
Towards A Modal Logic For π-Calculus ∗

Taolue Chen† Tingting Han Jian Lu
State Key Laboratory of Novel Software Technology,

Nanjing University, Nanjing, Jiangsu, P.R.China 210093

Abstract

The π-calculus is one of the most important mo-
bile process calculi and has been well studied in litera-
tures. Temporal logic is thought as a good compromise
between description convenience and abstraction and
can support useful computational applications, such as
model-checking. In this paper, we use symbolic tran-
sition graph inherited from π-calculus to model con-
current systems. A wide class of processes, that is,
the finite-control processes can be represented as finite
symbolic transition graph. A new version modal logic
for π-calculus, an extension of the modal µ-calculus
with boolean expressions over names, and primitives for
name input and output are introduced as an appropriate
temporal logic for the π-calculus. Since we make a dis-
tinction between proposition and predicate, the possible
interactions between recursion and first-order quantifi-
cation can be solved. A concise semantics interpreta-
tion for our modal logic is given. Based on the above
work, we provide a model checking algorithm for the
logic. This algorithm follows the well-known Winskel’s
tag set method to deal with fixpoint operator. As for
the problem of name instantiating, our algorithm fol-
lows the ’on-the-fly’ style, and systematically employs
schematic names. The correctness of the algorithm is
shown.

Key Words: π-calculus, Symbolic Transition
Graph, Modal Logic, Model Checking Algorithm.

1 Introduction

Over the last decades, various calculi of mobile pro-
cesses, notably the π-calculus [7], have been the focus
of research in concurrency theory. Because of the defi-
ciency of using algebra method to model and describe

∗Supported by NNSFC (60273034, 60233010), 863 Pro-
gram (2001AA113110, 2002AA116010), 973 Program of China
(2002CB312002), JSFC (BK2002203, BK2002409)

†Email: ctl@ics.nju.edu.cn

related properties of systems, e.g. mobility, safety, a
lot of research has focused on modal logic of calculus.
Modal logic (temporal logic especially) is thought as
a good compromise between description convenience
and abstraction. In addition, many modal logics sup-
port useful computational applications, such as model-
checking. As a powerful language to describe mobile
and dynamic process networks, the problem of verify-
ing general temporal and functional properties, cast in
terms of the π-calculus, has been investigated in-depth.
Some modal logic systems for π-calculus have been pro-
vided in the literatures, such as [8][1][3]. In [1][3] and
more recently [5], Amadio and Dam introduced recur-
sion into the modal logic via fixpoints, as in the propo-
sitional µ-calculus, thus has the ability to express prop-
erties for processes with infinite behaviors. These logic
systems may be referred as π-µ-calculus. The main
concern of these two papers is to formulate proof sys-
tems for deriving statements asserting whether a pro-
cess satisfies a formula. Moreover, from our points of
view, although the composition proof systems in the
two papers are subtle, they are a little tedious, espe-
cially the completeness proof. In our opinions, this
might due to the lack of adequate ’symbolic’ infor-
mation. The start point is to remedy this deficiency
in some sense. It is well-known that symbolic tech-
nique has been widely used for name-passing calculi,
especially for providing the complete proof system for
bisimulation equivalence and devising efficient bisimu-
lation checking algorithm, [6]. In this paper, we borrow
the ideas from this technique and adapt it to devising
model checking algorithms.

We present our main idea in brief. In this paper,
first, we use symbolic transition graph to model con-
current systems. A wide class of processes, that is, the
finite-control processes can be represented as a finite
symbolic transition graph. Second, we introduce a new
version modal logic for π-calculs, which is an extension
of the modal µ-calculus with boolean expressions over
names, and primitives for name input and output as
an appropriate temporal logic for the π-calculus. Note

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

that in our logic, the ’bound output’ modality is worth
paying attention to. The fresh name quantification due
to Pitts which is used in spatial logic [2] is subsumed
implicitly, thus we must face the problem of possible in-
teractions between recursion and first-order quantifica-
tion. To solve this problem, we make a distinction be-
tween proposition and predicate in the syntax of logic
system, thus a concise semantics interpretation for our
modal logic can be given while the notion of ’property
sets’ is not needed. We defer more details to Section
2. As an essential application of our logic, in 3 we
present a model checking algorithm. We follow the
well-known Winskel’s tag set method to deal with fix-
point operator since we prefer the local algorithm. As
for the problem of name instantiating, our algorithm
follows the ’on-the-fly’ style, and systematically em-
ploys schematic names, that is, the fresh name set of
current node and logical formula with one new name.
The correctness of the algorithm is shown. Note that
due to space restriction, the content on π-calculus and
symbolic transition graph (STG) is omitted in this ex-
tended abstract, since they have little to do with our
own contribution and can be found easily in common
literatures. We refer the reader to [7][8][6] for more de-
tails. All of the notations of this paper follows them.
Moreover, all proofs in this paper are omitted.

