.
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In order to do so, we prove the following result.

Theorem 7.1. Let 𝑐 > 0. The class of (unweighted, undirected) graphs with at least 𝑐𝑛2 edges is
size-pliable.

Theorem 7.1 implies Theorem 1.3. Indeed, since tw ≤ size, by Observation 2.9 we have size-

pliability implies tw-pliability. By Theorem 1.1, tw-pliability implies a PTAS.

We start with simple examples of dense graphs. Observe that large cliques can be arbitrarily well

approximated by cliques of constant size ⌈ 2

Y
⌉ (up to normalising total edge weights).

Example 7.2. Let 0 < Y < 1 and let 𝑛, 𝑘 ≥ 2

Y
. Then dopt (𝐾𝑛, _𝐾𝑘 ) ≤ Y, for _ =

(
𝑛
2

)
/
(
𝑘
2

)
.

Proof. For 𝑛, 𝑘 ≥ 2, define an overcast 𝜔 by taking a random function 𝑉 (𝐾𝑛) → 𝑉 (𝐾𝑘 ) (each
vertex is placed independently uniformly at random). Then for each 𝑒 ∈ 𝐸 (𝐾𝑘 ),

E
𝑔∼𝜔

|𝑔−1 (𝑒) | =
∑︁

𝑒′∈𝐸 (𝐾𝑛 )
E
𝑔∼𝜔

[𝑔(𝑒′) = 𝑒] =
(
𝑛

2

)
2

𝑘2
= _ ·

(
𝑘

2

)
· 2

𝑘2
= (1 − 1

𝑘
)_.

Therefore 𝐾𝑛 ⪰ (1 − 1

𝑘
)_𝐾𝑘 . Symmetrically _𝐾𝑘 ⪰ (1 − 1

𝑛
)𝐾𝑛 . Since 1 − 𝑥 ≥ 𝑒−2𝑥

for 0 ≤ 𝑥 ≤ 1

2
, this

means dopt (𝐾𝑛, _𝐾𝑘 ) ≤ 2

min(𝑛,𝑘 ) . Consequently if 𝑛, 𝑘 ≥ 2

Y
, then dopt (𝐾𝑛, _𝐾𝑘 ) ≤ Y. □

In particular, this means the classA consisting of all clique graphs is size-pliable. This corresponds

to an easy PTAS for graph Max-Hom(A,−): the maximum graph homomorphism from 𝐾𝑛 to 𝐺 is

well approximated by finding the maximum graph homomorphism from a constant size 𝐾𝑘 to𝐺 and

mapping 𝐾𝑛 randomly to the resulting ≤ 𝑘 vertices in𝐺 . The situation is very different for Densest

Subgraph problems, because they disallow choosing two equal vertices in 𝐺 (see Observation 8.2).

As another important example, consider Erdős-Rényi random graphs 𝐺 (𝑛, 𝑝) (for constant
𝑝 ∈ (0, 1); each pair in

(
𝑛
2

)
becomes an edge independently with probability 𝑝). Any two such

graphs are similar to each other (and in fact to 𝑝𝐾𝑛 , as well as to _𝐾𝑘 for constant 𝑘 and suitable _);

more precisely, we have:

Example 7.3. Let 𝑝, Y > 0 be constants. Let 𝐺1,𝐺2 be independent Erdős-Rényi random graphs

𝐺 (𝑛, 𝑝). Then Pr[dopt (𝐺1,𝐺2) < Y] → 1 as 𝑛 → ∞.

Proof sketch. Let 𝑘 be a sufficiently large constant depending on Y only. It is sufficient to

prove that Pr[dopt (𝐺1, _𝐾𝑘 ) < Y
2
] → 1 as 𝑛 → ∞. The rescaling factor here is _ := 𝑝

(
𝑛
2

)
/
(
𝑘
2

)
. The

number of edges of 𝐺 (𝑛, 𝑝) is concentrated around 𝑝
(
𝑛
2

)
, so just as before a random function gives

𝐺 (𝑛, 𝑝) ⪰ (1 − 1

𝑘
)_𝐾𝑘 ⪰ 𝑒−Y/2_𝐾𝑘 with high probability (tending to 1 as 𝑛 → ∞).

For the other direction, we use the fact that the number of 𝑘-cliques in𝐺 (𝑛, 𝑝) is concentrated
around the mean

(
𝑛
𝑘

)
𝑝 (𝑘2) and, more strongly, the number of 𝑘-cliques containing any given edge

of 𝐺 (𝑛, 𝑝) (conditioned on it being an edge) is concentrated around the mean

(
𝑛−2

𝑘−2

)
𝑝 (𝑘2)−1

. The

concentration is good enough that with high probability, every edge of 𝐺 (𝑛, 𝑝) is contained in

(1 ± Y
4
)
(
𝑛−2

𝑘−2

)
𝑝 (𝑘2)−1 𝑘-cliques (see e.g. [84]). Thus if we take 𝜔 by mapping _𝐾𝑘 injectively to a

random 𝑘-clique in 𝐺 (𝑛, 𝑝), then w.h.p. for each edge 𝑒 of 𝐺 (𝑛, 𝑝) we have

E
𝑔∼𝜔

|𝑔−1 (𝑒) | ≥ (1 − Y

4

)
(
𝑛 − 2

𝑘 − 2

)
𝑝 (

𝑘
2
)−1/

(
𝑛

𝑘

)
𝑝 (

𝑘
2
) = (1 − Y

4

)𝑘 (𝑘 − 1)
𝑛(𝑛 − 1) 𝑝

−1 = (1 − Y

4

)_−1 .

Thus _𝐾𝑘 ⪰ 𝑒−Y/2𝐺1 and consequently dopt (𝐺1, _𝐾𝑘 ) ≤ Y
2
w.h.p. □

To show Theorem 1.3, we extend the above informal proof to any class of dense graphs. This is

possible because of Szemerédi’s regularity lemma [85], which, very roughly speaking, guarantees

that all such graphs are random-like. This allows to provide similar bounds on the number of
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𝑘-cliques containing any given edge, a fact known as the extension lemma, though we prove a

variant that is somewhat tighter than usual.

Remark 7.4. Note that the above proof sketch does not work for random tournaments (orientations

of cliques): if we try to approximate them by the small graph
1

2

↔
𝐾𝑘 (each arc taken with weight

1

2
), then every overcast from it to a tournament will always lose at least half of the total weight.

If instead we tried to take a small random tournament, no overcast to it from the big random

tournament would work. Indeed, Lemma 2.19 in Section 2.6 shows the class of tournaments is not

pliable (neither are “random tournaments”, i.e., the proof can be adapted to show that any class

which contains a random tournament with constant probability cannot be pliable) and in fact the

problem Max-Hom(A,−) for the class of tournaments A is hard to approximate, as we show in

Lemma 8.4 in Section 8. This is why, even though variants of the regularity lemma exist for directed

graphs and even more general structures, we limit our discussion to undirected graphs (the proofs

do extend to [0, 1]-weighted undirected graphs, however).

In the rest of this section, we will prove Theorem 1.3. While we only prove this for unweighted

graphs, it will be notationally convenient to treat them as {0, 1}-weighted graphs, with𝑤𝐺 (𝑢, 𝑣) :=

[𝑢𝑣 ∈ 𝐸 (𝐺)]. For sets𝑈 ,𝑉 ⊆ 𝑉 (𝐺), we denote by𝑤𝐺 (𝑈 ,𝑉 ) :=
∑
𝑢∈𝑈

∑
𝑣∈𝑉 𝑤𝐺 (𝑢, 𝑣) the number of

edges between𝑈 and 𝑉 (or their total weight). The regularity lemma states that every graph can

be partitioned into a bounded number of parts so that the bipartite graph between every two parts

is random-like in the following strong sense:

Definition 7.5. A bipartite graph𝐺 = (𝑉1,𝑉2, 𝐸) of density 𝑑 :=
𝑤𝐺 (𝑉1,𝑉2 )
|𝑉1 | |𝑉2 | is Y-homogeneous if for

all𝑊1 ⊆ 𝑉1,𝑊2 ⊆ 𝑉2,

𝑤𝐺 (𝑊1,𝑊2) = 𝑑 |𝑊1 | |𝑊2 | ± Y |𝑉1 | |𝑉2 |.
For an 𝑛-vertex graph 𝐺 and an integer 𝑘 , an Y-regular 𝑘-partition of 𝐺 is a partition 𝑉1, . . . ,𝑉𝑘

of 𝑉 (𝐺) such that |𝑉𝑖 | ∈ {⌊𝑛
𝑘
⌋, ⌈𝑛

𝑘
⌉} for 𝑖 ∈ [𝑘] and the bipartite graph (𝑉𝑖 ,𝑉𝑗 , 𝐸 (𝐺) ∩𝑉𝑖 ×𝑉𝑗 ) is

Y-homogeneous
12
, for all 𝑖 𝑗 ∈

([𝑘 ]
2

)
.

