
Probabilistic Alternating-Time Temporal Logic

and Model Checking Algorithm ∗

Taolue Chen1,2 Jian Lu2

1 CWI, Department of Software Engineering,
P.O. Box 94079, 1090GB Amsterdam, The Netherlands
2 State Key Laboratory of Novel Software Technology,

Nanjing University, Nanjing, Jiangsu, P.R.China, 210093

Abstract

Last decade witnesses an impressive development
of embedded reactive systems, which motivates the re-
search of open systems, where multiple components in-
teract with each other and their environment and these
interactions decide the behavior of the system. A natu-
ral “common-denominator” model for open systems is
the concurrent game structure, in which several players
can concurrently decide on the behavior of the system.
Alternating-time temporal logic (ATL), is a temporal
logic geared towards the specification and verification of
properties in open systems, which allows to reason on
the existence of strategies for coalitions of players in or-
der to enforce a given property. Probabilistic systems,
i.e. system models where transitions are equipped with
random information, receive increasingly attention in
recent years. In this paper, we propose to study the
open probabilistic system. We extend the framework
of ATL in the probabilistic setting, following the style
of probabilistic computation tree logic (PCTL), and
obtain two probabilistic alternating-time temporal log-
ics, i.e. PATL and PATL∗. They are interpreted over
probabilistic concurrent game structures, which is a
probabilistic extension of multi-player concurrent game
structure. We develop model checking algorithms for
both PATL and PATL∗.

1 Introduction

Last decade witnesses an impressive development of
embedded reactive systems, which calls for systematic

∗This work is partially supported by Dutch Bsik project
BRICKS, 973 program of China (2002CB312002), 863 program
of China (2006AA01Z159), NSFC (60403014, 60603034), NSFJ
(BK2006712).

design and verification methodologies that can cope
with the complexity in the system design, analysis
and implementation. Model checking [7] is a well-
established technique for verifying whether a system
(typically represented by some formal models, say au-
tomata) satisfies a given property. In system verifica-
tion, especially in the area of control, it turns out to
be essential to distinguish between open and closed sys-
tems [10]. In the literature, while closed systems are
naturally modelled as Kripke structures (or labelled
transition systems), a natural “common-denominator”
model for compositions of open systems is the concur-
rent game structure [1], in which several players con-
currently decide on the behavior of the system. In par-
ticular, Kripke structures can be viewed as game struc-
tures with a single player which represents the player
system. In this case, game structures degenerate to
Kripke structures.

It is well recognized that the control problem is
closely related to (multi-player) games: solving such
a game amounts to computing a strategy (if it does
exist) for a player so that she surely reaches a state
where she is declared to be the winner. In this case,
one often feels convenient to reason with strategies, for
which a new flavor of temporal logics has been defined:
alternating-time temporal logic [1]. This logic distin-
guishes itself in that it allows to express, for instance,
a coalition of players has a strategy in order to always
reach a winning location, or to always avoid reaching
a bad location. In [1], several alternating-time tempo-
ral logics are introduced to specify properties of game
structures, including the CTL-like logic ATL, and the
CTL∗-like logic ATL∗.

Most of the researchers agree that uncertainty is one
of the major sources of system complexity. This moti-
vates the investigation of probabilistic systems, where
state transition encodes the probability of making a

Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)
0-7695-2874-0/07 $25.00  © 2007



transition between states rather than just the existence
of such transition. Recently, the specification and ver-
ification of the systems in this flavor have received a
lot of attention and are subject of study of a rapidly
growing research community, for which we invite the
readers to [5] for a comprehensive exposition.

