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Abstract

Control of timed systems has become a very active re-
search area. In this paper, we revisit the complexity of safety
and reachability control problems for timed automata. Gen-
erally, these problems turn out to be EXPTIME-complete
and we aim at finding tractable subclasses which admit ef-
ficient control. To this purpose, we consider the control for
timed automata with a small number of clocks. We first
show that for three clock TAs, the complexity has climbed
up to EXPTIME-complete; We then propose efficient algo-
rithms to control one-clock TAs and show that in this setting,
the control problems become P-complete, both in the known
and unknown switch condition assumptions; In the end, we
prove the PSPACE-hardness of control for two-clock TAs.

1 Introduction

During the last decade, real-time systems, where quan-
titative information on time is required, have received im-
mense attentions. Alur and Dill’s Timed Automata ([1], TAs
for short), i.e., automata extended with clocks that progress
synchronously with time, have become a well-established
and widely used model for real-time systems. Since the
mid-90’s, works on the control of continuous (e.g. real-
time) systems are flourishing, partially promoted by the
progress in identifying some tractable ways of dealing with
systems modelled as timed automata and hybrid automata.
Indeed, it is natural to extend Ramadge and Wonham’s
framework [16] to real time settings, say, to use timed au-
tomata to describe plants and to solve the problem of con-
troller synthesis for them. Indeed, there are now extensive
works addressing this problem (see [5] for an excellent sur-
vey). In particular, [15] (see also [2] and [3]) investigates
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this problem when the plant is modelled as a timed automa-
ton and the specification is given as an internal winning con-
dition on the state space of the plant: A controller looks at
the values of the plant’s clocks and prescribes a set of moves
the system should take.

In this paper, we focus on identifying the complexity of
control for timed automata1. Partially inspired by the work
of [14], we revisit the control problems and aim at clarifying
the complexity of control for timed automata with a small
number of clocks. For this purpose, we focus on safety or
reachability control problem and investigate the complexity
for timed automata with one, two, three (or more) clocks.
We first show that for TAs with three clocks, the complex-
ity has climbed up to EXPTIME-complete; We then show
that the control becomes P-complete for one clock TAs.
Note we work on both the known switch condition and un-
known switch condition cases (the terms are coined in [8])
where unknown switch condition control is the one adopted
in [15]. At last we show the PSPACE-hardness for control
of TAs with two clocks. Our results, to some extent, com-
plement the results in [12] and suggest that two sources of
the exponential complexity, namely, many clocks and large
constants cy , are both inherent (provided that the TAs have
at least three clocks).

Due to space restriction, all proofs in this extended ab-
stract are omitted. And we only present the results based on
unknown switch condition assumption. The missing parts
can be found in the extended version [9].

2 Preliminaries

In the rest of the paper, we use N, Q≥0 and R≥0 to de-
note the sets of natural, nonnegative rational and nonnega-
tive real numbers, respectively. Let Σ be a finite alphabet
ranged over by σ.

1A more precise formulation might be: the control of timed plants
which are modelled as timed automata. However, we prefer this more
natural formulation.
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Clocks, operations on clocks. We consider a finite set C of
real valued clocks. A clock valuation over C is a function v :
C → R≥0 which assigns to each clock a time value in R≥0.
We use B(C) to denote the set of boolean expressions over
atomic formulae 2 of the form x ∼ k with x ∈ C, k ∈ N,
and ∼∈ {≤, <,=,≥, >}. The elements of B(C) are called
clock constraints, which are interpreted over valuations for
C. For clock valuation v and time constraint g, we write
v |= g meaning v satisfies g. We denote the set of valuations
over C by RC . For every v ∈ RC , the valuation v + t is
defined as (v + t)(x) = v(x) + t for any x ∈ C. For r ⊆ C,
we write v[r := 0] for the valuation which maps each clock
in r to value 0 and agrees with v over C \ r.

Definition 1 [Timed automata] A timed automaton is a 6-
tuple A = (Q,Σ, C, q0,→, I) where

• Q is a finite set of (control) states, and q0 ∈ Q is the
initial state;

• Σ is a finite alphabet of actions;

• C is a set of clocks;

• →⊆ Q×B(C)×Σ×℘(C)×Q is a finite set of action
transitions: for (q, g, σ, r, q′) ∈→, g is the enabling
condition (a.k.a. guard) of the transition, σ is the action
labeling the transition and r ⊆ C is the set of clocks to
be reset with the transition (we usually write q

g,σ,r−→ q′

instead of (q, g, σ, r, q′) ∈→);

• I : Q → B(C) assigns a constraint, called an invari-
ant, to any control state.