We use the following strong version of Szemerédi’s regularity lemma (see Theorem 2.2 in [79],

Lemma 5.2. in [67], or Chapter 9 in [66] for a detailed discussion).

Theorem 7.6 (Regularity Lemma). For every Y1 > 0 and every non-decreasing 𝑓 : N→ N, there
is an integer 𝑘 such that for every sufficiently large graph 𝐺 , one can add/remove Y1 |𝑉 (𝐺) |2 edges to
obtain a graph which admits a 1

𝑓 (𝑘 ′ ) -regular 𝑘
′-partition for some 1

Y1

≤ 𝑘 ′ ≤ 𝑘 .

Another way to view this is to define, for a partition P = (𝑉1, . . . ,𝑉𝑘 ) of a graph 𝐺 , the quotient
graph 𝐺/P as the weighted graph with vertex set [𝑘] and weights 𝑤𝐺/P (𝑖, 𝑗) := 𝑤𝐺 (𝑉𝑖 ,𝑉𝑗 ) for
(𝑖, 𝑗) ∈ [𝑘]2

. The quotient graph for an Y-regular partition is then a graph of bounded size that is

close to the original graph: the notion of closeness arising from the definition of Y-homogeneity is

known as cut distance (see Chapter 8 in [66]), but later we show the same holds for opt-distance:

Theorem 7.7. Let𝐺 be a graph with density 𝑐 :=
|𝐸 (𝐺 ) |
𝑛2

. For 0 < Y0 < 1, suppose𝐺 has an Y-regular

𝑘-partition P = (𝑉1, . . . ,𝑉𝑘 ) with 1

𝑘
≤ 𝑐

10

Y0

1+Y0

and Y ≤
(

1

𝑘

)
8𝑘2

. Then dopt (𝐺,𝐺/P) ≤ Y0.

With this view it is easy to see that classes of dense graphs are pliable. Formally:

12
The usual statement of the regularity lemma replaces Y-homogeneity (with additive error) by a notion called Y-regularity

(with relative error, but holding only for |𝑊𝑖 | ≥ Y |𝑉𝑖 |). The two are however easily shown to be equivalent, up to a change

from Y to Y1/3
.
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Proof of Theorem 1.3 assuming Theorem 7.7. Let A be a class of graphs with ≥ 𝑐𝑛2
edges.

We want to show that for every Y0 > 0 there is a 𝑘 such that every 𝐺 ∈ A has a weighted graph 𝐻

of size at most 𝑘 with dopt (𝐺,𝐻 ) ≤ Y0.

For Y0 > 0, let Y1 := 𝑐
10

· Y0/2

1+Y0/2
. Note that we can assume that all sufficiently large graphs 𝐺 ∈ A

have no loops: if |𝑉 (𝐺) | ≥ 1

Y1

, then the number of loops is at most |𝑉 (𝐺) | ≤ 1

𝑐 |𝑉 (𝐺 ) | |𝐸 (𝐺) | ≤
Y1

𝑐
|𝐸 (𝐺) |. Hence by removing them we obtain a graph𝐺 ′

such that d1 (𝐺,𝐺 ′) ≤ |𝐸 (𝐺 ) |− |𝐸 (𝐺 ′ ) |
min( |𝐸 (𝐺 ) |, |𝐸 (𝐺 ′ ) | ) ≤

Y1/𝑐
1−Y1/𝑐 ≤ Y0/20. By Lemma 2.11, dopt (𝐺,𝐺 ′) ≤ Y0/5 (the direction 𝐺 ⪰ 𝐺 ′

is trivial, while the other

direction only requires 𝐺 ′
to have no loops).

Let 𝑓 (𝑘) := 𝑘8𝑘2

. By the Regularity Lemma (Theorem 7.6), there is an integer 𝑘 ≥ 1

Y1

such

that for every graph 𝐺 of size > 𝑘 , one can add/remove Y1 |𝑉 (𝐺) |2 edges to obtain a graph 𝐻

which admits an
1

𝑓 (𝑘 ′ ) -regular 𝑘
′
-partition P for some

1

Y1

≤ 𝑘 ′ ≤ 𝑘 . If 𝐺 ∈ A, then 𝐺 has at least

𝑐𝑛2
edges, so d1 (𝐺,𝐻 ) ≤ Y1

𝑐−Y1

≤ Y0/20. Since we can assume that 𝐺 is loopless, by Lemma 2.11,

dopt (𝐺,𝐻 ) ≤ Y0/5. By Theorem 7.7, dopt (𝐻,𝐻/P) ≤ Y0/2. Hence 𝐻/P is the graph of size at most 𝑘

we seek, at opt-distance at most Y0 from 𝐺 . □

The strategy of the proof of Theorem 7.7 is very similar to Example 7.3. One direction is trivial:

an overcast from 𝐺 to 𝐺/P is given simply by deterministically mapping all of 𝑉𝑖 to 𝑖 , for 𝑖 ∈ [𝑘].
For the other direction, we will take a subgraph 𝐹 of 𝐺/P obtained by removing edges of small

weight (keeping 𝐹 close to𝐺/P ) and removing weights, and then map𝐺/P to a random copy of 𝐹 in

𝐺 . We need to estimate the number of such copies (this is known as the counting lemma) and, more

generally, the number of such copies containing any given edge of 𝐺 (the extension lemma). Both
are standard lemmas in the theory of dense graph limits, in particular our proof of the counting

lemma mimics Lemma 10.22 in [66]. However, we will prove a version of the extension lemma

with somewhat tighter bounds than usual (depending on all

(
𝑘
2

)
edge densities between parts of the

regularity partition).

For a graph 𝐹 on vertex set [𝑘] := {1, . . . , 𝑘}, we will treat 𝐹 as a subset of

([𝑘 ]
2

)
. For a partition

P = (𝑉1, . . . ,𝑉𝑘 ) of a graph 𝐺 , a P-map is a function 𝑔 : [𝑘] → 𝑉 (𝐺) such that 𝑔(𝑖) ∈ 𝑉𝑖 for all
𝑖 ∈ [𝑘]. We denote hom𝑔 (𝐹,𝐺) :=

∏
𝑖 𝑗∈𝐹 𝑤𝐺 (𝑔(𝑖), 𝑔( 𝑗)); for {0, 1}-weighted graphs, this is equal to

1 if 𝑔 is a homomorphism from 𝐹 to 𝐺 and 0 otherwise.

Let us first observe two consequences of Y-homogeneity. First, the notion can be extended from

subsets𝑊1 ⊆ 𝑉1 to any function 𝑓 : 𝑉1 → [0, 1] simply by considering subsets where the function

takes at least a given value (here ∥ 𝑓 ∥1
:=

∑
𝑥 𝑓 (𝑥)):

Observation 7.8. Let𝐺 = (𝑉1,𝑉2, 𝐸) be Y-homogeneous of density 𝑑 . Then for every 𝑓 : 𝑉1 → [0, 1]
and 𝑔 : 𝑉2 → [0, 1], ∑︁

𝑥1∈𝑉1

∑︁
𝑥2∈𝑉2

𝑓 (𝑥1)𝑔(𝑥2)𝑤𝐺 (𝑥1, 𝑥2) = 𝑑 ∥ 𝑓 ∥1∥𝑔∥1 ± Y |𝑉1 | |𝑉2 |.

Proof. For 𝑦 ∈ [0, 1], let𝑉 𝑦
1

:= {𝑥 ∈ 𝑉1 : 𝑓 (𝑥) ≥ 𝑦} and define𝑉
𝑦

2
analogously for 𝑔. Notice that

𝑓 (𝑥) =
∫

1

0
[𝑦 ≤ 𝑓 (𝑥)] 𝑑𝑦 =

∫
1

0
[𝑥 ∈ 𝑉 𝑦

1
] 𝑑𝑦. Hence∑︁

𝑥1∈𝑉1

∑︁
𝑥2∈𝑉2

𝑓 (𝑥1)𝑔(𝑥2)𝑤𝐺 (𝑥1, 𝑥2) =∫
1

0

∫
1

0

∑︁
𝑥1∈𝑉1

∑︁
𝑥2∈𝑉2

[𝑥1 ∈ 𝑉 𝑦1

1
] [𝑥2 ∈ 𝑉 𝑦2

2
]𝑤𝐺 (𝑥1, 𝑥2) 𝑑𝑦1 𝑑𝑦2 =

, Vol. 1, No. 1, Article . Publication date: September 2023.



30 Miguel Romero, Marcin Wrochna, and Stanislav Živný∫
1

0

∫
1

0

𝑤𝐺 (𝑉 𝑦1

1
,𝑉

𝑦2

2
) 𝑑𝑦1 𝑑𝑦2 =∫

1

0

∫
1

0

(
𝑑 |𝑉 𝑦1

1
| |𝑉 𝑦2

2
| ± Y |𝑉1 | |𝑉2 |

)
𝑑𝑦1 𝑑𝑦2 =

𝑑 ·
( ∫ 1

0

|𝑉 𝑦1

1
| 𝑑𝑦1

) ( ∫ 1

0

|𝑉 𝑦2

2
| 𝑑𝑦2

)
± Y |𝑉1 | |𝑉2 |.