In this paper, we devote ourselves to coping with
open probabilistic system. In a nutshell, we extend
the framework of ATL to a probabilistic setting, fol-
lowing the style of PCTL, and obtain two probabilis-
tic alternating-time temporal logics, i.e. PATL and
PATL∗. We propose the semantics over probabilistic
concurrent game structures, which is a probabilistic ex-
tension of multi-player concurrent game structure [1].
Besides these contributions, the main focus of this pa-
per is the model checking algorithms for both PATL
and PATL∗. Due to space restriction, many interest-
ing results are omitted in this extended abstract and
we refer the readers to the technical report [6] for com-
plete proofs, further explanations of intuitions and ex-
plicit descriptions of algorithms. Moreover, [6] includes
discussion of a even more expressive logic, called prob-
abilistic game logic and expanded references on related
works.
Related works. We only discuss the most relevant
works on the formal verification and control of prob-
abilistic systems. Here, we only mention the tip of
the iceberg and we restrict ourselves to the discrete
time setting. The probabilistic computation tree logic
is introduced in [11], where model checking algorithm
coping with DTMC is also provided. [3] extends this
work to MDP, where the algorithms for MDP w.r.t.
PCTL and PCTL∗ are proposed. These algorithm can
be seen as the special cases of our algorithms, sice both
the MDP and PCTL are (very) special cases of pCGS
and PATL respectively. As for the control problem, as
far as we know, [4] first discusses the controller synthe-
sis for PCTL, and [2] further shows that the problem
is, generally undecidable.

2 Probabilistic Alternating-time Tem-
poral Logic

In this section, we shall introduce the probabilis-
tic alternating-time temporal logic (PATL) and its se-
mantics model, namely, probabilistic concurrent game
structure (pCGS). Before starting our exposition, let
us first fix some general notations. For a countable
set X , a probability distribution on X is a function
δ : X �→ [0, 1] such that

∑
x∈X δ(x) = 1. We denote

the set of probability distributions on X by D(X). For
a probability distribution δ ∈ D(X) we define ||δ||, the
support of δ, as ||δ|| = {x ∈ X | δ(x) > 0}. For all

k ∈ N, by [k] we denote the set {1, · · · , k}. For a finite
set X , we denote the set of finite words over X by X∗,
the set of infinite words (ω-words) over X by Xω, and
the set of nonempty finite words over X by X+. We
define X∞ as X∗ ∪Xω. For λ ∈ X∞ and n ∈ N, we
write λ(n) for the n-th letter in λ, λ[n] for the suffix
starting at λ(n), i.e. λ[n] = λ(n), λ(n + 1), · · · . In ad-
dition, we write |λ| for the length of λ in case λ ∈ X∗

and λ(↑) for λ(|λ| − 1), namely, the last element of λ.

2.1 Probabilistic Concurrent Game Structure

Definition 1 [Probabilistic Concurrent Game Struc-
ture] A probabilistic concurrent game structure
(pCGS) is a tuple G = 〈k,Q,Π, π, d, δ〉 with the fol-
lowing components:

• k ∈ N is the number of players (a.k.a. agents).
We identify the players with the numbers in [k];

• Q is a finite set of states;

• Π is a finite set of atomic propositions (a.k.a. ob-
servations);

• π : Q �→ ℘(Π) is the labelling function (a.k.a.
observation mapping). Namely, for each state q ∈
Q, π assigns to q a set π(q) ⊆ Π of propositions
that hold true at q.

• For each player a ∈ [k] and each state q ∈ Q,
a natural number da(q) ≥ 1 of moves available
at state to a. We identify the moves of player
a at state q with the number 1, · · · , da(q). For
each state q ∈ Q, a move vector at q is a tu-
ple 〈j1, · · · , jk〉 such that 1 ≤ ja ≤ da(q) for each
player a. Given a state q ∈ Q, we write D(q) for
the set {1, · · · , d1(q)}×· · ·×{1, · · · , dk(q)} of move
vectors. The function D is called move function.
For each player a ∈ [k], we write C(a) for the set⋃

q∈Q[da(q)] of all of the possible moves available
for a. The function C is called choice function.

• For each state p ∈ Q and each move vector
〈j1, · · · jk〉 ∈ D(p), a probabilistic transition func-
tion δ, which gives the (conditional) probability
δ(q | p, 〈j1, · · · , jk〉) of a transition from state p
to state q for all q ∈ Q if each player a ∈ [k]
chooses move ja. Note that we also write this prob-
ability as δ(p, 〈j1, · · · , jk〉)(q), to emphasize that
δ(p, 〈j1, · · · , jk〉) is a probability distribution on Q.