A configuration of a timed automaton A is a pair (q, v),
where q ∈ Q is the current (control) state and v ∈ RC is the
current clock valuation over C. The initial configuration of
A is (q0, v0) where v0 is the valuation mapping all clocks
in C to 0.

The semantics of timed automaton A is often defined in
terms of a timed transition system (TTS for short). In gen-
eral, there are two kinds of transitions. From configuration
(q, v), it is possible to perform the action transition (a.k.a.
discrete transition) q

g,σ,r−→ q′ if v |= g and v[r := 0] |= I(q′)
and then the new configuration is (q′, v[r := 0]). It is also
possible to let time elapse, and reach (q, v + t) for some
t ∈ R≥0 whenever the invariant I(q) is not violated. In
this case, a timed transition (a.k.a. continuous transition) is
performed. Formally, we define a timed transition system
TA = (S, s0,→) 3, where

• S = {(q, v) | q ∈ Q and v ∈ RC s.t. v |= I(q)} and
s0 = (q0, v0);

2Considering diagonal constraints x − y ∼ k does not matter for the
complexity.

3Here, we abuse the notation → a bit. However, the meaning can be
recovered from the context.

• →⊆ S × (Σ ∪ {δ(t) | t ∈ R≥0}) × S and we have
(q, v) e→ (q′, v′) where e ∈ Σ ∪ {δ(t) | t ∈ R≥0} iff

– either q′ = q, v′ = v+t and v+t′ |= I(q) for any

t′ ≤ t. In this case, we write (q, v)
δ(t)→ (q, v + t);

– or there exists q
g,σ,r→ q′ and v |= g, v′ = v[r :=

0] and v′ |= I(q′). In this case, we write (q, v) σ→
(q, v + t).

A run (execution) of A is a finite or infinite path in TA.
Let s = (q, v) be a configuration. A run ρ from s can
be described as a finite or infinite sequence of transitions

ρ = s0
δ(t0)→ σ0→ s1

δ(t1)→ σ1→ s2 · · · . We write Runs(A) (resp.
Runsf (A)) the set of runs (resp. finite runs) in A. We say
that σ ∈ Σ is enabled in (q, v) if there exists (q′, v′) such
that (q, v) σ→ (q′, v′). We say that t (a special symbol and
we assume that t /∈ Σ) is enabled in (q, v) if there exists

t ≥ 0 and (q′, v′) such that (q, v)
δ(t)→ (q′, v′). We write

en(q, v) the subset of Σ ∪ {t} of actions or t enabled in
(q, v).

The size of a TA is |Q| + |C| +
∑

(q,g,r,q′)∈→ |g| +∑
q∈Q |I(q)|, where the size of a constraint is its length

(constants are encoded in binary). We use | → | to denote
the number of transitions in A.

We define the control problem for a timed system given
as a timed automaton. A timed plant is a timed automa-
ton A = (Q,Σ, C, q0,→, I)4 where the alphabet Σ is
partitioned into two subsets Σc and Σu corresponding re-
spectively to controllable and uncontrollable actions. Intu-
itively, the controller will be able to perform controllable
actions, whereas the environment will be able to perform
uncontrollable actions. Note that in the literature, several
formulations of the control problem have been proposed [5],
some of them are based on a two-player game formulation
where the “controller” plays against the “environment”. In
this paper, we focus on “control games”, an asymmetric for-
mulation where the controller has to fix his strategy, and this
strategy has to be winning whatever the environment does.

Definition 2 [Control map] Let TA be a TTS associated
with A. A simple real-time control map for A is a function
κ : Q × RC 
→ ℘(Σc ∪ {t}) that maps every configura-
tion (q, v) to a set κ(p, v) ⊆ en(q, v) of enabled actions.
The control map κ is deadlock-free if κ(p, v) �= ∅ for any
configuration (q, v).

According to this function, the controller chooses at any
configuration (q, v) whether to issue some enabled (control-
lable) transition σ ∈ Σc (if κ(q, v) ⊆ Σc) or do nothing and
let time go by (if t ∈ κ(q, v)). Here, note that a control
map is not deterministic as it may propose a set of actions
in Σc ∪ {t}.