Since

∫
1

0

|𝑉 𝑦
1
|𝑑𝑦 =

∫
1

0

∑︁
𝑥∈𝑉1

[𝑦 ≤ 𝑓 (𝑥)]𝑑𝑦 =
∑︁
𝑥∈𝑉1

𝑓 (𝑥) = ∥ 𝑓 ∥1 and analogously for 𝑔, the claim

follows. □

Second, while we cannot say much about any one fixed vertex, we can make similar approxima-

tions for most vertices:

Observation 7.9. Let 𝐺 = (𝑉1,𝑉2, 𝐸) be Y-homogeneous with density 𝑑 . For every 𝑔 : 𝑉2 → [0, 1],
there are at least (1 − 2

√
Y) |𝑉1 | vertices 𝑥1 in 𝑉1 such that

∑
𝑥2

𝑔(𝑥2)𝑤𝐺 (𝑥1, 𝑥2) = 𝑑 ∥𝑔∥1 ±
√
Y |𝑉2 |.

Proof. Let𝑊 −
1

be the set of those 𝑥1 in 𝑉1 for which the sum is too small:∑
𝑥2

𝑔(𝑥2)𝑤𝐺 (𝑥1, 𝑥2) < 𝑑 ∥𝑔∥1 −
√
Y |𝑉2 |.

Let 𝑓 : 𝑉1 → [0, 1] be the characteristic function of𝑊 −
1
. Then∑

𝑥1

∑
𝑥2

𝑓 (𝑥1)𝑔(𝑥2)𝑤𝐺 (𝑥1, 𝑥2) < ∥ 𝑓 ∥1 ·
(
𝑑 ∥𝑔∥1 −

√
Y |𝑉2 |

)
.

By Observation 7.8, this implies ∥ 𝑓 ∥1 ·
√
Y |𝑉2 | < Y |𝑉1 | |𝑉2 |. Hence |𝑊 −

1
| = ∥ 𝑓 ∥1 <

√
Y |𝑉1 |. We can

define and bound𝑊 +
1
analogously. Then 𝑉1 \ (𝑊 −

1
∪𝑊 +

1
) is a set of size at least (1 − 2

√
Y) |𝑉1 | as

claimed. □

The counting lemma says that the number of P-maps that are homomorphisms from 𝐹 to 𝐺 is

close to what one would expect in a purely random graph with the same densities. Note that the

number of all P-maps 𝑔 : [𝑘] → 𝑉 (𝐺) is exactly ∏
𝑖∈[𝑘 ] |𝑉𝑖 |.

Lemma 7.10 (Counting Lemma). Let P = (𝑉1, . . . ,𝑉𝑘 ) be an Y-regular 𝑘-partition of an 𝑛-vertex
graph 𝐺 . Let 𝑑𝑖 𝑗 :=

𝑤𝐺 (𝑉𝑖 ,𝑉𝑗 )
|𝑉𝑖 | |𝑉𝑗 | . For each 𝐹 ⊆

([𝑘 ]
2

)
,∑︁

𝑔

hom𝑔 (𝐹,𝐺) =
( ∏
𝑖∈[𝑘 ]

|𝑉𝑖 |
) ( ∏

𝑖 𝑗∈𝐹
𝑑𝑖 𝑗 ± Y |𝐹 |

)
,

where the sum is over all P-maps 𝑔 : [𝑘] → 𝑉 (𝐺).

Proof. Let us write

∑
(𝑥𝑖 )𝑖∈ [𝑘 ] as a shorthand for

∑
𝑥1∈𝑉1

· · ·∑𝑥𝑘 ∈𝑉𝑘 . We wish to approximate∑︁
(𝑥𝑖 )𝑖∈ [𝑘 ]

∏
𝑖 𝑗∈𝐹

𝑤𝐺 (𝑥𝑖 , 𝑥 𝑗 ).

We do so by replacing each factor𝑤𝐺 (𝑥𝑖 , 𝑥 𝑗 ) by its average value 𝑑𝑖 𝑗 , one by one. That is, we prove

for all subsets 𝐹 ′ ⊆ 𝐹 by induction that∑︁
(𝑥𝑖 )𝑖∈ [𝑘 ]

∏
𝑖 𝑗∈𝐹

𝑤𝐺 (𝑥𝑖 , 𝑥 𝑗 ) =
∑︁

(𝑥𝑖 )𝑖∈ [𝑘 ]

∏
𝑖 𝑗∈𝐹−𝐹 ′

𝑤𝐺 (𝑥𝑖 , 𝑥 𝑗 )
∏
𝑖 𝑗∈𝐹 ′

𝑑𝑖 𝑗 ± |𝐹 ′ | · Y
∏
𝑖∈[𝑘 ]

|𝑉𝑖 |. (*)

Clearly this is true initially for 𝐹 ′ = ∅ and eventually by reaching 𝐹 ′ = 𝐹 we will have proved

that ∑︁
(𝑥𝑖 )𝑖∈ [𝑘 ]

∏
𝑖 𝑗∈𝐹

𝑤𝐺 (𝑥𝑖 , 𝑥 𝑗 ) =
∑︁

(𝑥𝑖 )𝑖∈ [𝑘 ]

∏
𝑖 𝑗∈𝐹

𝑑𝑖 𝑗 ± |𝐹 | · Y
∏
𝑖∈[𝑘 ]

|𝑉𝑖 |;
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which proves the claim, as

∑
(𝑥𝑖 )𝑖∈ [𝑘 ] 1 =

∏
𝑖∈[𝑘 ] |𝑉𝑖 |.

To prove the induction step, suppose (*) holds for some 𝐹 ′ ⊂ 𝐹 and let 𝑎𝑏 ∈ 𝐹 − 𝐹 ′. Let𝑤 ′
𝐺
(𝑥𝑖 , 𝑥 𝑗 )

denote𝑤𝐺 (𝑥𝑖 , 𝑥 𝑗 ) if 𝑖 𝑗 ∉ 𝐹 ′ and 𝑑𝑖 𝑗 otherwise. Then the left-hand-side in (*) is∑︁
(𝑥𝑖 )𝑖∈ [𝑘 ]

∏
𝑖 𝑗∈𝐹

𝑤 ′
𝐺 (𝑥𝑖 , 𝑥 𝑗 ) =∑︁

(𝑥𝑖 )𝑖∈ [𝑘 ]−𝑎−𝑏

ℎ
∑︁
𝑥𝑎

∑︁
𝑥𝑏

𝑓 (𝑥𝑎)𝑔(𝑥𝑏)𝑤 ′
𝐺 (𝑥𝑎, 𝑥𝑏),

where for any fixed choice of (𝑥𝑖 )𝑖∈[𝑘 ]−𝑎−𝑏 , we let

ℎ :=
∏

𝑖 𝑗∈𝐹−𝐹 ′
𝑖≠𝑎,𝑗≠𝑏

𝑤 ′
𝐺 (𝑥𝑖 , 𝑥 𝑗 ), 𝑓 (𝑥𝑎) :=

∏
𝑖 𝑗∈𝐹−𝐹 ′
𝑖=𝑎,𝑗≠𝑏

𝑤 ′
𝐺 (𝑥𝑎, 𝑥 𝑗 ), 𝑔(𝑥𝑏) :=

∏
𝑖 𝑗∈𝐹−𝐹 ′
𝑖≠𝑎,𝑗=𝑏

𝑤 ′
𝐺 (𝑥𝑖 , 𝑥𝑏).

Since ℎ, 𝑓 , 𝑔 ≤ 1, the claim then follows from Observation 7.8: replacing𝑤𝐺 (𝑥𝑎, 𝑥𝑏) with 𝑑𝑎𝑏 adds
an error of at most

∑
(𝑥𝑖 )𝑖∈ [𝑘 ]−𝑎−𝑏 ℎ · Y |𝑉𝑎 | |𝑉𝑏 | ≤ Y |𝑉𝑎 | |𝑉𝑏 | ·

∑
(𝑥𝑖 )𝑖∈ [𝑘 ]−𝑎−𝑏 1 = Y

∏
𝑖∈[𝑘 ] |𝑉𝑖 |. □

Lemma 7.11 (Extension Lemma). Let P = (𝑉1, . . . ,𝑉𝑘 ) be an Y-regular 𝑘-partition of an 𝑛-vertex
graph 𝐺 . Let 𝑑𝑖 𝑗 :=

𝑤𝐺 (𝑉𝑖 ,𝑉𝑗 )
|𝑉𝑖 | |𝑉𝑗 | . For each 𝐹 ⊆

([𝑘 ]
2

)
and each 𝑎𝑏 ∈ 𝐹 , all but 2𝑘

√
Y |𝑉𝑎 | |𝑉𝑏 | edges

𝑥𝑎𝑥𝑏 ∈ 𝑉𝑎 ×𝑉𝑏 satisfy∑︁
𝑔

hom𝑔 (𝐹,𝐺) =
( ∏
𝑖∈[𝑘 ]−𝑎−𝑏

|𝑉𝑖 |
)
·
(
𝑤𝐺 (𝑥𝑎, 𝑥𝑏) ·

∏
𝑖 𝑗∈𝐹−𝑎𝑏

𝑑𝑖 𝑗 ±
√
Y |𝐹 |

)
where the sum is over all P-maps 𝑔 : [𝑘] → 𝑉 (𝐺) such that 𝑔(𝑎) = 𝑥𝑎 and 𝑔(𝑏) = 𝑥𝑏 .

