
Structure Analysis for Dynamic Software Architecture based on Spatial Logic∗

Tingting Han Taolue Chen Jian Lu
State Key Laboratory of Novel Software Technology,

Nanjing University, Nanjing, Jiangsu, P.R.China, 210093
{hantt,ctl,lj}@ics.nju.edu.cn

Abstract

The requirement for modifying system structure during
system execution is specified by dynamic software architec-
tures. The system architecture style should remain one style
or transform within a scope so that some constraints need
to be imposed on during the system execution. Our work
expands such an idea along two directions in the setting of
formalism. The first direction is to model the system by a
graph-based calculus stressing the structure. The other di-
rection lies in that we tailor spatial logic to be a suitable
logic as the system specification for structure. The model
and specification are basis for the model checking algo-
rithm that is to verify whether the system evolution satisfies
some structure constraints. We invite a master-slave archi-
tecture style as a running example from the beginning and
throughout the paper to demonstrate our approach. Such
work can be seen as the basis of the structure analysis for
architectures.
Key words: Dynamic Software Architecture, Spatial logic,
Model Checking Algorithm

1 Introduction

With the rapid development of Internet, the problem be-
comes more important of coordinating different software
entities that are distributed on different locations to accom-
plish a computing task. To deal with this problem, software
architecture as a blueprint of a software system at the high-
est level of abstraction [7] is applied to abstract the soft-
ware entities to be components and the coordination be-
tween them to be connectors and then a model is extracted
as the architecture on which the design, analysis and verifi-
cation are based. Dynamic software architectures that can
specify the modification of the systems during the system
execution [1] is quite fit for those evolving systems that are
running in the open and dynamic environment.

∗Funded by NNSFC (60233010, 60273034, 60403014), 973 Program
of China (2002CB312002).

From our point of view, two aspects on the dynamic soft-
ware architectures are worth paying good attention to. One
is the dynamic evolution of system structures and the other
is the coordination mechanisms (e.g. communication pro-
tocols). The former gives a general view and evolving trace
of the system while the latter cares more about the commu-
nication details among components. In this paper, we focus
on the first aspect. It is widely recognized that some restric-
tions should be imposed on the system evolution to ensure
that the system structure may remain one style or transform
within a scope. These conditions, to a large extent, make
the system execute under control as expected.

To further illustrate the problem of system structure, we
provide a master-slave example to make clear the definition
and usage of the model and specification. In the master-
slave architecture (see Figure 1 and 2), a primary master
(black, round-shaped) allots the computational tasks to one
or more slaves (square-shaped) concerning performance or
fault tolerance. The primary master can decide to add or re-
move a slave depending on the concurrent workloads, for
example, in Figure 1, when the primary master is aware
that the existent 5 slaves can no longer bear the increas-
ing workload, it decides that the 6th slave will be added.
Or, in Figure 2, the primary master can trigger the creation
of secondary masters (white, round-shaped) out of consid-
eration for load-balancing, to averagely share the workload
over the region. The example is then abstracted to be two
structures. The one master case (Figure 1) corresponds to
the single-center-star style structure while the multiple mas-
ters case (Figure 2) corresponds to the multiple-center-star
style structure. We restrict the system to evolve in the set-
ting of these two structures, that is, any structures other than
the two will be considered illegal and the evolution that may
lead to illegal structures will be identified or forbidden. The
example will be utilized throughout the paper.

In this paper, we deal with the problem at the level of
formalism, which we believe is the basis of analysis and
verification. As the main work, our formalism mainly cov-
ers three aspects:

• We model the system with a graph-based calculus in

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

Figure 1. A single-center master-slave exam-
ple

Figure 2. A multiple-center master-slave ex-
ample

the flavor of graph calculus inspired by [4] for the sake
of a more natural and intuitionistic way to only record
the structural information but omits the behavioral in-
formation. Comparing to many of the existing works
that devote more to the system evolution under behav-
ioral changes, we explicitly separate the behavior and
the topology, in which one of our novelties lies. We
model private resources which is becoming aware in
many of the applications by means of name hiding no-
tions inspired by the π-calculus [9]. In Figure 2, two
secondary masters are added to the primary master as
private resources that are invisible to all the slaves,
which illustrates the usage and importance of private
resources to some extent. We refer the readers to Sec-
tion 2 for more details.