4To save notations, we overload A to denote both timed automata and
timed plants. However, the exact meaning is clear from the context.
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Provided a control map κ, we can define the closed-loop
system (a.k.a. controlled system) as follows:

Definition 3 [Closed-loop system] Assume TA =
(S, s0,→) the TTS associated with A and a simple real-
time control map κ for TA. The closed-loop system κ(TA)
is the TTS T κ

A = (S, s0,→κ), where (q, v) e→κ (q′, v′) iff

• either e ∈ Σu and (q, v) e→ (q′, v′);

• or e ∈ κ(q, v) ∩ Σc and (q, v) e→ (q′, v′);

• or e = δ(t) for some t ∈ R≥0 s.t. (q, v)
δ(t)→ (q, v + t)

and for any t′ ∈ [0, t), κ(q, v + t′) = t.

Remark 1 In this paper, we only consider simple real-time
control maps. In terms of game theory, these amount to
memoryless strategies. Since we shall only cope with safety
and reachability control problems, this class of controllers
suffices. Of course, one can consider more involved strate-
gies (e.g. history dependent or even random ones). How-
ever, this is orthogonal to the works presented here.

Given a timed plant A = (Q,Σ, C, q0,→, I), a specifi-
cation ϕ for A is a subset of Runs(A). Intuitively it corre-
sponds to the desired behaviors of the plant. In the follow-
ing, we will consider special cases of specifications such as
safety objectives and reachability objectives. Intuitively, for
a reachability specification, the goal for the controller is to
reach a set of good states, whereas for safety specification,
the controller has to try to avoid a set of undesired states.
Formally, let A be a timed plant, and let Good,Bad ⊆ Q,
we define the two specifications as follows:

ϕGood = {ρ = (q0, v0)
σ0,t0→ (q1, v1)

σ1,t1→ · · · | ∃i.qi ∈ Good}
ϕBad = {ρ = (q0, v0)

σ0,t0→ (q1, v1)
σ1,t1→ · · · | ∀i.qi /∈ Bad}

And the safety (resp. Reachability) control problems can
be read as: Given a timed plant A, a set of states Bad
(resp. Good) and an initial configuration (q0, v0), deter-
mine whether there is a control map κ such that all the runs
from (q0, v0) of the closed-loop system κ(TA) belong to
ϕBad (resp. ϕGood). We note that these two problems are
dual. Thus, in each case we can take the liberty to con-
sider only one of them, and the obtained result can be easily
translated into the other one modulo duality. Throughout
the paper, the word control is used to denote both cases, if
we do not specify the type explicitly.

3 Control timed automata with three clocks

In this section, we settle the complexity of control for
timed automata with three clocks (3C-TAs for short). We
devote ourselves to EXPTIME-hardness proof, for which we
reduce the halting problem for alternating Turing machines

(ATMs for short) using polynomial space, which is EXP-
TIME-hard (since EXPTIME= APSPACE) to the reachabil-
ity control problems for 3C-TAs. The reduction is adapted
from [10]. We stress that w.l.o.g., here we consider a model
of alternation with a binary branching degree and assume
that the tape alphabet of ATM is {0, 1}. We obtain the fol-
lowing result:

Theorem 1 The control problems for timed automata with
three clocks are EXPTIME-complete.

4 Control timed automata with one clock

In this section, we turn to the control of timed automata
with one clock, which we denote as 1C-TAs. We will as-
sume that in 1C-TAs, the guards are given by two constants
defining the minimal (resp. maximal) value for the only
clock to perform the transition. This does not lose any gen-
erality in that it is always possible to reduce, in polyno-
mial time, any 1C-TAs to an equivalent automaton admit-
ting such a property.