Proof. The argument is the same as in the counting lemma, except that edges incident to 𝑎, 𝑏

have to be handled differently. First note that for every 𝑐 ∈ [𝑘] − 𝑎 − 𝑏 and every fixed 𝑥𝑏 ∈ 𝑉𝑏 , by
Observation 7.9 (with 𝑔(𝑥𝑐 ) := 𝑤𝐺 (𝑥𝑐 , 𝑥𝑏)), the following holds for all but at most 2

√
Y |𝑉𝑎 | vertices

𝑥𝑎 in 𝑉𝑎 : ∑︁
𝑥𝑐

𝑤𝐺 (𝑥𝑎, 𝑥𝑐 )𝑤𝐺 (𝑥𝑐 , 𝑥𝑏) = 𝑑𝑎𝑐
(∑︁
𝑥𝑐

𝑤𝐺 (𝑥𝑐 , 𝑥𝑏)
)
±
√
Y |𝑉𝑐 |. (**)

For each 𝑐 ∈ [𝑘] − 𝑎 − 𝑏 and each 𝑥𝑏 ∈ 𝑉𝑏 , we will ignore those edges going to 𝑥𝑎 ∈ 𝑉𝑎 that fail (**).
Similarly for each 𝑐 ∈ [𝑘] − 𝑎 −𝑏, by Observation 7.9 (with 𝑔(𝑥𝑐 ) := 1) the following holds for all

but at most 2

√
Y |𝑉𝑏 | vertices 𝑥𝑏 ∈ 𝑉𝑏 :∑︁

𝑥𝑐

𝑤𝐺 (𝑥𝑏, 𝑥𝑐 ) = 𝑑𝑏𝑐 |𝑉𝑐 | ±
√
Y |𝑉𝑐 |. (***)

We ignore all edges 𝑥𝑎𝑥𝑏 ∈ 𝐸 (𝑉𝑎,𝑉𝑏) incident to 𝑥𝑏 for which (***) fails. Thus for all but ≤ 2 · 𝑘 ·
|𝑉𝑏 | · 2

√
Y |𝑉𝑎 | edges 𝑥𝑎𝑥𝑏 ∈ 𝐸 (𝑉𝑎,𝑉𝑏), (**) and (***) hold for all 𝑐 ∈ [𝑘] − 𝑎 − 𝑏.

Fix any such 𝑥𝑎 ∈ 𝑉𝑎, 𝑥𝑏 ∈ 𝑉𝑏 . We wish to approximate∑︁
(𝑥𝑖 )𝑖∈ [𝑘 ]−𝑎−𝑏

∏
𝑖 𝑗∈𝐹

𝑤𝐺 (𝑥𝑖 , 𝑥 𝑗 ) =

𝑤𝐺 (𝑥𝑎, 𝑥𝑏) ·
∑︁

(𝑥𝑖 )𝑖∈ [𝑘 ]−𝑎−𝑏

∏
𝑖 𝑗∈𝐹−𝑎𝑏

𝑤𝐺 (𝑥𝑖 , 𝑥 𝑗 ) = . . .

Just as in the proof of the counting lemma, we replace factors𝑤𝐺 (𝑥𝑖 , 𝑥 𝑗 ) by 𝑑𝑖 𝑗 one by one. We first

do this for pairs in 𝐹0 := {𝑖 𝑗 ∈ 𝐹 | 𝑖, 𝑗 ≠ 𝑎, 𝑏}, since the argument works without change, incurring
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an error of ±Y |𝐹0 |
∏
𝑖∈[𝑘 ]−𝑎−𝑏 |𝑉𝑖 | (we denote this by ≃ for simplicity and sum up the errors at the

end of the proof). Since 𝑑𝑖 𝑗 does not depend on the choice of 𝑥𝑖 ∈ 𝑉𝑖 , 𝑥 𝑗 ∈ 𝑉𝑗 , we can rearrange:

· · · ≃ 𝑤𝐺 (𝑥𝑎, 𝑥𝑏)
( ∏
𝑖 𝑗∈𝐹0

𝑑𝑖 𝑗

)
·

∑︁
(𝑥𝑖 )𝑖∈ [𝑘 ]−𝑎−𝑏

∏
𝑖∈[𝑘 ]−𝑎−𝑏

𝑤𝐺 (𝑥𝑎, 𝑥𝑖 )𝑤𝐺 (𝑥𝑖 , 𝑥𝑏) = . . .

Then, for each 𝑐 ∈ [𝑘] − 𝑎 − 𝑏 we can replace 𝑎𝑐 by isolating the factors that depend on 𝑥𝑐 and

applying (**) (as before𝑤 ′
𝐺
(𝑥𝑎, 𝑥𝑖 ) denotes either𝑤𝐺 (𝑥𝑎, 𝑥𝑖 ) or 𝑑𝑎𝑖 depending on whether we have

already replaced 𝑎𝑖):

· · · = 𝑤𝐺 (𝑥𝑎, 𝑥𝑏)
( ∏
𝑖 𝑗∈𝐹0

𝑑𝑖 𝑗

)
·
∑︁
𝑥𝑐

𝑤𝐺 (𝑥𝑎, 𝑥𝑐 )𝑤𝐺 (𝑥𝑐 , 𝑥𝑏) ·∑︁
(𝑥𝑖 )𝑖∈ [𝑘 ]−𝑎−𝑏−𝑐

∏
𝑖∈[𝑘 ]−𝑎−𝑏−𝑐

𝑤 ′
𝐺 (𝑥𝑎, 𝑥𝑖 )𝑤𝐺 (𝑥𝑖 , 𝑥𝑏) ≃ . . .

Having thus replaced all edges 𝑎𝑐 for 𝑐 ∈ [𝑘] − 𝑎 − 𝑏, the only remaining edges are of the form 𝑖𝑏

for 𝑖 ∈ [𝑘] − 𝑎 − 𝑏, so by denoting 𝐹1 := {𝑖 𝑗 ∈ 𝐹 | 𝑖, 𝑗 ≠ 𝑏} the expression becomes:

· · · ≃ 𝑤𝐺 (𝑥𝑎, 𝑥𝑏)
( ∏
𝑖 𝑗∈𝐹1

𝑑𝑖 𝑗

)
·

∑︁
(𝑥𝑖 )𝑖∈ [𝑘 ]−𝑎−𝑏

∏
𝑖∈[𝑘 ]−𝑎−𝑏

𝑤𝐺 (𝑥𝑖 , 𝑥𝑏) =

𝑤𝐺 (𝑥𝑎, 𝑥𝑏)
( ∏
𝑖 𝑗∈𝐹1

𝑑𝑖 𝑗

)
·

∏
𝑖∈[𝑘 ]−𝑎−𝑏

( ∑︁
𝑥𝑖 ∈𝑉𝑖

𝑤𝐺 (𝑥𝑖 , 𝑥𝑏)
)
≃

𝑤𝐺 (𝑥𝑎, 𝑥𝑏)
( ∏
𝑖 𝑗∈𝐹

𝑑𝑖 𝑗

)
·

∏
𝑖∈[𝑘 ]−𝑎−𝑏

|𝑉𝑖 |,

where the last approximation follows from (***). For each of the |𝐹 | approximations used, the

incurred additive error on the whole expression was at most ±
√
Y
∏
𝑖∈[𝑘 ]−𝑎−𝑏 |𝑉𝑖 |. □

We are now ready to prove Theorem 7.7. The proof strategy was outlined above: map 𝐺/P to a

random copy of 𝐹 in 𝐺 , where 𝐹 marks heavy-enough edges of 𝐺/P .

Proof of Theorem 7.7. Let 𝐺 be a graph with density 𝑐 :=
𝐸 (𝐺 )
𝑛2

. Let Y0 < 1,
1

𝑘
≤ 𝑐

10

Y0

1+Y0

and Y ≤
(

1

𝑘

)
8𝑘2

, and suppose 𝐺 has an Y-regular 𝑘-partition P = (𝑉1, . . . ,𝑉𝑘 ). We claim that

dopt (𝐺,𝐺/P) ≤ Y0. As mentioned above, 𝐺 ⪰ 𝐺/P holds trivially, so it remains to show an overcast

from 𝐺/P to 𝑒−Y0𝐺 .

