
Framework of Performance Evaluation for Mobile Process Based on

Mobile Ambient ∗

Taolue Chen† Tingting Han Jian Lu
State Key Laboratory of Novel Software Technology,

Nanjing University, Nanjing, Jiangsu, P.R.China 210093

Abstract

Formal methodology for distributed and concurrent
system, especially computation system with mobility,
is increasingly important both in the theory and the
practice. Based on the Calculus of Mobile Ambi-
ent (MA), a widely studied formal mechanism for mo-
bile computation, this paper focuses on the quantitative
analysis of mobile computation system and provides a
framework of performance evaluation for it. In details,
this paper introduces an enhanced labelled transition
system as the system model, and assigns rate to each
label through so-called cost function. Based on it, the
labelled transition system can be mapped to Continuous
Time Markov Chains and thus performance evaluation
can be carried out by standard numerical techniques
and tools. In some sense, the main work of this pa-
per can be regarded as integrating behavior and perfor-
mance analysis in a compositional formal framework,
which provides some basis of unified formal methodol-
ogy for the development of mobile system.
Keywords: Formal methodology, Software quantity,
Process algebra, Mobile ambient, Performance evalua-
tion

1 Introduction

Formal analysis for distributed and concurrent sys-
tem is one of the key problems in theoretical computer
science. At the same time, it is also very important in
practice.

Calculus of Mobile Ambient ([1], MA in short), in-
troduced by Cardelli and Gordon is a formalism which
can describe two common aspects of mobility, that is
mobile computing and mobile computation ([1]) within

∗Supported by NNSFC (60273034, 60233010), 863 Pro-
gram (2001AA113110, 2002AA116010), 973 Program of China
(2002CB312002), JSFC (BK2002203, BK2002409)

†Email: ctl@ics.nju.edu.cn

a single framework. It is regarded as a suitable can-
didate for formal model of novel distributed comput-
ing paradigms, such as mobile computing and Internet
computing and has been one of the hottest topics in
the area of mobile process calculi after π-calculus ([3]).

In the traditional research for process calculi, a lot of
attention has been paid to the behavior analysis (qual-
ity analysis) of systems, such as the liveness and justice
of system, and synchronization or communication re-
lated problems. However, in practice, the performance
of system (quantity analysis) is also very important.
Performance evaluation means to describe, to analysis,
and to optimize the dynamic, time-dependent behavior
of systems ([2]). In our point of view, the performance
evaluation should be integrated into the design process
from the very beginning, i.e. the behavior specification
and performance specification should be integrated into
a unified framework, which is in need of support from
formal methodology.

To the author’s knowledge, there are no reports on
performance analysis in the framework of MA. The
main work of this paper is to provide a framework
of performance analysis for mobile process while leav-
ing the syntax of the calculus unchanged. In details,
we introduce an enhanced labelled transition system,
and base on it, we convert it into Continue Time
Markov Chain (CTMC in short) through the notion of
cost functions. The performance analysis is achieved
through some standard numeral techniques based on
CTMC. The advantage of keeping the syntax of calculi
unchanged lies in that we can inherit lots of research on
behavior analysis for MA, as integrating behavior and
performance analysis in a compositional formal frame-
work.

The rest of this paper is organized as follows: Sec-
tion 2 introduces some necessary background knowl-
edge, including the syntax and reduction semantics of
MA, and some knowledge for probability and Markov
chain; Section 3 introduces the enhanced labelled tran-
sition system; in Section 4, the cost functions are in-

Proceedings of the Fourth International Conference on Computer and Information Technology (CIT’04)

0-7695-2216-5/04 $20.00 © 2004 IEEE

troduced and based on it, the Markov chain is derived,
which can be used in performance analysis; Section 5
concludes the paper and discusses related work.

2 Background

In this section, we introduce some basic knowledge
used in this paper, and mainly focus on the syntax and
semantics of MA.