• We tailor spatial logic [2, 3] to take on the role of spec-
ification, since it has strong expressing power for de-
scribing precisely certain properties, especially those
hold at a certain location, at some location, or at ev-
ery location [2]. As we will illustrate in this paper, it
is quite fit for the software architecture specification.
Concretely, we apply location formulas to perfectly
cover the nested sub-systems; the private communica-
tion between certain components may be dealt with by
the restriction formula with modal operators R©, �, and
quantifiers N, H and recursion has been introduced into
spatial logic for clearness and conciseness.

• We also give a model checking algorithm for verifica-
tion and automatic detection of errors in software ar-
chitectures in order to locate errors and increase the

reliability of these systems.

The rest of the paper is organized as follows: Section 2 and
Section 3 introduce the graph model and spatial logic for
software architecture respectively; Section 4 gives a model
checking algorithm based on the model and logic; Section
5 offers some conclusions.

2 Models for Software Architecture

In this section, we briefly introduce the labelled graphs
using a simple graph calculus [4] and a master-slave archi-
tecture is described with the graph model. We assume an
infinite set N of nodes ranged over by l, m, n, · · · , and an
infinite set of edges E ranged over by a, b, c, · · · . We use
x, y, · · · to range over N ∪E . Let N denote natural number
set, we use distinguishably z to ranged over N ∪ E ∪ N, z̃
to denote a sequence of such names or natural numbers, and
|z̃| to denote the length of the sequence. The graph can be
directed or undirected; the directed graphs are used to clar-
ify the direction of data flow or invocation relations while
the undirected graphs are used more generally when direc-
tions are not cared. In the undirected case, a(m, n) denotes
that node m and n are connected by an edge labelled a,
while in the directed case, a+(m, n) denotes the edge from
m to n and a−(m, n) denotes the edge from n to m. We
use â(m, n) to represent a(m, n), a+(m, n) or a−(m, n)
covering either directed or undirected cases.

The set G(N , E) of graph terms generated by N and E
is given by the following BNF grammar:

G ::= nil empty

â(m, n) edge

G | G composition

(νx)G hiding

A(z̃) identifier

We often write G instead of G(N , E). The free and bound
names are standard: the hiding operator (νx)G binds x in G
while in â(m, n), a, m, n are free. fnn(G) is to denote the
set of free names of nodes in G and fne(G) for free names
of edges and define fn(G) = fnn(G)∪ fne(G). The capture-
avoiding substitution is G{y/x}.

A graph is nil when there are neither nodes nor edges in
the graph, that is, it is an empty graph. G1 | G2 represents
that graph G1 composes with graph G2 in some way. (νx)G
means x (node or edge) is private to G and is invisible out of
G. A(z̃) is applied to define graph in the style of “procedure
call”, borrowing a term from the programming language.

Structural congruence denoted by ≡, expresses basic
identities on the structure of graphs, which is the least con-
gruence satisfying the following rules:

2

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

node expressions η ::= x node, x ∈ N
x node variable, x ∈ VN

edge expressions α ::= a edge, a ∈ E
a edge variable, a ∈ VE

name expressions ζ ::= p p ∈ N ∪ E
p p ∈ VN ∪ VE

Figure 3. Node and Edge Expressions

(Zero Par) G | nil ≡ G
(Par Assoc) (G1 | G2) | G3 ≡ G1 | (G2 | G3)
(Par Comm) G1 | G2 ≡ G2 | G1

(Res Res) (νx)(νy)G ≡ (νy)(νx)G
(Zero Res) (νx)nil ≡ nil
(Res Par) (νx)(G1 | G2) ≡ (νx)G1 | G2, x /∈ fn(G2)

3 Spatial Logic

In this section, we present the syntax and semantics of
the spatial logic, and also the master-slave architecture will
be given to illustrate the expressing power of the logic.
In this section, we utilize spatial logic as the specification
method. More examples will also be given to illustrate the
expressing power of the logic.

3.1 Syntax and Semantics

Syntax. Formulas are built from a node set N and edge
set E as well as the sets of node variables VN and edge
variables VE , provided all the four sets are disjoint. And we
assume a countable infinite set X of predicate variables,
ranged over by X, Y, Z, · · · . The syntax of the formula is
defined by BNF in Figure 3 and Figure 4.

