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Abstract. In this paper, we provide a transformation from the branching bisim-
ulation problem for infinite, concurrent, data-intensive systems in linear process
format, into solving Parameterized Boolean Equation Systems. We prove cor-
rectness, and illustrate the approach with an unbounded queue example. We also
provide some adaptations to obtain similar transformations for weak bisimulation
and simulation equivalence.

1 Introduction

A standard approach for verifying the correctness of a computer system or a communi-
cation protocol is the equivalence-based methodology. This framework was introduced
by Milner [23] and has been intensively explored in process algebra. One proceeds by
establishing two descriptions (models) for one system: a specification and an implemen-
tation. The former describes the desired high-level behavior, while the latter provides
lower-level details indicating how this behavior is to be achieved. Then an implemen-
tation is said to be correct, if it behaves “the same as” its specification. Similarly, one
could check whether the implementation has “at most” the behavior allowed by the
specification. Several behavioral equivalences and preorders have been introduced to
relate specifications and implementations, supporting different notions of observability.
These include strong, weak [24], and branching bisimulation [11,4].

Equivalence Checking for Finite Systems. Checking strong bisimulation of finite sys-
tems can be done very efficiently. The basic algorithm is the well-known partition
refinement algorithm [26]. For weak bisimulation checking, one could compute the
transitive closure of τ -transitions, and thus lift the algorithms for strong bisimulation to
the weak one. This is viable but costly, since it might incur a quadratic blow-up w.r.t.
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the original LTSs. Instead, one could employ the more efficient solution by [15] for
checking branching bisimulation, as branching and weak bisimulation often coincide.

Alternatively, one can transform several bisimulation relations into Boolean Equa-
tion Systems (BES). Various encodings have been proposed in the literature [2,8,22],
leading to efficient tools. In [2] it is shown that the BESs obtained from equivalence re-
lations have a special format; the encodings of [22] even yield alternation free BESs (cf.
definition of alternation depth in [21]) for up to five different behavioral equivalences.
Solving alternation free BESs can be done very efficiently. However, finiteness of the
graphs is crucial for the encodings yielding alternation free BESs.

It is interesting to note that the µ-calculus model checking problem for finite systems
can also be transformed to the problem of solving a BES [2,21]. Hence, a BES solver,
e.g. [22], provides a uniform engine for verification by model checking and equivalence
checking for finite systems.

Our Contribution. In this paper, we focus on equivalence checking for infinite systems.
Generally for concurrent systems with data, the induced labeled transition system (LTS)
is no longer finite, and the traditional algorithms fail for infinite transition graphs. The
symbolic approach needed for infinite systems depends on the specification format. We
use Linear Process Equations (LPEs), which originate from µCRL [14], a process alge-
bra with abstract data types, and describe the system by a finite set of guarded, nondeter-
ministic transitions. LPEs are Turing complete, and many formalisms can be compiled
to LPEs without considerable blow-up. Therefore, our methods essentially also apply
to LOTOS [5], timed automata [1], I/O-automata [20], finite control π-calculus [25],
UNITY [6], etc.

The solution we propose in this paper is inspired by [12], where the question whether
an LPE satisfies a first-order µ-calculus formula is transformed into a Parameterized
Boolean Equation System (PBES). PBESs extend boolean equation systems with data
parameters and quantifiers. Heuristics, techniques [17], and tool support [16] have been
developed for solving PBESs. This is still subject to ongoing research. Also in [28] such
equation systems are used for model checking systems with data and time. In general,
solving PBESs cannot be completely automated.

We propose to check branching bisimilarity of infinite systems by solving recursive
equations. In particular, we show how to generate a PBES from two LPEs. The resulting
PBES has alternation depth two. We prove that the PBES has a positive solution if and
only if the two (infinite) systems are branching bisimilar. Moreover, we illustrate the
technique by an example on unbounded queues, and show similar transformations for
Milner’s weak bisimulation [24] and branching simulation equivalence [10].

There are good reasons to translate branching bisimulation for infinite systems to
solving PBESs, even though both problems are undecidable. The main reason is that
solving PBESs is a more fundamental problem, as it boils down to solving equations
between predicates. The other reason is that model checking mu-calculus with data has
already been mapped to PBESs. Hence all efforts in solving PBESs (like [17]) can now
be freely applied to the bisimulation problem as well.

Related Work. We already mentioned related work on finite systems, especially [2,22].
There are several approaches on which we want to comment in more detail.
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The cones and foci method [9] rephrases the question whether two LPEs are bisimilar
in terms of proof obligations on data objects. Basically, the user must first identify in-
variants, a focus condition, and a state mapping. In contrast, generating a PBES requires
no human ingenuity, although solving the PBES still may. Furthermore, our solution is
considerably more general, because it lifts two severe limitations of the cones and foci
method. The first limitation is that the cones and foci method only works in case the
branching bisimulation is functional (this means that a state in the implementation can
only be related to a unique state in the specification). Another severe limitation of the
cones and foci method is that it cannot handle specifications with τ -transitions. In some
protocols (e.g. the bounded retransmission protocol [13]) this condition is not met and
thus the cones and foci method fails. In our example on unbounded queues, both sys-
tems perform τ steps, and their bisimulation is not functional.