2.1 Syntax and Semantics of MA

2.1.1 Syntax

We assume N is a countable infinite name set and is
ranged over by m, n; I = {τ0, τ1, τ2 . . . } is a countable
infinite internal action set and ranged by τi. In general,
we assume N ∩ I = ∅. Π is MA process set ranged by
P, Q and is recursively defined as follows:

P, Q ::= 0|(νn)P |P |Q|M.P |M [P]|〈M〉.P |(x).P |A(Ũ)

where, M is element of capability sets (denoted by
CAP) and is recursively defined as:

M, N ::= ε | x | n | in〈n〉 | out〈n〉 | open〈n〉 | τi | M.N

where, n ∈ N and τi ∈ I.
It is noted that in order to fulfill the need of perfor-

mance analysis, we make some small modifications for
MA, that is, we extend the original MA by introducing
the notion of internal action, which is used to repre-
sent some application related system behaviors while
has nothing to do with mobility or communication.
Moreover, in this paper, we use the synchronization
communication mechanism, which is something differ-
ent from the original design of MA. The construction of
A(Ũ) which plays the similar role of replication opera-
tor in [1], is standard in process algebra. Due to space
restriction, we omit the intuitional interpretation for
other operators and refer the reader to [1] for more
details.

As in common process calculi, (νn)P introduces the
distinction of bound names and free names. In general,
we use fn(P) to denote the set of free names appearing
in process P . For capability M , every name appearing
in it is free name. We define n(P) = fn(P) ∪ bn(P),
where bn(P) denotes the bound name of P . A process
P is called closed if fn(P) = ∅. In general, we denote
P is a process expression by P : Π.

Due to space restriction, we omit the reduction se-
mantics of MA and some background knowledge on
probability theory and Markov chain, since they are
standard and can be found in literature easily. We re-
fer the reader to [1][4] or the full text of this paper [6]
for more details.

3 Enhanced Labelled Transition Sys-
tem

In this section, the enhanced labelled transition sys-
tem is introduced. We first give some intuitional ideas
and then provide the formal definitions.

3.1 Basic Idea

In the research for MA, there are two common meth-
ods for presenting labelled transition system, one is
the method based on ’commitment’ and ’outcome’, the
other is the method based on ’hardening’ relation. Un-
fortunately, these two kinds of methods can not satisfy
our requirements. The former makes system have too
many labels and the results of transition may be ’con-
crete’ besides process, which makes it difficult to de-
scribe the system states; the latter uses so-called hard-
ening relation, which is a kind of syntax conversion
for process expression in essential. However, we think
that the structure character of process expression usu-
ally embodies the interaction between the process and
the context, which has a tight relation on performance.
From this point of view, we want to keep as much struc-
ture information of process expression as possible, that
is, use fewer structure congruence rules, and obtain
a ’pure’ labelled transition system similar to CCS or
π-calculus. Besides that, we want to record more in-
formation on process and the application of inference
rules. To arrive at this goal, we first introduce some
addition actions as well as the prefix operators intro-
duced by MA itself, and explain their intuitional senses
as follows:

(i) enter〈m, n〉. It means that the ambient named m
moves into ambient named n.

(ii) exit〈m, n〉. It means the ambient named m move
out ambient named n.

(iii) n. The reason for introducing this action is due
to technological consideration, while in practice,
it can be regard as the safe checking carried by
static ambient for the mobile ambient.

(iv) ?x. It means one process want to receive some
messages.

(v) !M . It means one process want to send out some
messages.

In order to record the application of inference rules,
we use the so-called ’tag method’ as [5], i.e. attach
some tags, e.g. ||0, ||1, (νn), m̃ with actions. In intu-
ition, these tags are mainly used to record the context

Proceedings of the Fourth International Conference on Computer and Information Technology (CIT’04)

0-7695-2216-5/04 $20.00 © 2004 IEEE

of action execution, where ||0, ||1 have something to
do with parallel operator |, which are used to record
which concurrent process or ambient actually executes
the corresponding action; (νn) has something to do
with restriction operator, which indicates what names
can not be used again; m̃ relates to recursive defined
process body, which is a real number vector, and ev-
ery dimension records the size of actual parameter for
recursive defined process.