For the directed edges, we make it a convention that the
first node is the source node and the second is the target
node. In formulas of the form ∀p.A, Np.A, λp̃.A and νX.Λ,
the distinguished occurrences of p and X are binding, with
scope the proposition A or predicate Λ.

We define on formulas the relation ≡α of α-congruence
in the standard way. For any formula A, fvn(A) denotes
the free node variables in A, fve(A) denotes the free edge
variables in A and and the free predicate variables in A are
denoted fpv(A). We define fv(A) = fvn(A) ∪ fve(A) and
fn(A) = fnn(A) ∪ fne(A).

Semantics. We define the semantics of a formula A in
a denotational way. The semantics of formula presented
in Figure 5 is defined by assigning to each formula A a
set of graphs �A�v;ξ , namely all the graphs that satisfy the
property denoted by A. Since A may contain free node

A, B ::= Propositions

0 empty

α(η1, η2) directed edge

α〈η1, η2〉 undirected edge

A | B composition

T true

A ∧ B conjunction

¬A classical negation

ζ�A revelation

A � ζ hiding

Np.A fresh quantifier

∀p.A universal quantifier

ζ1 = ζ2 equalities

Λ(ζ̃) application

Λ ::= Predicates

X recursive variable

λp̃.A abstraction

νX.Λ greatest fixpoint

Figure 4. Logical Formulas

and edge variables and free occurrences of predicate vari-
ables, its denotation depends on the denotation of such
variables, which is given by a valuation (node and edge
name valuation and predicate valuation). A name valua-
tion v : VN ∪ N ∪ VE ∪ E → N ∪ E , which is identity on

N ∪ E , that is, v[n/p] is defined as v[n/p](q)
def
= if p = q

then n else v(q). A predicate valuation ξ assigns to every
predicate variable of arity k a function (N ∪ E)k → ℘(G),
that is ξ : X → ((N ∪ E)k → ℘(G)).

The semantics is presented in the style of denotation, in-
deed, it can also be presented by satisfaction relation. We
write G |=v,ξ A whenever G ∈ �A�v,ξ : this means that G
satisfies formula A under name valuation v and predicate
valuation ξ. Note that for a name-closed formula A, �A�v,ξ

does not depend on v and can be denoted by �A� v; and if A
is closed, then �A�v,ξ depends on neither v nor ξ thus can
be denoted by �A�.

We simply discuss the properties of the logic system.
Due to the space restriction, most of the proofs are omit-
ted. We refer the reader to [8].

3.2 Examples

In this part, we use the spatial logic to specify the
structural properties of some common architecture styles,
which usually remain unchanged or transform from one

3

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

�0�v;ξ
def
= {G : G ≡ 0}

�α(η1, η2)�v;ξ
def
= {G : G ≡ αv(η1v, η2v)}

�α〈η1, η2〉�v;ξ
def
= {G : G ≡ αv〈η1v, η2v〉}

�A | B�v;ξ
def
= {G : G ≡ G1 | G2

∧G1 ∈ �A�v;ξ ∧ G2 ∈ �B�v;ξ}
�T�v;ξ

def
= {G : G ≡ G}

�A ∧ B�v;ξ
def
= {G : G ≡ �A�v;ξ ∩ �B�v;ξ}

�¬A�v;ξ
def
= {G : G ≡ G/�A�v;ξ}

�ζ�A�v;ξ
def
= {G : G ≡ (νζ)G′ ∧ G′ ≡ �A�v;ξ}

�A � ζ�v;ξ
def
= {G : (νζ)G ≡ �A�v;ξ}

� Np.A�v;ξ
def
= ∪n/∈fn(A){G | G ∈ �A�v[n/p];ξ

∧n /∈ fn(G)}
�∀p.A�v;ξ

def
= {G : G ≡ ⋂

p∈N �A[p/p]�v;ξ}
�ζ1 = ζ2�v;ξ

def
= if ζ1v = ζ2v, return G; else ∅

�Λ(ζ̃)�v;ξ
def
= �Λ�v;ξ(ζ̃)v

�X�v;ξ
def
= ξ(X)

