
Analysis of A Leader Election Algorithm in µCRL ∗

Taolue Chen †

State Key Laboratory of Novel Software Technology,
Nanjing University, Nanjing, Jiangsu, P.R.China 210093

CWI, Department of Software Engineering,
PO Box 94079, 1090 GB Amsterdam, The Netherlands

Tingting Han Jian Lu
State Key Laboratory of Novel Software Technology,

Nanjing University, Nanjing, Jiangsu, P.R.China 210093

Abstract

This paper investigates the applicability of formal
methods for the specification and verification of dis-
tributed algorithms. The problem of election is an im-
portant class of distributed algorithms that are widely
studied in the literatures. We prove the correctness
of a representative leader election algorithm, that is,
the LCR algorithm, developed by LeLann, Chang and
Roberts. This algorithm is one of the early election
algorithms and serves as a nice benchmark for verifica-
tion exercises. The verification is based on the µCRL,
which is a language for specifying distributed systems
and algorithms in an algebraic style and combines the
process algebra and (equational) data types. We bring
the correctness of the algorithm to a completely for-
mal level. It turns out that this relatively “small” and
“simple” algorithm requires a rather involved proof for
guaranteeing that it behaves well in all possible circum-
stance. This paper demonstrates the possibility to de-
liver completely formal and mechanically verifiable cor-
rectness proofs of highly nondeterministic distributed
algorithm, which is indispensable in the design and im-
plementation of distributed algorithm and systems.

1 Introduction

It is well known that distributed algorithms are hard
to design correctly. This is not only caused by the in-
herent complexity of distributed systems, but is also

∗Funded by NNSFC (60233010, 60273034, 60403014), 863
Program of China (2001AA113110, 2002AA116010), 973 Pro-
gram of China (2002CB312002).

†Corresponding author. Email: ctl@ics.nju.edu.cn

due to the lack of adequate techniques to prove the cor-
rectness of such algorithms. This means that there are
no good ways of validating designs for the distributed
system. The current approach to proving correctness
of distributed system generally use stylished forms of
hand waving that does not always avoid the intrica-
cies and pitfalls that often appear in distributed algo-
rithms [6]. We are convinced that more precise proof
techniques need to be applied, which should allow for
computer based proof checking. Concretely this means
that formal method - a logic based approach should
be taken. However, hitherto the applicability of formal
methods for the specification and verification of dis-
tributed systems is still a much debated issue. For in-
stance, in [4], Chou claims that there are still no formal
methods to reason about distributed systems which
are both practical and intuitive. Some algorithms, al-
though “small” and “simple” in face, are difficult to
prove correct formally.

Distributed algorithm is one of the most active areas
in the community of parallel and distributed process-
ing. There are many sorts of distributed algorithms.
For an excellent survey, we refer the readers to [11].
Among these, leader election is a classical but signifi-
cant problem. In this problem, a network of identical
processes must choose a “leader” from among them-
selves. The processes are assumed to be indistinguish-
able, except that they may possess unique identifiers.
The election problem requires that, in short, starting
from a configuration where each process is in the same
state, a configuration is reached where exactly one pro-
cess is in a special state leader, while all other processes
are in the state lost. The difficulty lies in breaking the
symmetry. Besides the importance in the theory, the
solution for such problem is also of practical applica-

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

tions. For example, it can be used to implement a
fault-tolerant token-passing algorithm; if the token is
lost, the leader election algorithm can be invoked to
decide which process should possess the token.