3.2 Labelled Transition System

In this section, we will give the formal description
for labelled transition system.

Definition 1 (Enhanced Label)

(i) The basic labels in labelled transition system are
given by BNF as follows:

λ ::= in〈n〉|out〈n〉|open〈n〉|τi

α ::= τi|open〈n〉|enter〈m, n〉|exit〈m, n〉|n|?x|!M
where, m, n ∈ N .

(ii) Let L = {||0, ||1}, χ ∈ L∗, o ∈ O = {(νn), m̃},
where for any m̃, we have ∀mi ∈ m̃, mi ∈ R+,
ϑ ∈ (L ∪ O)∗. Enhanced label set Θ, which is
ranged by θ, is defined by BNF as follows:

θ ::= ϑα|ϑ〈||0ϑ0α0, ||1ϑ1α1〉|n[〈||0ϑ0α0, ||1ϑ1α1〉]
where, α0, α1 is defined as follows:

– α0 = enter〈m, n〉, α1 = n or in converse;

– α0 = exit〈m, n〉, α1 = n or in converse;

– α0 = open〈n〉, α1 = n or in converse;

– α0 =?x, α1 =!M or in converse;

(iii) Label conversion function is recursively de-
fined as follows:

l(ϑα) = α
l(ϑτi) = τ
l(ϑ〈||0ϑ0α0, ||1ϑ1α1〉) = τ
l(n[〈||0ϑ0α0, ||1ϑ1α1〉]) = τ

Definition 2 The rule for label transition is defined
as follows:

(Act) −
λ.P

λ→P
(Out) −

〈M〉.P !M→P

(In) −
(x)P

?x→P
(Amb) −

n[P]
n→P

(Com0) P
!M→P ′ Q

?x→Q′

P |Q〈||0!M,||1?x〉−→ P ′|Q′{M/x}

(Com1) P
?x→P ′ Q

!M→Q′

P |Q〈||0?x,||1!M〉−→ P ′{M/x}|Q′

(Par1 0) P
λ→P ′ λ�=open〈n〉
P |Q||0λ−→P ′|Q

(Par1 1) P
λ→P ′ λ�=open〈n〉
Q|P ||1λ−→Q|P ′

(Par2 0) P
θ→P ′ l(θ)=τ

P |Q||0θ−→P ′|Q
(Par2 1) P

θ→P ′ l(θ)=τ

Q|P ||1θ−→Q|P ′

(Enter) P
in〈n〉→ P ′

m[P]
enter〈m,n〉−→ m[P ′]

(Exit) P
out〈n〉→ P ′

m[P]
exit〈m,n〉−→ m[P ′]

(Mob in0) P
enter〈m,n〉−→ P ′ Q

n→Q′

P |Q〈||0enter〈m,n〉,||1n〉−→ n[P ′|Q′]

(Mob in1) P
n→P ′,Q

enter〈m,n〉−→ Q′

P |Q〈||0n,||1enter〈m,n〉〉−→ n[P ′|Q′]

(Mob out0) P
exit〈m,n〉−→ P ′

n[P |Q]
〈||0exit〈m,n〉,||1n〉−→ P ′|n[Q]

(Mob out1) P
exit〈m,n〉−→ P ′

n[Q|P]
〈||0n,||1exit〈m,n〉〉−→ P ′|n[Q]

(Mob open0) P
open〈n〉−→ P ′ Q

n→Q′

P |Q〈||0open〈n〉,||1n〉−→ P ′|Q′

(Mob open1) P
n→P ′ Q

open〈n〉−→ Q′

P |Q〈||0n,||1open〈n〉〉−→ P ′|Q′

(Res) P
θ→P ′ m/∈n(l(θ))