4.1 Zone constructions

Assume a 1C-TA A = (Q,Σ, C, q0,→, I). We denote
by CstA ⊆ N ∪ {∞} the set of all constants occurring
in A (either in guards or in invariants) plus 0. We use
b0, b1, . . . , bk to range over CstA and assume that 0 = b0 <
b1 < · · · < bk and |CstA| = k + 1. The set CstA defines a
set ICstA

of 2(k+1) intervals λ0, λ1, . . . with λ0 = [b0, b0],
λ1 = (b0, b1), λ2 = [b1, b1], . . . , λ2k+1 = (bk,∞). We say
an interval λj is a boundary zone, if j is an even number;
Otherwise, it is a non-boundary zone. Given any x ∈ R≥0,
we define an index mapping �·� : R≥0 → {0, . . . , 2(k+1)}
as x ∈ λ�x�. We say �x� is the index of x. Given any
interval λ, we write lb(λ) (resp. ub(λ)) as the left end-
point (resp. right endpoint) of λ. It is essential to note that
k ≤ 2 · | → | + |Q|, namely, the cardinality of ICstA

is
bounded by O(| → | + |Q|).

The following lemma, albeit simple, demonstrates some
nice properties on the zone construction.

Lemma 1 Assume 1C-TA A, the following properties
hold:

1. for any transition p
g,σ,r−→ p′, x |= g5 implies that for

any y ∈ λ�x�, y |= g.

2. for any q ∈ Q, x |= I(q) implies that for any y ∈ λ�x�,
y |= I(q).

5Here we abuse the notation |= a little: x denotes the value of the clock.
Since there is only one clock, it is not harmful.
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Remark 2 We note that this result can not be directly de-
rived from the standard results for general TAs, since there
the region construction [1] is applied which is much finer
than the construction here. We note that the one-clock as-
sumption is essential for the correctness of Lemma 1.

In the research of timed automata, the symbolic approach
usually means exploring the infinite timed transition system
directly by manipulating constraints that may represent in-
finite state sets (e.g. the clock zone method). [15] applies
this approach in order to avoid unnecessary blow-up of ex-
plicit region construction. However, since they considered
the timed plant with any number of clocks, as Section 3
indicates, in general (i.e. in the worst case and for timed
plants with at least three clocks), the region construction is
unavoidable, and in theoretical complexity it is even opti-
mal. In other words, if we are not lucky enough, this zone
construction which is much coarser, will unfortunately be
refined step by step and in the end turns into the region
construction. However, the case is completely different if
1C-TAs are considered. In contrast, we show that even in
the worst case, the region construction, which leads to the
exponential blow-up is unnecessary. Thanks to the simplic-
ity of 1C-TA (in particular, the elimination of interference
between different clocks), we propose a zone construction,
which provides a suitable granularity for the state space par-
tition in the sense that, on the one hand, it is fine enough for
the closure property of control operation (e.g. see π below);
on the other hand, it provides a much coarser partition than
the one corresponding to the region graph, and thus leads to
a polynomial algorithm.

To proceed, we first explain how to solve reachability
and safety control problems in the timed framework ([15],
the presentation is close to [5]). Let A = (Q,Σ, C, q0,→
, I) be a timed plant, we define the controllable and un-
controllable discrete predecessors of a set of configurations
D ⊆ Q × R≥0 as follows:6

• controllable discrete predecessors:

cPred(D) =
{

(q, x) ∈ Q × R≥0

∣∣∣∣
∃c ∈ Σc, c ∈ en(q, x) and ∀.(q′, x′) ∈ Q × R≥0,
(q, x) c→ (q′, x′) =⇒ (q′, x′) ∈ D

}

• uncontrollable discrete predecessors:

uPred(D) = {(q, x) ∈ Q × R≥0 | ∃u ∈ Σu

u ∈ en(q, x) s.t. (q, x) u→ (q′, x′) and (q′, x′) ∈ D
}

We explain the intuition as follows. The set cPred(D) is
the set of configurations from which we can enforce a con-
figuration of D by doing a controllable action. The set

6Here, we instantiate the general construction in the setting of 1C-TA.

uPred(D) is the set of configurations from which the en-
vironment can do an uncontrollable action which leads to a
configuration in D. In the timed framework, these two dis-
crete controllable and uncontrollable predecessors are not
sufficient, and we need to define a time controllable prede-
cessor operator of a set D of configurations: a configura-
tion (q, v) is in π(D) iff

(1) it is possible to let t time units elapse for some t ≥ 0
and use a controllable action to reach D and no uncon-
trollable action played before or at t leads outside D;
or

(2) D can be reached by just letting time elapse and no
uncontrollable action leads outside D.