In this paper, we study the distributed algorithm,
concretely, the leader election algorithm from the
prospective of formal verification, that is, proving the
properties of such algorithms. We consider a represen-
tative of early leader election algorithm for unidirec-
tional rings. This problem was first posed by LeLann
[10], who also proposed the first solution in the setting
of ring networks. In his algorithm, each initiator com-
putes a list of the identities of all initiators, after which
the initiator with the largest identity is elected. Each
initiator sends a token, containing its identity, via the
ring, and this token if forwarded by all processes. It is
assumed that the channels are FIFO and an initiator
must generate its token before the token of any other
initiator is received. When an initiator p receives its
own token back, the tokens of all initiators have passed
p, and p becomes elected if and only if p is the largest
among the initiators. Chang and Roberts [3] improve
LeLann’s algorithm by removing from the ring all to-
kens of processes for which it can be seen that they will
lose the election. In this paper, following [11], we refer
their algorithm as LCR algorithm. In this paper we
present a verification of this well-known algorithm in
µCRL, a process algebra which allows processes param-
eterized with data. The correctness of the algorithm is
stated as a process equation, the proof of which is a
straightforward application of the methodology from
[9], a combination of algebraic and assertional tech-
niques. We bring the correctness of the algorithm to a
completely formal level. It turns out that this relatively
“obvious” algorithm requires a rather involved proof
for guaranteeing that it behaves well in all possible cir-
cumstance. The results of this paper, to a large extent,
demonstrate the possibility to deliver completely for-
mal and mechanically verifiable correctness proofs of
highly nondeterministic distributed algorithm, which
is indispensable in the design and implementation of
distributed algorithm and systems.

The rest of this paper is organized as follows: Some
preliminaries are reviewed in the following section. We
mainly discuss the LCR algorithm, some background
material for µCRL, and cones and foci method. In
Section 3, we present the whole specification of the al-
gorithm, including the data type and process behavior.
Section 4 is devoted to the correctness proof. The pa-
per is concluded with Section 4 where related work is
also discussed.

2 Preliminaries

2.1 LCR Algorithm

We assume n processes in a ring topology, connected
by unbounded queues. A process can only send mes-
sages in a clockwise manner. Initially, each process
has a unique identifier (UID, in the following assumed
to be a natural number). The task of an algorithm
for solving the leader election problem is then to make
sure that eventually exactly one process will become
the leader. In LCR algorithm, the task that each pro-
cess in the ring performs is described by the following
pseud-code:

var statep

begin
statep=“unknown”;
value:=UID;
send value to Nextp;
while statep �= “leader” do

begin
receive a message v;
if v = value then statep:=“leader”

else if v > value then value := v;
endwhile

end
Note this is a non-formal version. Below we will

formalize the processes and their configurations in the
ring in µCRL.

2.2 µCRL

µCRL [7] (see also [6]) is a language for specify-
ing distributed systems and algorithms in an algebraic
style. It is based on the process algebra ACP [1]
extended with equational abstract data types. In a
µCRL specification, one part specifies the data types
by means of equations d = e, while the second part
specifies the process behavior. We assume the data
sort of booleans Bool with constants t and f, and the
usual connectives ∨, ∧, ¬, → and ↔. For a boolean b,
we abbreviate b = t to b and b = f to ¬b.

The data types needed for our µCRL specification
of a LCR are presented in Section 3. For the pro-
cess part of µCRL, the processes are usually repre-
sented by process terms, which describe the order in
which the actions from a set A may happen. To each
µCRL specification belongs a directed graph, called
a labelled transition system, which is defined by the
structural operational semantics of µCRL (see [7]). In
this labelled transition system, the states are process
terms, and the edges are labelled with parameterized
actions. Branching bisimulation �b [12] and standard

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

strong bisimulation ∼ are two well-established equiva-
lence relations on the states in labelled transition sys-
tems. Conveniently, strong bisimulation equivalence
implies branching bisimulation equivalence. The proof
theory of µCRL from [7] is sound modulo branching
bisimulation equivalence, meaning that if p = q can be
derived from it then p �b q. The goal of this paper is to
prove that the initial state of the forthcoming µCRL
specification of LCR is branching bisimilar to an ac-
tion which claims the leader. In the proof of this fact,
we will use three proof principles from the literature
to derive that two µCRL specifications are branching
(or even strongly) bisimilar: sum elimination, CL-RSP,
and cones and foci. Due to space restriction, we refer
the reader to [5][2] and [9] for details.

The rest of this subsection will be devoted to intro-
ducing some important notions. First we introduce the
notion of linear process operator (LPO in short). LPOs
are traditional defined equationally and processes (i.e.
linear process equation) can be defined as solutions for
LPOs.