(νm)P
(νm)θ→ (νm)P ′

(Tau) P
θ→P ′ l(θ)=τ

m[P]
m[θ]→ m[P ′]

(Ide) P{K̃/Ũ} θ→P ′

A(K̃)
m̃θ→P ′

A(Ũ) = P

(Struc) P≡RP ′ P ′ θ→P ′′

P
θ→P ′′

where, we admit only partially structural congruence
≡R defined as follows:

(νn)(νm)P ≡R (νm)(νn)P
(νn)(P |Q) ≡R P |(νn)Q if n /∈ fn(P)
(νn)m[P] ≡R m[(νn)P] if n
= m

Comparing with standard labelled transition sys-
tem, the enhanced label transition system introduced
in this paper mainly adds some tags. By label conver-
sion function defined in Definition 1, it is not difficult
to convert the enhanced label to common one, so the
common label transition semantics can be recovered.
The following theorem states that the label transition
semantics defined in Definition 2 coincides with stan-
dard reduction semantics, which can be proved through
standard proof techniques. Due to space restriction, we
omit the detailed proof.

Theorem 1 For any process P and Q, P → Q if and
only if P

θ→≡ Q, where l(θ) = τ .

In the below, we give the formal definition for the
labelled transition system, which is important in the
rest of the paper.

Proceedings of the Fourth International Conference on Computer and Information Technology (CIT’04)

0-7695-2216-5/04 $20.00 © 2004 IEEE

Definition 3 For any process P , the enhanced label
transition system is defined as following triple 〈d(P), θ→
, P 〉, where θ→= {Q θ→ R|Q, R ∈ d(P)}.

4 Framework for Performance Analysis

In this section, we will show how to carry out perfor-
mance analysis using the enhanced labelled transition
system defined in Section 3. The basic idea is inspired
by [5], that is, to define cost function corresponding to
transition label θ, and derive the Markov chain. Note
that in this section, we only deal with finite transi-
tion system, i.e. the state space generated by process
is finite, which means that the process expression is
image-finite. For most actual systems, especially reac-
tive systems, this requirement can be easily satisfied.

4.1 Cost function

In this section, we first give some primitive ideas
for cost function. Considering any specification of a
mobile system, it can be described as a process ex-
pression P in MA, then the behavior of the system
is totally determined by the labelled transition system
〈d(P), θ→P , P 〉 which is derived from P . For any two
states Pi, Pj , where Pi

θ→ Pj , i.e. process Pi accom-
plishes action θ and then arrives at Pj , it is noted that
Pi may have many kinds of transition, that is, in for-
mal, Pi

θi→ Pjk(1 ≤ k ≤ n), every transition should
satisfy corresponding probability distribution and the
actual behavior of Pi is random. Obviously, the proba-
bility of transition has something to do with the rate of
the action. As in the tradition research for performance
analysis, the probability distribution considered in this
paper is the exponential distribution, because one one
hand, the exponential distribution is a good approxi-
mation of actual instance, on the other hand, exponen-
tial distribution has memoryless property ([5]), which
makes it easy to derive Markov chain from the labelled
transition system and continue the analysis. Based on
the above ideas, the cost function introduced for action
θ, in intuition, has a tight relation to the expectation
time of the action which is regarded as the parameter
of exponential distribution indeed. We argue that two
factors play the important roles in the definition of the
cost, one is the action itself, that is α = l(θ), since dif-
ferent actions, such as enter〈m, n〉, exit〈m, n〉, should
have different cost; the other is the context that the
process executing, which is represented in the linked
tag ϑ formally. The definition for cost is just accord-
ing to the two factors. Note that in this paper, the

cost of action is regarded as the parameter of exponen-
tial distribution, by the definition for the expectation
of exponential distribution ([5]), cost is in inverse pro-
portion to the time of actions, which is important to
the comprehension of cost function. In the below, the
formal definitions are given.