The rest of the paper is organized as follows: In Sec-
tion 2, the modal logic is introduced and the seman-
tics is given, some useful properties are also discussed
in this section. The model checking algorithm is pre-
sented and its correctness is shown in Section 3. The
paper is concluded with Section 4 where related work
is also discussed.

2 Modal Logic System

2.1 Syntax

We assume a countably infinite set V of name vari-
ables ranged over by x, y, z . . . , such that V ∩ N = ∅.
And we assume a countably infinite set X of predicate
variables, ranged over by X, Y, Z, Each predicate
variable has been assigned an arity n ∈ ω, written
X : n. The syntax of the formula is defined by BNF as
follows:

α ::= τ | u?(x) | u?v | u!v | u!(x)
φ ::= true | u = v

A, B ::= φ | Λ(ũ) | ¬A | A ∧ B | ∀x.A | 〈α〉A
Λ ::= X | (x̃)A | νX.Λ

where, u, v ∈ N ∪ V .
The syntax is divided into two categories: propo-

sitions and predicates. Semantically, propositions de-
note sets of nodes in a STG (i.e. process terms), while
predicates denote functions from sets of names to sets
of nodes. For propositions, the operators are rather
standard since it is adapted from well-known Hennessy-
Milner Logic. A predicate is either a predicate variable
X , or an abstraction (x̃)A, or a greatest fixpoint νX.Λ.
When forming an abstraction (x̃)A, as our notation in-
dicates, it is required that x̃ be a vector of distinct
name variables. Then the arity of a predicate Λ is
defined as: the arity of X if Λ has the form X or νX.Λ,
or the length of x̃ if Λ has the form (x̃)A. In abstrac-
tions and applications we always require arities to be
matched properly.

In formulas of the form ∀x.A, 〈u?(x)〉.A, 〈u!(x)〉.A,
(x̃)A and νX.Λ, the distinguished occurrences of x and
X are binding, with the scope of the propositions A or
predicate Λ. These introduce the notions of bound and
free name variables as well as bound and free predicate
variables in the usual way. The set of free names ,
free name variables and free predicate variables of a
formula A are denoted by fn(A), fnv(A) and fpv(A)
respectively. Formulas that do not have free name vari-
ables are name-closed. Formulas that do not have
free predicate variables are predicate-closed. A for-
mula is closed if it is both name-closed and predicate-
closed.

We defined on formulas the relation ≡α of α-
congruence in the standard way, that is, as the least
congruence identifying formulas modulo renaming of
bound (name and predicate) variables. We will con-
sider formulas always modulo α-congruence. Note that
for formula, the notion of name substitution is ex-
tended to function from N ∪V to N , i.e. we allow the
name variables to be replaced by names. Note that for
convenience, we identify β-equivalence formulas, that
is, ((x̃)A)(ũ) and A[ũ/x̃].

The unary operator ¬ is negative. An occurrence of
a predicate variable is positive if it is under an even
number of negative operators. X occurs positively in
a formula A if every occurrence of X in A is positive.
Otherwise we say X occurs negatively in A. A fixpoint
predicate νX.Λ is well-formed if fn(Λ) = fnv(Λ) = ∅
and X occurs positively in Λ. Note that we require
that predicate Λ has no free name, thus n(Λ(ũ)) and
fv(Λ(ũ)) are totally determined by the actual param-
eter ũ, which is very important to the soundness of
semantics. A formula is well-formed if every fixpoint
subformula in it is well-formed. In the sequel, we only
consider well-formed formulas.

As usual, in our modal logic system, we can de-

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

fine some standard derived connectives, e.g. ¬, ∨, [α],
∃x.A, µX.Λ. Since they are routine, we omit the de-
tails.