Definition 1 A linear process operator (LPO) Ψ is
an expression of the form

Ψ = λp : DΨ → P.λd : DΨ.∑
i∈I

∑
ei:Di

ai(fi(d, ei)).p(gi(d, ei)) � ci(d, ei) � δ

for some finite index set I, action labels ai ∈ ALτ ,
data types Di and Dai

, functions fi : D → Di → Dai
,

gi : D → Di → D, and ci : D → Di → Bool. P is the
sort of processes.

We call an LPO convergent if the process it defines
cannot perform infinite sequences of τ -actions.

Definition 2 An LPO Φ written in Definition 1 is
called convergent if there is a well-founded ordering
< on D such that for all eτ : Eτ , d : D we have that
bτ (d, eτ) implies gτ (d, eτ) < d.

Invariants of a system are properties of data that
are satisfied throughout the reachable state space of
the system.

Definition 3 An invariant of an LPO Φ is a function
I : D → Bool such that for all a ∈ Act, ea : Ea and
d : D we have

ba(d, ea) ∧ I(d) → I(ga(d, ea))

3 Formal Description

3.1 Data Types

In this section, the data types used in the µCRL of
the LCR are presented.

3.1.1 Booleans

We introduce the data type Bool of booleans.

t, f : → Bool
∨,∧: Bool × Bool → Bool
¬: Bool → Bool
→,↔: Bool × Bool → Bool

t and f denote true and false, respectively. The infix
operations ∨, ∧ represent conjunction and disjunction,
respectively. Finally, ¬ denotes negation. Then defin-
ing equations are:

b ∧ t = b ¬t = f
b ∧ f = f ¬f = t
b ∨ t = t b → b′ = ¬b ∨ b′

b ∧ f = b b ↔ b′ = (b → b′) ∧ (b′ → b)

Unless otherwise stated, data parameters in boolean
formulas are universally quantified.

3.1.2 If-then-else and Equality

For each data type D in this paper we assume the pres-
ence of an operation

if : Bool × D × D → D

with as defining equations

if(t, d, e) = d
if(f , d, e) = e

Furthermore, for each data type D in this paper one
can easily define a mapping eq : D × D → Bool, such
that eq(d, e) holds if and only if d = e can be derived.
For notational conventional convenience we take the
liberty to write d = e instead of eq(d, e).

3.1.3 Natural Numbers

We introduce the data type N of natural numbers.

0: → N

S: N → N

+,−, ·: N × N → N

≤, <,≥, >: N × N → Bool

0 denotes zero and S(n) the successor of n. The infix
operations +,−, and · represent addition, subtraction
and implication, respectively. Finally, the infix opera-
tions ≤, <,≥ and > are the less-than (-or-equal) and
greater-than (-or-equal) operations. Usually, the sign
for multiplication is omitted, and ¬(i = j) is abbrevi-
ated to i �= j. Note that we take as binding convention:

{=, �=} > {·} > {+,−} >

{>,≥, <,≤} > {¬} > {∧,∨} > {→,↔}

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

The defining equations are:

i + 0 = i 0 ≤ i = t
i + S(j) = S(i + j) S(i) ≤ 0 = f
i − 0 = i S(i) ≤ S(j) = i ≤ j
0 − i = 0 0 < S(i) = t
S(i) − S(j) = i − j i < 0 = f
i · 0 = 0 S(i) < S(j) = i < j
i · S(j) = (i · j) + i0 i ≥ j = ¬(j < i)

i > j = ¬(j ≤ i)

3.1.4 Modulo Arithmetic

Since the topology of processes that take part in the
leader election is a ring, the calculations modulo n, the
number of processes, play an important role. We intro-
duce the following notation for module calculations.

| : N × N → N

div : N × N → N

i|n denotes i modulo n, while i div n denotes i integer
divided by n. The modulo operations are defined by
the following equations (for n > 0).

i|n =
{

i if i < n
(i − n)|n o.w.

i div n =
{

0 if i < n
S((i − n) div n) o.w.