Our work can be seen as the generalization of [19] to weak and branching equiva-
lences. In [19], Lin proposes Symbolic Transition Graphs with Assignments (STGA)
as a new model for message-passing processes. An algorithm is also presented which
computes bisimulation formulae for finite state STGAs, in terms of the greatest solu-
tions of a predicate equation system. This corresponds to an alternation free PBES, and
thus it can only deal with strong bisimulation.

The extension of Lin’s work for strong bisimulation to weak and branching equiva-
lences is not straightforward. This is testified by the encoding of weak bisimulation in
predicate systems by Kwak et al. [18]. However, their encoding is not generally correct
for STGA, as they use a conjunction over the complete τ -closure of a state. This only
works in case that the τ -closure of every state is finite, which is generally not the case
for STGA, also not for our LPEs. Alternation depth 2 seems unavoidable but does not
occur in [18]. Note that for finite LTS a conjunction over the τ -closure is possible [22],
but leads to a quadratic blow-up of the BES in the worst case.

Structure of the Paper. The paper is organized as follows. In Section 2, we provide back-
ground knowledge on linear process equations, labeled transition systems and bisimu-
lation equivalences. We assume familiarity with standard fixpoint theory. In Section 3,
PBESs are reviewed. Section 4 is devoted to the presentation of the translation and the
justification of its correctness. In Section 5, we provide an example to illustrate the use
of our algorithm. In Section 6, we demonstrate how to adapt the translation for branch-
ing bisimulation to weak bisimulations and simulation equivalence. The translation for
strong bisimulation and an additional example are presented in [7]. The paper is con-
cluded in Section 7.

2 Preliminaries

Linear process equations have been proposed as a symbolic representation of general
(infinite) labeled transition systems. In an LPE, the behavior of a process is denoted as
a state vector of typed variables, accompanied by a set of condition-action-effect rules.
LPEs are widely used in µCRL [14], a language for specifying concurrent systems and
protocols in an algebraic style. We mention that µCRL has complete automatic tool
support to generate LPEs from µCRL specifications.
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Definition 1 (Linear Process Equation). A linear process equation is a parameterized
equation taking the form

M(d : D) =
∑

a∈Act

∑

ea:Ea

ha(d, ea) =⇒ a(fa(d, ea)) · M(ga(d, ea))

where fa : D ×Ea → Da, ga : D ×Ea → D and ha : D ×Ea → B for each a ∈ Act.
Note that here D, Da and Ea are general data types and B is the boolean type.

In the above definition, the LPE M specifies that if in the current state d the condition
ha(d, ea) holds for any ea of sort Ea, then an action a carrying data parameter fa(d, ea)
is possible and the effect of executing this action is the new state ga(d, ea). The values
of the condition, action parameter and new state may depend on the current state and a
summation variable ea.

For simplicity and without loss of generality, we restrict ourselves to a single vari-
able at the left-hand side in all our theoretical considerations and to the use of non-
terminating processes. That is, we do not consider processes that, apart from executing
an infinite number of actions, also have the possibility to perform a finite number of
actions and then terminate successfully. Including multiple variables and termination in
our theory does not pose any theoretical challenges, but is omitted from our exposition
for brevity. The operational semantics of LPEs is defined in terms of labeled transition
systems.

Definition 2 (Labeled Transition System). The labeled transition system of an LPE
(as defined in Definition 1) is a quadruple M = 〈S, Σ, →, s0〉, where

– S = {d | d ∈ D} is the (possibly infinite) set of states;
– Σ = {a(d) | a ∈ Act ∧ d ∈ Da} is the (possibly infinite) set of labels;
– →= {(d, a(d′), d′′) | a∈Act∧∃ea∈Ea.ha(d, ea)∧d′=fa(d, ea)∧d′′=ga(d, ea)}

is the transition relation;
– s0 = d0 ∈ S, for a given d0 ∈ D, is the initial state.

For an LPE M , we usually write d
a(d′)−−−→M d′′ to denote the fact that (d, a(d′), d′′) is in

the transition relation of the LTS of M . We will omit the subscript M when it is clear
from the context. Following Milner [24], the derived transition relation ⇒ is defined as

the reflexive, transitive closure of
τ→ (i.e. ( τ−→)∗), and

α⇒,
α̂⇒ and

ᾱ−→ are defined in the
standard way as follows:

α⇒ def= ⇒ α→⇒ α̂⇒ def=
{

⇒ if α = τ
α⇒ otherwise.

ᾱ−→ def=
{ τ−→ ∪ Id if α = τ

α→ otherwise.

2.1 Bisimulation Equivalences

We now introduce several well-known equivalences. The definitions below are with
respect to an arbitrary, given labeled transition system M = 〈S, Σ, →, s0〉.