2.2 Semantics

Given STG G, by the concrete operational seman-
tics rules, we can get a concrete graph denoted by G.
The semantics of formula is defined by assigning to
each formula A a node set of G, i.e. �A�, namely all
the nodes of G that satisfy the property denoted by
A. For convenience, we denote nσ by s and for any
s ≡ nσ, s[c/b] ≡ nσ[b�→c]. Since formulas may con-
tain free name variables and free predicate variables,
to interpret them we need name valuations and pred-
icate valuations. A name valuation ρ is an extended
version of substitution, which is a total mapping from
N ∪ V → N with identity on N . A predicate valua-
tion ξ assigns to every predicate variable X of arity k a
function ξ(X) : N k → ℘(G). As usual, the relation ⊆
can be extended point-wise to functional space as fol-
lows: for each k, two functions f (k), g(k) : N k → ℘(G),
define f (k) � g(k) iff f(ñ) ⊆ g(ñ) for any ñ ∈ N k.
Thus, the functional space N k → ℘(G) forms a com-
plete lattice w.r.t. �. The denotation of formulas is
defined inductively in Figure.1.

If A is name-closed then �A�ρ;ξ does not depend
on ρ and will be written �A�ξ. Furthermore, if A is
name-closed and predicate-closed, then �A�ρ;ξ depends
on neither ρ nor ξ and it will be written as �A�. We
will write s |= A to denote s ∈ �A�.

As in the case of first-order logic, the following
lemma which relates substitutions and valuations is
common, and will be used implicitly.

Lemma 1 The following properties hold:

(i) �A[b/x]�ρ;ξ=�A�ρ[x �→b];ξ.

(ii) �Λ[F/X]�ρ;ξ = �Λ�ρ;ξ[X �→ξ(F)].

It is routine to show that for any formula A and
B with A ≡α B, �A�ρ,ξ = �B�ρ,ξ for any ρ and ξ,
which justifies our decision to identify α-equivalent
formulas. Also, we can easily show the monotonic-
ity of the semantics function Λ, since it is required
that X occur positively in Λ. Thus, λf.�A�ρ,ξ[X �→f]

is a monotone functional over the complete lattice
({f : N k → ℘(G)},�). By Knaster-Tarski Theorem,
we can draw the conclusion that νX.Λ is the greatest
fixpoint of λf.�A�ρ,ξ[X �→f]. The soundness of semantics
can be obtained.

Now, we make some remarks on the choice of modal-
ity for the logical system. Generally speaking, there

are two styles of syntax for the ’Hennessy-Milner logic’
like systems for π-calculus. One is used by [8], the
other is used by [3][5]. We follow the style of the for-
mer since from our point of view, it is clearer. How-
ever, the semantics is dramatically different. First, [8]
lacks a modality for bound output, although the syn-
tax 〈ā(x)〉A exists in the logic system. It is not dif-
ficult to see that the semantics for 〈ā(x)〉A does not
coincide with the intuition very much. Second, the in-
put modality in this paper coincides with the 〈ā(x)〉L
in [8]. We don’t introduce the corresponding modality
for the other two ’input’ modality because they can be
rendered in our framework as follows:

〈a(b)〉A def
= ∃x.〈a?x〉A 〈a(b)〉EA

def
= ∀x.〈a?x〉A

The bound output modality needs more remarks.
Note that our semantics for this modality coincides
with Dam’s though the syntax is different. To make
this modality clearer, we consult to the fresh name
quantification Nand Dam’s syntax a little. In fact,

〈a!(x)〉A def
= 〈a〉 Nx.x ← A

We think reader who is familiar with Ncan easily un-
derstand this. We refer the reader to [2] for details. It
is worth pointing out that as we mentioned in Section
1, such a quantification conveys difficulties when giving
an interpretation though it is only implicit in our logic.
The similar problems have been considered in [2]. As
a remedy, [2] introduces the notion of PSets (Property
sets). However, such a semantic device makes the se-
mantics definition rather complex. Our solution is to
make distinction between proposition and predicate,
thus the possible interactions between recursion and
first-order quantification can be solved. The advan-
tage of our system lies in that the semantics of our
logic is clearer and more concise. What’s more, it is
more favorable for model checking purpose. Also, it is
worth pointing out that we need not introduce 〈a!(b)〉-
like modality, since by the semantics, the choice of con-
crete name as the content of output action is immate-
rial, therefore, we use a variable instead of name.

Now, we set to establish some important results con-
cerning the properties of logical formula, which is im-
portant for the model checking algorithm. Following
[2], we use transposition as a useful tool to give some
concise proof of properties concerning fresh names.
The following definition extends the notion of trans-
position to predicate.