3.2 Specification of LCR

In order to prove the correctness of the algorithm,
we must be precise about the behavior of the process.
Below we formalize the processes and their configura-
tion in the ring in µCRL.

act leader : N

s, r : N × N → N

proc P (k : N, send : N) ≈
s(k, (k + 1)|n, send).P (k, send)
+

∑
v:N r((k + n − 1)|n, k, v).(P (k, v) � v > k � δ

+leader(k) � v = k � δ)

Each process of the LCR is modelled by the process
P (k : N, send : N), where parameter k is the identifi-
cation (UID) of the process, and the parameter send
is the data the process intend to send each time. The
processes of the network interact via matching actions
s (send) and r (receive). We state that send actions
s communicate with receive actions r by comm rule
below. For each action, the parameters are source, des-
tination and value.

It remains to connect all processes together, for
which we define the parallel composition of m copies

of the process P . The result can be viewed as a ring
network of processes in the following way, which is rep-
resented by the process Imp(m).

act c : N × N × N

comm r|s = c
proc Imp′(m : N) ≈

(P (m − 1,m − 1)‖Imp′(m − 1)) � m > 0 � P (0, 0)
Imp(m : N) ≈ τ{c}∂{r,s}(Imp′(m))

Since the algorithm is supposed to select exactly one
leader (actually, the one who has the largest UID) after
some internal negotiation, we formulate the correctness
of the algorithm by the following formula, where “=”
is to be interpreted as “behaves the same”. This is
the standard approach in process algebra and the in-
tuitional sense is clear. Note that since there are n
processes who join the election, the maximal UID is
n − 1.

Theorem 1 For n > 0, Imp(n) = leader(n − 1).

The remainder of this paper is devoted to proving the
above theorem.

4 Proof of the Algorithm

4.1 Linearization

The starting point of our correctness proof is a lin-
ear specification in which no parallel operators occur.
That is, we intend to describe the leader election al-
gorithm as a µCRL in a state based style, as this is
far more convenient for proving purpose.We follow the
linearization algorithm presented in [8]. For technical
reasons, we first introduce an extra recursive variable
X. It follows that

P (k : N, send : N) ≈
s(k, (k + 1)|n, send).P (k, send)

+
∑
v:N

r((k + n − 1)|n, k, v).X(k, v)

X(k : N, v : N) ≈
P (k, v) � v > k � δ

+leader(k) � v = k � δ

≈ s(k, (k + 1)|n, send).P (k, v) � v > k � δ

+
∑
v:N

r((k + n − 1)|n, k, v).X(k, v) � v > k � δ

+leader(k) � v = k � δ

Inspection of the processes P and X indicates that
there are two different major states between the ac-
tions, which is reflected by the newly introduced extra

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

parameter st in the following process definition Proc.
The states in P are numbered by 1 and those in X get
the number 2.

Proc(k : N, v : N, st : N) ≈
s(k, (k + 1)|n, v).P roc(k, v, 1) � st = 1 � δ

+
∑
v′:N

r((k + n − 1)|n, k, v′).P roc(k, v′, 2) � st = 1 � δ

+leader(k) � v = k ∧ st = 2 � δ

+s(k, (k + 1)|n, v).P roc(k, v, 1) � v > k ∧ st = 2 � δ

+
∑
v′:N

r((k + n − 1)|n, k, v′).P roc(k, v′, 2)

�v > k ∧ st = 2 � δ

As we have stated in Section 2, invariants of a sys-
tem can exclude those states that can not be reached
from the initial state, thus can compress the state space
of the system extensively. To simplify the above pre-
sented equation further, we introduce the first invari-
ant, that is:

I1 : st = 1 ∨ st = 2 = t

It follows that (st = 1)∨ (v > k ∧ st = 2) ↔ (st = 1)∨
(v > k). Thus we can obtain the following simplified
definition.