The number of states of the structure G is n = |Q|.
The number of transitions of G is m =

∑
q∈Q d1(q) ×

· · · × dk(q)× n, namely, m = |D| · n. Note that unlike
in Kripke structure, the number of transitions is not

Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)
0-7695-2874-0/07 $25.00  © 2007



bounded by n2. For a fixed alphabet Π of propositions,
the size of G is O(m).

For two states p and q, we say that q is a successor
of p if there is a move vector 〈j1, · · · jk〉 ∈ D(p) such
that q ∈ ||δ(p, 〈j1, · · · jk〉)||. We write p → q if q is a
successor of p.

The semantics of pCGS, intuitively, is as follows:
At each state q ∈ Q, each player a ∈ [k] chooses a
move 1 ≤ ja ≤ da(q) simultaneously and independently.
The game then proceeds to the successor state q′ with
probability δ(q′ | q, 〈j1, · · · , jk〉), for every state q′ ∈ Q.
A path of G from a state q0 is an infinite sequence
λ = q0, q1, · · · of states such that for all positions i ≥ 0,
the state qi+1 is a successor of state qi. We denote by
Ω the set of all paths. Moreover, we associate the set

Ωq = {λ = q0, q1, · · · | q0 = q and qi → qi+1 for any i ∈ N}
the paths starting at state q. Given a path λ =
q0, q1, · · · , we associate π(λ) with λ as π(q0), π(q1), · · · .
By this way, we can use an LTL (linear time temporal
logic) formula Ψ over Π to denote a set of paths Ξ ⊆ Ω
by defining Ξ = {λ | π(λ) |= Ψ}.

The interesting point with the framework of ATL,
compared with standard temporal logics, is that it al-
lows quantifications on strategies of (coalitions of) play-
ers. A coalition A is a subset of the set of players,
namely, A ⊆ [k]. We write Ā for [k] \ A. In the sequel
we introduce the notions of strategy and outcome, in
order to define the semantics of PATL.

Definition 2 Assume a probabilistic concurrent game
structure G = 〈k,Q,Π, π, d, δ〉.
• A strategy for player a ∈ [k] is a mapping
σa : Q+ �→ D(C(a)) that associates with every
nonempty finite sequence λ ∈ Q+ of states, repre-
senting the past history of the game, a probability
distribution σa(λ) used to select the next move.
Thus, the choice of the next move can be history-
dependent and randomized. The strategy σa can
prescribe only moves that are available to player
a, i.e. for all sequences λ ∈ Q+ and q ∈ Q, it is
required that ||σa(λ(↑))|| ⊆ [da(λ(↑))]. We denote
by Υa the set of all strategies for player a ∈ [k].

• Let A ⊆ [k] be a coalition. A move for A from
a state q is a family (ja)a∈A: one move for each
player in A. We write Mv(q, A) to represent the
set of all possible moves for A from q. Moreover,
a coalition strategy σA for A is a family (σa)a∈A,
where σa ∈ Υa. Given a move c ∈ Mv(q, A) and
c̄ ∈ Mv(q, Ā), by abuse of notations, we write
δ(q, c · c̄) for the probabilistic transition function
corresponding to these choices. Note that here c · c̄

is the move vector defined in Definition 1, namely,
c · c̄ ∈ D(q).

• Let A ⊆ [k] be a coalition and σA and σĀ be the
coalition strategies for A and Ā respectively. Once
the starting state q and the coalition strategies σA

and σĀ for the two coalitions have been chosen, the
game is reduced to an ordinary stochastic process
(typically, a discrete time Markov chain). Hence,
the probabilities of events are uniquely defined in a
standard way, where an event E ⊆ Ω is measurable
set of paths. For an event E ⊆ Ω, we denote the
probability that a path belongs to E when the game
starts form q and the players follow the strate-
gies σA and σĀ by P

σA,σĀ
q (E). Similarly, for a

measurable function f that associates a number in
R ∪ {∞} with each path, we denote by EσA,σĀ

q {f}
the expected value of f when the game starts from
q and the strategies σA and σĀ are followed. As
usual, we denote by Θi the random variable over
sample space Ω representing the i-th state of a
path; formally, Θi is a variable that assumes value
qi on the path q0, q1, · · · .
Given a coalition strategy σA = (σa)a∈A, we define
the set of possible outcomes of σA from a state q ∈
Q to be the set Outcomes(q, σA) of probabilistic
measure that the players in A enforce when they
follow the strategy σA, namely, for each a ∈ A,
player a follows strategy σa. We use OσA

q to range
over Outcomes(q, σA).