Definition 1 Let θ be a transition. A function f :
N → ℘(G) is θ-preserving if (f(n))θ = f(nθ) for any
n. A valuation ξ is θ-preserving if ξ(X) is θ-preserving
for any X.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

�φ�ρ;ξ =
{ G If ρ |= φ

∅ o.w.
�A ∧ B�ρ;ξ = �A�ρ;ξ ∩ �B�ρ;ξ

�¬A�ρ;ξ = G\�A�ρ;ξ

�〈τ〉A�ρ;ξ = {s | ∃s′, s.t. s
τ→ s′ ∧ s′ ∈ �A�ρ;ξ}

�〈u!v〉A�ρ;ξ = {s | ∃s′, s.t. s
ūρvρ→ s′ ∧ s′ ∈ �A�ρ;ξ}

�〈u?(x)〉A�ρ;ξ = {s | ∃s′, s.t. s
uρ(b)→ s′ ∧ s′[c/b] ∈ �A�ρ[x �→c];ξ for all c ∈ N}

�〈u!(x)〉A�ρ;ξ = {s | ∃s′, s.t. s
ūρ(b)→ s′ ∧ s′[c/b] ∈ �A�ρ[x �→c];ξ for some c /∈ fn(s) ∪ fn(A)}

�〈u?v〉A�ρ;ξ = {s | ∃s′, s.t. s
uρ(b)→ s′ ∧ s′[vρ/b] ∈ �A�ρ;ξ}

�Λ(ũ)�ρ;ξ = �Λ�ρ;ξ(ρ(ũ))
�X�ρ;ξ = ξ(X)

�(x̃)A�ρ;ξ = λỹ.�A�ρ[x̃ �→ỹ];ξ

�νX.Λ�ρ;ξ = �{F : N k → ℘(G) | F � �Λ�ρ;ξ[F/X]}

Figure 1. Interpretation of Formula

Lemma 2 Given a transposition θ and a function f :
N → ℘(G), define fθ : N → ℘(G), then the following
properties hold:

(i) fθ is θ-preserving.

(ii) If f � g and g is θ-preserving, then fθ � g.

Lemma 3 Suppose ξ is θ-preserving, then the follow-
ing properties hold:

(i) (�A�ρ;ξ)θ = �Aθ�ρ;ξ .

(ii) �Λ�ρ;ξ is θ-preserving.

According to the semantics of ∀x.A and 〈a?(x)〉A ,
to check if P ∈ �∀x.A� requires to instantiate x with
every name. However, as the following lemma demon-
strates, it is sufficient to consider only the free names
of A plus one fresh name. This finite characterization
will be exploited in the model checking algorithm.

Lemma 4 Suppose c /∈ fn(s, A), then the following
properties hold:

(i) s ∈ �∀x.A�ρ;ξ iff s ∈ ⋂
k∈fn(A)∪{c}�A�ρ[x �→k];ξ.

(ii) s ∈ �〈u?(x)〉A�ρ;ξ iff there exists s′ s.t. s
ρ(u)(b)→ s′

and s′[k/b] ∈ �A�ρ[x �→k];ξ for k ∈ fn(A) ∪ fn(s) ∪
{c}.

The semantics definition of the 〈a!(x)〉A is stated
in ’existential’ style, i.e. s |= 〈a!(x)〉A if there is

some fresh name c and s′, such that s
a(b)→ s′ and

s′[c/b] |= A[c/x]. We give such a definition because
from our point of view, it may coincide with our intu-
ition of bound output and restriction operator better.
However, since c is not free in either s or A, this partic-
ular choice of c should not matter. That is, any other
name d with d /∈ fn(s, A) should equally do. Thus
indeed the semantics can also be characterized ’univer-
sally’.

Lemma 5 s ∈ �〈a!(x)〉A�ρ;ξ iff there exists s′ s.t.

s
ā(b)→ s′ and s′[c/b] ∈ �A�ρ[x �→c];ξ for every c /∈

fn(s, A).

3 Model Checking Algorithm

In this section, we devote to providing a model
checking algorithm for our modal logic. Based on the
results in the last section, now the most challenging
problem is to deal with the fixpoint operator. For
propositional µ-calculus, many researchers have pro-
vided a lot of methods to solve this problem. We choose
the so called local model checking algorithm since the
global algorithm requires a prior construction of state
space, which is impossible in our setting.