Let 𝑑𝑖 𝑗 :=
𝑤𝐺 (𝑉𝑖 ,𝑉𝑗 )
|𝑉𝑖 | |𝑉𝑗 | for 𝑖 𝑗 ∈ [𝑘]2

. Let 𝐹 ⊆
([𝑘 ]

2

)
be the set of edges 𝑖 𝑗 such that 𝑖 ≠ 𝑗 and 𝑑𝑖 𝑗 ≥ 1

𝑘
.

Note that

∏
𝑖 𝑗∈𝐹 𝑑𝑖 𝑗 ≥ ( 1

𝑘
) |𝐹 | ≥ ( 1

𝑘
)𝑘2 ≥ Y1/8

. Let 𝐺 ′
be the subgraph of 𝐺 obtained by removing:

• 𝐸 (𝐺 [𝑉𝑖 ]), for 𝑖 ∈ [𝑘] (the total weight removed in this step is ≤ 𝑘
(
𝑛
𝑘

)
2

)

• 𝐸𝐺 (𝑉𝑖 ,𝑉𝑗 ), for 𝑖 𝑗 ∉ 𝐹 (their total weight is ≤ 𝑘2 · 1

𝑘
·
(
𝑛
𝑘

)
2

)

• edges of weight < Y1/8
(if 𝐺 is [0, 1]-weighted; their total weight is ≤ Y1/8𝑛2

)

• edges 𝑥𝑎𝑥𝑏 ∈ 𝑉𝑎 ×𝑉𝑏 for which the Extension Lemma 7.11 does not hold, for each 𝑎𝑏 ∈ 𝐹
(their total weight is ≤ |𝐹 | · 2𝑘

√
Y
(
𝑛
𝑘

)
2

).

The total weight of removed edges is

∥𝐺 ∥1 − ∥𝐺 ′∥1 ≤ 𝑛2 ( 1

𝑘
+ 1

𝑘
+ Y1/8 + 2𝑘

√
Y) ≤ 𝑛2 · 5

𝑘
.

By our assumption on 𝑘 , 5

𝑐𝑘
≤ 1

2

Y0

1+Y0

< 1. Since ∥𝐺 ∥1 ≥ 𝑐𝑛2
, d1 (𝐺,𝐺 ′) ≤ ∥𝐺 ∥1−∥𝐺 ′ ∥1

min( ∥𝐺 ∥1,∥𝐺 ′ ∥1 ) ≤
𝑛2 · 5

𝑘

𝑛2 (𝑐− 5

𝑘
) =

5/𝑐𝑘
1−5/𝑐𝑘 ≤ Y0/2. Therefore, by Lemma 2.11,𝐺 ′ ⪰ 𝑒−Y0/2𝐺 (this direction requires only𝐺 ′
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to be loopless, which is true because we removed 𝐸 (𝐺 [𝑉𝑖 ]) for all 𝑖). Thus it remains to show that

𝐺/P ⪰ 𝑒−Y0/2𝐺 ′
.

We define an overcast 𝜔 from 𝐺/P to (1 − Y0

1+Y0

)𝐺 ′
as follows: every P-map 𝑔 : [𝑘] → 𝑉 (𝐺) is

taken with probability proportional to hom𝑔 (𝐹,𝐺); that is, 𝜔 (𝑔) := hom𝑔 (𝐹,𝐺)/𝑁 where by the

Counting Lemma 7.10, the normalisation factor is (using

∏
𝑖 𝑗∈𝐹 𝑑𝑖 𝑗 ≥ Y1/8

):

𝑁 :=
∑︁
𝑔

hom𝑔 (𝐹,𝐺) =
( ∏
𝑖∈[𝑘 ]

|𝑉𝑖 |
) ( ∏

𝑖 𝑗∈𝐹
𝑑𝑖 𝑗 ± Y |𝐹 |

)
≤

( ∏
𝑖∈[𝑘 ]

|𝑉𝑖 |
) ( ∏

𝑖 𝑗∈𝐹
𝑑𝑖 𝑗

)
(1 + Y7/8𝑘2).

To verify that 𝜔 is indeed an overcast, we need to check that for each edge 𝑢𝑣 of 𝐺 ′

E
𝑔∼𝜔

𝑤𝐺/P (𝑔−1 (𝑢𝑣)) ≥ (1 − Y′)𝑤𝐺 (𝑢, 𝑣).

Let 𝑎, 𝑏 ∈ [𝑘] be such that 𝑢 ∈ 𝑉𝑎 and 𝑣 ∈ 𝑉𝑏 . By the Extension Lemma 7.11, since we removed

from 𝐺 ′
edges that do not satisfy it and edges with𝑤𝐺 (𝑢, 𝑣) < Y1/8

, we have:

𝑁 · E
𝑔∼𝜔

𝑤𝐺/P (𝑔−1 (𝑢𝑣)) =
∑︁

𝑔 : 𝑔 (𝑎)=𝑢,𝑔 (𝑏 )=𝑣
hom𝑔 (𝐹,𝐺)𝑤𝐺/P (𝑎, 𝑏) =

𝑤𝐺 (𝑉𝑎,𝑉𝑏)
∑︁

𝑔 : 𝑔 (𝑎)=𝑢,𝑔 (𝑏 )=𝑣
hom𝑔 (𝐹,𝐺) =

𝑑𝑎𝑏 |𝑉𝑎 | |𝑉𝑏 |
( ∏
𝑖∈[𝑘 ]−𝑎−𝑏

|𝑉𝑖 |
) (
𝑤𝐺 (𝑢, 𝑣)

∏
𝑖 𝑗∈𝐹−𝑎𝑏

𝑑𝑖 𝑗 ±
√
Y |𝐹 |

)
≥( ∏

𝑖∈[𝑘 ]
|𝑉𝑖 |

) (
𝑤𝐺 (𝑢, 𝑣)

∏
𝑖 𝑗∈𝐹

𝑑𝑖 𝑗 −
√
Y𝑘2

)
≥( ∏

𝑖∈[𝑘 ]
|𝑉𝑖 |

)
𝑤𝐺 (𝑢, 𝑣)

( ∏
𝑖 𝑗∈𝐹

𝑑𝑖 𝑗

)
(1 − Y1/4𝑘2).

(The last inequality follows from 𝑤𝐺 (𝑢, 𝑣) ·
∏
𝑖 𝑗∈𝐹 𝑑𝑖 𝑗 ≥ Y1/8 · Y1/8 = Y1/4

). Dividing by the upper

bound on 𝑁 , we conclude:

E
𝑔∼𝜔

𝑤𝐺/P (𝑔−1 (𝑢𝑣)) ≥ 𝑤𝐺 (𝑢, 𝑣)
1 − Y1/4𝑘2

1 + Y7/8𝑘2

The ratio here can be bounded quite brutally:

≥ 1 − Y1/4𝑘2

1 + Y1/4𝑘2

≥ 1 − 2Y1/4𝑘2 ≥ 1 − 2

𝑘
≥ 1 − 1

2

Y0

1 + Y0

≥ 1

1 + Y0/2

≥ 𝑒−Y0/2.

This concludes the proof that 𝐺/P ⪰ 𝑒−Y0/2𝐺 ′
and hence dopt (𝐺/P,𝐺) ≤ Y0. □

8 HARDNESS OF APPROXIMATION
We show that Max-Hom(A,−), where A is the class of all tournaments (orientations of cliques),

has no PTAS. This holds under the Gap Exponential Time Hypothesis (Gap-ETH) [26, 69] which
states that no 2

𝑜 (𝑛)
-time algorithm can distinguish between a satisfiable 3SAT formula and one

which is not even (1 − Y)-satisfiable for some constant Y > 0.

In fact we only require the following weaker conjecture:

Conjecture 8.1. There exists an Y > 0 such that given a {0, 1}-valued Max-2-CSP instance with 𝑘

variables and alphabet size 𝑛 no 𝑓 (𝑘) · 𝑛O(1)
time algorithm can distinguish between the following

two cases:

• there is an assignment satisfying every constraint;
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• no assignment satisfies more than (1 − Y) constraints.
Gap-ETH implies Conjecture 8.1: this follows from a proof by Chalermsook et al. [12], in fact

with a much larger approximation gap, which was further improved by Dinur and Manurangsi [28].

Direct proofs for the above simpler version can be found in [65] and [9, Appendix A]. Lokshtanov et

al. [65] moreover propose the Parameterised Inapproximability Hypothesis, stating that the above

promise problem is W[1]-hard.