2.2 Probabilistic Alternating-time Temporal
Logic

The temporal logic PATL is defined w.r.t. a finite set
Π of atomic propositions and a finite set [k] of players.

Definition 3 The syntax of PATL is defined by the
following grammar:

φs, ψs ::= 
 | P | ¬φs | φs ∧ ψs | 〈〈A〉〉[ψp]��r

ψp ::= Xφs | φsUψs | φsRψs

where P ∈ Π, A ⊆ [k], 	
∈ {<,≤,=,≥, >} and r ∈
[0, 1].

In addition we also can define some standard abbre-
viations. For instance, ⊥ for ¬
, 〈〈A〉〉[Fψs]��r for
〈〈A〉〉[
Uψs]��r, 〈〈A〉〉[Gψs]��r for 〈〈A〉〉[⊥Rψs]��r, etc.

The logic PATL is similar to the probabilistic
branching-time temporal logic PCTL, only that [·]��r

quantifier is parameterized by sets of players. X , U ,
R are standard temporal operators. As usual, the for-
mulae with a subscript s are state formulae while the
ones with subscript p are path formulae. We will stick
to these conventions throughout the rest of the paper.

Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)
0-7695-2874-0/07 $25.00  © 2007



Semantics. PATL formulae are interpreted over
states of pCGS which has the same propositions and
players. The labelling of the states of Q with proposi-
tions is used to evaluate the atomic formulae of PATL.
The logical connectives ¬ and ∧ have the standard in-
terpretations. The most interesting case is the state-
formula 〈〈A〉〉[ψp]��r. Intuitively, it holds in a state q
of G iff there exists a coalition strategy for coalition A
in order to enforce the probability of paths which sat-
isfy the subformula ψp along all the outcomes to meat
the constraint specified by [·]��r. To put it concretely,
we can consider a game between a protagonist and an
antagonist. The former represents coalition A and ac-
cordingly, the latter represents coalition Ā and they
both follow their own coalition strategies. The protag-
onist wins the game if in the resulting stochastic pro-
cess, the probability measure of pathes which satisfy
the subformula ψp, read as a linear temporal formula
whose outermost operator is X , U or R, fulfills the
constraint [·]��r; otherwise, the antagonist wins. The
PATL formula [ψp]��r is satisfied at the state q iff the
protagonist has a winning strategy in this game.

We are now in a position to define the semantics
formally. We write G, q |= ϕ to indicate that the state
q satisfies the formula ϕ in the structure G. When G
is clear from the context, we omit it and write q |= ϕ.
The satisfaction relation |= is defined for all states q
and paths λ of G, inductively as follows.

q |= true
q |= P ⇔ P ∈ π(q)
q |= ¬φs ⇔ q �|= φs

q |= φs ∧ ψs ⇔ q |= φs and q |= ψs

q |= 〈〈A〉〉[ψp]��r ⇔ there is a coalition strategy
σA such that for any
O

σA
q ∈ Outcomes(q, σA),

O
σA
q ({λ ∈ Ωq | λ |= ψp}) 	
 r

λ |= Xφs ⇔ λ(1) |= φs

λ |= φsUψs ⇔ ∃i ∈ N. λ(i) |= ψs and for
any 0 ≤ j < i, λ(j) |= φs

λ |= φsRψs ⇔ λ �|= ¬φsU¬ψs

3 Model Checking PATL

In this section, we present our model-checking algo-
rithms for PATL over pCGSs. The algorithms share
the same basic structure of those for CTL (see [7]
for a leisure demonstration). In a nutshell, given
a state formula φs, the algorithm recursively evalu-
ates the truth-values of the state subformulae ψs of
φs at all states, starting from the propositional for-
mulae of φs and following the recursive definitions
of each modality. The whole process will be gath-