�λp̃.A�v;ξ
def
= λz̃.�A�v[z̃/p̃];ξ

�νX.Λ�v;ξ
def
= �{F : N k → ℘(G)|F � �Λ�v;ξ[F/X]}

Figure 5. Interpretation of Formulas

style to another under some constraints as expected during
evolution. We will show the examples both with and
without recursion in the undirected graph style; it is easy
to adapt to directed graphs. Before that, we introduce
some basic properties specified in [4]. For recursively
defined formulas (e.g.“in(n, x)”, “exists path(x, y)”),

we use the notation R(x̃)
def
= φ, as an abbreviation for

R(ξ̃)
def
= (µR(x̃).φ)(ξ̃):

no edge into x: in(0, x)
def
= ¬∃y,a. a(y, x) | T

n edges into x: in(n, x)
def
= ∃y,a. a(y, x) | in(n − 1, x)

no edge out of x: out(0, x)
def
= ¬∃y,a. a(x, y) | T

n edges out of x: out(n, x)
def
= ∃y,a.a(x, y)|out(n − 1, x)

unique node x: uni node(x)
def
= ∀y. y = x

x in the graph: in graph(x)
def
= uni node(x)∨

(∃ y,a. (a(x, y) ∨ a(y, x)) | T

x, y has a path: exist path(x, y)
def
= x = y

∨(∃z,a. a(x, z) | exist path(z, y))

We now do some remarks to interpret these examples in
the setting of software architectures. x, y denote the com-
ponents they stand for.

in(0, x) means that x is the only component in the sys-
tem or it is isolated with other components. Usually, it is
one of the errors we are supposed to detect, e.g. when the
component ought to be connected or integrated but failed,

we should either try to reconnect it or remove it from the
system.

in(n, x) means that x is connected with n other com-
ponents, which is usually a quantificational constraint re-
lated with performance or other considerations. For exam-
ple, a VOD (video on demand) service component can only
support 100 client services simultaneously, any connection
from the 101st service should be detected and blocked.

uni node(x) is used for checking whether x is the only
node in the graph. It is usually used as the initial condition
for constructing a complete system.

in graph(x) checks whether x is in the system or not.
Sometimes different decisions will be made according to a
certain component’s existence.

exist path(x, y) checks whether x and y are connected
directly or indirectly so that there exists some invocation
relations between them.

The underlying intuitions of out(0, x) and out(n, x) are
much the same as in(0, x) and in(n, x). The main differ-
ence lies in that the initial direction of data flow may vary
according to different applications.

We specify the architecture styles of ring and star as fol-
lows:

3.2.1 Ring

The ring style is used when all the components are of the
same chance to take part in some activities. It is mostly
used in the network system architecture, the token ring is
a good case in point. ring(a(x, y)) denotes that there is a
directed edge from node x to node y labelled a and ring
denotes that it is a ring style.

• With Recursion:
chain(head, tail)

def
= 0 ∨ head = tail ∨

∃a, x.(a(head, x) | chain(x, tail))

ring
def
= ∃head, tail, a. chain(head, tail) | a(head,tail)

• Without Recursion:
ring

def
= 0 ∨ ∃x.uni node(x) ∨ ((∀x. in graph(x) ⇒

in(1, x) ∧ out(1, x)) ∧ (∀y, z. in graph(y)∧
in graph(z) ⇒ exist path(y, z)))

In the recursive style, ring is denoted by means of chain
which is recursively defined by inserting a new node in be-
tween the head node of the chain and the one directly fol-
lowing it.

And in the non-recursive style, ring denotes that ei-
ther it is a void ring (denoted by 0) or there is only
one node (∃x.uni node(x)) or for every node in the
graph there is only one ingoing and one outgoing edge
(∀x. in graph(x) ⇒ in(1, x)∧out(1, x)) and can reach ev-
ery node in the ring (∀y, z. in graph(y) ∧ in graph(z) ⇒
exist path(y, z)).

4

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

3.2.2 Star

Star style is the cutting example of parallel composition.
Master-slave style is a typical application of star structure,
with either single center or multiple centers. The assump-
tion is the same as in Section 1. We show both cases,
among which s star(center) denotes the single-center-star
and m star(center) the multiple-center-star.