One of the notable features of such an algorithm is
the mechanism used to keep track of unfolding fixpoint

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

formula. We follow the framework due to Winskel [9],
sometimes referred as tag set method, i.e. we introduce
tags into fixpoint formula, which remembers exactly
which points of the model have been visited before.
However, differing from [9], we lift it to the predicate
case and in our algorithm, the tag sets will contain pairs
(ñ, s) of name vector and the node of STG. Formally,
let T = {(b̃1, s1), . . . , (b̃n, sn)}, where, ñi (1 ≤ i ≤ n)
are vectors of the same length, say k and for ∀i, j, i �= j,
we have b̃i �= b̃j. For any tag set T , we use λT to denote
a function N k → ℘(G) defined as follows:

(λT)(b̃) =
{ ⋃

i{si} if (b̃, si) ∈ T
∅ if o.w.

Now, the fixpoint predicate νX.Λ can be generalized
to νX.[T]Λ, note that the X must have the same arity
as T and the usage of T lies in recording what points
of the model have been visited before thus is only a
bookkeeping device. The definitions of n(νX.[T]Λ),
fv(νX.[T]Λ) and fpv(νX.[T]Λ) are the same as the
corresponding definition for νX.Λ. Obviously, νX.Λ
can be covered as νX.[]Λ.

The denotation of νX.[T]Λ is a simple extension for
�νX.Λ�ρ;ξ as follows:

�νX.[T]Λ�ρ;ξ = �{F : N k → ℘(G)|F � �Λ�ρ;ξ[X �→F]�λT }

There now follows a technical lemma which is a gen-
eralization of the so called Reduction Lemma of [9], the
essence of the tag set method.

Lemma 6 (Reduction Lemma) Let L = N k → ℘(G)
be a complete lattice and let φ be a monotone func-
tional. Then for any f ∈ L,

f � νg.φ(g) iff f � φ(νg.(φ(g) � f))

Since X occurs positively in Λ, λf.�Λ�ρ;ξ[X �→f] � λT

is a monotonic functional over N k → ℘(G), and
�νX.[T]Λ�ρ;ξ is its greatest fixpoint. So, using Lemma
6, the following lemma can be easily proved.

Lemma 7 If s /∈ λT (b̃), then

s ∈ �νX.[T]Λ�ρ;ξ(b̃) iff s ∈ �Λ[νX.[T∪{(b̃, s)}]Λ/X]�ρ;ξ(b̃)

Now, we present our algorithm as follows. The algo-
rithm inputs a STG with the root n and substitution
σ and a closed formula A. As usual, we denote mσ as
s. The algorithm returns true if s = mσ satisfies A,
otherwise, it returns false. The pseudo-codes of the al-
gorithm is presented in Figure.2. Recall that for a set
of names V ⊂fin N , function new(V) returns the least
name in N\V .

Now, we devote to proving the correctness of our
algorithm. To establish the termination property of
the algorithm, we need to bound on the number of
names for model checking processFirst, we should point
out that according to the rule for transferring process
terms to STG, all bound names in a STG are different.
And since we adopt the α-equivalence for formula, we
can assume the bound name variables in a formula are
also different. Now, we write NG for the number of
names (including free and bound names) contained in
the nodes of G and NA for the number of names and
name variables contained in A. Note that names in tag
set of the formula does not be included, since it only
contributes as a bookkeeping. The following lemma
is important, by which we can conclude that provided
that each term only appears once in each tag set (just
as in our algorithm), the size of tag set is bounded since
the STG we consider is finite.

Lemma 8 For each recursive call of check, with caller
parameter (s, A) and the callee parameter (s’,A’), Ns′+
NA′ ≤ Ns + NA

We now use this fact to give a well-founded ordering
to formula. We write A �G A′ iff A′ is not a fixpoint
formula and A is a proper sub-formula of A′, other-
wise A is the form (Λ[νX.[T ∪ {b̃, s}]Λ/X])(b̃) and A′

is (νX.[T]Λ)(b̃) where (b̃, s) /∈ T and T contains only
nodes from G. We aim to show that the transitive clo-
sure �+

G of this relation is a well-founded order when-
ever G is finite.

Lemma 9 If G is finite, then �+
G is a well-founded

order.

Theorem 1 For any STG with root r and closed for-
mula A, the following properties hold:

(i) check(r, A) terminates;

(ii) check(r, A) = true iff r ∈ �A�.