ered up in a global labelling algorithm. Indeed, since
PATL differs from CTL only in the presence of the
〈〈A〉〉 [ψp]��r, we can exploit the same techniques pro-
posed for CTL to deal with the operators ∧,∨, etc. In
the algorithms below , we only need to examine the
case corresponding to 〈〈A〉〉 [ψp]��r. As expected, the
problem of model checking a multi-player concurrent
game structure w.r.t. 〈〈A〉〉 [ψp]��r boils down to the
problem of solving a two-player concurrent game. To
see this, it suffices to note that any coalition strategy
can be decomposed into single strategy of each player
in this coalition. Assume a probabilistic concurrent
game structure G = 〈k,Q,Π, π, d, δ〉. The first step
is to define a two-player concurrent game H which is
played by A and Ā where A ⊆ [k] and Ā = [k] \ A,
as H = 〈Q,Π, π,Γ1,Γ2, γ〉 where for each q ∈ Q,
Γ1(q) = {(ja)a∈A | 1 ≤ ja ≤ da(q)}, Γ2(q) = {(ja)a∈Ā |
1 ≤ ja ≤ da(q)} and for any c1 ∈ Γ1(q) and c2 ∈ Γ2(q),
γ(p | q, c1, c2) = δ(q, c1 · c2)(p) for any p ∈ Q.

As stated before, the rest of this subsection will
be devoted to demonstrating how to model check
〈〈A〉〉[ψp]��r. We distinguish two cases, depending on
	
 (recall that 	
∈ {<,≤,=,≥, >}). Here, due to space
restriction, we only present the simpler case, namely,
the case that 	
∈ {<,≤,≥, >} (we refer the readers to
[6] for the remaining case). It turns out that in this
case, we can exploit the results of two-player game for
our model checking algorithm in a somehow direct way.
However, due to the intricacy of the concurrent game
structure, we have to cope with the optimal strategies
and ε-optimal strategies more carefully. The following
facts are well-known: concurrent games with reach-
ability winning condition have memoryless ε-optimal
strategies. However, there are deterministic concurrent
games without optimal strategies. This means in such
a game, player 1 can obtain the value arbitrarily close
to the optimal value, but can not achieve the optimal
one, which leads to the following Lemma 4.

Given a path formula ψp, we assume that we have
already computed (recursively) the satisfaction sets of
all maximal state PATL-subformulae γ1, · · · , γn of ψp,
so we can view them as atomic propositions. In ad-
dition we have labelled the states of G appropriately
with new atomic propositions r1, · · · , rn (to save no-
tations, we still denote it by G). Let ψ̂p = ψp{γ1 ←
r1, · · · , γn ← rn} be the formula we obtain from ψp by
replacing each occurrence of γi by ri for 1 ≤ i ≤ n.

Lemma 4 Given probabilistic concurrent game struc-
ture G = 〈k,Q,Π, π, d, δ〉 and PATL formula φs =
〈〈A〉〉[ψp]��r, where A ⊆ [k]. The following properties
hold:

(i) Assume 	
∈ {≥, >}. Then G |= φs if and only if

Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)
0-7695-2874-0/07 $25.00  © 2007



〈〈1〉〉ψ̂p > r.

(ii) Assume 	
∈ {≤, <}. Then G |= φs if and only if
〈〈2〉〉¬ψ̂p < r.

Here, we note that ¬ψ̂p can be rewritten as a path
formula, by pushing the negation inwards jumping X
and interchanging U and R. The intuition underlying
this lemma lies in that for model checking, we only
need to consider strict inequality, since generally, we
can only achieve ε-optimal strategies. The correctness
of this lemma follows from the semantics of PATL, the
definitions of the optimal values and ε-optimal values
and the determinacy theorem. In addition, due to the
duality of ≤, < and ≥, >, from now on we only con-
sider the case for ≥, > (i.e. case (i) in Lemma 4), and
another case can be obtained by switching the roles of
two players 1 and 2.