Proc(k : N, v : N, st : N) ≈
s(k, (k + 1)|n, v).P roc(k, v, 1) � (st = 1 ∨ v > k) � δ

+
∑
v′:N

r((k + n − 1)|n, k, v′).P roc(k, v′, 2)

�(st = 1 ∨ v > k) � δ

+leader(k) � (v = k ∧ st = 2) � δ

The following lemma states the correctness of the
linearlization for the single process which joins the elec-
tion.

Lemma 1 For any k ∈ N, P (k, k) = Proc(k, k, 1).

Proof: An easy adaption of [8]. �

In order to define the parallel composition we will
use a new sort DTable, which defines the tables indexed
by natural numbers, and contains elements of the sort
Elt, which is also defined as follows first:

sort Elt
func 〈−,−〉 : N × N → Elt

()1 : Elt → N

()2 : Elt → N

var m,n : N

rew (〈m,n〉)1 = m
(〈m,n〉)2 = n

Note that actually each item of Elt is a pair of two ele-
ments, one is used to store the UID of the process while
the other is used to store the current state. 〈−,−〉, ()1
and ()2 are standard pair functions.

Now, we give the specification of tables, which are
simple structures with sufficient functionality for our
purpose. The constant emD of sort DTable denotes
the empty table. The function upd enters a new data
element in the table and the function get gets a specific
element from an entry of the table. These operators are
characterized by a single equation. We do not specify
what happens if an element from the empty table is be-
ing read, as we simply do not encounter this situation.

sort DTable
func emD :→ DTable

upd : DTable × Elt × N → DTable
get : DTable × N → Elt

var m,n : N, e : Elt, dt : DTable
rew get(upd(dt, e, m), n) = if(m = n, e, get(dt, n))

In order to define the initial data, we define the table
of n entry (indexed by 0, 1, . . . , n − 1) as follows:{

dt(0) = upd(emD, 〈0, 1〉, 0)
dt(m) = upd(dt(m − 1), 〈m, 1〉,m)

Now, we can give an expansion of Imp, where all oper-
ators for parallelism have been removed. The resulting
process has the index m and the table bt as parame-
ters. In essence, the complexity of process Imp is now
coded using the simple table operations upd and get.
In the sequel, let Par act on data of kth component,
whose data state is represented by the kth table en-
try. For convenience, we also let Par′(m, bt) abbreviate
∂H(Par(m, bt)). After expansion and encapsulation it
follows that:

Par′(m : N, bt : DTable) ≈∑
k:N

leader(k)

�k = (get(bt, k))1 ∧ (get(bt, k))2 = 2 ∧ k < m � δ

+
∑
k1:N

∑
k2:N

c(k1, (k1 + 1)|n, (get(bt, k1))1).

Par′(m,upd(upd(bt, 〈(get(bt, k1))1, 1〉, k1),
〈(get(bt, k2))2, 1〉, k2))

�((get(bt, k1))1 > k1 ∨ (get(bt, k1))2 = 1)
∧((get(bt, k2))1 > k2 ∨ (get(bt, k2))2 = 1)
∧(k1 = (k2 + n − 1)|n) ∧ ((k1 + 1)|n = k2)
∧k1 > k2 ∧ k1 < m � δ

Note that this linear specification is obtained by strip-
ping all arguments from communication actions, and

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

renaming these actions according to the rule s|r = c.
We can rewrite the above equation to the following
simple one, eliminating all occurrences of |n from the
specification. This is the linear specification Par′(m :
N, bt : DTable) of the LCR, with encapsulation but
without hiding, takes the following form.

Par′(m : N, bt : DTable) ≈
m−1∑
k=0

leader(k) � k = (get(bt, k))1

∧(get(bt, k))2 = 2 � δ

+
m−2∑
k=0

c(k, k + 1, (get(bt, k))1).