• With Recursion:
s star(center)

def
= 0 ∨ uni node(center)∨

∃y,a. (s star(center) | a(center, y))

m star(center)
def
= 0 ∨ s star(center)∨

∃e. Ny. y�(e(center, y) | m star(center))

• Without Recursion:
s star(center) def= 0 ∨ uni node(center) ∨ ∀y. y �=

center ⇒ (in(0, center) ∧ in(1, y) ∧ out(0, y))

In the single-center-star case, the recursive style is to add
one edge to the graph and the non-recursive style is that
the center only has outgoing edges and the peripheral nodes
only has one ingoing edge and none outgoing ones.

In the multiple-center-star case, the recursive style is of
great importance to demonstrate the usage of operator N
and �, which together derive a new quantifier Hx.A, i.e.

the hidden-name quantifier Hx.A
def
= Nx.x�A. Hx.A indi-

cates that in the graph there exists a restricted name which
we shall call x and A is some property that may involve x
where x is a variable that ranges over nodes or edges. This
formula is meant to correspond somehow to a graph of the
form (νn)G where x denotes n. We simply give the defini-
tion of Hx.A, and we refer the reader to [5] for more details.

4 Model Checking Algorithm

In this section, we devote to provide a model checking al-
gorithm for the graph data model and logic presented in this
paper. We adapt the well-known Winskel’s tag set method
to our setting to deal with fixpoint operator. The correct-
ness of the algorithm is shown in [8]. In our algorithm,
the tag sets will contain pairs η̃, G of name vector and the
graph. Formally, let T = {(ζ̃1, G1), ..., (ζ̃l, Gl)}, where,
ζ̃i(1 ≤ i ≤ l) are vectors of the same length, say k and for
∀i, j. i �= j, we have ζ̃i �= ζ̃j .

To deal with name restriction, as in [6], we fix the repre-
sentation of the tree: using α-renaming of restricted names
and the rules (ResRes) and (ResPar) of the congruence re-
lation, we group together all name-restriction operators by
transforming every graph to the form of (νx1) . . . (νxk)G
and separate bound names by the following function sep.
Note that all bound names are renamed apart so that they
are different. For the sake of simplicity and clearness, in
the following part of this section, we let K = N ∪ E .

Definition 1



sep (nil)
def
= 〈∅, G〉, if G ≡ nil

sep ((νx)G)
def
= 〈K ∪ {x}, G′〉, if sep (G) = 〈K, G′〉

sep (G1|G2)
def
= 〈K ∪ K ′, G′

1|G′
2〉,

if sep (G1) = 〈K, G′
1〉 and sep (G2) = 〈K ′, G′

2〉

In order to decide whether a given edge belongs to a
graph, which is reflected in the system to be whether a con-
nector is in the architecture, we compute all the primitive
connectors in a given architecture to be a set. Since the
graph or the architecture is finite, the derived edge set is
also finite, which guarantees that model checking the prim-
itive edges is decidable. We use L to denote the set of edges
with two connecting nodes of G.

Definition 2 (Edge Set)

L(G)
def≡ {a(x, y) | ∃G′.G1 = (a(x, y) | G′)},

where (K, G1) = sep (G)

Now, we are ready to present our model-checking algo-
rithm. It is an extension of the algorithms from [6]. It is
well known from the result of [6], for any graph G, the sets
{G | G ≡ 0} and {(G1, G2) | G ≡ G1|G2} are decidable.
For notation, we use ∪̇ for disjoint union, that is, A = B ∪̇C
if A = B ∪ C ∧ B ∩ C = ∅. Recall that all bound names
in the graphs are renamed apart so that they are all different
from each other and different from all free names occurring
in the graphs and the formulas. Since K is countable, we
can assume it is ordered. For a set of names V , function
new(V) returns the least name in K\V . The algorithm is
presented in Figure 6, which gives the reader a taste of our
algorithm. We leave the detailed explanation to the full pa-
per of this abstract.

The correctness of the algorithm can be stated by the fol-
lowing theorem. For its detailed proof, please refer to [8].

Theorem 1 For any graph G and closed formula A, the
following properties hold:
(i) check (sep(G), A) terminates;
(ii) check (sep(G), A) = true iff G ∈ �A�.

5 Conclusion

Dynamic software architecture describes the system
structure modifications at runtime. We need a mechanism
to forbid the unbending evolution and thus guarantee that
the system is running under control.