Definition 3 (Branching (Bi)simulations). A binary relation R ⊆ S × S is a semi-
branching simulation, iff whenever sRt then for all α ∈ Σ and s′ ∈ S, if s

α−→ s′, then

t ⇒ t′ ᾱ−→ t′′ for some t′, t′′ ∈ S such that sRt′ and s′Rt′′. We say that:
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– R is a semi-branching bisimulation, if both R and R−1 are semi-branching simu-
lations.

– s is branching bisimilar to t, denoted by s ↔b t, iff there exists a semi-branching
bisimulation R, such that sRt.

– s is branching simulation equivalent to t, iff there exist R and Q, such that sRt and
tQs and both R and Q are semi-branching simulations.

Note that although a semi-branching simulation is not necessarily a branching simu-
lation, it is shown in [4] that this definition of branching bisimilarity coincides with
the original definition in [11]. Therefore, in the sequel we take the liberty to use semi-
branching and branching interchangeably. In the theoretical considerations in this pa-
per, semi-branching relations are more convenient as they allow for shorter and clearer
proofs of our theorems.

Definition 4 (Weak Bisimulation). A binary relation R ⊆ S × S is an (early) weak
bisimulation, iff it is symmetric and whenever sRt then for all α ∈ Σ and s′ ∈ S, if

s
α−→ s′, then t

α̂⇒ t′ for some t′ ∈ S such that s′Rt′.
Weak bisimilarity, denoted by ↔w, is the largest weak bisimulation.

3 Parameterized Boolean Equation Systems

A Parameterized Boolean Equation System (PBES) is a sequence of equations of the
form

σX(d : D) = φ

σ denotes either the minimal (μ) or the maximal (ν) fixpoint. X is a predicate variable
(from a set P of predicate variables) that binds a data variable d (from a set D of data
variables) that may occur freely in the predicate formula φ. Apart from data variable d,
φ can contain data terms, boolean connectives, quantifiers over (possibly infinite) data
domains, and predicate variables. Predicate formulae φ are formally defined as follows:

Definition 5 (Predicate Formula). A predicate formula is a formula φ in positive form,
defined by the following grammar:

φ ::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ∀d : D.φ | ∃d : D.φ | X(e)

where b is a data term of sort B, possibly containing data variables d ∈ D. Further-
more, X ∈ P is a (parameterized) predicate variable and e is a data term.

Note that negation does not occur in predicate formulae, except as an operator in data
terms. We use b =⇒ φ as a shorthand for ¬b ∨ φ for terms b of sort B.

The semantics of predicates is dependent on the semantics of data terms. For a closed
term e, we assume an interpretation function �e� that maps e to the data element it
represents. For open terms, we use a data environment ε that maps each variable from
D to a data value of the right sort. The interpretation of an open term e is denoted as
�e�ε in the standard way.
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Definition 6 (Semantics). Let θ : P → ℘(D) be a predicate environment and ε : D →
D be a data environment. The interpretation of a predicate formula φ in the context
of environment θ and ε, written as �φ�θε, is either true or false, determined by the
following induction:

�b�θε = �b�ε
�φ1 ∧ φ2�θε = �φ1�θε and �φ2�θε
�φ1 ∨ φ2�θε = �φ1�θε or �φ2�θε
�∀d : D.φ�θε = for all v ∈ D, �φ�θ(ε[v/d])
�∃d : D.φ�θε = there exists v ∈ D, �φ�θ(ε[v/d])
�X(e)�θε = true if �e�ε ∈ θ(X) and false otherwise

Definition 7 (Parameterized Boolean Equation System). A parameterized boolean
equation system is a finite sequence of equations of the form σX(d : D) = φ where φ
is a predicate formula in which at most d may occur as a free data variable. The empty
equation system is denoted by ε.

In the remainder of this paper, we abbreviate parameterized boolean equation system to
equation system. We say an equation system is closed whenever every predicate variable
occurring at the right-hand side of some equation occurs at the left-hand side of some
equation. The solution to an equation system is defined in the context of a predicate
environment, as follows.

Definition 8 (Solution to an Equation System). Given a predicate environment θ and
an equation system E , the solution �E�θ to E is an environment that is defined as follows,
where σ is the greatest or least fixpoint, defined over the complete lattice ℘(D).

�ε�θ = θ

�(σX(d : D) = φ)E�θ = �E�(θ
[
σX∈℘(D).λv∈D.�φ�(�E�θ[X/X ])[v/d]/X

]
)

For closed equation systems, the solution for the binding predicate variables does not
depend on the given environment θ. In such cases, we refrain from writing the environ-
ment explicitly.

4 Translation for Branching Bisimulation

We define a translation that encodes the problem of finding the largest branching bisim-
ulation in the problem of solving an equation system.