4 Conclusion

In this section, we conclude our work and discuss the
future work. This paper deals with temporal logic for
mobile concurrent system and related model-checking
algorithm. A new version modal logic system, an ex-
tension of the modal µ-calculus with boolean expres-
sions over names, and primitives for name input and
output is introduced as an appropriate temporal logic
for the π-calculus. Also our logical system can be seen
as the extension for the modal logic in [8]. We give
a concise semantics interpretation for our modal logic

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

check(mσ, φ)
def
= Ev(φσ);

check(mσ,¬A)
def
= ¬check(mσ, A);

check(mσ, A ∧ B)
def
= check(mσ, A) ∧ check(mσ, B);

check(mσ, ∀x.A)
def
=

∧
b∈fn(mσ ,A) check(mσ, A[b/x])∧

check(mσ, A[new(fn(mσ, A))/x]);

check(mσ, 〈τ〉A)
def
=

∨
m

φ,τ�→n
Ev(φσ) ∧ check(nσ, A);

check(mσ, 〈a?(x)〉A)
def
=

∨
m

φ,b(c)�→ n
Ev(φσ ∧ [bσ = a])

∧∧
d∈fn(mσ,A)∪new(fn(mσ ,A)) check(nσ[c �→d]�fn(n), A[d/x]);

check(mσ, 〈a!c〉A)
def
=

∨
m

φ,b̄d�→ n
Ev(φσ ∧ [a = bσ] ∧ [c = dσ]) ∧ check(nσ, A);

check(mσ, 〈a?b〉A)
def
=

∨
m

φ,c(d)�→ n
Ev(φσ ∧ [a = cσ]) ∧ check(nσ[d �→b]�fn(n), A);

check(mσ, 〈a!(x)〉A)
def
=

∨
m

φ,b̄(c)�→ n
Ev(φσ ∧ [b = aσ])

∧check(nσ[c �→new(fn(mσ,A))], A[new(fn(mσ, A))/x]);

check(mσ, (νX.[T]Λ)(b̃)) =
{

true if (b̃, mσ) ∈ T

check(mσ, (Λ[νX.[T ∪ {(b̃, mσ)}]Λ/X])(b̃)) o.w.
;

Figure 2. Local Model Checking Algorithm

by making a distinction between proposition and pred-
icate, thus the possible interactions between recursion
and first-order quantification can be solved. Based on
the above work, a local model checking algorithm for
the logic is presented in this paper. We follow the well-
known Winskel’s tag set method to deal with fixpoint
operator. As for the problem of name instantiating, our
algorithm follows the ’on-the-fly’ style, and systemati-
cally employs schematic names. The correctness of the
algorithm is shown.

There are several directions for further research.
How to improve efficiency of our algorithm, is an in-
teresting problem. Also, we are investigating how to
generate information diagnosis messages which will be
useful in debugging a system when the answer returned
by the algorithm is ’no’. Maybe we should apply sym-
bolic technique in more depth.

References

[1] R.M.Amadio, M.Dam. Toward a Modal The-
ory of Types for the π Calculus. Proc. Formal
Techniques in Real Time and Fault Tolerant
Systems 96, Uppsala. SLNCS 1135, 1996.

[2] L.Caires, L.Cardelli. A Spatical Logic for Con-
currency (Part I). TACS’2001, Lecture Notes
in Computer Science 2215, pp.1-30, Springer,
2001.

[3] M.Dam. Model Checking Mobile Processes.
Information and Computation 129: 25-51,
1996.

[4] M.Dam. On the Decidability of Process Equiv-
alences for the pi-Calculus. Theoretical Com-
puter Science 183, pp. 215-228, 1997.

[5] M.Dam. Proof systems for π-Calculus Logics.
To appear de Queiroz (ed.), ”Logic for Concur-
rency and Synchronisation”, Studies in Logic
and Computation, Oxford Univ Press, 2003.

[6] Z.Li, H.Chen. Checking Strong/weak Bisimu-
lation Equivalence and Observation Congru-
ence for the π-calculus. In ICALP’98, Lecture
Notes in Computer Science 1443, pp.707-718,
Springer, 1998.

[7] R.Milner, J.Parrow, D.Walker. A Calculus of
Mobile Process, part I/II. Journal of Informa-
tion and Computation, 100:1-77, Sept.1992.

[8] R.Milner, J.Parrow, D.Walker. Modal Logics
for Mobile Process. Theoretical Computer Sci-
ence, 114:149-171, 1993.

[9] G.Winskel. A Note on Model Checking the
Modal µ-calculus. Theoretical Computer Sci-
ence 83:157-167, 1991.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