Formally the operator π is defined as follows:

π(D) =

{
(q, x) ∈ Q × R≥0

∣∣∣∣∣
∃t.(q, x)

δ(t)→ (q′, x′), (q′, x′) ∈ cPred(D)
and Post[0,t](q, x) ∩ uPred(D̄) = ∅; or
∃t.Post[t,+∞](q, x) ⊆ D and
Post[0,+∞](q, x) ∩ uPred(D̄) = ∅

⎫⎪⎪⎬
⎪⎪⎭

where PostI(q, x) = {(q, x+ t) | t ∈ I and x+ t |= I(q)}.
Assuming a 1C-TA A and Q = {q0, . . . , qm}.

Clearly, any set of configurations can be written as K =⋃
0≤i≤m{qi} × Pi, where Pi ⊆ R≥0. Thus, we can view

π as a transformation on K. Let Z = {(q, λ) | q ∈
Q and λ ∈ ICstA

}. K is called well formed 1C-zone if for
any 0 ≤ i ≤ m, there exists some index set Ji such that
Pi =

⋃
j∈Ji

{λj | (qi, λj) ∈ Z}.
Clearly, well formed 1C-zones are closed under union,

intersection and complementation (w.r.t. Z). We then at-
tempt to prove the closure of well formed 1C-zone under
the transformation of π. At first, we introduce a technical
lemma.

Lemma 2 Assume D ⊆ Z and q ∈ Q. Then the following
properties hold:

1. For any x ∈ R≥0, (q, x) ∈ cPred(D) implies that for
any (q, y) such that y ∈ λ�x�, (q, y) ∈ cPred(D);

2. For any x ∈ R≥0, (q, x) ∈ uPred(D) implies that for
any (q, y) such that y ∈ λ�x�, (q, y) ∈ uPred(D).

Theorem 2 Assume K =
⋃

0≤i≤m{qi}×Pi. If K is a well
formed 1C-zone, so is π(K) =

⋃
0≤i≤m{qi} × P ′

i .

We now construct an increasing and a decreasing version
of π to solve reachability and safety control: πreach(D) =
D ∪ π(D) and πsafe(D) = D ∩ π(D). Moreover,
note that π∗

reach(Good) = limi→∞ πi
reach(Good) and
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π∗
safe(Bad) = limi→∞ πi

safe(Bad). To implement this, set
D0 = {(q, R≥0) | q ∈ Good}. Clearly, D0 ⊆ Z . By The-
orem 2 and induction, it is easy to see that π∗

reach(Good) =⋃
0≤i≤|Z| π

i
reach(D0) ⊆ Z (here, the convergence follows

from the finiteness of Z). The same argument applies to the
safety control. These boil down to our main result of this
section:

Theorem 3 Assume A = (Q,Σ, C, q0,→, I) to be a timed
plant with one clock. The unknown switch condition con-
trol problem can be solved in O(|Q| · (|Q| + | → |)).

Theorem 3 entails that control of a 1C-TA is not more
intricate than control of an untimed plant from the perspec-
tive of complexity theory. It is well-known that the latter
is P-hard, which also gives us the desired lower bound. To
conclude this section, we have

Theorem 4 The control problems for timed automata with
one clock are P-complete.

5 Control timed automata with two clocks

In this section, we tackle timed automata with two
clocks. In this case, the trick in the previous section sim-
ply does not work and it seems that there is an EXP-
TIMEcomplexity blow-up for control. We provide “partial”
evidence supporting this by establishing a PSPACE lower
bound 7. In details, we propose a polynomial transforma-
tion from validity of Quantified Boolean Formulae (QBF)
into reachability control of timed automata with two clocks
and thus obtain that:

Theorem 5 The control problems for timed automata with
two clocks are PSPACE-hard.

6 Related Works

As for real-time control, besides the excellent work done
by [15], we would mention some earlier works: An exten-
sion of the RW framework for discrete timed systems has
been proposed in [7] and unlike this approach, [13] works
within the RW framework on time automata. More recently,
[11] considered the timed control for external specification,
and [6] and [4] followed this line, by studying the partial
observation of the controller or taking MTL formulae as ex-
ternal specifications. As for the complexity of verification
(we only mention the most relevant ones), [10] considered
the complexity of reachability problem for timed automata.
[14] investigated the complexity of timed model checking
for one or two clocks.

7We say “partial” because this does not mean that exponential blow-
up is doomed, since PSPACE ⊆ EXPTIME. However, at least it indicates
that this problem is not tractable anymore provided one admitting that the
PSPACE does not collapse to P.
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