Definition 9. Let M and S be LPEs of the following form:

M(d : DM) =
∑

a∈Act

∑

ea:EM
a

hM
a (d, ea) =⇒ a(fM

a (d, ea)).M(gM
a (d, ea))

S(d : DS) =
∑

a∈Act

∑

ea:ES
a

hS
a(d, ea) =⇒ a(fS

a (d, ea)).S(gS
a(d, ea))

Given initial states d : DM and d′ : DS, the equation system that corresponds to the
branching bisimulation between LPEs M(d) and S(d′) is constructed by the function
brbisim (see Algorithm 1).
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The main function brbisim returns an equation system in the form νE2μE1 where the
bound predicate variables in E2 are denoted by X and that in E1 are denoted by Y .
Intuitively, E2 is used to characterize the (branching) bisimulation while E1 is used to
absorb the τ actions. The equation system’s predicate formulae are constructed from the
syntactic ingredients from LPEs M and S. Note that although we talk about the model
(M ) and the specification (S), the two systems are treated completely symmetrically.
As we will show in Theorem 2, the solution for XM,S in the resulting equation system
gives the largest branching bisimulation relation between M and S as a predicate on
DM × DS.

Algorithm 1. Generation of a PBES for Branching Bisimulation

brbisim= νE2μE1, where
E2 := {XM,S(d : DM, d′ : DS) = matchM,S(d, d′) ∧ matchS,M(d′, d) ,

XS,M(d′ : DS, d : DM) = XM,S(d, d′) }
E1 := {Y p,q

a (d : Dp, d′ : Dq, e : Ep
a) = closep,q

a (d, d′, e)
| a ∈ Act ∧ (p, q) ∈ {(M, S), (S,M)}}

Where we use the following abbreviations, for all a ∈ Act ∧ (p, q) ∈ {(M, S), (S, M)}:

matchp,q(d : Dp, d′ : Dq) =
�

a∈Act ∀e : Ep
a. (hp

a(d, e) =⇒ Y p,q
a (d, d′, e));

closep,q
a (d : Dp, d′ : Dq, e : Ep

a) = ∃e′ : Eq
τ . (hq

τ (d′, e′) ∧ Y p,q
a (d, gq

τ (d′, e′), e))
∨(Xp,q(d, d′) ∧ stepp,q

a (d, d′, e));

stepp,q
a (d : Dp, d′ : Dq, e : Ep

a) = (a = τ ∧ Xp,q(gp
τ (d, e), d′))∨

∃e′ : Eq
a. hq

a(d′, e′) ∧ (fp
a(d, e) = fq

a(d′, e′)) ∧ Xp,q(gp
a(d, e), gq

a(d′, e′));

4.1 Correctness of Transformation

In this section we confirm the relation between the branching bisimulation problem and
the problem of solving an equation system. Before establishing the correctness of the
transformation presented above, we first provide a fixpoint characterization for (semi-)
branching bisimilarity, which we exploit in the correctness proof of our algorithm. For
brevity, given any LPEs M and S, and any binary relation B over DM × DS, we define
a functional F as

F(B) = {(d, d′) | ∀a ∈ Act, ea ∈ EM
a .hM

a (d, ea) =⇒

∃d′2, d
′
3.d

′ ⇒S d′2 ∧ d′2
a(fM

a (d,ea))−−−−−−−→S d′3 ∧ (d, d′2) ∈ B ∧ (gM
a (d, ea), d′3) ∈ B,

and ∀a ∈ Act, e′a ∈ ES
a .hS

a(d′, e′a) =⇒

∃d2, d3.d ⇒M d2 ∧ d2
a(fS

a(d′,e′
a))−−−−−−−−→M d3 ∧ (d2, d

′) ∈ B ∧ (d3, g
S
a(d′, e′a)) ∈ B}

It is not difficult to see that F is monotonic. We claim that branching bisimilarity is the
maximal fixpoint of functional F (i.e. νB.F(B)).
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Lemma 1. ↔b = νB.F(B).

Proof. We prove set inclusion both ways using the definition of F and fixpoint theo-
rems. The full proof is included in [7]. ��

For proving the correctness of our translation, we first solve μE1 given an arbitrary
solution for X .

Theorem 1. For any LPEs M and S, let μE1 be generated by Algorithm 1, let η be an
arbitrary predicate environment, and let θ = �μE1�η. Then for any action a, and any
d, d′ and e, we have (d, d′, e) ∈ θ(Y M,S

a ) if and only if

∃d2, d3. d
′ ⇒S d2∧d2

a(fM
a (d,e))−−−−−−−→S d3∧(d, d2) ∈ η(XM,S)∧(gM

a (d, e), d3) ∈ η(XM,S)

Proof. We drop the superscripts M, S when no confusion arises. We define sets
Ra,d,e

i ⊆ DS, for any a ∈ Act, d, e, i ≥ 0, and depending on η(X), as follows:

{
Ra,d,e

0 = {d′ | ∃d3. d
′ a(fM

a (d,e))−−−−−−−→S d3 ∧ (d, d′) ∈ η(X) ∧ (gM
a (d, e), d3) ∈ η(X)}

Ra,d,e
i+1 = {d′ | ∃d2. d

′ τ−→S d2 ∧ d2 ∈ Ra,d,e
i }

And let Ra,d,e =
⋃

i≥0 Ra,d,e
i . Obviously, by definition of ⇒, we have

Ra,d,e = {d′ | ∃d2, d3. d
′ ⇒S d2 ∧ d2

a(fM
a (d,e))−−−−−−−→S d3 ∧ (d, d2) ∈ η(X)