The problem can be rephrased as a minor variation of Densest-𝑘-Subgraph (sometimes known

as Maximum Colored Subgraph Isomorphism):

Observation 8.2. Conjecture 8.1 is equivalent to the following. There is an Y > 0 such that no
𝑓 (𝑘) · 𝑛O(1) time algorithm can, given 𝑘 , a graph 𝐺 on 𝑛 vertices, and a proper 𝑘-colouring 𝑐 of it,
distinguish between the following two cases:

• 𝐺 contains a 𝑘-clique 𝑣1, . . . , 𝑣𝑘 (without loss of generality 𝑐 (𝑣𝑖 ) = 𝑖);
• every 𝑘-tuple 𝑣1, . . . , 𝑣𝑘 with 𝑐 (𝑣𝑖 ) = 𝑖 induces a subgraph on < (1 − Y)

(
𝑘
2

)
edges in 𝐺 .

(Indeed, the 𝑘 variables in the Max-2-CSP correspond to 𝑣1, . . . , 𝑣𝑘 , the set of vertices coloured 𝑖

is the alphabet for variable 𝑣𝑖 , and the edges between two colour sets define a constraint). As a side

note, we remark that an inspection of the proof of [12, Theorem 5.12] gives that Gap-ETH implies

that the above is hard even if the soundness case is strengthened as follows, for any constant 𝛿 > 0:

• every 𝑘-tuple 𝑣1, . . . , 𝑣𝑘 (regardless of colours) induces a subgraph on < 𝛿
(
𝑘
2

)
edges in 𝐺 .

The problem in Observation 8.2 is almost a maximum graph homomorphism problem on cliques,

except that, crucially, the mapping 𝑖 ↦→ 𝑣𝑖 is forced to be injective. To show that Max-Hom(A,−)
is hard for the class A of tournaments, intuitively, we use the fact that a map from a random

tournament to itself must map most arcs to themselves (and is hence approximately injective). This

is formalised as follows.

Lemma 8.3. For every 𝛿 > 0, there exists constants 0 < _ < 𝛿 and 𝑁 ≥ 1 such that the following
holds. For every 𝑘 ≥ 𝑁 , there is an orientation A of the clique of size 𝑘 such that every mapping
𝑔 : 𝐴 → 𝐴 of A to itself with value(𝑔) ≥ (1 − _)

(
𝑘
2

)
must map at least (1 − 𝛿)

(
𝑘
2

)
arcs to themselves.

Proof. For 𝛿 > 0, denote𝑚 :=
(
𝑘
2

)
and choose 𝑁 ≥ 1 such that 𝑘 log

2
𝑘 ≤ 𝛿

3
𝑚, for all 𝑘 ≥ 𝑁 .

Let _ > 0 be constant to be chosen later. Let A be a random orientation of the clique of size 𝑘

with 𝑘 ≥ 𝑁 (each edge is independently oriented in either direction with probability
1

2
). We will

show that with positive probability A admits no map 𝑔 : 𝐴 → 𝐴 to itself with the properties that

value(𝑔) ≥ (1 − _)𝑚 but less than (1 − 𝛿)
(
𝑘
2

)
arc of A are mapped identically by 𝑔.

If a map as above existed, it would imply the existence of a set 𝐹 of arcs of A with |𝐹 | ≤ _𝑚 and

a mapping 𝑔 : 𝐴 → 𝐴 such that 𝑔 maps all the arcs of A − 𝐹 correctly, and such that 𝑔 maps less

than (1 − 𝛿)
(
𝑘
2

)
vertex pairs identically. Let us bound the probability that there exist such 𝐹, 𝑔. The

number of possible 𝐹 is ≤ ∑_𝑚
𝑖=0

(
𝑚
𝑖

)
≤ 2

𝐻 (_)𝑚
. The number of possible 𝑔 is ≤ 𝑘𝑘 . For fixed 𝐹, 𝑔, if 𝑔

maps less than (1 − 𝛿)
(
𝑘
2

)
vertex pairs identically, then the number of remaining arcs of A − 𝐹 is at

least (1 − _)𝑚 − (1 − 𝛿)
(
𝑘
2

)
= (𝛿 − _)𝑚; the probability that all these arcs are mapped correctly by 𝑔

is at most
1

2

(𝛿−_)𝑚/2

(each of these arcs is mapped correctly with probability
1

2
; since the function 𝑔

forms cycles on the set of arcs, the events for individual arcs are not independent, but if we ignore

one arc from each cycle they are; since cycles have length at least 2, we ignore at most
1

2
of these

arcs). Hence in total the probability that some such 𝐹, 𝑔 exist is at most

2
𝐻 (_)𝑚 · 𝑘𝑘 · 2

−(𝛿−_)𝑚/2 = 2
−( 𝛿

2
− _

2
−𝐻 (_) )𝑚 · 2

𝑘 log
2
𝑘 ≤ 2

−( 𝛿
2
− _

2
−𝐻 (_)− 𝛿

3
)𝑚 .

This is less than 1 by taking _ small enough so that
𝛿
6
− _

2
− 𝐻 (_) > 0. □
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This allows us to make the reduction.

Lemma 8.4. For every 𝛿 > 0, there exists constants 0 < _ < 𝛿 and 𝑁 ≥ 1 such that the following
holds. Given 𝑘 ≥ 𝑁 , a graph 𝐺 on 𝑛 vertices, and a proper 𝑘-colouring 𝑐 of 𝐺 , we can compute in
𝑓 (𝑘) · 𝑛O(1) time an orientation A of the clique of size 𝑘 and a directed graph B such that

• if 𝐺 contains a clique of size 𝑘 , then opt(A,B) =
(
𝑘
2

)
,

• if every 𝑣1, . . . , 𝑣𝑘 in 𝐺 with 𝑐 (𝑣𝑖 ) = 𝑖 induce < (1 − 2𝛿)
(
𝑘
2

)
edges, then opt(A,B) < (1 − _)

(
𝑘
2

)
.

Proof. For 𝛿 > 0, let _ and 𝑁 be as in Lemma 8.3. Given 𝑘 ≥ 𝑁 , 𝐺 and a proper 𝑘-colouring

𝑐 : 𝑉 (𝐺) → {1, . . . , 𝑘} of 𝐺 , we start by computing an orientation A of the clique on the set of

colours {1, . . . , 𝑘} as in Lemma 8.3 (in time depending on 𝑘 only). The directed graph B has vertex

set 𝑉 (𝐺) and (𝑢, 𝑣) is an arc in B iff {𝑢, 𝑣} ∈ 𝐸 (𝐺) and (𝑐 (𝑢), 𝑐 (𝑣)) is an arc in A. Suppose that 𝐺

contains a clique {𝑣1, . . . , 𝑣𝑘 } of size 𝑘 . Without loss of generality 𝑐 (𝑣𝑖 ) = 𝑖 . Then opt(A,B) =
(
𝑘
2

)
via the mapping ℎ(𝑖) := 𝑣𝑖 .

Assume now that opt(A,B) ≥ (1 − _)
(
𝑘
2

)
, so there is a mapping 𝑔 : 𝐴 → 𝐵 with value(𝑔) ≥

(1 − _)
(
𝑘
2

)
. Note that 𝑐 : 𝐵 → 𝐴 is a homomorphism from B to A. It follows that the mapping

𝑐 ◦𝑔 : 𝐴 → 𝐴 fromA to itself has value(𝑐 ◦𝑔) ≥ (1−_)
(
𝑘
2

)
. By Lemma 8.3, we have that 𝑐 ◦𝑔maps at

least (1−𝛿)
(
𝑘
2

)
arcs to themselves. Let 𝐹 be the set of arcs that are not mapped to themselves by 𝑐 ◦𝑔

(so |𝐹 | ≤ 𝛿
(
𝑘
2

)
). Let 𝐹 ′ be the set of arcs of A that are mapped incorrectly by 𝑔 (so |𝐹 ′ | ≤ _

(
𝑘
2

)
). The

remaining arcs,A−𝐹 −𝐹 ′, satisfy the following: their number is at least (1−𝛿 −_)
(
𝑘
2

)
≥ (1−2𝛿)

(
𝑘
2

)
;

they are mapped by 𝑔 to some arcs in B and hence to some edge in 𝐺 ; and if 𝑖 ∈ {1, . . . , 𝑘} is an
endpoint of any of these arcs, then 𝑐 (𝑔(𝑖)) = 𝑖 . We can hence take 𝑣𝑖 := 𝑔(𝑖) if 𝑖 is not isolated in

A − 𝐹 − 𝐹 ′ and take an arbitrary 𝑣𝑖 with 𝑐 (𝑣𝑖 ) = 𝑖 otherwise; the resulting 𝑘-tuple induces at least
(1 − 2𝛿)

(
𝑘
2

)
edges in 𝐺 and satisfies 𝑐 (𝑣𝑖 ) = 𝑖 . □

From Observation 8.2 (with some Y > 0) and Lemma 8.4 (with 𝛿 = Y
2
) we conclude:

Corollary 8.5. Assuming Conjecture 8.1, there is a constant _ > 0 such that Max-Hom(A,−) for
the class of tournaments A has no (1 − _)-approximation running in time 𝑓 ( |A|) ( |A| + |B|)O(1) .

In particular, assuming Gap-ETH, there is no PTAS (and actually no FPT approximation scheme)
for Max-Hom(A,−).