It remains to seek an efficient way to solve two-player
game is essential. Fortunately, the following result ac-
tually provides an oracle for solving two-player concur-
rent game, which is more efficient, compared with the
oracle in the previous subsections.

Theorem 5 ([9]) For all concurrent game structure
G, for all parity objective Ωe and Ωo, and for all ratio-
nals ε > 0, for all rationals r, whether 〈〈1〉〉(Ωe)(s) ∈
[r − ε, r + ε] can be decided in NP ∩ coNP.

We note that obviously, here ψ̂p denotes an ω-regular
property in Σ0

1 ∪Π0
1 and thus is a parity objective. Let

Ωo be the ω-regular set corresponding to ψp. By this
theorem, our algorithm is sketched as follows:

(i) Query the oracle whether 〈〈1〉〉(Ωe)(s) ∈ [r−2ε, r]?
If the answer is “yes”, then the algorithm returns
“no”;

(ii) Otherwise, query the oracle whether
〈〈1〉〉(Ωe)(s) ∈ [r, r + 2ε]? If the answer is
“yes”, then algorithm returns “yes”, otherwise, it
returns “no”.

Complexity. By Theorem 5, for each query, the com-
plexity is in NP∩coNP, it follows that the overall com-
plexity of the this algorithm is in PNP∩coNP.

3.1 Extensions

The logic PATL is a fragment of a more expressive
logic called PATL∗, where the state formulae are kept
unchanged while the path formulae turn to

φp, ψp ::= φs | ¬φp | φp ∧ ψp | Xφp | φpUψp | φpRψp

where P ∈ Π, A ⊆ [k], 	
∈ {<,≤,=,≥, >} and r ∈
[0, 1].

As for the semantics, in the case of state formu-
lae, the definition is unchanged w.r.t. PATL, while for
the path formulae, it can be defined in an expected
way. We also develop an algorithm, by appealing to
deterministic Muller automata. Again, the readers are
referred to [6].

References

[1] R. Alur, T. A. Henzinger and O. Kupferman.
Alternating-time temporal logic. Journal of ACM
49(5): 672-713, 2002.

[2] T. Brazdil, V. Brozek, V. Forejt and A. Kucera.
Stochastic games with branching-time winning ob-
jectives. In Proc. LICS 2006, pp. 349-358, IEEE
Computer Society, 2006.

[3] A. Bianco and L. de Alfaro. Model checking
of probabilistic and nondeterministic systems. In
Proc. FSTTCS 1995. LNCS 1026, pp. 499-513,
Springer, 1995.

[4] C. Baier, M. Größer, M. Leucker, B. Bollig and
F. Ciesinski. Controller synthesis for probabilistic
systems. In Proc. IFIP TCS 2004. Kluwer, 2004.

[5] C. Baier, B. R. Haverkort, H. Hermanns, J. -P. Ka-
toen and M. Siegle. Validation of Stochastic Sys-
tems - A Guide to Current Research. LNCS 2925,
Springer, 2004.

[6] T. Chen and J. Lu. Probabilistic Alternating-Time
Temporal Logic and Model Checking Algorithm.
CWI Technical report, 2007.

[7] E. Clarke, O. grumberg and D. Peled. Model
Checking. MIT Press, 1999.

[8] L. de Alfaro and R. Majumdar. Quantitative solu-
tion of omega-regular games. Journal of Computer
and System Science. 68(2): 374-397, 2004.

[9] K. Chatterjee, L. de Alfaro and T. Henzinger.
The complexity of quantitative concurrent parity
games. In Proc. SODA 2006, pp. 678-687, 2006.

[10] D. Harel and A. Pnueli. On the development of
reactive systems. In Logics and Models of Con-
current Systems, volume F-13 of NATO Advanced
Summer Institutes, 477-498. Springer, 1985.

[11] H. Hansson and B. Jonsson. A Logic for reason-
ing about time and reliability. Formal Aspects of
Computing, 6(5): 512-535, 1994.

Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)
0-7695-2874-0/07 $25.00  © 2007