Definition 4 Function $α: I ∪ {enter〈m, n〉,
exit〈m, n〉, open〈n〉, ?x, !M, n} → R+ is defined as
follows:

$α(τi) = λi

$α(enter〈m, n〉) = fenter(size(m), bw(m, n))
$α(exit〈m, n〉) = fexit(size(m), bw(m, n))
$α(open〈n〉) = fopen(n)
$α(?x) = fin(size(x))
$α(!M) = fout(size(M))
$α(n) = fcheck(size(m), bw(m, n))

Definition 4 is the definition for the cost of some
basic action, we give their intuitional explanations re-
spectively. For the application related internal action
τi, its cost is given by λi. And fenter, fexit define the
cost of a ambient (say m) moving in or out some other
static ambient (say n). In practice, the mobility of
ambient is implemented in the form of channel stream,
in this sense, the impact factors are consisted of the
bandwidth of channel (represented by bw(m, n)) and
the bytes which must be sent (represented by size(m)).
fopen defines the cost a process opening a ambient (say
n), which is represented by safe checking in practice.
fin, fout define the cost of communication, that is, the
cost of receiving and sending a message respectively. In
MA, the communication is carried out locally, so the
cost has relation to the size of communication data and
the instance of local data link, the former is represented
by size(x), size(M), while the latter has something to
do with the context, whose information is recorded in
the tag, and its effect on the cost will be represented in
the full definition of cost function. fcheck defines that
when a ambient moves in or out a static ambient (say
n), the cost of checking done by n, in practice, a typical
example is sandbox mechanism for applet in Java; the
concrete value of function has something to do with the
implementation.

Definition 5 Function $ϑ : L ∪ O → (0, 1] is defined
as follows:

$ϑ(||i) = f||(np), i = 0, 1
$ϑ((νn)) = fν(|n(P)|)
$ϑ(m̃) = f()(m̃, np)

The definition of $ϑ is similar to the counter part
of [5], parallel operator is evaluated according to the

Proceedings of the Fourth International Conference on Computer and Information Technology (CIT’04)

0-7695-2216-5/04 $20.00 © 2004 IEEE

number of processors (np) available, restriction opera-
tor tells whether a name can be used, in implementa-
tion, its resolution needs a search in a table of names,
so the cost of restriction depends on the number of
names of process (|n(P)|). The definition of f() has
something to do with const invocation A(Ũ), obviously
the cost depends on the size and the number of its ac-
tual parameters, as well as on the number of processors
available.

In fact, Definition 4 and Definition 5 give the def-
inition of cost for ϑα in enhanced label sets Θ intro-
duced in Definition 1. In the below, we give the def-
inition of cost function for the remainder label θ (s.t.
l(θ) = τ, θ
= τi). First, we deal with parallel tag part
(||) in the label. In intuition, the sequence of || repre-
sents the distribution location of processor where the
concurrent processes run. In implementation, an al-
location table is used to record the physical locations
of process, whose effect can be defined by a function
f<> : L∗ × L∗ → (0, 1], where χ ∈ L∗ represents
the || sequence of interaction processes or ambients.
Therefore, we should extract the parallel tags from
ϑ(ϑ ∈ (L ∪ O)∗). So, an auxiliary function is defined
as follows:

Definition 6 [.] : (L ∪ O)∗ → L∗

[ε] = ε
[||iϑ] = ||i[ϑ] i=0,1
[oϑ] = [ϑ] o ∈ O

Definition 7 Function $: Θ → R+ is defined as fol-
lows:

$(α) = $α(α)
$(oθ) = $ϑ(o) × $(θ) o ∈ O
$(||iθ) = $ϑ(||i) × $(θ) i = 0, 1
$(〈||0ϑ0α0, ||1ϑ1α1〉)
= f<>([||0ϑ0], [||1ϑ1]) ×⊕($(||0ϑ0α0), $(||1ϑ1α1))