∧ (gM
a (d, e), d3) ∈ η(X)}

We will prove, using an approximation method, that this coincides with the minimal
solution of Y M,S

a . More precisely, we claim:

((d, d′, e) ∈ θ(Y M,S
a )) = (d′ ∈ Ra,d,e)

Recall that according to the algorithm, Ya is of the form

Ya(d, d′, e) = (X(d, d′) ∧ Ξ) ∨ ∃e′τ .(hS
τ (d′, e′τ ) ∧ Ya(d, gS

τ (d′, e′τ ), e)) (1)

where Ξ (generated by function step) is of the form

(a = τ ∧ X(gM
τ (d, e), d′)) ∨

∃e′a.hS
a(d′, e′a) ∧ (fM

a (d, e) = fS
a (d′, e′a)) ∧ X(gM

a (d, e), gS
a(d′, e′a))

Note that, using the operational semantics for LPE S,

�X(d, d′) ∧ Ξ�η = ∃d′′. (d, d′) ∈ η(X) ∧ (gM
a (d, e), d′′) ∈ η(X) ∧ d′

a(fM
a (d,e))−−−−−−−→S d′′

Hence,
�X(d, d′) ∧ Ξ�η = (d′ ∈ Ra,d,e

0 ) (2)
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We next show by induction on n, that the finite approximations Y n
a (d, d′, e) of equa-

tion (1) can be characterized by the following equation:

Y n
a (d, d′, e) = (d′ ∈

⋃

0≤i<n

Ra,d,e
i )

The basis is trivial (Ya = ∅). For the induction step, it suffices to note that

{d′ | Y n+1
a (d, d′, e)}

∗= {d′ | ((d, d′)∈η(X) ∧ �Ξ�η) ∨ ∃e′τ .(hS
τ (d′, e′τ ) ∧ gS

τ (d′, e′τ ) ∈
⋃

0≤i<n

Ra,d,e
i )}

= {d′ | (d, d′)∈η(X) ∧ �Ξ�η} ∪
⋃

0≤i<n

{d′ | ∃e′τ .(hS
τ (d′, e′τ ) ∧ gS

τ (d′, e′τ ) ∈ Ra,d,e
i )}

�
= Ra,d,e

0 ∪
⋃

0≤i<n

Ra,d,e
i+1

=
⋃

0≤i<n+1

Ra,d,e
i ,

where the step (∗) uses the induction hypothesis, and the step (�) uses equation (2)
above, and the definition of Ra,d,e

i .
Next we compute the first infinitary approximation Y ω

a of equation (1):

{d′ | Y ω
a (d, d′, e)} =

⋃

n≥0

{d′ | Y n
a (d, d′, e)}

=
⋃

n≥0

⋃

0≤i<n

Ra,d,e
i

=
⋃

i≥0

Ra,d,e
i

It remains to show that the solution is stable, i.e. Y ω is a solution of equation (1).
This can be readily checked as follows:

{d′ | ((d, d′) ∈ η(X) ∧ �Ξ�η) ∨ ∃e′τ .(hS
τ (d′, e′τ ) ∧ gM

τ (d′, e′τ ) ∈ Ra,d,e)}
= R0 ∪

⋃

i≥1

Ra,d,e
i

= Ra,d,e

Hence we have found the correct minimal solution of μE1. ��

Finally, the correctness of the algorithm follows from the following theorem.

Theorem 2. Let νE2μE1 be the equation system generated by Algorithm 1 on M and
S and θ = �νE2μE1�. Then for all d and d′ we have M(d) ↔b S(d′) if and only if
(d, d′) ∈ θ(XM,S).
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Proof. Recall that according to the algorithm, XM,S is of the form

XM,S(d, d′) =
∧

a∈Act

∀ea.(hM
a (d, ea) =⇒ Y M,S

a (d, d′, ea))

∧
∧

a∈Act

∀e′a.(hS
a(d′, e′a) =⇒ Y S,M

a (d′, d, e′a))

By symmetry, w.l.o.g. we only consider
∧

a∈Act ∀ea.(hM
a (d, ea) =⇒ Y M,S

a (d, d′, ea)).
We define G : DM × DS → DM × DS as

G(B) = {(d, d′) |
∧

a∈Act

∀ea.(hM
a (d, ea) =⇒ (d, d′, ea) ∈ η(Y M,S

a ))}

where η = �μE1�[B/XM,S].
Note that by [17, Lemma 5 ], G is monotonic, and thus the maximal fixpoint of G ex-

ists which is denoted by νB.G(B). According to the semantics of PBES (cf. Definition
8), we have

νB.G(B) = {(d, d′) | (d, d′) ∈ θ(XM,S)}
Recall that the functional F is defined as