Our work expands along two directions which later con-
verges at the verification problem. A graph-based calculus
which can model the private resource is utilized as a sim-
ple and direct way stressing the structure. Spatial logic is

5

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

check(K, G, 0)
def
=

{
true if G ≡ 0
false o.w.

;

check(K, G, α(x1, x2))
def
=

{
true if α(x1, x2) ∈ L
false o.w.

;

check(K, G, α〈x1, x2〉) def
=

{
true if α〈x1, x2〉 ∈ L
false o.w.

;

check(K, G, A | B)
def
=

∨
K=K1∪̇K2

∨
G≡G1|G2

check(K1, G1, A) ∧ check(K2, G2, A)
∧fn(G1) ∩ K2 = ∅ ∧ fn(G2) ∩ K1 = ∅;

check(K, G, T)
def
= true;

check(K, G, A ∧ B)
def
= check(K, G, A) ∧ check(K, G, B);

check(K, G,¬A)
def
= ¬check(K, G, A);

check(K, G, p R©A)
def
=

∨
m∈K check(K\{m}, G[p/m], A)∨ (p /∈ fn(G) ∧ check(K, G, A));

check(K, G, A � p)
def
= check(K ∪ {p}, G, A);

check(K, G, Np.A)
def
= check(K, G, A[new(fn(K, G) ∪ fn(A))/p]);

check(K, G, ∀p.A)
def
=

∧
n∈fn(K,G)∪fn(A) check(K, G, A[p/p])

∧check(K, G, A[new(fn(K, G) ∪ fn(A))/p]);

check(K, G, (νX.[T]Λ))(p̃)
def
=

{
true if(p̃, G) ∈ T
check(K, G, Λ[νX.[T ∪ {(p̃, G)}]Λ/X](p̃)) o.w.

;

check(K, G, p1 = p2)
def
=

{
true if p1 = p2

false o.w.

Figure 6. The Model Checking Algorithm

tailored to be a fitting logic that can deal with the location
relation, nested sub-system relation and private resources.
The model and specification is basis for the model check-
ing algorithm that is to verify whether the model has the
specified property.

Our work is inspired by [4] which uses spatial logic to
query graphs. However, it neglects the spatial operators and
quantifiers that deal with the private resources. We extend
their logic in this paper. And our spatial logic is designed
specially to describe dynamic software architecture.

As future works, as mentioned in the paper, the speci-
fication of the non-recursive multiple-center-star architec-
ture style is to be studied. Moreover, we intend to combine
the behavior and structure analysis for dynamic software ar-
chitecture in the same framework which provides a unified
specification and verification approach.

References

[1] J. S. Bradbury. Organizing definitions and formalisms
for dynamic software architectures. Technical Report,
Queen’s University, 2004.

[2] L. Caires, A. D. Gordon. Anytime, Anywhere. Modal
Logics for Mobile Ambients. In 27th ACM Symp.on
Principles of Programming Languages, pages 365-
377. ACM, 2000.

[3] L. Caires, L. Cardelli. A spatial logic for concur-
rency(Part I). In N.Kobayashi and B.C.Pierce, editors,
10th Symposium on Theoretical Aspects of Computer
Science, Volume 2215 of Lecture Notes in Computer
Science, pages 1-30. Springer-Verlag, 2001.

[4] L. Cardelli, P.Gardner, G.Ghelli. A spatial logic for
querying graphs. In 29th Colloquium on Automata,
Languages and Programming (ICALP 2002), Lecture
Notes in Computer Science, pages 597-610. Springer-
Verlag, 2002.

[5] L. Cardelli, A. D. Gordon. Ambient logic. Submitted
to MSCS, available from the authors, 2003.

[6] W. Charatonik, J. -M. Talbot. The Decidability of
Model Checking Mobile Ambient. Proc. CSL’01.
LNCS 2142, pp.339-354, Springer, 2001.

[7] D. Garlan. Software Archtecture: A Roadmap. ICSE-
Future of SE Track 2000:91-101.

[8] T. Han, T. Chen, J. Lu. Structure analysis for dynamic
software architecture based on spatial logic. Technical
report, Nanjing University, 2004.

[9] R. Milner, J. Parrow, D. Walker. A Calculus of Mobile
Process, part I/II. Journal of Information and Compu-
tation, 100:1-77, Sept.1992.

6

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