9 OPEN QUESTIONS
Dichotomy. Our results, in particular Lemma 1.4, lead us to believe that perhaps the next question

has a positive answer.

Question 9.1. Does Max-𝑟 -CSP(G) admit a PTAS for every 𝑟 if and only if G is fractionally-tw-

fragile?

A concrete open question concerns cographs, i.e., graphs of clique-width two: Are cographs pliable?

More generally, are graphs of bounded clique-width pliable? Note that while certain techniques and

results transfer from structurally sparse graphs to dense graphs (clique-width being an example),

this fails for pliability as pliability is not closed under complementation since all classes of dense

graphs are pliable.

Some example cases where it would be important to show hardness of approximation (or at

least integrality gaps for constant levels of the Sherali-Adams hierarchy) in order to shed light on

Question 9.1 are classes of unbounded average degree or classes of 3-regular graphs with unbounded

girth. In fact, we do not know of any examples of non-pliable classes of structures A for which

Max-Hom(A,−) admits a PTAS and thus it is non inconceivable that pliability captures all tractable

cases.
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Constant-factor approximation. Instead of PTASes one can of course ask about the existence

of some constant-factor approximation. For fixed signatures, Max-Hom always admits a simple

constant-factor approximation: essentially map everything randomly to the densest 𝑟 -tuple, where

𝑟 is the maximum arity. For the general Max-𝑟 -CSP(G) problem the situation is more interesting:

in general (when G is the class of all graphs) a constant-factor approximation is impossible; on the

other hand for any monotone class of bounded average degree, there is again a simple solution:

because such classes have bounded degeneracy, the edge set can be partitioned into a constant

number of trees, where the problem can be solved exactly. The results of [28] imply that if the

average degree is too high, the problem is again hard. Can a dichotomy be shown?

Weak hyperfiniteness. As shown in Theorem 1.6, monotone hyperfinite classes are fractionally-tw-

fragile and have bounded degree. The vertex version of hyperfiniteness is called “weakly hyperfinite”

in [73] or “fragmentable” in [36, 37]. Is is strictly weaker: stars satisfy it, despite having unbounded

degree. Nešetřil and Ossona deMendez [73] proved that for amonotone class of graphsG of bounded

average degree, G is weakly hyperfinite if and only if for every 𝑑 ∈ N, {𝐺 ∈ G : max deg(𝐺) ≤ 𝑑}
is hyperfinite. This suggests a possible extension to graphs of unbounded degree: are monotone

weakly hyperfinite classes fractionally-tw-fragile? This would imply a conjecture of Dvořák [29],

that all graph classes with strongly sublinear separators are fractionally-tw-fragile. However, it is

not even known whether all monotone weakly hyperfinite classes have bounded average degree.

Efficient PTAS. As mentioned in the introduction, both dense graphs and hyperfinite graphs

can be approximated by constant-size descriptions, and in fact by constant-size random samples.

Since size-pliability also approximates with constant-size descriptions, this suggests there may

be a general way to sample from such structures to give constant-time approximations (for an

appropriate input model). In particular, can property-testing results for hyperfinite graphs be

extended to fractionally-tw-fragile graphs? Perhaps this could be a way to obtain EPTASes
13
for

Max-𝑟 -CSPs with fixed alphabets. Our methods seems unlikely to give an EPTAS directly. The

analogous question in the exact setting is as follows; we believe it to be open.

Question 9.2. Is 3-colouring fixed-parameter tractable when parameterised by the treewidth of

the core (the smallest homomorphically equivalent subgraph)? That is, given a graph 𝐺 which is

promised to have a core of treewidth at most 𝑘 , can we decide its 3-colourability in time 𝑓 (𝑘) |𝐺 |O(1)

for some function 𝑓 ?

In this question treewidth could also be replaced by size, in which case an algorithm with running

time O(𝑛)𝑘 is trivial (test every 𝑘-subgraph for 3-colourability). A similar algorithm for treewidth

is due to Dalmau et al. [16], see also [47, Theorem 3.1].
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A FARKAS’ LEMMA AND PROOFS OF PROPOSITION 2.5 AND LEMMA 4.3
Farkas’ lemma is the fundamental duality for systems of linear inequalities.

Lemma A.1 (Farkas’ lemma [82, Corollary 7.1d]). Let𝐴 be an𝑚×𝑛 rational matrix and ¯𝑏 ∈ Q𝑚 .
Then, exactly one of the two holds:

• 𝐴𝑥 = ¯𝑏 for some 𝑥 ∈ Q𝑛 with 𝑥 ≥ 0, or
• 𝐴𝑇𝑦 ≥ 0 and ¯𝑏𝑇𝑦 < 0 for some 𝑦 ∈ Q𝑚 .

For the duality between the existence of overcasts and the overcast relation ⪰, we use Farkas’
lemma in the following form:

Lemma A.2 (Farkas’ lemma, variant 1). Let 𝐴 be an𝑚 × 𝑛 rational matrix and ¯𝑏 ∈ Q𝑚 . Exactly
one of the following holds:

• there are 𝑥𝑖 ∈ Q≥0 (𝑖 = 1, . . . , 𝑛) such that
∑
𝑖 𝑥𝑖 = 1 and

∑
𝑖 𝐴𝑖, 𝑗𝑥𝑖 ≥ 𝑏 𝑗 for 𝑗 = 1, . . . ,𝑚;

• there are 𝑦 𝑗 ∈ Q≥0 ( 𝑗 = 1, . . . ,𝑚) such that
∑
𝑗 𝐴𝑖, 𝑗𝑦 𝑗 <

∑
𝑗 𝑏 𝑗𝑦 𝑗 for 𝑖 = 1, . . . , 𝑛.
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Proof. The first condition is equivalent to the existence of a solution in variables 𝑥𝑖 ∈ Q≥0

(𝑖 = 1, . . . , 𝑛) and 𝑠 𝑗 ∈ Q≥0 ( 𝑗 = 1, . . . ,𝑚) of the following system:∑︁
𝑖

𝑥𝑖 = 1∑︁
𝑖

𝐴𝑖, 𝑗𝑥𝑖 − 𝑠 𝑗 = 𝑏 𝑗 (for 𝑗 = 1, . . . ,𝑚).

By Lemma A.1, this system has a solution if and only if the following system has no solution in

variables 𝑧 ∈ Q and 𝑦 𝑗 ∈ Q𝑚 for 𝑗 = 1, . . . ,𝑚:

𝑧 +
∑︁
𝑗

𝐴𝑖, 𝑗𝑦 𝑗 ≥ 0 (for 𝑖 = 1, . . . , 𝑛)

−𝑦 𝑗 ≥ 0 (for 𝑗 = 1, . . . ,𝑚)

𝑧 +
∑︁
𝑗

𝑏 𝑗𝑦 𝑗 < 0

Equivalently, there are no 𝑦′𝑗 = −𝑦 𝑗 ∈ Q𝑚≥0
such that

∑
𝑗 𝐴𝑖, 𝑗𝑦

′
𝑗 ≤ 𝑧 <

∑
𝑗 𝑏 𝑗𝑦

′
𝑗 (for 𝑖 = 1, . . . , 𝑛). □

Proposition (Proposition 2.5 restated). Let A and B be 𝜎-structures. Then, A ⪰ B if and only
if there is an overcast from A to B.

Proof. First, suppose that there exists an overcast 𝜔 from A to B. Let C be a 𝜎-structure. Then,

if ℎ is a maximum-value mapping from B to C we have

opt(B,C) =
∑︁

(𝑓 ,x) ∈tup(B)
𝑓 B (x) 𝑓 C (ℎ(x)) ≤

∑︁
(𝑓 ,x) ∈tup(B)

©«
∑︁
𝑔∈𝐵𝐴

𝜔 (𝑔) 𝑓 A (𝑔−1 (x))ª®¬ 𝑓 C (ℎ(x))
=

∑︁
𝑔∈𝐵𝐴

𝜔 (𝑔) ©«
∑︁

(𝑓 ,x) ∈tup(B)
𝑓 A (𝑔−1 (x)) 𝑓 C (ℎ(x))ª®¬

=
∑︁
𝑔∈𝐵𝐴

𝜔 (𝑔) ©«
∑︁

(𝑓 ,y) ∈tup(A)
𝑓 A (y) 𝑓 C (ℎ(𝑔(y)))ª®¬

and hence there exists 𝑔 ∈ 𝐵𝐴 such that opt(B,C) ≤ ∑
(𝑓 ,y) ∈tup(A) 𝑓

A (y) 𝑓 C (ℎ(𝑔(y))) = value(ℎ ◦
𝑔) ≤ opt(A,C). Therefore, A ⪰ B. For the converse implication, we shall use Lemma A.2. If there

is no overcast from A to B, this means there are no numbers 𝜔 (𝑔) ∈ Q≥0 (for 𝑔 ∈ 𝐵𝐴) such that∑
𝑔 𝜔 (𝑔) = 1 and

∑
𝑔∈𝐵𝐴 𝜔 (𝑔) 𝑓 A (𝑔−1 (x)) ≥ 𝑓 B (x) for (𝑓 , x) ∈ tup(B). By the lemma above, this is

equivalent to the existence of 𝑦 (𝑓 , x) ∈ Q≥0 (for (𝑓 , x) ∈ tup(B)) such that∑︁
(𝑓 ,x) ∈tup(B)

𝑓 A (𝑔−1 (x))𝑦 (𝑓 , x) <
∑︁

(𝑓 ,x) ∈tup(B)
𝑓 B (x)𝑦 (𝑓 , x) for all 𝑔 ∈ 𝐵𝐴 .