F(B) = {(d, d′) | ∀a ∈ Act, ea ∈ Ea.hM
a (d, ea) =⇒

∃d2, d3.d
′ ⇒ d2 ∧ d2

a(fM
a (d,ea))−−−−−−−→S d3 ∧ (d, d2) ∈ B ∧ (gM

a (d, ea), d3) ∈ B}

We claim that for any B,
F(B) = G(B)

To see this, first let us note that by Theorem 1

η(Y M,S
a ) = {d′ | ∃d2, d3. d

′ ⇒ d2 ∧ d2
a(fM

a (d,e))−−−−−−−→S d3 ∧ B(d, d2) ∧ B(gM
a (d, e), d3)}

It follows that

G(B)

= {(d, d′) |
∧

a∈Act

∀ea.(ha(d, ea) =⇒ (d, d′, ea) ∈ η(Y M,S
a )}

= {(d, d′) |
∧

a∈Act

∀ea.(ha(d, ea) =⇒ ∃d2, d3. d
′ ⇒S d2 ∧ d2

a(fM
a (d,e))−−−−−−−→S d3 ∧

B(d, d2) ∧ B(gM
a (d, e), d3)}

= F(B)

It follows from Lemma 1 that

↔b = νF = νB.G(B) = {(d, d′) | (d, d′) ∈ θ(XM,S)}

from which it is not difficult to see that (d, d′) ∈ θ(X) if and only if M(d) ↔b S(d′).
��
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5 Example: Unbounded Queues

In this section we demonstrate the potential of the technique outlined in the previous
section by applying it to an example of unbounded queues. The capacity of a bounded
queue is doubled by connecting a queue of the same capacity. This means that a com-
position of bounded queues is behaviorally different from the constituent queues. In
contrast, a composition of queues with infinite capacity does not change the behavior,
as this again yields an unbounded queue.

Let D be an arbitrary data sort (possibly infinite sized) which is equipped with an
equality relation, and let Q denote the data sort of queues of infinite capacity. We denote
the empty queue by [] and for any d ∈ D we denote the queue containing only d by
[d]. Operations on queues include q++q′, denoting the natural concatenation of queues
q and q′, and functions hd : Q → D and tl : Q → Q which yield the head and tail of a
queue q, respectively.

The processes S and T defined below model the composition of two unbounded
queues and three unbounded queues, respectively. Remark that we obtained LPEs S
and T as a result of an automated linearization of the parallel composition of two (resp.
three) queues of infinite capacity. These original specifications have been omitted for
brevity. Processes S and T can communicate with their environments via parameterized
actions r(d) (read d from the environment) and w(d) (write d to the environment). The
τ actions represent the internal communication of data from one queue to the next.

S(s0, s1 : Q) =�

v:D
r(v) · S([v]++s0, s1)

+s1 �= [] =⇒ w(hd(s1)) · S(s0, tl(s1))
+s0 �= [] =⇒ τ · S(tl(s0), [hd(s0)]++s1)

T (t0, t1, t2 : Q) =�

u:D
r(u) · T ([u]++t0, t1, t2)

+t2 �= [] =⇒ w(hd(t2)) · T (t0, t1, tl(t2))
+t0 �= [] =⇒ τ · T (tl(t0), [hd(t0)]++t1, t2)
+t1 �= [] =⇒ τ · T (t0, tl(t1), [hd(t1)]++t2)

Applying Algorithm 1 for processes S and T , we obtain a PBES consisting of 8
equations. For lack of space, only the two most interesting fragments of the PBES are
shown below.

�
νXS,T (s0, s1, t0, t1, t2 : Q) = . . . ∧ (s1 �= [] =⇒ Y S,T

w (s0, s1, t0, t1, t2)) ∧ . . .
�

...�
μY S,T

w (s0, s1, t0, t1, t2 : Q) = (t0 �= []∧Y S,T
w (s0, s1, tl(t0), [hd(t0)]++t1, t2))∨

(t1 �= []∧Y S,T
w (s0, s1, t0, tl(t1), [hd(t1)]++t2)) ∨ (t2 �= []∧hd(t2) = hd(s1)∧

XS,T (s0, s1, t0, t1, t2)∧XS,T (s0, tl(s1), t0, t1, tl(t2)))
�

...

In the remainder of this section, we strongly rely on techniques for solving and ma-
nipulating PBESs like adding invariants, symbolic approximations and strengthening
equations. Some of these techniques have already been automated (e.g. symbolic ap-
proximation, see [16]). For a detailed account of all techniques, we refer to [16,17].

Consider the equation for Y S,T
w . It represents the case where process T has to sim-

ulate a w(hd(s1)) action of process S by possibly executing a finite number of τ -steps
before executing action w(hd(t2)). Inspired by the scenario that captures the minimal
amount of τ -steps that are needed (two steps when t1 = t2 = [], one when t2 = [] �= t1
and none otherwise), we strengthen the equation for Y S,T

w as follows:
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μY S,T
w (s0, s1, t0, t1, t2 : Q) =

(t0 �= []∧t1 = t2 = []∧Y S,T
w (s0, s1, tl(t0), [hd(t0)]++t1, t2)) ∨

(t1 �= []∧t2 = []∧Y S,T
w (s0, s1, t0, tl(t1), [hd(t1)]++t2)) ∨

(t2 �= []∧hd(t2) = hd(s1)∧XS,T (s0, s1, t0, t1, t2)∧XS,T (s0, tl(s1), t0, t1, tl(t2)))

The solution to Y S,T
w can be found by a straightforward symbolic approximation.