$(n[〈||0ϑ0α0, ||1ϑ1α1〉])
= c(n) × f<>([||0ϑ0], [||1ϑ1]) ×⊕($(||0ϑ0α0), $(||1ϑ1α1))

where

⊕ ($(||0ϑ0α0, $(||1ϑ1α1))

=

{
$(||0ϑ0α0)×$(||1ϑ1α1)
$(||0ϑ0α0)+$(||1ϑ1α1)

α0 =?x, α1 =!M
min{$(||0ϑ0α0), $(||1ϑ1α1)} o.w.

Now, we explain the intuition for this definition. As
stated above, for an label, say θ, we can obtain two
kinds of information, one is the basic action given by
l(θ), the other is the additional tags. The former can
be evaluated by the cost function introduced by Def-
inition 4, while the latter in fact represents that the

context slow down the speed of actions, whose affec-
tion is given by Definition 5. In Definition 7, we syn-
thesize both of the two factors. For the label θ which
satisfies l(θ) = τ, θ
= τi, we need some special process.
In fact, what we care about are the two interaction
partners α0, α1. There are mainly two cases: one is
communication action pattern. Since communication
is synchronous and handshaking, we take the minimum
of the costs of the operations performed by the partic-
ipants independently to make communications reflect
the speed of the slower partner. (Recall that we take
the cost as the parameter of exponential distribution,
so the cost is in inverse proportion to the time of ac-
tion). The other is mobility action pattern. In im-
plementation, mobility is accomplished in two steps:
first the mobile part is transmitted in the form of byte
stream, then when it ”enter” the accepted part, it is
checked by some safety mechanism, so we take sum
of the costs of the operations performed by the par-
ticipants independently, which is the essential idea for
definition of operator ⊕. Function c(n) is to reflect the
affection of runtime context. In practice, an ambient
may represent the runtime context, different context
has different affection to the interaction, e.g. the com-
munication. In the definition of $α, it is difficult to
reflect the factor. Now, to overcome this deficiency, we
introduce c(n) as rate function to represent the char-
acter of context n, such as the channel bandwidth of
local communication and then the difference of the con-
text can be embodied. The other part of function $ is
self-interpreted.

4.2 Derivation of CTMC

In this section, based on the cost function intro-
duced in above section, we give the method for de-
riving the CTMC. We mainly utilize the memoryless
property ([5]) of exponential distribution and homoge-
neous premise of state transmission. Note that in fact,
a Markov chain is decided by the set of states and Q
Matrix, and the former can be easily derived from la-
belled transition system, therefore, it is enough to give
the definition of Q Matrix.

Definition 8 For any process P, with its label transi-
tion system 〈d(P), θ→, P 〉, assume that n = |d(P)| is
the cardinal of d(P). For any Pi, Pj ∈ d(P), the Q Ma-
trix is defined as Q = (qij)n×n, where

qij =

{
q(Pi, Pj) =

∑
Pi

θ→Pj
$(θk) if i
= j

−∑n
j=1,j �=i qij o.w.

Based on it, now we give the formal description of
the Markov chain derived from P.

Proceedings of the Fourth International Conference on Computer and Information Technology (CIT’04)

0-7695-2216-5/04 $20.00 © 2004 IEEE

Definition 9 For any process P with its labelled
transition system 〈d(P), θ→〉, the Continued Time
Markov Chain derived from P is defined as transition
system CTMC(P) = 〈d(P), r→M , P 〉, where r ∈ R+,

and the relation →M satisfy Pi
θk→ Pj if and only if

Pi
qij→M Pj, where qij is given in Definition 8.

In the below, we will prove that the CTMC(P) given
in Definition 9 is indeed a Continued Time Markov
Chain.