Let B𝑦 be the 𝜎-structure with domain 𝐵 such that 𝑓 B�̄� (x) = 𝑦 (𝑓 , x), for all (𝑓 , x) ∈ tup(B)
(𝑓 B�̄� (x) = 0 otherwise). By the above, opt(A,B𝑦) < opt(B,B𝑦) and hence A ̸ ⪰ B. □

For the duality between Y-thin distributions of modulators and weights avoiding any Y-small

modulator, we use a variant of Farkas’ lemma obtained by taking −𝐴 and −𝑏 in Lemma A.2.

Lemma A.3 (Farkas’ lemma, variant 2). Let 𝐴 be an 𝑚 × 𝑛 rational matrix and let ¯𝑏 ∈ Q𝑚 .
Exactly one of the following holds:

• there are 𝑥𝑖 ∈ Q≥0 (𝑖 = 1, . . . , 𝑛) such that
∑
𝑖 𝑥𝑖 = 1 and

∑
𝑖 𝐴𝑖, 𝑗𝑥𝑖 ≤ 𝑏 𝑗 for 𝑗 = 1, . . . ,𝑚;
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• there are 𝑦 𝑗 ∈ Q≥0 ( 𝑗 = 1, . . . ,𝑚) such that
∑
𝑗 𝐴𝑖, 𝑗𝑦 𝑗 >

∑
𝑗 𝑏 𝑗𝑦 𝑗 for 𝑖 = 1, . . . , 𝑛.

Lemma (Lemma 4.3 restated). Let F be a family of subsets of a set𝑉 . The following are equivalent:
• there is an Y-thin distribution 𝜋 of sets 𝑋 ∈ F (i.e., for all 𝑣 ∈ 𝑉 , Pr𝑋∼𝜋 [𝑣 ∈ 𝑋 ] ≤ Y);
• for all non-negative weights (𝑤 (𝑣))𝑣∈𝑉 , there is an 𝑋 ∈ F such that𝑤 (𝑋 ) ≤ Y ·𝑤 (𝑉 ).

Proof. The first item is equivalent to the existence of numbers 𝜋 (𝑋 ) ∈ Q≥0 for 𝑋 ∈ F such that∑
𝑋 𝜋 (𝑋 ) = 1 and for all 𝑣 ∈ 𝑉 ,∑𝑋 [𝑣 ∈ 𝑋 ] ·𝜋 (𝑋 ) ≤ Y. By Lemma A.3, this holds if and only if there

are no numbers𝑤 (𝑣) ∈ Q≥0 for 𝑣 ∈ 𝑉 such that for all 𝑋 ∈ F ,

∑
𝑣 [𝑣 ∈ 𝑋 ] ·𝑤 (𝑣) > ∑

𝑣 Y ·𝑤 (𝑣). □

B PROOF OF PROPOSITION 3.3
Let SA𝑘 (A,C) denote the Sherali-Adams linear programming relaxation of Max-Hom(A,C), given
in Figure 1 in Section 3. Recall that opt𝑘 (A,C) denotes its optimum value and we write A ⪰𝑘 B if

opt𝑘 (A,C) ≥ opt𝑘 (B,C) for all structures C with the same signature as A and B.

Proposition (Proposition 3.3 restated). Let A and B be 𝜎-structures and 𝑘 ≥ max𝑓 ∈𝜎 ar 𝑓 . If
there is an overcast from A to B then A ⪰𝑘 B.

Proof. Let C be an arbitrary 𝜎-structure, 𝜔 be an overcast from A to B and _ be an optimal

solution to SA𝑘 (B,C). (Recall that for a tuple x we denote by Set(x) the set of elements appearing

in x.) We have that

opt𝑘 (B,C) =
∑︁

(𝑓 ,x) ∈tup(B), 𝑠 :Set(x)→𝐶
_(Set(x), 𝑠) 𝑓 B (x) 𝑓 C (𝑠 (x))

≤
∑︁

(𝑓 ,x) ∈tup(B), 𝑠 :Set(x)→𝐶

©«
∑︁
𝑔∈𝐵𝐴

𝜔 (𝑔) 𝑓 A (𝑔−1 (x))ª®¬ _(Set(x), 𝑠) 𝑓 C (𝑠 (x))
=

∑︁
𝑔∈𝐵𝐴

𝜔 (𝑔) ©«
∑︁

(𝑓 ,x) ∈tup(B), 𝑠 :Set(x)→𝐶
_(Set(x), 𝑠) 𝑓 A (𝑔−1 (x)) 𝑓 C (𝑠 (x))ª®¬

=
∑︁
𝑔∈𝐵𝐴

𝜔 (𝑔) ©«
∑︁

(𝑓 ,y) ∈tup(A), 𝑠 :𝑔 (Set(y) )→𝐶
_(𝑔(Set(y)), 𝑠) 𝑓 A (y) 𝑓 C (𝑠 (𝑔(y)))ª®¬

and hence there is 𝑔 : 𝐴 → 𝐵 such that

opt𝑘 (B,C) ≤
∑︁

(𝑓 ,y) ∈tup(A), 𝑠 :𝑔 (Set(y) )→𝐶
_(𝑔(Set(y)), 𝑠) 𝑓 A (y) 𝑓 C (𝑠 (𝑔(y))) (1)

For 𝑌 ∈
(
𝐴
≤𝑘
)
and 𝑟 : 𝑌 → 𝐶 , we define

_′ (𝑌, 𝑟 ) =
{
_(𝑔(𝑌 ), 𝑠) if there exists 𝑠 : 𝑔(𝑌 ) → 𝐶 such that 𝑠 ◦ 𝑔 = 𝑟

0 otherwise

Note that _′ is a feasible solution of SA𝑘 (A,C). Indeed, for 𝑌 ∈
(
𝐴
≤𝑘
)
, we have∑︁

𝑟 :𝑌→𝐶
_′ (𝑌, 𝑟 ) =

∑︁
𝑠 :𝑔 (𝑌 )→𝐶

_′ (𝑌, 𝑠 ◦ 𝑔) =
∑︁

𝑠 :𝑔 (𝑌 )→𝐶
_(𝑔(𝑌 ), 𝑠) = 1.

Moreover, let 𝑍 ⊆ 𝑌 ∈
(
𝐴
≤𝑘
)
, and 𝑟 : 𝑍 → 𝐶 . If there is no 𝑠 : 𝑔(𝑍 ) → 𝐶 such that 𝑠 ◦ 𝑔 = 𝑟 , then

_′ (𝑍, 𝑟 ) = 0 =
∑︁

𝑡 :𝑌→𝐶, 𝑡 |𝑍=𝑟
_′ (𝑌, 𝑡).
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If such a mapping 𝑠 exists, then∑︁
𝑡 :𝑌→𝐶, 𝑡 |𝑍=𝑟

_′ (𝑌, 𝑡) =
∑︁

𝑠′ :𝑔 (𝑌 )→𝐶, 𝑠′ |𝑔 (𝑍 )=𝑠

_′ (𝑌, 𝑠′ ◦ 𝑔)

=
∑︁

𝑠′ :𝑔 (𝑌 )→𝐶, 𝑠′ |𝑔 (𝑍 )=𝑠

_(𝑔(𝑌 ), 𝑠′)

= _(𝑔(𝑍 ), 𝑠)
= _′ (𝑍, 𝑟 ).

Since _′ is feasible and by (1), we conclude that

opt𝑘 (A,C) ≥
∑︁

(𝑓 ,y) ∈tup(A), 𝑟 :Set(y)→𝐶
_′ (Set(y), 𝑟 ) 𝑓 A (y) 𝑓 C (𝑟 (y))

=
∑︁

(𝑓 ,y) ∈tup(A), 𝑠 :𝑔 (Set(y) )→𝐶
_′ (Set(y), 𝑠 ◦ 𝑔) 𝑓 A (y) 𝑓 C (𝑠 (𝑔(y)))

=
∑︁

(𝑓 ,y) ∈tup(A), 𝑠 :𝑔 (Set(y) )→𝐶
_(𝑔(Set(y)), 𝑠) 𝑓 A (y) 𝑓 C (𝑠 (𝑔(y)))

≥ opt𝑘 (B,C).
□
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