Par′(m,upd(upd(bt, 〈(get(bt, k))1, 1〉, k1),
〈(get(bt, k + 1))2, 2〉, k + 1))
�((get(bt, k))1 > k ∨ (get(bt, k))2 = 1)
∧((get(bt, k + 1))1 > k + 1 ∨ (get(bt, k + 1))2 = 1) � δ

+c(m − 1, 0, (get(bt,m − 1))1).
Par′((m,upd(upd(bt, 〈(get(bt,m − 1))1, 1〉, k1),
〈(get(bt, 0))2, 2〉, 0))
�((get(bt,m − 1))1 > m − 1 ∨ (get(bt,m − 1))2 = 1)
∧((get(bt, 0))1 > 0 ∨ (get(bt, 0))2 = 1) � δ

The following lemma states the correctness of the lin-
earlization for the whole processes.

Lemma 2 For any n > 0,

Imp(n) = τ{c}(Par′(n, dt(n − 1)))

Proof: An easy adaption of [8]. �

Now, the proof of Theorem 1 boils down to proving
that for any n > 0, leader(n−1) = τ{c}(Par′(n,dt(n−
1))), which will be completed in the next section.

4.2 Correctness

The following lemma collects invariants of specifica-
tion that are needed in the correctness proof. Note the
first one rehearses the invariant I1.

Lemma 3 The following invariants hold for
τ{c}(Par′(n, dt(0))).

1. I1 ≡ 0 ≤ k < n∧ (get(bt, k))2 = 1∨ (get(bt, k))2 =
2.

2. I2 ≡ 0 ≤ k < n ∧ (get(bt, k))1 ≤ k.

3. I3 ≡ (get(bt, k))2 = 1 → (get(bt, k))1 < k.

4. I4 ≡ (get(bt, k))2 = 2 → (get(bt, k))1 = k.

Proof: Directly from the definition. �

Observe the above equation for Par′. The first sum-
mand denotes the external actions, that is, if the con-
dition satisfied, one will declare that it is the leader, by
some action leader with its UID. The second summand
is the most complicated. It specifies the internal activ-
ity of the table. At each possible action c, the table
element in cell i is moved on to cell number i + 1.

Next, abstraction is applied to the equation, and
all actions c are renamed to τ . It is not hard to see
that the resulting equation is still convergent; If pro-
cess τ{c}(Par′) is restricted to performing only inter-
nal actions (τ -steps), then the process “converges” to a
state where no element in the table can move closer to
the next cell. This situation is captured by the focus
condition.

FC(k, bt)
def
= (0 ≤ k < n

∧(get(bt, k))1 = n − 1) ∨ (get(bt, k))2 = 2

As pointed out in the previous section, the current
goal is to prove the following equation, which states
the major conclusion of this section.

τ{c}(Par′(n, dt(n − 1))) = leader(n − 1)

Here the cones and foci technique, described in the
previous section, can be applied successfully. First, we
give the definition for the state mapping h as follow-
ings.

First define{
dtf(0) = upd(emD, 〈n − 1, 2〉, 0)
dtf(m) = upd(dtf(m − 1), 〈n − 1, 2〉,m)

then define state mapping h as h(m, dt) = (m, dtf(n−
1)). We have already stated the convergence of the
equation for Par′ after renaming the ci to τ (so for
τI(Par′)). Considering the renaming matching crite-
ria, we find the following proof obligations:

1. Internal actions in the implementation preserve
the mapping. Note that our state mapping h is
a constant function, this is clearly true.

2. If the implementation can do a visible action then
the specification can do a similar one. That is,
formally,

(get(bt, k))1 = k ∨ (get(bt, k))2 = 2) → t

and

((get(bt, k+1))1 = k+1)∨(get(bt, k+1))2 = 2) → t

These are clearly true.

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

3. If the specification can do a visible action and
the focus condition holds, then the implementa-
tion can do a similar one.

((0 ≤ k < n ∧ (get(bt, k))1 = n − 1) ∨ (get(bt, k))2 = 2)
∧true → (k = (get(bt, k))1 ∧ (get(bt, k))2 = 2)

Note that by I2 (Lemma 3), 0 ≤ k < n ∧
(get(bt, k))1 ≤ k, thus for any 0 ≤ k ≤ n − 2,
(get(bt, k))1 ≤ n−2. Consequently, n−1 < n and
get(bt, n − 1))1 = n − 1 and (get(bt, n − 1))2 = 2
implies that k = (get(bt, k))1 ∧ (get(bt, k))2 =
2. Moreover, by I4, (get(bt, k))2 = 2 →
(get(bt, k))1 = k, thus this also true.