This stabilizes at the fourth approximation, and can — depending on the rewriting tech-
nology that is used — be found automatically. The resulting solution is:

μY S,T
w (s0, s1, t0, t1, t2 : Q) =

(t0 �= []∧t1 = t2 = []∧hd(t0) = hd(s1)

∧XS,T (s0, s1, tl(t0), [], [hd(t0)])∧X(s0, tl(s1), tl(t0), [], [])) ∨
(t1 �= []∧t2 = []∧hd(t1) = hd(s1)∧XS,T (s0, s1, t0, tl(t1), [hd(t1)])

∧XS,T (s0, tl(s1), t0, tl(t1), [])) ∨
(t2 �= []∧hd(t2) = hd(s1)∧XS,T (s0, s1, t0, t1, t2)∧XS,T (s0, tl(s1), t0, t1, tl(t2)))

The solution to the (omitted) equation Y T,S
w can be obtained analogously. Likewise,

we can strengthen and subsequently solve the equations for the Yτ ’s and the Yr’s. The
resulting solutions can be substituted in the equation for XS,T yielding the following
closed equation for XS,T .

νXS,T (s0, s1, t0, t1, t2 : Q) =

XS,T (s0, s1, t0, t1, t2) ∧ (∀v : D . XS,T ([v]++s0, s1, [v]++t0, t1, t2))

∧ (s1 �= [] =⇒ ((t0 �= [] ∧ t1 = [] ∧ t2 = [] ∧ hd(t0) = hd(s1) ∧
XS,T (s0, s1, tl(t0), [], [hd(t0)]) ∧ XS,T (s0, tl(s1), tl(t0), [], []))

∨(t1 �= [] ∧ t2 = [] ∧ hd(t1) = hd(s1) ∧
XS,T (s0, s1, t0, tl(t1), [hd(t1)]) ∧ XS,T (s0, tl(s1), t0, tl(t1), []))

∨(t2 �= [] ∧ hd(t2) = hd(s1) ∧ XS,T (s0, s1, t0, t1, t2) ∧
XS,T (s0, tl(s1), t0, t1, tl(t2)))))

∧ (s0 �= [] =⇒ (XS,T (s0, s1, t0, t1, t2) ∧ (XS,T (tl(s0), [hd(s0)]++s1, t0, t1, t2)

∨ (t0 �= [] ∧ XS,T (tl(s0), [hd(s0)]++s1, tl(t0), [hd(t0)]++t1, t2))

∨ (t1 �= [] ∧ XS,T (tl(s0), [hd(s0)]++s1, t0, tl(t1), [hd(t1)]++t2)))))

∧ (t2 �= [] =⇒ ((s0 �= [] ∧ s1 = [] ∧ hd(s0) = hd(t2) ∧
XS,T (tl(s0), [hd(s0)], t0, t1, t2) ∧ XS,T (tl(s0), [], t0, t1, tl(t2)))

∨(s1 �= [] ∧ hd(s1) = hd(t2) ∧ XS,T (s0, s1, t0, t1, t2) ∧
XS,T (s0, tl(s1), t0, t1, tl(t2)))))

∧ ((t0 �= [] ∨ t1 �= []) =⇒ (XS,T (s0, s1, t0, t1, t2)∧
(XS,T (s0, s1, tl(t0), [hd(t0)]++t1, t2)∨XS,T (s0, s1, t0, tl(t1), [hd(t1)]++t2)∨
XS,T (tl(s0), [hd(s0)]++s1, t0, tl(t1), [hd(t1)]++t2)∨
(s0 �= []∧(XS,T (tl(s0), [hd(s0)]++s1, tl(t0), [hd(t0)]++t1, t2))))))
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Utilizing the fact that s0++s1 = t0++t1++t2 is an invariant of the closed equation
XS,T , the symbolic approximation of XS,T stabilizes at the third approximation, yield-
ing the solution s0++s1 = t0++t1++t2

1. Evaluating the solution to XS,T for the initial
values s0 = s1 = t0 = t1 = t2 = [] tells us that S([], []) and T ([], [], []) are branch-
ing bisimilar. In fact, all processes S(s0, s1) and T (t0, t1, t2) satisfying the condition
s0++s1 = t0++t1++t2 are branching bisimilar.

6 Transformation for Other Equivalences

In this section, we demonstrate how we can adapt the algorithm presented in Section 4
to other variants of bisimulation. The strong case is simple and somehow known in
[19] modulo different formalisms. The algorithm is included in [7]. As discussed in the
introduction, our encoding for weak bisimulation (see Algorithm 2) fixes the generally
incorrect encoding found in [18]. The case for (branching) simulation equivalence (see
Algorithm 3) is novel. The correctness proofs are similar to the case for branching
bisimulation.