Theorem 2 For any finite state process (image-finite
process) P, let X(t) be the corresponding stochastic
process, then X(t) is a Continued Time Markov
Chain with state space d(P), and coincides with
CTMC(P) defined in Definition 16. In further, the
sojourn time in any state X(ti) = Pj satisfies expo-
nentially distribution with the parameter λ =

∑
$(θ),

where θ ∈ {θ|∃Pk, Pi
θ→ Pk}.

We omit the proof and refer the reader to [6].
Now, Following [5], we can measure the performance

of a process P by associating a so-called reward struc-
ture with it. Since in our framework, the CTMC is
regard as an underlying performance model for dis-
tributed concurrent system, the reward structure is
simply a function that associates a value with any
derivative of P. As in [5], we assume ρθ as a given
transition reward associated with any transition θ, in
accordance with the measures of interest (utilization,
throughput, etc), then the reward of a state P is
ρP =

∑
P

θ→Q
ρθ. Based on it, the total reward of P ,

which combines stationary distribution and rewards,
can be defined as R(P) =

∑
R∈d(P) ρR×Π(R). We can

use some standard tool (e.g. Mathematica) to carry out
performance evaluation for some systems. In the full
version of this paper, we invite an illuminating example
to demonstrate the application of our method. Some
simulation results are also reported in our technical re-
port ([6]). However, due to space restriction, here we
have to omit the detailed presentation and refer the
interested reader to [6] for more details.

5 Conclusion and Future Work

The main work of this paper is to provide a frame-
work of performance evaluation for mobile process in
the context of calculus of Mobile Ambient. We first in-
troduce a new enhanced labelled transition system for
MA, Then, we assign each label a cost by introducing
cost function, which represents the probability infor-
mation of the action execution. In analysis, this work

can be accomplished mechanically when analyzer pro-
vides corresponding parameter for the system. Based
on the above work, the CTMC for the system can be
easily derived which makes it easy to use some standard
tools to obtain the performance results. It is worth
pointing out that the advantages of our framework are
twofold: (1) the performance task can be accomplished
mechanically or semi-mechanically; (2) since we don’t
change the syntax of specification language(MA), and
the standard semantics can be easily recovered from
enhanced semantics by label conversion function given
in Definition 1. In this sense, we integrate the func-
tional and performance analysis into a compositional
formal framework, which provides some basis of unify-
ing formal methodology for the development of mobile
system.

The framework introduced in this paper is prelim-
inary. There are many directions remained as future
work. First, the probability distribution used in this
paper is exponential distribution, we want to introduce
other kind of distribution which can model actual case
more precisely; at the same time, we want to refine the
definition of cost function introduced in Section 3; and
more, it is very interesting to design and implement
a compositional tool which can support behavior and
performance analysis in context of MA, then apply our
theoretical results to practice.

References

[1] L.Cardelli, A.D.Gordon. Mobile ambients. Theo-
retical Computer Science, 240(2000), pp.177-213,
2000.

[2] H.Hermanns, U.Herzog, J.Katoen. Process alge-
bra for performance evaluation. Theoretical com-
puter science, 274(2002), pp.43-87, 2002.

[3] R.Milner, J.Parrow, D.Walker. A Calculus of Mo-
bile Process, part I/II. Journal of Information and
Computation, 100:1-77, Sept.1992.

[4] R.Nelson. Probability, Stochastic Processes, and
Queueing Theory. 1995.

[5] C.Nottegar, C.Priami, P.Degano. Performance
evaluation of mobile process via abstract ma-
chines, IEEE transactions on software engineering,
vol.27, no.10, pp.857-889, 2001.

[6] T.Chen, T.Han, J.Lu. Framework of Performance
Evaluation for Mobile Process Based on Mobile
Ambient, Technical Report of State Key Labo-
ratory for Novel Software Technology, Nanjing
Univ., Nanjing, P.R.China, 2003.

Proceedings of the Fourth International Conference on Computer and Information Technology (CIT’04)

0-7695-2216-5/04 $20.00 © 2004 IEEE