4. The implementation and the specification have the
same data parameters on visible actions.

k = (get(bt, k))1 ∧ (get(bt, k))2 = 2 → k = n − 1

This is an immediate result of Invariant I3.

5. If the implementation and specification perform
a visible action, then the mapping on the (data)
state of the process is altered in a similar way. This
is definitely trivial, since in our specification and
implementation, the visible action has no continue
process.

This completes the proofs.

5 Conclusion

In this section, we conclude our work. This pa-
per investigates the applicability of formal methods
for the specification and verification of distributed sys-
tems. We choose the LCR algorithm, an election al-
gorithm developed by LeLann, Chang and Roberts as
the case. We make such a choice because on one hand,
the problem of election is a very important class of dis-
tributed algorithms that are widely studied in the lit-
eratures, on the other hand, such algorithm serves as
a nice benchmark for verification exercises. The ver-
ification is based on the µCRL, which is a language
for specifying distributed systems and algorithms in
an algebraic style and combines the process algebra
and (equational) data types. We bring the correctness
of the algorithm to a completely formal level. It turns
out that this relatively “small” and “simple” algorithm
requires a rather involved proof for guaranteeing that
it behaves well in all possible circumstance. This paper
demonstrates the possibility to deliver completely for-
mal and mechanically verifiable correctness proofs of
highly nondeterministic distributed algorithm, which
we believe is indispensable in the design and imple-
mentation of distributed algorithm and systems.

References

[1] J. A. Bergstra and J. W. Klop. Process algebra
for synchronous communication. Information and
Control, 60(1-3):109–137, 1984.

[2] M. Bezem and J. F. Groote. Invariants in process
algebra with data. In B. Jonsson and J. Parrow,
editors, CONCUR, volume 836 of Lecture Notes in
Computer Science, pages 401–416. Springer, 1994.

[3] E. J. H. Chang and R. Roberts. An improved
algorithm for decentralized extrema-finding in cir-
cular configurations of processes. Commun. ACM,
22(5):281–283, 1979.

[4] C.-T. Chou. Practical use of the notions of events
and causality in reasoning about distributed algo-
rithms. Technical Report 940035, UCLA, 1994.

[5] J. Groote and H. Korver. Correctness proof of
the bakery protocol in µCRL. In Proc. ACP’94,
Workshops in computing, pages 63–86. Springer,
1995.

[6] J. Groote and M.Reniers. Algebraic process veri-
fication. In J. Bergstra, A. Ponese, and S. Somlka,
editors, Handbook of Process Algebra, pages 1151–
1208. Elsevier, 2001.

[7] J. F. Groote and A. Ponse. Proof theory for
µCRL: A language for processes with data. In
D. J. Andrews, J. F. Groote, and C. A. Mid-
delburg, editors, Semantics of Specification Lan-
guages, Workshops in Computing, pages 232–251.
Springer, 1993.

[8] J. F. Groote, A. Ponse, and Y. S. Usenko. Lin-
earization in parallel pCRL. J. Log. Algebr. Pro-
gram., 48(1-2):39–70, 2001.

[9] J. F. Groote and J. Springintveld. Focus points
and convergent process operators: a proof strategy
for protocol verification. J. Log. Algebr. Program.,
49(1-2):31–60, 2001.

[10] G. L. Lann. Distributed systems - towards a for-
mal approach. In IFIP Congress, pages 155–160,
1977.

[11] N. Lynch. Distributed Algorithm. Morgan Kauf-
mann Publishers, 1996.

[12] R. J. van Glabbeek and W. P. Weijland. Branch-
ing time and abstraction in bisimulation seman-
tics. J. ACM, 43(3):555–600, 1996.

Proceedings of the 2005 The Fifth International Conference on Computer and Information Technology (CIT’05)
0-7695-2432-X/05 $20.00 © 2005 IEEE