Algorithm 2. Generation of a PBES for Weak Bisimulation
wbisim = νE2μE1, where

E2 := {XM,S(d : DM, d′ : DS) = matchM,S(d, d′) ∧ matchS,M(d′, d) ,
XS,M(d′ : DS, d : DM) = XM,S(d, d′) }

E1 := {Y p,q
1,a (d : Dp, d′ : Dq, e : Ep

a) = closep,q
1,a(d, d′, e),

Y p,q
2,a (d : Dp, d′ : Dq) = closep,q

2,a(d, d′),
| a ∈ Act ∧ (p, q) ∈ {(M, S), (S, M)}}

Where we use the following abbreviations, for all a ∈ Act ∧ (p,q) ∈ {(M, S), (S,M)}:

matchp,q(d : Dp, d′ : Dq) =
�

a∈Act ∀e : Ep
a.(hp

a(d, e) =⇒ Y p,q
1,a (d, d′, e));

closep,q
1,a(d : Dp, d′ : Dq, e : Ep

a) = ∃e′ : Eq
τ .(hq

τ (d′, e′) ∧ Y p,q
1,a (d, gq

τ (d′, e′), e))
∨stepp,q

a (d, d′, e);

stepp,q
a (d : Dp, d′ : Dq, e : Ep

a) = (a = τ ∧ closep,q
2,a(gp

a(d, e), d′))∨
∃e′ : Eq

a.hq
a(d′, e′) ∧ (fp

a(d, e) = fq
a(d′, e′)) ∧ closep,q

2,a(gp
a(d, e), gq

a(d′, e′)) ;

closep,q
2,a(d : Dp, d′ : Dq) = Xp,q(d, d′) ∨ ∃e′ : Eq

τ .hq
τ (d′, e′) ∧ Y p,q

2,a (d, gq
τ (d′, e′));

7 Conclusion

We have shown how to transform the weak and branching (bi)simulation equivalence
checking problems for infinite systems to solving Parameterized Boolean Equation
Systems. We demonstrated our method on a small example, showing that the concate-
nation of two unbounded queues is branching bisimilar to the concatenation of three

1 Remark that the fact that the solution and the invariant match is coincidental: it is clear that
e.g. the trivial invariant true (	) does not exhibit this phenomenon.
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Algorithm 3. Generation of a PBES for (Branching) Simulation Equivalence
brsim(m, n)= νE2μE1, where

E2 := {X(d : DM, d′ : DS) = XM,S(d, d′) ∧ XS,M(d′, d),
XM,S(d : DM, d′ : DS) = matchM,S(d, d′),
XS,M(d′ : DS, d : DM) = matchS,M(d′, d)}

E1 := {Y p,q
a (m, n, e) = closep,q

a (d, d′, e) | a ∈ Act}

Where we use the following abbreviations, for all a ∈ Act ∧ (p,q) ∈ {(M, S), (S,M)}:

matchp,q(d : Dp, d′ : Dq) =
�

a∈Act ∀e : Ep
a. (hp

a(d, e) =⇒ Y p,q
a (d, d′, e));

closep,q
a (d : Dp, d′ : Dq, e : Ep

a) = ∃e′ : Eq
τ . (hq

τ (d′, e′) ∧ Y p,q
a (d, gq

τ (d′, e′), e))
∨(Xp,q(d, d′) ∧ stepp,q

a (d, d′, e));

stepp,q
a (d : Dp, d′ : Dq, e : Ep

a) = (a = τ ∧ Xp,q(gp
τ (d, e), d′))∨

∃e′ : Eq
a. hq

a(d′, e′) ∧ (fp
a(d, e) = fq

a(d′, e′)) ∧ Xp,q(gp
a(d, e), gq

a(d′, e′));

unbounded queues. This example could not be solved directly with the cones and foci
method (without introducing a third process), because these systems are not function-
ally branching bisimilar, and moreover, both systems perform τ -steps.

Our solution is a symbolic verification algorithm. Compared with the previously
known algorithms, it has the advantage that the solution of the PBES indicates exactly
which states of the implementation and specification are bisimilar. This provides some
positive feedback in case the initial states of the two systems are not bisimilar. Note
that we have introduced a generic scheme that can be applied to other weak equiva-
lences and preorders in branching time spectrum [10], and also to other formalisms of
concurrency.

We conjecture that for infinite systems, it is essential that the PBES has alternation
depth two, as opposed to the finite case. We leave it for future work to apply our method
to various equivalences for mobile processes, in particular π-calculus [25], such as weak
early, late and open bisimulation. Orthogonal to this, we shall continue our work on
improving tool support for solving PBESs, and the application of our techniques to
larger specifications of infinite systems.

Acknowledgments. We are grateful to Wan Fokkink and Jan Friso Groote for stimulating
discussions.
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